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METRIC ENTROPY OF HIGH DIMENSIONAL DISTRIBUTIONS

RON BLEI, FUCHANG GAO, AND WENBO V. LI

(Communicated by Richard C. Bradley)

Abstract. Let Fd be the collection of all d-dimensional probability distribu-
tion functions on [0, 1]d, d ≥ 2. The metric entropy of Fd under the L2([0, 1]d)
norm is studied. The exact rate is obtained for d = 1, 2 and bounds are given
for d > 3. Connections with small deviation probability for Brownian sheets
under the sup-norm are established.

1. Introduction

Metric entropy is an important tool that has been widely used in many areas.
Roughly put, it is a quantification or measurement of compactness. Given a set T
in a Banach space (E, ‖ · ‖) and given a small ε > 0, the metric entropy of T can
be defined as log N(T, ‖ · ‖, ε), where N(T, ‖ · ‖, ε) is the minimum covering number

N(T, ‖ · ‖, ε) := inf

{
n : ∃t1, t2, . . . , tn ∈ T, s.t. T ⊂

n⋃
k=1

B(tk, ε)

}

and B(x, ε) is the open ε-ball in E centered at x. When there is no confusion
regarding the norm, we write log N(T, ε). The precise definition of the metric
entropy was given first by A. N. Kolmogorov, and its various asymptotic behaviors,
as ε → 0+, have subsequently been studied and applied in approximation theory,
geometric functional analysis, probability theory, and complexity theory; e.g., see
the books by Kolmogorov and Tihomirov [8], Lorentz [12], Carl and Stephani [3],
and Edmunds and Triebel [5].

In this paper we consider the case where T is the collection of probability distri-
butions on [0, 1]d, denoted by Fd, and we study its metric entropy estimate under
L2-norm. Because absolutely continuous functions are dense in Fd under L2-norm,
we assume that Fd consists only of distributions that have a density. This problem
arises naturally in non-parametric estimation in statistics; see van der Vaart and
Wellner [14].

The main contributions of this paper are the following estimates and the estab-
lishment of very useful connections between the metric entropy of Fd under L2-norm
and the small deviation probability for Brownian sheets under the sup-norm.
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Theorem 1.1. For d ≥ 2 there exist constants c1, c2 > 0 depending only on d such
that for 0 < ε < e−1,

c1ε
−1[log(1/ε)]d−1 ≤ log N(Fd, ‖ · ‖2, ε) ≤ c2ε

−1[log(1/ε)]d−1/2.

Moreover, for d = 2,

c1ε
−1[log(1/ε)]3/2 ≤ log N(F2, ‖ · ‖2, ε) ≤ c2ε

−1[log(1/ε)]3/2.

The result for the case d = 1 is known. Specifically, van der Vaart and Wellner
[14] contains (on page 159) a proof of the upper bound estimate of the covering
number. We give a shorter proof in the next section.

We underscore a fundamental duality relation for metric entropies, which changes
the focus from one norm to another. Indeed, it is a crucial tool for our proof of
Theorem 1.1. Let T ◦ be the polar body of T , and let B∗ be the unit ball of the
dual space E∗ of E. If one of the norms is the L2-norm, then for small ε > 0,

log N(T, ‖ · ‖, ε) ≈ log N(B∗, ‖ · ‖T◦ , cε)

up to a multiplicative constant. Here a ≈ b means c1 ≤ a/b ≤ c2 for some constants
0 < c1 < c2 < ∞. The duality relation in the general case has been a conjecture
for more than 30 years; see Artstein et al. [1] and [2].

The remaining sections Sare organized as follows. Section 2 deals with the case
d = 1 and points to the main difficulties in the higher dimensional case. Section
3 presents the useful connection with small ball probabilities, which is based on
the duality relation (stated above) and fundamental links between metric entropy
and small ball probabilities for Gaussian measures (discovered in Kuelbs and Li
[9] and completed in Li and Linde [10]). In fact, the main significance of this
paper is the discovery of this connection and using it to obtain previously unknown
estimates on metric entropy of distribution functions. Whereas the upper and lower
bound estimates in Theorem 1.1 can both be obtained from known results on small
ball estimates, we present in Section 4 a direct and new argument establishing the
lower bound. This provides the simplest known proof of the corresponding result for
small ball estimates in the two-dimensional case. Two different (and more difficult)
proofs in the small ball setting are presented in Talagrand [13], Gao and Li [7]. For
a survey of small ball probabilities and various applications, see Li and Shao [11].

2. The case d = 1

The upper bound in the following result can be found in [14]. Our proof below
is somewhat simpler. The lower bound may also be known, but we were unable to
locate a reference.

Proposition 2.1. There exist constants c1 and c2 such that

c1ε
−1 ≤ log N(F1, ‖ · ‖2, ε) ≤ c2ε

−1.

Proof. For convenience, we assume 1/ε = n is an even integer. To obtain the lower
bound, we construct random functions on [0, 1] by

fη(x) =

⎧⎪⎨
⎪⎩

0, x = 0,

(k − 1/2)ε + ηkε/2, x ∈ [(k − 1)ε, kε), 1 ≤ k ≤ n, x �= 0, x �= 1,

1, x = 1,
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where ηk ∈ {−1, 1}. Let U be the collection of all such functions. Clearly U
contains 2n distinct functions, each of which is a probability distribution function
on [0, 1]. Given fη ∈ U and fη′ ∈ U , define the Hamming distance

dh(fη, fη′) = card{k : ηk 
= η′
k, 1 ≤ k ≤ n}.

Clearly, for each f ∈ U , the set {g ∈ U : dh(f, g) < �n/10�} contains no more
than

∑�n/10�
k=0

n
k ≤ 2n/2 functions. Thus, we can find N = 2n/2n/2 = 2n/2 functions

f1, f2, ..., fN ∈ U , such that dh(fi, fj) ≥ �n/10� for all i 
= j, 1 ≤ i, j ≤ N . Thus,
|fi(x) − fj(x)| = ε on at least �n/10� intervals ((k − 1)ε, kε) of length ε. Hence
‖fi −fj‖2 ≥ ε/

√
10. Therefore N(F1, ‖ · ‖2, ε/

√
10) ≥ 2n/2, which implies the lower

bound in the proposition.
To obtain the upper bound, let F[0,a] be the collection of probability distribution

functions on [0, a]. Each f ∈ F[0,1] can be approximated by step functions from
below and from above, and, therefore, f can be assumed always to take values in
{0, ε, 2ε, ..., nε}. Consider the intervals [(k−1)ε/2, kε/2) that are contained in [0, 1].
Because f is nondecreasing and takes value in {0, ε, 2ε, ..., nε}, f is constant on at
least a half of these 2n intervals. Choose n such intervals I1, I2, ..., In, ordered
from left to right. Let a1 ≤ a2 ≤ · · · ≤ an be the respective values of f on these
intervals. Define g(0) = 0 and

g(x) =
n∑

i=1

ai1Ii
(x)

for x ∈ (0, 1]. Because there are
(
2n
n

)
choices of {I1, I2, ..., In} and because for

each choice of {I1, I2, ..., In} there are no more than
(
n+n

n

)
choices of the values

a1 ≤ a2 ≤ · · · ≤ an, the total number of choices of g is no more than
(
2n
n

)2
. Once

g is fixed, consider the function f − g. By deleting I1,...,In from [0, 1] and shifting
the remaining intervals to the left, f − g corresponds to a probability distribution
function ξ ∈ F[0,1/2]. Write Tg(f − g) = ξ, where Tg is the shifting operator
depending on g. Let S be a 10ε-net of F[0,1/2] with cardinality N(F[0,1/2], ‖·‖, 10ε).
Then, there exists a µ ∈ S, such that ‖ξ − µ‖2 ≤ 10ε. Hence, ‖f − (g + T−1

g µ)‖2 =

‖ξ − µ‖2 ≤ 10ε. Because there are no more than N(F[0,1/2], ‖ · ‖2, 10ε) ·
(
2n
n

)2

realizations of g + T−1
g µ, we obtain

N(F[0,1], ‖ · ‖2, 12ε) ≤
(

2n

n

)2

· N(F[0,1/2], ‖ · ‖2, 10ε).(2.1)

Note that a set is a 10ε-net of F[0,1/2] if and only if its dilation {f(t/2) : f(t) ∈ U}
is a 10

√
2ε-net of F[0,1]. Thus, N(F[0,1/2], ‖ · ‖2, 10ε) = N(F[0,1], ‖ · ‖2, 10

√
2ε).

Putting this in (2.1) and using the fact that
(
2n
n

)2 ≤ 24n = 24/ε, we obtain

N(F[0,1], ‖ · ‖2, 12ε) ≤ 24/ε · N(F[0,1], ‖ · ‖2, 10
√

2ε).

By iteration, we obtain the upper bound. �

Remark 2.2. The preceding proof shows that we can require g + T−1µ ≥ f or
g +T−1µ ≤ f . Thus, the upper estimate holds also for bracketing entropy, as given
in [14].

Remark 2.3. In the proof of the lower bound, we used the fact that F1 consists
essentially of all increasing functions f(x) on [0, 1] with f(0) = 0 and f(1) = 1. An
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obvious difficulty in the higher dimensional case is the lack of a simple analogous
characterization of Fd. Thus, a different method is needed to construct a large,
well-separated set of functions in Fd.

3. Connection with small ball probability of Brownian sheets

First we note
N(Fd, ‖ · ‖2, ε) = N(Ed, ‖ · ‖2, ε),

where

Ed =
{∫ 1

t1

∫ 1

t2

· · ·
∫ 1

td

dµ : µ is a probability measure
}

.

Indeed, a finite set {fi} is an ε-net of Fd if and only if the set {gi} is an ε-net of
Ed, where

gi(t1, t2, ..., td) = fi(1 − t1, 1 − t2, ..., 1 − td).
Let {φk1 ⊗· · ·⊗φkd

: ki ∈ N, 1 ≤ i ≤ d} be an orthonormal basis of L2[0, 1]d. For
f, g ∈ Ed, let a = (ak1,...,kd

) and b = (bk1,...,kd
) be the Fourier coefficients of f and g,

respectively, relative to {φk1⊗· · ·⊗φkd
}. By Parseval’s identity, ‖f−g‖2 = ‖a−b‖l2 .

Thus,
N(Fd, ‖ · ‖2, ε) = N(Ed, ‖ · ‖2, ε) = N(S, ‖ · ‖l2 , ε),

where
S = {(ak1,...,kd

) = 〈g, φk1 ⊗ · · · ⊗ φkd
〉 : g ∈ Ed} .

If µ is the probability measure corresponding to g ∈ Ed, then using integration by
parts, we obtain

〈g, φk1 ⊗ · · · ⊗ φkd
〉 =

〈
µ,

∫ t1

0

· · ·
∫ td

0

φk1 ⊗ · · · ⊗ φkd

〉
.

In other words,

S =
{

(ak1,...,kd
) : ak1,...,kd

=
〈

µ,

∫ t1

0

· · ·
∫ td

0

φk1 ⊗ · · · ⊗ φkd

〉
, ‖µ‖1 = 1; µ ≥ 0

}
.

Let

T =
{

(ak1,...,kd
) : ak1,...,kd

=
〈

µ,

∫ t1

0

· · ·
∫ td

0

φk1 ⊗ · · · ⊗ φkd

〉
, ‖µ‖1 ≤ 1

}
.

Then, clearly T ⊃ S. Thus,

log N(T, ‖ · ‖l2 , ε) ≥ log N(S, ‖ · ‖l2 , ε) = log N(Fd, ‖ · ‖2, ε).

On the other hand, for any µ with ‖µ‖1 ≤ 1, there are probability measures µ1 and
µ2, such that µ = µ1 − µ2. Thus, T ⊂ S − S, which implies that

log N(T, ‖ · ‖l2 , ε) ≤ 2 log N(S, ‖ · ‖l2 , ε/2) = 2 log N(Fd, ‖ · ‖2, ε/2).

By the duality relation stated in the introduction, we have

log N(T, ‖ · ‖l2 , ε) ≈ c1 log N(Bl2 , T
◦, c2ε),

where Bl2 is the unit ball of l2 and T ◦ is the polar body of T . Thus,

log N(Fd, ‖ · ‖2, ε) ≈ c1 log N(Bl2 , T
◦, c2ε).

Note that T is convex; in fact, T is precisely the absolute convex hull of the set{
(ak1,...,kd

) : ak1,...,kd
=

∫ t1

0

· · ·
∫ td

0

φk1 ⊗ · · · ⊗ φkd
, (t1, ..., td) ∈ [0, 1]d

}
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(cf. Gao [6]). This observation leads to the connection with small ball probability
of Brownian sheets, to which we now turn our attention.

A d-dimensional Brownian sheet Bd(t, ·), t ∈ [0, 1]d, d ≥ 2, is a Gaussian process
on [0, 1]d with covariance kernel

K(t, s) =
d∏

i=1

min(ti, si), t = (t1, t2, ..., td), s = (s1, s2, ..., sd).

It is sometimes called the d-fold tensor product of standard Brownian motion.
It is easier to deal with its canonical series expansion

Bd(t, ·) =
∑

k1,...,kd

ξk1,...,kd
(·)Td(φk1 ⊗ · · · ⊗ φkd

)

=
∑

k1,...,kd

ξk1,...,kd
(·)

∫ t1

0

· · ·
∫ td

0

φk1 ⊗ · · · ⊗ φkd
,

where Td is the generating compact operator of Bd(t) defined by

(3.1) Tdf(x1, ..., xd) =
∫ x1

0

· · ·
∫ xd

0

f(t1, ..., td)dt1 · · · dtd,

{φk1 ⊗· · ·⊗φkd
} is any complete orthonormal system in L2([0, 1]d), and ξk1,...,kd

(·)
are i.i.d. standard normal random variables. Now we observe that

sup
t∈[0,1]d

|Bd(t, ω)| ≤ ε ⇔ (ξk1,...,kd
(ω)) ∈ εT ◦.

Therefore,

P

(
sup

t∈[0,1]d
|Bd(t, ·)| ≤ ε

)
= γ(εT ◦),

where γ is the standard Gaussian measure.
The remaining part of this section is to relate γ(εT ◦) with N(Bl2 , T

◦, ε). Roughly
put, the smaller the value of γ(εT ◦), the larger the covering number N(Bl2 , T

◦, ε).
The remarkable discovery in [9] (completed in [10]) is that there is a tight connection
between these two quantities: upper (lower) bound on one implies lower (upper)
bound for the other. In particular, the statement is

log γ(εT ◦) ≈ −ε−2[log(1/ε)]β

if and only if

log N(Bl2 , T
◦, ε) ≈ ε−1(log 1/ε)β/2.

However, it is also proved in Dunker et al. [4] that

log P

(
sup

t∈[0,1]d
|Bd(t, ·)| ≤ ε

)
≥ −cε−2[log(1/ε)]2d−1.

Therefore, the upper bound of Theorem 1.1 follows from the one-sided result in [10].
The lower bound also follows from the best known results on small ball probability;
see [7] for details and history, and see also the discussion in the next section.
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4. Lower bound

As noted above, we could just as well have used the known upper bound for
small ball probability of Brownian sheets to obtain the lower bound for entropy
of distributions. However, the proof given below is new and different. Indeed, in
view of the equivalence given above, it gives the simplest known proof regarding
the upper bound of small deviation of Brownian sheet in the two-dimensional case.
The key to the proof is the idea of random Riesz products and random sums, which
we now proceed to explain.

Given m ∈ N (where N denotes the set of positive integers) and 1 ≤ i ≤ 2m, we
let {ψm,i} be the orthogonal, rescaled and shifted Haar functions defined by

ψm,i(t) =

⎧⎪⎨
⎪⎩

1, t ∈ [(i − 1)2−m, (i − 3/4)2−m) ∪ [(i − 1/4)2−m, i2−m),
−1, [(i − 3/4)2−m, (i − 1/4)2−m),
0, otherwise.

For a fixed even integer n > 2d and for 1 ≤ k ≤ n, we denote

Mn := {(m1, m2, ..., md) ∈ N
d : m1 + m2 + · · · + md = n, mi is even, 1 ≤ i ≤ d}.

It is easy to check that |Mn| =
(
n/2−1
d−1

)
∼ (n/2)d−1/(d− 1)!. For M ∈ Mn, denote

IM = {(i1, ..., id) ∈ N
d : ij ≤ 2mj , 1 ≤ j ≤ d},

and for I = (i1, i2, ..., id) ∈ IM , denote

ΨM,I = ψm1,i1 ⊗ ψm2,i2 ⊗ · · · ⊗ ψmd,id
.(4.1)

For each η = (ηM,I), where the ηM,I ( I ∈ IM , M ∈ Mn) are independent Bernoulli
random variables (i.e., P(ηM,I = ±1) = 1/2), we consider the random function

FM (·, η) =
∑

I∈IM

ηM,IΨM,I(·)

and then define the random functions

Rn(·, η) =
∏

M∈Mn

(1 + FM (·, η)) if d = 2,

Rn(·, η) =
1√
|Mn|

∑
M∈Mn

FM (·, η) if d > 2.

Note that the FM are orthogonal functions, with ‖FM‖2 = 1, and therefore, for
d > 2, ‖Rn‖1 ≤ ‖Rn‖2 = 1. Also note that |FM | = 1. It is easy to check that for
d = 2, we have Rn ≥ 0 and ‖Rn(·, η)‖1 = 1 for all η. Clearly, there are 2|Mn|2n

realizations of Rn. Between any two realizations Rn(·, η(1)) and Rn(·, η(2)), we
consider the Hamming distance

dh(Rn(·, η(1)), Rn(·, η(2))) = card
{

(M, I) : I ∈ IM , M ∈ Mn, η
(1)
M,I 
= η

(2)
M,I

}
.

By a combinatorial argument similar to the one given in Section 2, we can find at
least N ≈ exp(c1n

d−12n) realizations Rn(·, η(i)), i ≤ N , such that

dh(Rn(·, η(i)), Rn(·, η(j))) ≥ c2n
d−12n

for all i 
= j. For each of such Rn(·, η(i)), 1 ≤ i ≤ N , we define

fi(x1, x2, ..., xd) =
∫ x1

0

· · ·
∫ xd

0

Rn(·, η(i))(t1, ..., td)dt1 · · · dtd.
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Next we show that there exists a constant c3 such that for all i 
= j,

‖fi − fj‖2 ≥
{

c3
√

n2−n, d = 2,

c32−n, d > 2.
(4.2)

By Bessel’s inequality,

‖fi − fj‖2
2 ≥

∑
M∈Mn

∑
I∈IM

| 〈fi − fj , HM,I〉 |2,

where the HM,I are orthonormal Haar functions; i.e., HM,I = hm1,i1 ⊗· · ·⊗hmd,id
,

and

hm,i(t) =

⎧⎪⎨
⎪⎩

2m/2, t ∈ [(i − 1)2−m, (i − 1/2)2−m),
−2m/2, t ∈ [(i − 1/2)2−m, i2−m),
0, otherwise.

Case d > 2. Note that

fi − fj =
1√
|Mn|

∑
M∈Mn

∑
I∈IM

(η(i)
M,I − η

(j)
M,I)ΦM,I ,(4.3)

where
ΦM,I = φm1,i1 ⊗ · · · ⊗ φmd,id

,

and

φm,i(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, t /∈ ((i − 1)2−m, i2−m),
2−m/2−2, t = (i − 3/4)2−m,

−2−m/2−2, t = (i − 1/4)2−m,
linear, otherwise.

(φm,i is the integral of ψm,i.) Because

〈φm,i, hp,j〉 =

{
0, (p, j) 
= (m, i),
2−3m/2−3, (p, j) = (m, i),

we have

(4.4) 〈ΦM ′,I′ , HM,I〉 =

{
2−3n/2−3d, (M, I) = (M ′, I ′),
0, (M, I) 
= (M ′, I ′).

Thus,

〈fi − fj , HM,I〉 =
1√
|Mn|

(η(i)
M,I − η

(j)
M,I) · 2−3n/2−3d.

Hence,

‖fi − fj‖2
2 ≥

∑
M∈Mn

∑
I∈IM

| 〈fi − fj , HM,I〉 |2

≥
∑

M∈Mn

∑
I∈IM

2−3n−6d

|Mn|
|η(i)

M,I − η
(j)
M,I |2

=
2−3n−6d

|Mn|
· 4dh(η(i), η(j)) ≥ c2

32
−2n,

proving (4.2) for the case d > 2.
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Case d = 2. We multiply out the product in Rn(·, η(i)) and write

fi =

(
x1x2 +

∑
M∈Mn

∑
I∈IM

η
(i)
M,IΦM,I

)

+
∑
p≥2

∑∫ x1

0

∫ x2

0

F
(i)
k1,n−k1

· · ·F (i)
kp,n−kp

dt1dt2

=:

(
x1x2 +

∑
M∈Mn

∑
I∈IM

η
(i)
M,IΦM,I

)
+ Q(i)

n ,

where the inner summation in Q
(i)
n is over all even integers 0 ≤ k1 < k2 < · · · <

kp ≤ n. We show that for each M = (m1, m2) ∈ M and I ∈ IM ,
〈
Q

(i)
n , HM,I

〉
= 0.

Indeed, we can write Qn as∑
p≥2

∑
(±)

∫ x1

0

[ψk1,i1(t1) · · ·ψkp,ip
(t1)]dt1 ·

∫ x2

0

[ψn−k1,j1(t2) · · ·ψn−kp,jp
(t2)]dt2,

where the inner summation is over all even integers 0 ≤ k1 < k2 ≤ · · · < kp ≤ n
and all 1 ≤ il ≤ 2kl , 1 ≤ jl ≤ 2n−kl , 1 ≤ l ≤ p. Because ψk1,i1 ,...,ψkp−1,ip−1 is
constant on the support of ψkp,ip

, we have∫ x1

0

[ψk1,i1(t1) · · ·ψkp,ip
(t1)]dt1 = const · φkp,ip

(x1).

Similarly, ∫ x2

0

[ψn−k1,j1(t2) · · ·ψn−kp,jp
(t2)]dt2 = const · φn−k1,j1(x2).

Because kp + n − k1 > m1 + m2 = n, we must have kp > m1 or n − k1 > m2. If
kp > m1, then for any 1 ≤ r1 ≤ 2m1 , hm1,r1 is constant on the support of φkp,ip

,
and therefore,∫ 1

0

φkp,ip
(x1)hm1,r1(x1)dx1 = const ·

∫ 1

0

φkp,ip
(x1)dx1 = 0.

Similarly, if n−k1 > m2, then
∫ 1

0
φn−k1,j1(x2)hm2,r2(x1)dx1 = 0. In either case, we

have ∫ 1

0

∫ 1

0

φkp,ip
(x1)φn−k1,j1(x2) · hm1,r1(x1)hm2,r2(x2)dx1dx2 = 0.

Hence,
〈
Q

(i)
n , HM,I

〉
= 0. Therefore,

〈fi − fj , HM,I〉 =
∑

P∈Mn

∑
L∈IP

(η(i)
P,L − η

(j)
P,L) 〈ΦP,L, HM,I〉 = (η(i)

M,I − η
(j)
M,I)2

−3n/2−3d,

which implies

‖fi − fj‖2
2 ≥

∑
M∈M

∑
I∈IM

|η(i)
M,I − η

(j)
M,I |22−3n−6d

= 2−3n−6d · 4dh(η(i), η(j)) ≥ c2
3n2−2n,

and thus (4.2) holds for the case d = 2.
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Proof of the lower bound in Theorem 1.1. Let

Gd =
{

g : g(x1, x2, ..., xd) =
∫ x1

0

· · ·
∫ xd

0

r(t1, ..., td)dt1 · · · dtd; ‖r‖1 ≤ 1
}

.

Note that we have constructed exp(c1n
d−12n) functions fi ∈ Gd with ‖fi‖∞ ≤ 1 and

‖fi − fj‖2, which satisfy (4.2) for i 
= j. In the case d > 2, we choose ε =
√

c32−n

and obtain

log N(Gd, ‖ · ‖2, ε) ≥ c1n
d−12−n ≈ c′ε−1(log 1/ε)d−1.(4.5)

In the case d = 2, we choose ε =
√

c3n2−n and obtain

log N(G2, ‖ · ‖2, ε) ≥ c1n2−n ≈ c′ε−1(log 1/ε)3/2.(4.6)

By monotonicity of the covering number, (4.5) and (4.6) hold for all small ε.
Because Gd ⊂ Fd − Fd, we have N(Gd, ‖ · ‖2, ε) ≤ [N(Fd, ‖ · ‖2, ε/2)]2, and the

lower bound in Theorem 1.1 follows.

Remark 4.1. An interesting problem is to find the rate of log N(Fd, ‖ · ‖p, ε) under
the Lp-norm, 2 < p < ∞. Note also that the set Fd is not compact under the
sup-norm.
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