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Logarithmic Level Comparison for Small Deviation
Probabilities
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Log-level comparisons of the small deviation probabilities are studied in three
different but related settings: Gaussian processes under the L2 norm, multiple
sums motivated by tensor product of Gaussian processes, and various inte-
grated fractional Brownian motions under the sup-norm.
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1. INTRODUCTION

For a given continuous random process X(t), t ∈ [0,1], the small devi-
ation probability concerns the asymptotic behavior of P(‖X‖<ε) as ε→
0+, where ‖ · ‖ is a norm on the space C([0,1]). In the literature, small
deviation probabilities of various types are studied and applied to many
problems of interest under different names such as small ball probability,
lower tail behaviors, two sided boundary crossing probability and the first
exit time, etc. The survey paper of Ref. 18 for Gaussian processes, together
with its extended references, covers much of the recent progress in this
area. In particular, various applications and connections with other areas
of probability and analysis are discussed.

In this paper, we study the log-level comparison of the type

log P(‖X‖<ε)∼C log P(‖Y‖<ε)
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or

log P(‖X‖<Cε)∼ log P(‖Y‖<ε),

under easy to verify conditions on centered Gaussian processes X and Y ,
where the constant C=C(‖ · ‖,X,Y )∈ (0,∞). It is important to note that
the main results in many works in this area determine only the log-level
asymptotic behavior up to some constant factor in front of the rate. So
it is very interesting and useful to find log-level comparison results with
explicit constants. In many applications, one needs the small deviation rate
and constant at logarithmic level. Our main results are in three different
but related settings. Our methods of proofs are all different and can be
applied to various related problems.

In the first setting, we consider the L2 norm ‖ · ‖2, arguably the
simplest and well-studied case. By Karhunen–Loéve expansion, we have
‖X‖2

2 =∑∞
n=1 λnξ

2
n where λn are the eigenvalues of the associated covari-

ance operator. and ξn are i.i.d. standard normal random variables. Once
the eigenvalues are known, the small deviation probability can be esti-
mated (at least in principle) using a result of Ref. 21 see (2.1). However,
eigenvalues are rarely found exactly. Often, one only knows the asymptotic
approximation. Thus, a natural question is to study the relation between
the small deviation of the original process and the one with approxi-
mated eigenvalues λ̃n. This line of research started in Ref. 15 and contin-
ues in Refs. 9 and 11. (See also Refs. 13 and 7). Roughly speaking, the
small deviation probabilities under L2 norms are comparable if the infinite
product

∏
λn/λ̃n converges. Although under certain assumptions, there are

complex analytic methods that enable one to find the aforementioned infi-
nite product directly, without computing the eigenvalues (cf. Refs. 8 and
9), the typical case is that one has some rough estimate of the eigenvalues,
which is not good enough to ensure the convergence of the infinite prod-
uct. This is particularly true for multi-parameter processes. In Section 2,
we show that the log-level comparison with constant holds under compa-
rable finite rank approximation.

In the second setting, we consider multiple sums motivated by ten-
sor product of Gaussian processes. The methods presented are general
enough to handle nonnegative random variables other than squared L2-
norms of tensored Gaussian processes. Similar question has been studied
by Karol et al.(13) and Fill and Torcaso(7) for tensored Gaussian random
fields under the L2-norm. However, our probabilistic argument allow us to
handle the case that has been left open by using their methods.

In the third setting, we consider the comparison of small deviation
under the sup-norm which is usually harder and more interesting. There
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seems to be no known method that handles the general case. So we only
deal with the comparison among various integrated fractional Brownian
motions which were studied recently under the L2-norm in Refs 4, 7,
9, 10, 13, 19, and 20. Our method here works for general norms such
as the sup-norm and the Lp-norm. It is a combination of techniques
developed in Refs. 4, 16, and 17. More details are given in Section 4. In
general, our method provides a systematic approach to log-level compari-
sons under general norms.

2. L2-NORM

Given a continuous Gaussian process X(t), t ∈ [0,1], we have by Karh-
unen–Loéve expansion

‖X‖2
2 =

∞∑

n=1

λnξ
2
n

where λn are the eigenvalues of the associated covariance operator.

Kf (t)=
∫ 1

0
σ(t, s)f (s)ds, σ (t, s)=EX(t)X(s)

and ξn are i.i.d. standard normal random variables. Once the eigenvalues
are known, the small deviation probability can be estimated (at least in
principle) by using the following result of Ref. 21. Namely,

P

( ∞∑

n=1

anξ
2
n � ε2

)

∼ (−2πt2h′′(t))−1/2 exp{th′(t)−h(t)}, (2.1)

where h(t)= 1
2

∑∞
n=1 log(1+2λnt) and ε2 =h′(t). This is the starting point

of our result in this section.

Theorem 2.1. Let X and Y be two Gaussian processes with eigen-
values a1 � a2 � · · ·� an · · · and b1 � b2 � · · ·bn� · · · , respectively. Suppose∑
n>N an∼C2∑

n>N bn∼ r(N) where r is a decreasing function satisfying

lim
(a,x)→(1,∞)

r ′(αx)
r ′(x)

=1 and r(x)=O(xr ′(x)) as x→∞.

Then

log P(‖X‖2<Cε)∼ log P(‖Y‖2<ε).
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Proof. We first need some analytic facts based on our assumptions.
Given α>0, α �=1, let N be large enough, so that [αN ] �=N . If α>1, then

[αN ]∑

n=N+1

an= r(N)− r([αN ])+o(1) · r(N)= ([αN ]−N)r ′(βN)+o(1) · r(N),

where 1<β<α. Because {an} is non-increasing, we have

aN �−r ′(βN)+o(1) · r(N)

[αN ]−N .

Letting N→∞, and then α→1+, we have

lim inf
N→∞

aN

−r ′(N) � lim
α→1+

lim inf
N→∞

r ′(βN)
r ′(N)

=1.

If α<1, then

N∑

n=[αN ]+1

an= (N − [αN ])r ′(θN)+o(1) · r([αN ])).

Using the monotonicity of an, we have

aN �−r ′(θN)+o(1) r([αN ])
N − [αN ]

.

Letting N→∞ and then α→1−, we obtain

lim sup
N→∞

aN

−r ′(N) � lim
α→1−

lim sup
N→∞

r ′(θN)
r ′(N)

=1.

Hence, aN ∼ −r ′(N). Similarly, we have bN ∼ −C−2r ′(N). Therefore an ∼
C2bn.

Next, we show that an∼C2bn and r(x)=O(xr ′(x)) imply

log P(‖X‖2<Cε)∼ log P(‖Y‖2<ε)

as ε→ 0+. To this end, we note that by the result of Sytaya mentioned
earlier, we have

log P

( ∞∑

n=1

anξ
2
n � ε2

)

∼γ h′
a(γ )−ha(γ )−

1
2

log(2πγ 2h′′(γ )). (2.2)

Because h′′<0, and h′′′>0, we have

|γ h′(γ )−h(γ )|=−
∫ γ

0
th′′(t)dt�−

∫ γ

0
th′′(γ )dt�−γ 2h′′(γ )/2.
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Thus, the third term on the right-hand side of (2.2) is of smaller order,
and we have

log P

( ∞∑

n=1

anξ
2
n � ε2

)

∼γ h′
a(γ )−ha(γ ). (2.3)

By otherwise considering an/C
2, we can assume an ∼ bn. For any

small ε > 0, let t and s be chosen such that h′
a(t)=h′

b(s)= ε2. Note that
h′′
b(s)ds/dt=h′′

a(t). By L’Hospital’s rule, we have

log P
(∑∞

n=1 bnξ
2
n � ε2

)

log P
(∑∞

n=1 anξ
2
n � ε2

) ∼ −sh′
b(s)+ha(s)

−th′
a(t)+ha(t)

∼ −sh′′
b(s)ds/dt

−th′′
a(t)

= s

t
∼1,

provided that we show t∼ s.
To show t∼ s, we study the equation h′

a(t)=h′
b(s), that is,

∞∑

n=1

1

a−1
n +2t

=
∞∑

n=1

1

b−1
n +2s

. (2.4)

For 0<δ<1. Because an∼bn, there exists N0 such that for n>N0, |a−1
n −

b−1
n |<δb−1

n . For t fixed, choose N1,N2, so that t�a−1
N1
<2t , and s�b−1

N2
<

2s. Without loss of generality, we assume N1<N2. Thus, s <2(1+ δ)t . By
choosing t large enough we can assume N1>2N0 and an>r ′(n) for n�N1.
From (2.4) we have

∞∑

n=1

|t− s|
(
a−1
n +2t

)(
b−1
n +2s

) �
∞∑

n=1

|a−1
n −b−1

n |
(
a−1
n +2t

)(
b−1
n +2s

)

�
N0

(
a−1
N0

+b−1
N0

)

4ts
+
∑

n>N0

δ

a−1
n +2t

�
N0

(
a−1
N0

+b−1
N0

)

4ts
+
∑

n�N1

δ

2t
+
∑

n>N1

δ

a−1
n

�
N0

(
a−1
N0

+b−1
N0

)

4ts
+ δN1aN1 + δr (N1) .

Because an∼−r ′(n) and r(n)=O(nr ′(n), there exists M>0 such that

∣
∣
∣1− s

t

∣
∣
∣

∞∑

n=1

t
(
a−1
n +2t

)(
b−1
n +2s

) �
N0

(
a−1
N0

+b−1
N0

)

4ts
+MδN1aN1 . (2.5)
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Note that
∞∑

n=1

t
(
a−1
n +2t

)(
b−1
n +2s

) �
N1∑

n=N0+1

t
(
a−1
n +2t

)(
b−1
n +2s

)

� N1 −N0

16 (1+ δ) t
� 1

128
N1aN1 .

Also, it is easy to check that

N0(a
−1
N0

+b−1
N0
)

4ts
=o(1) ·

∞∑

n=1

t

(a−1
n +2t)(b−1

n +2s)
.

Thus, from (2.5) we obtain

lim sup
t→∞

∣
∣
∣1− s

t

∣
∣
∣�128Mδ.

Because δ is arbitrary, we have t∼ s. This proves the theorem.

We would like to remark that in Theorem 2.1 the two conditions on
r(x) are weak, and can be easily satisfied in most of the applications.
Indeed, the first condition essentially says that r(x) does not go to 0 too
slow (at logarithmic level); while the second condition requires that it does
not go to 0 too fast (exponentially). Readers interested in operator the-
ory may have noticed that r(N) is closely related to the so-called s-num-
ber, and is a measurement of the compactness of the covariance operator.
When r(N) decreases slowly, the operator is less compact, the correspond-
ing Gaussian process is “less continuous”, and has smaller small deviation
probability; when r(N) decreases fast, the covariance operator is closer to
a finite rank operator, the corresponding Gaussian process is “smoother”
and has larger small deviation probability.

Two cases that are not covered by the theorem above are: (a) an ∼
Cn−1[log(n+1)]β with β<−1; and (b) log an∼−Cnα[log(n+1)]β . The for-
mer case, the small deviation is super exponentially small, thus does not
have sufficient interest in application. For the latter case, we have the fol-
lowing

Theorem 2.2. Let X and Y be two Gaussian processes with eigen-
values a1 �a2 � · · ·�an� · · · and b1 �b2 � · · ·�bn� · · · , respectively. Sup-
pose log an∼−nαJ (n), where J (x) is a slow varying function, then

log P(‖X‖2<ε)∼ −α21/α

α+1
log1/α+1 1/ε

[J (log1/α 1/ε)]1/α
.
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Thus, if log bn∼C log an, then

log P(‖Y‖2<ε)∼C−1/α · log P(‖X‖2<ε).

Proof. For 0<δ<1 and large t , let N be smallest integer such that
a−1
N <δt . Then

N

(2+ δ)t �
∞∑

n=1

1

a−1
n +2t

� N

2t
.

Because log an∼−nαJ (n), we have NαJ (N)∼ log(δt), which implies

N ∼
(

log(δt)

J (log1/α(δt))

)1/α

.

Also, note that

∑

n>N

1

a−1
n +2t

�
∑

n>N

an=O (aN)=O
(

1
δt

)

=o(1) ·
N∑

n=1

1

a−1
n +2t

.

Thus,

1+o(1)
(2+ δ)t

(
log(δt)

J (log1/α(δt))

)1/α

�h′
a(t)�

1+o(1)
2t

(
log(δt)

J (log1/α(δt))

)1/α

.

Because δ is arbitrary, we conclude that

h′
a(t)∼

1
2t

(
log t

J (log1/α t)

)1/α

,

which implies that

h(t)∼ α

2(α+1)
log1/α+1 t

[J (log1/α(t))]1/α
.

Clearly, th′(t)=o(h(t)). Thus, by (2.3) we have

log P(‖X‖2<ε)∼−h(t),
where t satisfies h′

a(t)= ε2. By the asymptotic estimate of h′
a(t) obtained

above, we have

t∼21/α−1 1
ε2

(
log 1/ε

J (log1/α 1/ε)

)1/α

.
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Hence,

log P(‖X‖2<ε)∼ α21/α

α+1
log1/α+1 1/ε

[J (log1/α 1/ε)]1/α
.

3. MULTIPLE SUMS

In this section, we present a probabilistic comparison arguments for
multiple sums of independent random variables. This is motivated by the
study of the small deviation probabilities for tensored Gaussian random
fields under the L2-norm. Suppose we have two centered Gaussian pro-
cesses X(t) and Y (t) on [0, 1] with continuous covariance function σX(s, t)
and σY (s, t), respectively. Then the tensored Gaussian process X⊗Y (t1, t2)
on [0,1]2 has mean zero and continuous covariance function

σX⊗Y ((s1, s2), (t1, t2))=σX(s1, t1) ·σY (s2, t2), 0� s1, s2, t1, t2 �1.

It is well known that X⊗Y (t1, t2) on [0,1]2 is continuous if X(t) and
Y (t) are continuous on [0,1], based on work initiated in Refs. 5 and 6 (see
also Ref. 3). Detailed information can also be found in Ref. 14.

In particular, we have the following series representation. Assume the
well-known Karhunen-Loève expansion

X(t) =
∑

n�1

a
1/2
n ξnen(t)

Y (t) =
∑

m�1

b
1/2
m ξmhm(t)

where ξi denotes as usual i.i.d N(0,1) sequences, {en(t), n � 1} and
{hm(t),m� 1} are complete orthonormal bases in L2[0,1]. Then we have
Karhunen-Loève expansion

X⊗Y (t1, t2)=
∑

n�1

∑

m�1

a
1/2
n b

1/2
m ξnmen(t1)hm(t2)

with

‖X⊗Y (t1, t2)‖2
2 =

∑

n�1

∑

m�1

anbmξ
2
mn,

where ξij denotes as usual a doubly indexed i.i.d N(0,1) sequences.
There are various studies recently on L2-norm small deviation for the

above tensored Gaussian random fields via different analytic methods (see,
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e.g. Refs. 7, 13, and 15). The main goal of this section is to present a sim-
ple probabilistic argument for the small deviation probability

log P




∑

n�1

∑

m�1

anbmXmn� ε



 ,

where Xmn > 0 are i.i.d random variables. Of course, our probabilistic
method works also for multiple sums. To really make the basic ideas
clear, we also restrict ourself to Xmn= ξ2

mn since similar arguments works
for more general situation. Even in this tensored Gaussian random fields
setting, our result covers a variety of interesting parameter ranges for
sequences an, bn, and thus fills a gap left open from the spectral methods
used in Ref. 13 where many interesting examples can be found.

As discussed above, we assume for the remaining of this section that
we are in the Gaussian setting. And it is easy to see that all our arguments
work in general setting.

There are several ways to obtain the exact asymptotics at the loga-
rithmic level. One is given in Ref. 15 based directly on Sytaja’s Tauberi-
an theorem and analytic computations. Another is given in a recent work
by Karol et al.(13) based on spectral asymptotics for tensor products of
compact self-adjoint operators. One of the most powerful technique is the
Mellin transform developed by Fill and Torcaso.(7) Our probabilistic argu-
ments below are different but depends on some canonical known analytic
results.

We start with a well known Exponential Tauberian theorem that con-
nects the asymptotic Laplace transform of a positive random variable V
with the small deviation behavior of the positive random variable V near
zero. Namely, for α>0 and β ∈R

log P(V � ε)∼−CV ε−α| log ε|β as ε→0+

if and only if

logE exp(−λV )∼−(1+α)1−β/(α+1)α−α/(1+α)C1/(1+α)
V λα/(1+α)(logλ)β/(1+α)

as λ→∞.

A slightly more general formulation is given in Theorem 4.12.9 of
Ref. 2 and is called de Bruijn’s exponential Tauberian theorem. Note that
one direction between the two quantities is easy and follows from

P(V � ε)=P(−λV �−λε)� exp(λε)E exp(−λV ),
which is just Chebyshev’s inequality.
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As a simple application of the Tauberian theorem, we have the fol-
lowing lemma for sums of independent random variables.

Lemma 3.1. If Vi,1� i�m+ l, are independent nonnegative random
variables such that

− log P(Vi � ε)∼diε−α| log ε|β, 1� i�m,

and

− log P(Vi � ε)=o
(
ε−α| log ε|β) , m+1� i�m+ l

for 0<α<∞, β ∈R and 0�di <∞, then

− log P

(
m+l∑

i=1

Vi � ε
)

∼
(

m∑

i=1

d
1/(1+α)
i

)1+α
ε−α| log ε|β.

Proof. We can first write down equivalent statements for both
assumptions and conclusions in terms of the asymptotic behaviors of
Laplace transform by using the above exponential Tauberian theorem. The
desired result then follows from

log E exp

(

−λ
m+l∑

i=1

Vi

)

=
m+l∑

i=1

log E exp (−λVi)

for independent random variables Vi,1� i�m+ l.
Our second lemma is a well-known fact and a detailed proof can be

found in Ref. 13 in the case θ�0. In general, it follows simply from The-
orem 2.1. Below we give a simple and direct argument which also serves
as a warm up for proof of Lemma 3.3.

Lemma 3.2. Assume as n→∞,

λn∼Cn−γ (logn)θ

for γ >1 and θ ∈R. Then we have as ε→0,

log P(‖X‖� ε)= log P

( ∞∑

n=1

λnξ
2
n � ε2

)

∼−D ·C1/(γ−1)ε−2/(γ−1)| log ε|θ/(γ−1)

where

D= ((γ −1)/2)(γ−θ−1)/(γ−1)(πγ−1csc(π/γ ))γ/(γ−1). (3.1)
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Proof. By Theorem 2.1, it suffices to estimate the probability
log P(V � ε2), where

V =
∞∑

n=1

n−γ [log(n+1)]θ ξ2
n .

Note that as λ→∞,

log E exp(−λV ) = −1
2

∞∑

n=1

log[1+2n−γ (log(n+1))θλ]

∼ −1
2

∫ ∞

0
log[1+2x−γ (log(x+1))θλ]dx

∼ −1
2
γ−1−θ/γ λ1/γ (logλ)θ/γ ·

∫ ∞

0
t1/γ−1 log(1+2/t)dt

= −21/γ−1γ−θ/γ πcsc(π/γ ) ·λ1/γ (logλ)θ/γ .

Hence Lemma 3.2 follows from the exponential Tauberian theorem.

Our next lemma follows from similar arguments outlined in Ref. 15
and/or the much more powerful Mellin transform techniques developed by
Fill and Torcaso(7) in the case when θa and θb are nonnegative integers.
Here we give a direct argument based on estimates of Laplace transform
and the exponential Tauberian theorem.

Lemma 3.3. For any fixed positive integer K,

log P

( ∞∑

n=K+1

∞∑

k=K+1

n−γa (logn)θa ·k−γb (log k)θb ξ 2
nk � ε2

)

∼
{−D1

(∑∞
k=K+1 k

−γb/γa (log k)θb/γa
)γa/(γa−1)

ε−2/(α−1)| log ε|θa/(γa−1) if γb >γa >1
−D2ε

−2/(γ−1)| log ε|(γ+θa+θb)/(γ−1) ifγb =γa =γ >1 and θa, θb �0

where

D1 = ((γa −1)/2)(γa−θa−1)/(γa−1)(πγ−1
a csc(π/γa))(γa/(γa−1)), (3.2)

D2 = (2/(γ −1))(1+θa+θb)/(γ−1)(B(1+ θa/γ,1+ θb/γ )πγ−1csc(π/γ ))γ/(γ−1)

(3.3)

and B(x, y) is the Beta function.
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Proof. First, assume γb >γa >1. Let

Vk =
∞∑

n=K+1

n−γa (logn)θaξ
2
nk and V =

∞∑

k=K+1

k−γb (log k)θbVk.

Pick integer �∼λη, where (γa −1)/(γb−1) ·γ−1
a <η<γ−1

b . Then,

1	λ�−γb (log�)θb and λ�1−γb (log�)θb 	λ1/γa .

By proof of Lemma 3.2, we have

log E exp(−λV ) =
∞∑

k=K+1

log E exp(−λVk)

∼ −21/γa−1γ−θa/γaπcsc(π/γa)
�∑

k=K+1

(λk−γb (log k)θb )1/γa [log(λk−γb (log k)θb )]θa/γa

−
∞∑

n=K+1

∞∑

k=�+1

n−γa (logn)θa ·k−γb (log k)θbλ.

Because the second term on the right-hand side is of order
O(λ�1−γb (log�)θb), which is lower than the first term, by letting �→∞
we obtain

log E exp(−λV )∼−21/γa−1γ
−θa/γa
a πcsc(π/a)

∞∑

k=K+1

k−γb/γa (log k)θb/γa

×λ1/γa (logλ)θa/γa .

When γa =γb=>1, the argument is slightly different.

log E exp(−λV ) = −1
2

∞∑

n=K+1

∞∑

k=K+1

log[1+2n−γ k−γ (logn)θa (log k)θbλ]

∼ −1
2

∫ ∞

K

∫ ∞

K

log[1+2x−γ y−γ (log x)θa (log y)θbλ]dx dy.
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Let log y= w
r

log(λz) and log x= 1−w
r

log(λz), then

log E exp(−λV )
∼−1

2

∫ ∞

K2γ /λ

∫ 1

0
log

(

1+ 2wθb (1−w)θa (logλz)θa+θb
zγ θa+θb

)

γ−2λ1/γ z1/γ−1 logλzdwdz

∼−1
2
γ−2λ1/γ logλ

∫ 1

0

∫ ∞

0
log

(

1+ 2wθb (1−w)θa (logλ)θa+θb
zγ θa+θb

)

z1/γ−1dz dw

=−21/γ−1πcsc(π/γ )λ1/γ
(

logλ
γ

)1+(θa+θb)/γ ∫ 1

0
wθb/γ (1−w)θa/γ dw

=−21/γ−1π csc (π/γ )γ−1−(θa+θb)/γ B(1+ θa/γ,1+ θb/γ ) ·λ1/λ(logλ)1+(θa+θb)/γ .

The lemma now follows from the exponential Tauberian theorem.

Theorem 3.4. Assume as n→∞,

an∼Can−γa (logn)θa , bn∼Cbn−γb (logn)θb

for γb�γa >1. Then we have as ε→0,

(i) for γb >γa >1,

log P

( ∞∑

n=1

∞∑

k=1

anbkξ
2
nk � ε2

)

∼−D1 ·C1/(γa−1)
a

( ∞∑

k=1

b
1/γa
k

)γa/(γa−1)

ε−2/(γa−1)| log ε|θa/(γa−1)

where the constant D1 is given in (3.2).

(ii) for γb=γa =γ >1 and θa, θbλ�0,

log P

( ∞∑

n=1

∞∑

k=1

anbkξ
2
nk � ε2

)

∼−D2(CaCb)
1/(γ−1)ε−2/(γ−1)

| log ε|(γ+θa+θb)/(γ−1)

where the constant D2 is given in (3.3).
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Proof. We first treat the case (i). For the upper bound, we have for
any positive integer K�1

log P

( ∞∑

n=1

∞∑

k=1

anbkξ
2
nk � ε2

)

≤ log P

(
K∑

k=1

bk

∞∑

n=1

anξ
2
nk � ε2

)

∼−D1C
1/(γa−1)
a

(
K∑

k=1

b
1/γa
k

)γ /(γa−1)

ε−2/(γa−1)| log ε|θa/(γa−1), (3.4)

where the last line follows from Lemma 3.1 and the fact that for each 1�
k�K,

log P

(

bk

∞∑

n=1

anξ
2
nk � ε2

)

∼−D1(Cabk)
1/(γa−1)ε−2/(γa−1)| log ε|θa/(γa−1)

based on Lemma 3.2. Note that we had to be careful here since we have
ε2 rather than just ε in the Lemma 3.2. Taking K → ∞, we obtain the
desired upper bound in the case γb >γa >1.

For the lower bound in case (i), we split the summation region into
three disjoint parts so that we have three independent sums. For any δ>0
small, there exists positive integer K such that for any n, k�K+1,

(1− δ)Can−γa (logn)θa �an� (1+ δ)Can−γa (logn)θa , (3.5)

(1− δ)Cbk−γb (log k)θb �bk � (1+ δ)Cbk−γb (log k)θb . (3.6)

With δ and K defined above, we have by the independence of three dis-
joint sums

P

( ∞∑

n=1

∞∑

k=1

anbkξ
2
nk � ε2

)

�P

(
K∑

k=1

bk

∞∑

n=1

anξ
2
nk �(1− δ2)ε2

)

·

·P
K∑

n=1




K∑

n=1

an

∞∑

k=K+1

bkξ
2
nk �2−1δ2ε2



·



∞∑

n=K+1

∞∑

k=K+1

a−nbkξ2
nk �2−1δ2ε2



 ·
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Thus we have again by Lemmas 3.1–3.3, with φ(ε) = ε2/(γa−1)

| log ε|−θa/(γa−1),

lim inf
ε→0

φ(ε) log P

( ∞∑

n=1

∞∑

k=1

anbkξ
2
nk � ε2

)

� lim inf
ε→0

φ(ε) log P

(
K∑

k=1

bk

∞∑

n=1

anξ
2
nk � (1− δ2)ε2

)

+ lim inf
ε→0

φ(ε)P




K∑

n=1

an

∞∑

k=K+1

bkξ
2
nk �2−1δ2ε2





+ lim inf
ε→0

φ(ε)P




∞∑

n=K+1

∞∑

k=K+1

(1+ δ)2Can−γa (logn)θaCbk−γb (log k)θbξ2
nk

�2−1δ2ε2
)

=−D1C
1/(γa−1)

(
K∑

k=1

b
1/γa
k

)γa/(γa−1)

(1− δ2)−1/(γa−1)+0

−D1(2CaCb)
1/(γa−1)(1+ δ−1)2/(γa−1)




∞∑

k=K+1

k−γb/γa (log k)θb/γa





γa/(γa−1)

.

Taking K→∞ first and then δ→0, we obtain the lower bound in (i).
Next we turn into the more interesting and harder case (ii). For the

upper bound, we have for any positive integer K � 1 determined in (3.5)
and (3.6),

log P

( ∞∑

n=1

∞∑

k=1

anbkξ
2
nk � ε2

)

� log P




∞∑

n=K+1

∞∑

k=K+1

anbkξ
2
nk � ε2





� log P




∞∑

n=K+1

∞∑

k=K+1

(1− δ)2Can−γa (logn)θaCbk−γb (log k)θbξ2
nk � ε2





∼−D2(CaCb)
1/(γ−1)(1− δ)2/(γ−1)ε−2/(γ−1)| log ε|(γ+θa+θb)/(γ−1)

where the last line follows from Lemma 3.3. Taking δ→0, we obtain the
desired upper bound in the case γa =γb=γ >1.
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For the lower bound in case (ii), we again split the summation region
into three disjoint parts like we did in the case (i) but with different
weights on their contributions. For any δ>0 small and K large such that
the relation (3.4) holds, we have by the independence of three disjoint
sums,

P

( ∞∑

n=1

∞∑

k=1

anbkξ
2
nk � ε2

)

�P

(
K∑

k=1

bk

∞∑

n=1

anξ
2
nk �2−1δ2ε2

)

×P




K∑

n=1

an

∞∑

k=K+1

bkξ
2
nk �2−1δ2ε2



 ·P



∞∑

n=K+1

∞∑

k=K+1

anbkξ
2
nk � (1− δ2)ε2



 .

Thus, we have again by Lemmas 3.1–3.3 with ψ(ε) = ε2/(γa − 1)
| log ε|−(γ+θa+θb)/(γa−1),

lim inf
ε→0

ψ(ε) log P

( ∞∑

n=1

∞∑

k=1

anbkξ
2
nk � ε2

)

� lim inf
ε→0

ψ(ε) log P

(
K∑

k=1

bk

∞∑

n=1

anξ
2
nk �2−1δ2ε2

)

+ lim inf
ε→0

ψ(ε)P




∞∑

n=1

an

∞∑

k=K+1

bkξ
2
nk �2−1δ2ε2





+ lim inf
ε→0

ψ(ε)

×P




∞∑

n=K+1

∞∑

k=K+1

(1+δ)2Can−γa (logn)θaCbk−γb (logk)θbξ2
nk � (1− δ2)ε2





=0+0−D1 ·
(
(−δ2)−1(1+ δ)2CaCb

)1/(γ−1)
.

Taking δ→0, we obtain the lower bound in (ii) and hence finish the
proof.

4. SUP-NORM

Consider integrated fractional Brownian motion processes

WH,m(t)=W [β1,... ,βm]
H,m (t)= (−1)β1 +· · ·+βm

∫ t

βm

∫ tm−1

βm−1
· · ·
∫ t1

β1

WH(t0)dt0 · · ·dtm−1

on the interval [0, 1] where any βk equals either zero or one. There has
been a lot of study recently for the Brownian motion case H =1/2 under
the L2-norm (see Refs. 10, 19, and 20). It is known that
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lim
ε→∞ ε

1/(m+H) log P

(∫ 1

0
|WH,m(t)|2dt� ε2

)

=−KH,m,

where

KH,m= (m+H)[�(2H +1) sin(πH)]
1

2m+2H

[
(2m+2H +1) sin

(
π

2m+2H+1

)] 2m+2H+1
2m+2H

is a positive constant independent of the choices of βk. Our goal of this
section is to deal with the sup-norm case, which we only know the exis-
tence of the constant.

Theorem 4.1. There exists a constant CH,m ∈ (0,∞) independent of
the choices of βk ∈{0,1},1�k�m, such that

lim
ε→0

ε1/(m+H) log P

(

sup
0�t�1

|WH,m(t)|� ε
)

=−CH,m. (4.1)

Furthermore, we have

(m+H)[�(2H +1) sin(πH)
1

2m+2H

[
(2m+2H +1) sin

(
π

2m+2H+1

)] 2m+2H+1
2m+2H

�CH,m

�
(π

2

)1/(m+H) (m+H)[�(2H +1) sinπH ]
1

2m+2H−1

[
(2m+2H −1) sin

(
π

2m+2H+1

)] 2m+2H−1
2m+2H

(4.2)

Proof. Our proof consists three steps. We first show the limit in (4.1)
exists for the special choice of βk,1�k�m, i.e. the so-called standard mth
integrated fractional Brownian motion. To be more precise, define

Ws
H,m(t) =

∫ t

0

∫ tm−1

0
· · ·
∫ t1

0
WH(t0)dt0 · · ·dtm−1

= 1
(m−1)!

∫ t

0
(t− s)m−1WH(s)ds.

The key fact is the scaling property

Ws
H,m(ct)= cm+HWs

H,m(t), t�0
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in distribution as processes, for any fixed constant c>0. This allows us to
show the existence of a constant CH,m ∈ (0,∞) such that

lim
ε→0

ε1/(m+H) log P

(

sup
0�t�1

|Ws
H,m(t)|� ε

)

=−CH,m. (4.3)

The arguments are similar to those given for the first time in
Ref.17 for the existence of small deviation constant for fractional Brown-
ian motion and the related Riemann-Liouville type processes

∫ t
0 (t − s)α

dB(s). To be more precise, we use the very useful representation

WH(t)=aH (XH (t)+ZH(t)) t�0, (4.4)

where

XH(t) = 1
�(H +1/2)

∫ t

0
(t− s)H−1/2dB(s),

ZH (t) = 1
�(H +1/2)

∫ 0

−∞
{(t− s)H−1/2 − (−s)H−1/2}dB(s)

and the constant

aH =�(H +1/2)

(

(2H)−1 +
∫ 0

−∞
((1− s)H−1/2 − (−s)H−1/2)2ds

)−1/2

.

(4.5)

Furthermore, XH(t) is independent of ZH(t). Observe that the cen-
tered Gaussian process Xβ(t) is defined for all β>0 as a fractional Wiener
integral. Hence we have the independent sum representation

Ws
H,m(t)=aHXm+H (t)+ aH

(m−1)!

∫ t

0
(t− s)m−1ZH(s)ds. (4.6)

From Ref. 17, the small deviation constants exists for the pro-
cess Xm+H (t) under the sup-norm. The estimates for the part∫ t

0 (t − s)m−1ZH(s)ds can be found in Ref. 1. We omit details since these
are well-known arguments now.

Our second step is to show the limit in (4.1) is the same for all
choices of βk ∈{0,1}, 1�k�m. We compare WH,m(t) with Ws

H,m(t). Let us
assume that not all βk =0 and define

j = inf{k :βk =1,1�k�m}, 1� j �m.
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Then we have
∫ t

βm

∫ tm−1

βm−1

· · ·
∫ t1

β1

WH(t0)dt0 · · ·dtm−1

=
∫ t

βm

· · ·
∫ tj

βj=1

∫ tj−1

0
· · ·
∫ t1

0
WH(t0)dt0 · · ·dtm−1

= −
∫ t

βm

· · ·
∫ tj+1

βj+1

∫ tj

0
· · ·
∫ t1

0
WH(t0)dt0 · · ·dtm−1

+
∫ t

βm

· · ·
∫ tj+1

βj+1

(∫ 1

0

∫ tj−1

0
· · ·
∫ t1

0
WH(t0)dt0 · · ·dtj−1

)

dtj · · ·dtm−1

= −
∫ t

βm

· · ·
∫ tj+1

βj+1

∫ tj

0
· · ·
∫ t1

0
WH(t0)dt0 · · ·dtm−1 +gm−j (t) ·Yj

where

gm−j (t)=
∫ t

βm

· · ·
∫ tj+1

βj+1

dtj · · ·dtm−1,

Yj =
∫ 1

0

∫ tj−1

0
· · ·
∫ t1

0
WH(t0)dt0 · · ·dtj−1. (4.7)

Note that the function gm−j (t) is a polynomial of degree m−k and Yj is
a Gaussian random variable.

Repeating the above procedure, we obtain the representation

(−1)β1+···+βm
∫ t

βm

∫ tm−1

βm−1

· · ·
∫ t1

β1

WH(t0)dt0 · · ·dtm−1

=Ws
H,m(t)+

∑

j :βj=1

±gm−j (t) ·Yj . (4.8)

Note that

sup
0�t�1

∣
∣
∣
∣
∣
∣

∑

j :βj=1

±gm−j (t) ·Yj

∣
∣
∣
∣
∣
∣

�
∑

j :βj=1

sup
0�t�1

|gm−j (t)| · |Yj |

� max
1�k�m

sup
0�t�1

|gk(t)| ·
m∑

j=1

|Yj |

and hence there exists a constant δm>0 small such that

P



 sup
0�t�1

∣
∣
∣
∣
∣
∣

∑

j :βj=1

±gm−j (t) ·Yj

∣
∣
∣
∣
∣
∣
� ε



�P



 max
1�k�m

sup
0�t�1

|gk(t)| ·
m∑

j=1

|Yj |� ε


� δmεm



20 Gao and Li

for ε>0 small. This implies

lim
ε→0

ε1/(m+H) log P



 sup
0�t�1

∣
∣
∣
∣
∣
∣

∑

j :βj=1

±gm−j (t) ·Yj

∣
∣
∣
∣
∣
∣
� ε



=0.

Thus (4.1) follows from a very general theorem below, which is given in
Ref. 16 based on a weaker Gaussian correlation inequality. The key point
is that two Gaussian random elements X and Y are not necessarily inde-
pendent but with different small ball rates.

Lemma 4.2. For any joint Gaussian random vectors X and Y in a
Banach space satisfying

lim
ε→0

εγ log P(||X||� ε)=−CX, lim
ε→0

εγ log P(||Y ||� ε)=0

with 0<γ <∞ and 0<CX<∞, we have

lim
ε→0

εγ log P(||X+Y ||� ε)=−CX.

Our third step is the estimates given in (4.2). The lower bound for CH,m
or the upper bound for associated probability follows from the standard
L2-norm estimates. Namely,

P

(

sup
0�t�1

|WH,m(t)|� ε
)

�P

(∫ 1

0
|WH,m(t)|2dt� ε2

)

.

Thus,

CH,m�KH,m= (m+H)[�(2H +1) sin(πH)]
1

2m+2H

[(2m+2H +1) sin( π
2m+2H+1 )]

2m+2H+1
2m+2H

.

The upper bound for CH,m or the lower bound for associated probabil-
ity follows from a nice technique developed in Ref. 4, based again on a
slightly different L2-norm estimates.

Let X and Y be any two centered Gaussian random vectors in a sep-
arable Banach space E with norm || · ||. We use | · |µ to denote the inner
product norm of the reproducing kernel Hilbert space of µ=L(X). Then
the following general connection between small ball probabilities is discov-
ered in Ref. 4. It provides a powerful tool to estimate small ball probabil-
ities under any norm via a relative easier L2-norm estimate.
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Lemma 4.3. For any λ>0 and ε>0,

P(||Y ||� ε)�P(||X||�λε) ·E exp{−2−1λ2|Y |2µ}. (4.9)

Now back to proof of (4.2) in Theorem 4.1. Let X=W(t), the Brownian
motion. It is well known that

log P

(

sup
0�t�1

|W(t)|� ε
)

∼−(π2/8)ε−2.

Take Y =Ws
H,m(t) in Lemma 4.3. Because Wiener measure µ(W) satisfies

|f |2µ= ∫ 1
0 (f

′(s))2ds, Lemma 4.3 gives

P(||Ws
H,m||� ε)�P(||W(t)||�λε) ·E exp

{

−λ
2

2

∫ 1

0
[Ws

H,m−1(t)]
2dt

}

(4.10)

Taking || · || to be the sup-norm on C[0, 1] and λ=λε =αε1/(2m+2H)−1 in
(4.10) with α>0 to be fixed later, it follows from the existence of the con-
stants that

−CH,m = lim
ε→0

ε1/(m+H) log P

(

sup
0�t�1

|Ws
H,m(t)|� ε

)

� lim
ε→0

ε1/(m+H) log P

(

sup
0�t�1

|W(t)|�αε1/(2m+2H)

)

+ lim
ε→0

ε1/(m+H) log E exp
{

−α
2

2
ε1/(m+H)−2

∫ 1

0
[Ws

H,m−1(t)]
2dt

}

= − π 2

8α2
− 2m+2H −1

2m+2H −2
((m+H −1)α2)1/(2m+2H−1)(KH,m−1)

1−1/(2m+2H−1)

= − π 2

8α2
− α2/(2m+2H−1)(�(2H +1) sinπH)1/(2M+2H−1)

2 sin( π

2m+2H−1 )

Now pick the best α>0, we obtain

CH,m � min
α>0

(
π2

8α2
− α2/(2m+2H−1)(�(2H +1) sinπH)1/(2M+2H−1)

2 sin( π
2m+2H−1 )

)

=
(π

2

)1/(m+H) (m+H)[�(2H +1) sin(πH)]
1

2m+2H−1

[(2m+2H +1) sin( π
2m+2H+1 )]

2m+2H−1
2m+2H

,

which is the upper bound for CH,m in (4.2).
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Remark. If in the third step of the proof we let X=Ws
H,m−1(t), instead

of X=W(t), we will obtain an upper bound of CH,m in terms of CH,m−1.
Such an upper bound is slightly better than the one obtained in Theorem
4.1 However, either one is sharp. Finally, we point out that similar results
like Theorem 4.1 also hold for Lp-norm, 1 � p � ∞ and other related
norms such as Holder norm. The proofs are also similar and we omit the
details.
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