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NON-ZERO BOUNDARIES OF LEIBNIZ HALF-SPACES

FUCHANG GAO

(Communicated by N. Tomczak-Jaegermann)

Abstract. It is proved that for any d ≥ 3, there exists a norm ‖ · ‖ and two
points a, b in R

d such that the boundary of the Leibniz half-space H(a, b) =
{x ∈ R

d : ‖x − a‖ ≤ ‖x − b‖} has non-zero Lebesgue measure. When d = 2, it
is known that the boundary must have zero Lebesgue measure.

1. Introduction

Let ‖·‖ be an arbitrary norm on R
d. For a, b ∈ R

d, the Leibniz half-space H(a, b)
is defined as

(1) H(a, b) = {x ∈ R
d : ‖x − a‖ ≤ ‖x − b‖}.

It is natural to study the regularity of H(a, b). In particular, one asks if the Lebesgue
measure of the boundary of H(a, b) must be zero. Indeed, such a question arises
from the so-called Voronoi partition in information theory and optimal quantization
of probability distributions, where one considers a finite intersection of Leibniz
half-spaces, called a Voronoi region (cf. [9]). It is a well-known conjecture that
the boundary of every Voronoi region has zero Lebesgue measure. (See e.g. [8],
Conjecture 1.12.)

Let us also mention that this problem is closely related to metric entropy. Indeed,
suppose S is a compact set in (Rd, ‖ · ‖), and suppose A is a finite set in R

d with
cardinality |A| = n. For each a ∈ A, let

ra = max

{
‖y − a‖ : y ∈ ∂

⋂
b∈A

[H(a, b) ∩ S]

}
,

and define

(2) εn := inf
|A|=n

max
a∈A

ra.

Then εn is just the nth entropy number of S. For a reference on metric entropy, we
refer the readers to the excellent book of Carl and Stephani [4].

The problem becomes even more interesting once we notice that the metric
entropy number of S is closely related to that of the extreme points of S. (See e.g.
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[5], [1], [2], [3], [6] and [7].) Such relations and the fact that (2) defines the nth

entropy number of S reflect some regularity of H(a, b).
It can easily be seen that H(a, b) is closed and star-shaped relative to a. It can

also be proved easily that if ‖ · ‖ is strictly convex, then the separator

(3) S(a, b) := {x ∈ R
d : ‖x − a‖ = ‖x − b‖}

has zero Lebesgue measure, and thus ∂H(a, b), which is a subset of S(a, b), has
measure zero. For the ld1 or ld∞ norm (which is not strictly convex), H(a, b) is just
a finite union of polyhedral sets; thus the boundary has Lebesgue measure zero.
Furthermore, when d = 2, the answer is known to be affirmative. (See e.g. [8],
Theorem 1.5.)

In this paper, we will show that in general H(a, b) does not have “very good”
regularity. Indeed, for any d ≥ 3, we will show that the d-dimensional Lebesgue
measure of ∂H(a, b) may not be zero.

Theorem 1. For any d ≥ 3, there exists a norm ‖ · ‖ on R
d, and a, b ∈ R

d, a �= b,
such that m(∂H(a, b)) = ∞, where m is the d-dimensional Lebesgue measure, and
H(a, b) is the Leibniz half-space defined by (1).

The construction is somewhat technical. In order to help the readers to better
understand the idea of the construction and the proof, we first prove that in the
case d = 2, m(∂H(a, b)) = 0. As we said earlier, this result has been known, and
may already have several proofs. Here we do not intend to reproduce a known
proof ([8]), or produce a somewhat shorter proof; rather, we use this proof for the
following two purposes: 1. to see where the proof breaks down for d ≥ 3, and give
us an idea about where to look for counterexamples; 2. to make a key observation,
which will be essential in the proof of the theorem.

2. The case d = 2

Let m be the Lebesgue measure on R
2. We prove that m(∂H(a, b)) = 0. Because

H(a, b) is a closed set, ∂B = ∂H(a, b), where

B = R
2 \ H(a, b) = {x ∈ R

2 : ‖x − b‖ < ‖x − a‖}.
Clearly, it is enough to prove that any ray starting at b intersects ∂B at most

once.
Suppose there is a ray starting at b with direction vector u that intersects ∂B at

x = b + su and y = b + tu, s < t. Because ∂B ⊂ S(a, b), we have ‖x− a‖ = ‖x− b‖
and ‖y− a‖ = ‖y− b‖. That is, ‖b− a + su‖ = s and ‖b− a + tu‖ = t. This implies
that for any p, q > 0,

(4) ‖p(b − a + su) + q(t − s)u‖ = ‖p(b − a + su)‖ + ‖q(t − s)u‖.
Indeed, by linearity, it is enough to prove the case when p = 1, q ≤ 1 (or q = 1,
0 < p ≤ 1). Suppose p = 1, 0 < q ≤ 1. Then

t = ‖b − a + tu‖
= ‖b − a + su + (t − s)u‖
≤ ‖b − a + su + q(t − s)u‖ + (1 − q)‖(t − s)u‖
≤ ‖b − a + su‖ + q‖(t − s)u‖ + (1 − q)‖(t − s)u‖
= s + q(t − s) + (1 − q)(t − s)
= t.
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The two ends are equal, so

‖b − a + su + q(t − s)u‖ = ‖b − a + su‖ + q‖(t − s)u‖,
and (4) is thus valid.

Now, let w = p(b − a) + b + λu where p ≥ 0 and λ ≥ (p + 1)s. By (4),

‖w − a‖ = ‖(p + 1)(b − a) + λu‖
= ‖(p + 1)(b − a + su) + (λ − (p + 1)s)u‖
= (p + 1)‖b − a + su‖ + ‖(λ − (p + 1)s)u‖
= (p + 1)s + (λ − (p + 1)s)
= λ

and

‖w − b‖ = ‖p(b − a + su) + (λ − ps)u‖
= ‖p(b − a + su)‖ + ‖(λ − ps)u‖
= ps + (λ − ps)
= λ.

Thus, for any fixed λ ≥ s, each point w on the line segment{
w = p(b − a) + b + λu : 0 ≤ p ≤ λ

s
− 1

}

satisfies ‖w − a‖ = ‖w − b‖ = λ. In particular, the entire planar section

V :=
{

w = p(b − a) + b + λu : λ ≥ s, 0 ≤ p ≤ λ

s
− 1

}

is contained in S(a, b) ⊂ H(a, b).
Because H(a, b) is star-shaped, the extended open section

V + :=
{

v = q(b − a) + b + λu : λ > s,−1 < q <
λ

s
− 1

}

is contained in H(a, b). Indeed, for any v = q(b− a)+ b+λ ∈ V + with −1 < q < 0,
λ > s, let w = b + λ

1+q · u. Because v lies on the line segment between a and w, we
have ‖w − a‖ = ‖w − v‖ + ‖v − a‖. On the other hand, because w ∈ V , we have
‖w − a‖ = ‖w − b‖. Thus,

‖v − b‖ ≥ ‖w − b‖ − ‖w − v‖ = ‖w − a‖ − ‖w − v‖ = ‖v − a‖.
So, v ∈ H(a, b). This proves that V + ⊂ H(a, b).

Clearly y = b + tu ∈ V +. When d = 2, y = b + tu is an interior point of V +,
so an interior point of H(a, b), contradicting the assumption that y ∈ ∂B. This
implies that in R

2, any ray starting at b intersects ∂B at most once. This implies
m(∂H(a, b)) = m(∂B) = 0.

3. The case d = 3

The proof in the previous section tells us the following fact, which will be used
later in the proof.
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Fact: If b + su and b+ tu are both in the separator S(a, b), then for λ > s, and any
point w on the line segment{

w = p(b − a) + b + λu : 0 ≤ p ≤ λ

s
− 1

}
,

‖w − a‖ = ‖w − b‖ = λ.
We also notice from the proof above that for any ray starting at b, either

(1) it intersects the separator S(a, b) at most once; or
(2) there exists a planar section on the plane generated by this ray and the

point a, such that the entire planar section is contained in the separator.

In R
2, the first case prohibits the second case to happen in a large neighborhood.

This leads to the regularity of the separator; while in R
d, d > 2, both cases can

coexist on a very close neighborhood. This leads to the irregularity of the separator.
Our idea is then to construct a Banach space norm in R

d, d ≥ 3, such that there
are “many” directions in which the ray starting at b intersects the separator at
most once; while in other directions in the close neighborhood, there exist planar
sections contained in the separator. When this is done, we will show that for each
of those planar sections, half of the section is contained in the boundary of H(a, b).
Thus, by assigning “sufficiently many” directions for each case, we can make the
boundary of H(a, b) have large Lebesgue measure.

3.1. Construction. We start with the closed interval [−1, 1], and construct a
Cantor-like set. First, remove an open interval of length 10−1 from the middle;
that is, remove (−1/20, 1/20). We obtain two disjoint intervals. Next, from each
of the two intervals, we remove an open interval of length 10−2 in the middle. We
then obtain four disjoint closed intervals. Then, from each of the intervals, we re-
move an open interval of length 10−3 in the middle. Continue this procedure. The
remaining set is a closed subset of [−1, 1] with Lebesgue measure 15/8. We denote
this set by E, and denote [−1, 1] \ E by G. Clearly, E = ∂(G).

Next, we define F = {(sin(πt/2), cos(πt/2)) ∈ R
2 : t ∈ E}. F is a closed subset

of the unit circle T .
Then, we define a set D as the closed convex hull of F ∪ (−F ). D is a symmetric

convex closed set in R
2.

Now, we define a symmetric convex body K ⊂ R
3 as the closed convex hull of

{−1} × D, {0} × T and {1} × D. The symmetry of K follows from the symmetry
of F . K can be imagined as a short log with some wood pared off symmetrically
at both ends.

Finally, we define a norm ‖ · ‖K in R
3 by

‖x‖K = inf{t ∈ R : tx ∈ K}.

3.2. Proof. We will show that under the norm ‖ · ‖K defined above, if we choose
a = (−1, 0, 0) and b = (1, 0, 0), and let m be the three-dimensional Lebesgue
measure, then m(∂H(a, b)) = ∞.

Claim 1. For each (y, z) ∈ F ∪ (−F ), V (y, z) ⊂ S(a, b), where V (y, z) is a planar
section defined by

V (y, z) := {(x, ty, tz) : t ≥ 1,−(t − 1) ≤ x ≤ t − 1}.



NON-ZERO BOUNDARIES OF LEIBNIZ HALF-SPACES 1761

Proof. Let (x, ty, tz) ∈ V (y, z). Because (−1, y, z) ∈ {−1} × D ⊂ K, (1, y, z) ∈
{1} × D ⊂ K, and −1 < x+1

t ≤ 1, we have (x+1
t , y, z) ∈ K by the convexity of K.

So,

‖(x, ty, tz) − a‖K = ‖(x + 1, ty, tz)‖K = t

∥∥∥∥
(

x + 1
t

, y, z

)∥∥∥∥
K

≤ t.

On the other hand, for any λ > 1, λ · (x+1
t , y, z) /∈ K. Therefore ‖(x+1

t , y, z)‖K = 1.
Hence ‖(x, ty, tz) − a‖K = t.

Similarly, we can prove that ‖(x, ty, tz) − b‖K = t. Thus, (x, ty, tz) ∈ S(a, b).
Hence V (y, z) ⊂ S(a, b) ⊂ H(a, b).

Claim 2. For each (y, z) ∈ T \ [F ∪ (−F )], L(y, z) ∩ H(a, b) = ∅, where L(y, z) is
an open half-plane defined by

L(y, z) := {(x, ty, tz) ∈ R
3 : x > 0, t ∈ R}.

Proof. By the symmetry of K, and the fact that a = −b, S(a, b) contains the yz-
plane. Suppose S(a, b) also contains (x, ty, tz) ∈ L(y, z). Then the ray from a to
(x, ty, tz) intersects S(a, b) in at least two points, one at (x, ty, tz), the other on the
yz-plane. Thus, by what we have concluded in the beginning of this section, for λ >
1 large enough, any point w on the line segment {(p, λy, λz) : −1 ≤ p ≤ 0} satisfies
‖w − a‖K = λ. In particular, ‖(−1, λy, λz) − a‖K = ‖(0, λy, λz) − a‖K . Thus,
‖(1, λy, λz)‖K = ‖(0, λy, λz)‖K = λ, i.e. ‖(1/λ, y, z)‖K = 1. Thus, (1/λ, y, z) ∈ K.
Because this point lies in the convex hull of {0}×T and {1}× (F ∪ (−F )), we have

(1/λ, y, z) =
1
λ
· (1, α, β) +

(
1 − 1

λ

)
· (0, γ, δ),

where (1, α, β) ∈ {1} × (F ∪ (−F )) and (0, γ, δ) ∈ {0} × T . This implies that[
α

λ
+

(
1 − 1

λ

)
γ

]2

+
[
β

λ
+

(
1 − 1

λ

)
δ

]2

= y2 + z2 = 1.

This is impossible unless (α, β) = (γ, δ) = ±(y, z). This contradicts the assumptions
that (y, z) ∈ T \ [F ∪ (−F )], and (γ, δ) ∈ F ∪ (−F ).

So far, we have proved that L(y, z) ∩ S(a, b) = ∅.
To finish the proof of the claim, we need to show (H(a, b)\S(a, b))∩L(y, z) = ∅.

Suppose not; then there exists w ∈ L(y, z) such that ‖w − a‖K < ‖w − b‖. By the
continuity of the norm, at some point v on the line segment between w and b, we
have ‖v − a‖K = ‖v − b‖K . That is, v ∈ S(a, b). Because b ∈ L(y, z), and L(y, z)
is convex, we have v ∈ L(y, z), contradicting the fact that L(y, z) ∩ S(a, b) = ∅.

Thus, L(y, z) ∩ H(a, b) = ∅, proving the claim.

Now, we will finish the proof of Theorem 1 in the case d = 3. Note that F ∪(−F )
are the limit points of T \ [F ∪ (−F )]. Thus, Claims 1 and 2 imply that for each
(y, z) ∈ F ∪ (−F ), the planar section

V +(y, z) := {(x, ty, tz) : t ≥ 1, 0 ≤ x ≤ t − 1}
is contained in ∂H(a, b).

Let σ be the Haar measure on T . It is clear by the construction of F that
σ(F ∪ (−F )) = 15/16. Therefore

⋃
(y,z)∈F∪(−F ) V +(y, z) has infinite Lebesgue

measure. Hence, m(∂H(a, b)) = ∞.
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4. The case d > 3 and remarks

The case d > 3 can be proved similarly. However, an easier way is to use
K × [−1, 1]d−3 as the symmetric convex body in the definition of ‖ · ‖.

For the readers who are interested in knowing the exact boundary of the Leibniz
half-space given in the last section, we have

∂H(a, b) = ({0}×R
2)∪{(x, r cos(tπ/2),±r sin(tπ/2)) : r ≥ 1, 0 ≤ x ≤ r−1, t ∈ E}

and ∂H(b, a) = −∂H(a, b).
The results of this paper indicate the irregularity of H(a, b) in general. On the

other hand, H(a, b) does have some regularity. For example, the proof given in the
paper implies that in general either m(∂H(a, b)) = 0 or m(∂H(a, b)) = ∞.
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