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ABSTRACT: The combinatorial dimension relative to an arbitrary fractional Cartesian product is
defined. Relations between dimensions in certain archetypal instances are derived. Random sets with
arbitrarily prescribed dimensions are produced; in particular, scales of combinatorial dimension are
shown to be continuously and independently calibrated. A combinatorial concept of cylindricity is
key. © 2004 Wiley Periodicals, Inc. Random Struct. Alg., 26, 146–159, 2005

1. DEFINITIONS, STATEMENT OF PROBLEM

The idea of a fractional Cartesian product and a subsequent measurement of combinatorial
dimension appeared first in a harmonic-analytic context in the course of filling “analytic”
gaps between successive (ordinary) Cartesian products of spectral sets [2, 3]. (Detailed
accounts of this, and much more, appear in [5].)

Succinctly put, combinatorial dimension is an index of interdependence. Attached to a
subset of an ordinary Cartesian product, it gauges precisely the interdependence of restric-
tions to the set, of the canonical projections from the Cartesian product onto its independent
coordinates. We can analogously gauge the interdependence of restrictions to the same set,
of projections from the Cartesian product onto interdependent coordinates of a prescribed
fractional Cartesian product. We thus obtain distinct indices of interpendences associated,
respectively, with distinct fractional Cartesian products. A question naturally arises: What
are the relationships between these various indices?
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To make matters precise, we first recall, and then extend basic notions found in
Chapters XII and XIII of [5]. Let E1, . . . , En be sets, and let F ⊂ E1 × · · · × En. (We
refer to E1 × · · · × En as the ambient product of F.) For integers s > 0 define

�F(s) = max{|F ∩ (A1 × · · · × An| : Ai ⊂ Ei, |Ai| ≤ s, i ∈ [n]}, (1)

where [n] = {1, . . . , n}. For a > 0, define

dF(a) = sup{�F(s)/sa : s = 1, 2, . . .}. (2)

The combinatorial dimension of F is

dim F = sup{a : dF(a) = ∞} = inf{a : dF(a) < ∞}. (3)

Next we define the fractional Cartesian products. For S ⊂ [n], let πS denote the canonical
projection from E1 × · · · × En onto the product whose coordinates are indexed by S,

πS( y) = ( yi : i ∈ S), y = ( y1, . . . , yn) ∈ E1 × · · · × En.

Let U = (S1, . . . , Sm) be a cover of [n] (i.e., S1 ⊂ [n], . . . , Sm ⊂ [n], and ∪m
j=1 Sj = [n]), and

define a fractional Cartesian products based on U to be

(E1 × · · · × En)U = {(πS1(y), . . . , πSm(y)) : y ∈ E1 × · · · × En}.
We view (E1 × · · · × En)U as a subset of ES1 × · · · × ESm , and measure its combinatorial
dimension by solving a linear programming problem ([4, 8]): If E1, . . . , En, are infinite sets,
and

αU = max




n∑
i=1

xi : xi ≥ 0,
∑
i∈Sj

xi ≤ 1 for j ∈ [m]

 ,

then
dim(E1 × · · · × En)U = αU. (4)

Examples

1. (Maximal and minimal fractional Cartesian products) For integers 1 ≤ k ≤ n, let U
be a cover that is an enumeration of all k-subsets of [n], and let V be a cover of [n], all of
whose elements are k-subsets of [n] such that, for every i ∈ [n], |{S ∈ V : i ∈ S}| = k.
Then, αU = αV = n/k, and (taking E1 = · · · = En = N) we obtain from (4)

dim(Nn)U = dim(Nn)V = n

k
.

The ambient product of (Nn)U is
(n

k

)
-dimensional, and the ambient product of (Nn)V

is n-dimensional. Generally, if k and n are relatively prime, then the dimension of the
ambient product of any n

k -dimensional fractional Cartesian product is at least n, and
no greater than

(n
k

)
.

2. (Random constructions) Fractional Cartesian product are subsets of ambient prod-
ucts typically of high dimension. To wit, there are no nontrivial fractional Cartesian
product in N

2, whereas for arbitrary α ∈ (1, 2) there exists an abundance of random
sets F ⊂ N

2 with dimF = α [6,7]. How to produce deterministically F ⊂ N
2 with

dimF = α, where α ∈ (1, 2) is arbitrary, is an open problem.
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3. (An application) From αU = 3/2 in the archetypal case n = 3, U = ({1, 2}, {2, 3},
{1, 3}), we obtain that that the number of “triangles” formed from s given edges in
a graph is less than s

3
2 . More generally, following a canonical identification of a

complex on n vertices with a cover U of [n], we obtain from (4) that the number of
complexes formed from s given simplices is bounded by sαU . These results are closely
related to the Kruskal-Katona Theorem (drawn to our attention by Joel Spencer);
see [10, 9].

Definition 1. For F ⊂ E1 × · · · × En, and a cover U = (S1, . . . , Sm) of [n], let

FU = {(πS1( y), . . . , πSm( y)) : y ∈ F},
and write

dimU F = dim FU. (5)

We consider dimU as a gauge of interdependence of πS1 |F , . . . , πSm |F (projections πSi

restricted to F). By (4), for infinite F,

1 ≤ dimU F ≤ αU. (6)

We continue to write dim F in the extremal case U = ({1}, . . . , {n}).

Problem 2. Let E1, . . . , En be infinite sets, and let U be a cover of [n]. For F ⊂ E×· · ·×En,
what are the relations between dim F and dimU F?

In this article we analyze the first nontrivial case: n = 3, and U = (S1, S2, S3), where
S1 = {1, 2}, S2 = {2, 3}, S3 = {1, 3}. Throughout, for convenience (and with no loss of
generality), we take E1 = E2 = E3 = N.

2. GENERAL BOUNDS

Theorem 3. If F ⊂ N
3 and dim F ≥ 2, then

dim F

2
≤ dimU F ≤ 2 dim F

dim F + 1
. (7)

We will prove the right-side inequality in (7) (the nontrivial part of the theorem) by the
use of Littlewood-type inequalities in fractional dimensions.

Let E1, . . . , Ed be sets. Consider scalar d-tensors on E1 × · · · × Ed with finite support

b = (bx : x = (x1, . . . , xd) ∈ E1 × · · · × Ed),

and define (the d-fold injective tensor-norm of b)

‖b‖⊗̄d =
∥∥∥∥∥∥

∑
x∈E1×···×Ed

bxrx1 ⊗ · · · ⊗ rxd

∥∥∥∥∥∥
∞

, (8)
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where rx1 , . . . , rxd are Rademacher functions indexed by E1, . . . , Ed , whose respective
domains are {−1, 1}E1 , . . . , {−1, 1}Ed (e.g., p. 19 in [5]). For F ⊂ E1 × · · · × Ed , and
t ≥ 1, define

ζF(t) = sup





 ∑

x=(x1,...,xd )∈F

|bx|�



1/�

: ‖b‖⊗̄d ≤ 1


 . (9)

The relation between the harmonic-analytic measurement ζF and the combinatorial
measurement dF is

ζF(t) < ∞ ⇐⇒ dF

(
t

2 − t

)
< ∞, t ∈ [1, 2). (10)

(See Th. XIII.20 in [5].) To prepare for an application of (10), we define

‖b‖⊗̄U =
∥∥∥∥∥∥
∑
i,j,k

bijkrij ⊗ rjk × rik

∥∥∥∥∥∥
∞

, (11)

for b = (bijk : (i, j, k) ∈ N
3) with finite support. We observe

1(N3)U
(i1, i2, i3, i4, i5, i6) = Eri1(ω1)ri2(ω2)ri3(ω2)ri4(ω3)ri5(ω1)ri6(ω3),

where 1 denotes indicator function, and E denotes expectation over ω1, ω2, ω3.
From this we deduce (an instance of Corollary XIII.7 in [5])

Lemma 4. If b̃ = (
b̃i : i ∈ N

2 × N
2 × N

2
)

is a real-valued 3-tensor with finite support,
and

bj = b̃πS1
( j)πS2

( j)πS3
( j), j ∈ N

3,

then ∥∥b
∥∥

⊗̄U
≤ ∥∥b̃

∥∥
⊗̄3

. (12)

We require also a decomposition property, which follows from Lemma XIII.21 in [5]: if
ϕ ∈ l∞(Nn), and

cn(ϕ) = sup


1

s

∑
i∈A1×···×An

|ϕ(i)| : s ∈ N, Av ⊂ N, |Av| = s, v ∈ [n]

 ,

then there exists a partition {Q1, . . . , Qn} of N
n such that, for v ∈ [n],

sup
k∈N

∑
i∈π−1

v {k}
|ϕ(i)|1Qv(i) ≤ cn(ϕ),

where πv is the vth canonical projection from N
n onto N.

Lemma 5. Ifϕ ∈ l∞(Nn) is supported in F ⊂ N
n, then there exists a partition {Q1, . . . , Qn}

of N
n such that for v ∈ [n], and p ≥ 1,

sup
k∈N

∑
i∈π−1

v {k}
|ϕ(i)|1Qv(i) ≤ dF(p)1/p‖ϕ‖q, (13)

where 1
p + 1

q = 1.
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Proof. For S ∈ N, and s-sets Av ⊂ N (i.e. |Av| = s), v ∈ [n], we estimate (by Hölder’s
inequality)

1

s

∑
i∈A1×···×An

|ϕ(i)| ≤ 1

s
|F ∩ (A1 × · · · × An)|1/p‖ϕ‖q.

Then cn(ϕ) ≤ dF(p)1/p‖ϕ‖p, and the lemma follows from the decomposition property
above.

Lemma 6. If F ⊂ N
3, a ≥ 2, and dF(a) < ∞, then

ζFU

(
4a

3a + 1

)
< ∞. (14)

Proof. Following Lemma 4 and the definition of ζFU(a), we need to verify that if b =
(bijk : (i, j, k) ∈ N

3) is a scalar 3-tensor with finite support, and ‖b‖⊗̄U ≤ 1, then∑
(i,j,k)∈F

|bijk|4a/(3a+1) ≤ K ,

where K depends only on F and a. To this end we use duality, and the “fractional” mixed
norm inequalities

∑
i,j

(∑
k

|bijk|2
)1/2

≤ λ,
∑

i,k

(∑
j

|bijk|2
)1/2

≤ λ,
∑

j,k

(∑
i

|bijk|2
)1/2

≤ λ, (15)

where λ > 1 is an absolute constant; see Lemma XII.1 in [5].
Suppose θ is an element in the unit ball of l

4a
a−1 (N3), and that θ is supported in F. Apply

Lemma 5 with p = a and ϕ = |θ |4, thus obtaining a partition {Q1, Q2, Q3} of N
3, such that,

for v = 1, 2, 3,

sup
l∈N

∑
i∈π−1

v {l}
|θ(i)|41Qv(i) ≤ dF(a)1/a.

For l ∈ N, and v = 1, 2, 3, let Flv = F ∩ Qv ∩ π−1
v {l}. For convenience, designate T1 =

{2, 3}, T2 = {1, 3}, T3 = {1, 2}. For each l and v, apply Lemma 5 with p = 2, F = Flv

(viewed as a subset of N
2), and ϕ = |θ |2 · 1Flv (viewed as a function on N

2), thus obtaining
partitions {Pl1v, Pl2v} of Flv, such that

sup
l∈N,i∈N

∑
j∈N

((|θ |2 · 1Pl1v) ◦ πTv)(i, j) ≤ dF(a)1/2a,

sup
l∈N,i∈N

∑
i∈N

((|θ |2 · 1Pl2v) ◦ πTv)(i, j) ≤ dF(a)1/2a.
(16)

(In applying here Lemma 5, we used dFlv(2) ≤ 1.) For u = 1, 2, and v = 1, 2, 3, let

Puv =
⋃
l∈N

Pluv,
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and then write

∑
i∈N3

bi · θ(i) =
∑

u∈{1,2},v∈{1,2,3}


∑

j∈N3

bi · θ(i) · 1Puv(i)


 . (17)

By applying to each of the six sums on the right side of (17) the mixed-norm inequalities
(15), together with (16) (via Cauchy-Schwarz and Hölder), we obtain∣∣∣∣∣∣

∑
i∈N3

bi · θ(i)

∣∣∣∣∣∣ ≤ 6λdF(a)1/4a.

Therefore (by duality and definition of ζFU ),

ζFU

(
4a

3a + 1

)
≤ 6λdF(a)1/4a.

Proof of Theorem 3. Let A, B, C be arbitrary s-subsets of N. Then

�FU(s2) ≥ |FU ∩ (A × B) × (B × C) × (A × C)|
= |F ∩ (A × B × C)|.

Maximizing over A, B, C we obtain

�FU(s2) ≥ �F(s),

which implies

dFU

(a

2

)
≥ dF(a), a > 0,

and hence the left inequality in (7).
If a > dim F, then dF(a) < ∞. By Lemma 6, ζFU

(
4a

3a+1

)
< ∞. By (10), dFU

(
2a

a+1

)
< ∞,

which implies dim FU ≤ 2a
a+1 , and hence the right-side inequality in (7).

3. CYLINDRICAL SETS

For F ⊂ N
3, v = 1, 2, 3, and k ∈ N, let

Fv(k) = π−1
v {k} ∩ F.

Also, for E ⊂ N
2 and k ∈ N, we denote

E1,k = {(j : (j, k) ∈ E},
E2,k = {(j : (k, j) ∈ E}.

Definition 7. F ⊂ N
3 is cylindrical in direction v (v = 1, 2, 3) if for all a ≥ 2

dF(a) < ∞ ⇒ sup{dFv(k)(a − 1) : k ∈ N} < ∞.
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F is cylindrical if it is cylindrical in at least one direction, and doubly-cylindrical if it is
cylindrical in at least two directions.

We say F ⊂ N
3 is a cylinder if F = E × H for E ⊂ N

2 (base) and H ⊂ N (height). For
such F, dim F = dim E + dim H. Note also that cylinders are obviously cylindrical, but
cylindrical sets need not be cylinders.

Theorem 8.

(i) If F ⊂ N
3 is cylindrical with dim F ≥ 2, then

dim F

2
≤ dimU F ≤ 2 − 1

dim F − 1
. (18)

(ii) If F ⊂ N
3 is a cylinder with infinite base and infinite height, then

dimU F = 2 − 1

dim F − 1
. (19)

(iii) If F ⊂ N
3 is doubly-cylindrical with dim F ≥ 2, then

dimU F = dim F

2
. (20)

Proof. (i) The left inequality always holds (Theorem 3). We proceed to verify the
inequality on the right, under the assumption that F is cylindrical in direction 3. Suppose
a > dim F ≥ 2, and

sup
k∈N

dF3(k)(a − 1) ≤ K < ∞. (21)

Let A, B, C be arbitrary s-subsets of N
2, and define

H = {k : max{|B1,k|, |C1,k|} ≥ s1/(a−1)}.
Then, |H| ≤ 2s(a−2)/(a−1), and∑

k∈H

∑
i,j

1F(i, j, k)1A(i, j)1B(j, k)1C(i, k) ≤
∑
k∈H

|A| ≤ 2s(2a−3)/(a−1). (22)

From (21) we obtain∑
k /∈H

∑
i,j

1F(i, j, k)1A(i, j)1B(j, k)1C(i, k)

≤
∑
k /∈H

∑
i,j

1F(i, j, k)1B(j, k)1C(i, k)

≤
∑
k /∈H

dF3(k)(a − 1) · max{|B1,k|a−1, |C1,k|a−1}

≤ Ks
a−2
a−1

∑
k /∈H

(|B1,k| + |C1,k|)

≤ 2Ks
2a−3
a−1 .
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Combining this with (22), we obtain

|FU ∩ (A × B × C)| =
∑
i,j,k

1F(i, j, k)1A(i, j)1B(j, k)1C(i, k)

≤ 2s(2a−3)/(a−1) + 2Ks(2a−3)/(a−1).

Therefore, �FU (s) ≤ (2 + 2K)s(2a−3)/(a−1), which implies

dimU F ≤ 2 − 1

a − 1
,

and hence the right-side inequality in (18).
(ii) We can assume F = E × N with dim E > 1, and proceed to verify dimU F ≥

2 − 1/(dim F − 1). Fix 1 < a < dim E. Then, for arbitrarily large positive integers s, there
exist s-sets A1 ⊂ N, A2 ⊂ N, such that

|E ∩ (A1 × A2)| = Msa,

and M > 0 is a large as we please. Let A = E ∩ (A1 ×A2), B = A1 ×[m], and C = A2 ×[m],
where m is the integer satisfying m − 1 < sa−1 ≤ m. Then,

|FU ∩ (A × B × C)| = |A|m ≈ Ms2a−1.

Therefore, ψFU (Msa) ≥ Ms2a−1, which implies dFU(2 − 1
a ) = ∞, and hence the desired

conclusion.
(iii) For v = 1, 2, we assume

sup
k∈N

dFv(k)(a − 1) ≤ K < ∞ (23)

(F cylindrical in directions 1 and 2), and proceed to show

dimU F ≤ dim F

2
. (24)

Fix a > dim F, and let A, B, C be arbitrary s-subsets of N
2. We decompose A into two

disjoint sets G and H, such that maxi |G1,i| ≤ √
s and maxi |H2,i| ≤ √

s (e.g., G = ∪i{A2,i :
|A2,i| >

√
s}, H = ∪i{A2,i : |A2,i| ≤ √

s}). We write

|FU ∩ (A × B × C)| = |FU ∩ (H × B × C)| + |FU ∩ (G × B × C)|, (25)

and rewrite the first term on the right side of (25) as

|FU ∩ (H × B × C)| =
∑
i,j,k

1H(i, j)1B(j, k)1C(i, k)1F(i, j, k)

=
∑

i

∑
j,k

1H2,i(j)1B2,i(k)1C(j, k)1F(i, j, k). (26)
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Let D = {i : |B2,i| ≤ |H2,i|}. By applying (23) in the case v = 1, we estimate∑
i∈D

∑
j,k

1H2,i(j)1B2,i(k)1C(j, k)1F(i, j, k) ≤
∑
i∈D

∑
j,k

1H2,i(j)1B2,i(k)1F(i, j, k)

≤ K
∑
i∈D

|H2,i|a−1. (27)

For i /∈ D, let mi be the largest integer such that

mi ≤ |B2,i|
|H2,i| + 1, (28)

and decompose B2,i into pairwise disjoint sets E1, . . . , Emi such that |Eu| ≤ |H2,i| for u ∈ [mi].
By applying (23) and (28), we estimate

∑
i/∈D

∑
j,k

1H2,i(j)1B2,i(k)1C(j, k)1F(i, j, k) ≤
∑
i/∈D

mi∑
u=1

∑
j,k

1H2,i(j)1Eu(k)1F(i, j, k)

≤ K
∑
i/∈D

|B2,i||H2,i|a−2 + |H2,i|a−1.

Combining with (27), and then using |H2,i| ≤ √
s,

∑
i |B2,i| = s,

∑
i |H2,i| ≤ s, we conclude

that

|FU ∩ (H × B × C)| ≤ Ks(a−2)/2

(∑
i∈D

|H2,i| +
∑
i∈Dc

|B2,i| + |H2,i|
)

≤ 2Ksa/2.

By a similar argument (based on (23) in the case v = 2), we obtain an identical estimate
for the second term on the right side of (25). Combining the two estimates, we deduce

|FU ∩ (A × B × C)| ≤ 4Ksa/2.

Therefore, dFU( a
2 ) ≤ 4K , which implies (24).

4. RANDOM CONSTRUCTIONS

Next we produce random sets (cf. [6,7]), demonstrating that the dim-scale and the dimU-
scale implied by Theorem 7 are continuous, and are independently calibrated:

Theorem 9.

(i) For all x ∈ [2, 3] and y ∈ [ x
2 , 2x−3

x−1 ], there exist cylindrical sets F ⊂ N
3 with

dim F = x and dimU F = y.
(ii) For all x ∈ [2, 3], there exist doubly-cylindrical sets F ∈ N

3 with dim F = x and
(hence) dimU F = x

2 .

The proof uses random constructions based on the following instance of the Prokhorov-
Bennett probabilistic inequalities (e.g., [1]):
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Lemma 10. If (Xi : i ∈ N) is a sequence of (statistically) independent {0, 1}-valued
random variables with mean δ, then, for all n ∈ N,

P

(∣∣∣∣∣
n∑

i=1

Xi − nδ

∣∣∣∣∣ > t

)
≤ 2 exp

(−t2

8nδ

)
, t ∈ (0, nδ), (29)

P

(∣∣∣∣∣
n∑

i=1

Xi − nδ

∣∣∣∣∣ > t

)
≤ 2 exp

(
− t

4
log

(
t

nδ

))
, t ≥ 2nδ. (30)

In what follows below we use the notation |A| K∼ m to mean m/K ≤ |A| ≤ Km.

Lemma 11. For every α ∈ (1, 2) there is n0(α) = n0 > 0, so that for every N ≥ n0 there
exists E ⊂ [N]2 such that, for u = 1, 2,

|Eu,i| 2∼ Nα−1 for all 1 ≤ i ≤ N , (31)

and for all s-sets A ⊂ [N], B ⊂ [N],
|E ∩ (A × B)| ≤ 5sα . (32)

Proof. Fix N ≥ 1, and let {Xij : (i, j) ∈ [N]2} be a system of independent {0, 1}-valued
random variables with mean Nα−2. Consider the random set E = {(i, j) : Xij = 1}. The
probability that E fails to satisfy (31) is no larger than

N∑
i=1

P

(∣∣∣∣∣
N∑

i=1

Xij − Nα−1

∣∣∣∣∣ >
Nα−1

2

)
+

N∑
j=1

P

(∣∣∣∣∣
N∑

j=1

Xij − Nα−1

∣∣∣∣∣ >
Nα−1

2

)
,

which, following (29), is no larger than 1/3 for all N ≥ n0 for sufficiently large n0. Also,
the probability that E fails to satisfy (32) is no larger than

N∑
s=1

∑
|A|=s,|B|=s

P


 ∑

(i,j)∈A×B

Xij − s2Nα−2 > 4sα


 ,

which, following (30), is no larger than

N∑
s=1

(
N
s

)2

· 2 exp

(
−(2 − α)sα log

(
2N

s

))
<

1

3

for all N ≥ n0 for sufficiently large n0. We thus conclude that E satisfies the requirements
of the lemma with probability at least 1/3.

Lemma 12. For every α ∈ (1, 2) and every β ∈ [0, α, −1) there is n0(α, β) = n0 > 0,
so that for every N ≥ n0 there exists F ⊂ [N]3 satisfying the following:

(i) There exists E ⊂ [N]2 with |E| 2∼ Nα , such that, for all k ∈ [N],

|{(i, j) : (i, j, k) ∈ F, (i, j) ∈ E}| 4∼ Nα−β ; (33)
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(ii) for all s-sets A ⊂ [N] and B ⊂ [N], and for all k ∈ [N],
|F ∩ (A × B × {k})| ≤ 25sα−β , (34)

(iii) For all s-sets S ⊂ [N] × [N], and for all C ⊂ [N] with |C| ≤ s1−1/α ,

|F ∩ (S × C)| ≤ 5s2−1/α−β/α . (35)

Proof. Choose E as in Lemma 11. If β = 0, then we simply let F = E × [N]. For
β ∈ (0, α − 1), let {Xijk : (i, j) ∈ E, 1 ≤ k ≤ N} be a system of independent {0, 1}-valued
random variables with mean N−β . Then, by argument similar to the one used to prove
Lemma 11, we conclude that F = {(i, j, k) : Xijk = 1} satisfies the requirements of the
lemma with positive probability.

Proof of Theorem 9. (i) For x = 2, take F = N
2 × {1}, and for x = 3, take F = N

3. For
x ∈ (2, 3), let α = x−2

y−1 and β = α + 1 − x. Then, 1 < α ≤ 2, and 0 ≤ β < α − 1. Let
n0 = n0(α, β) be as in Lemma 11, and for each integer n such that 3n ≥ n0, let Fn be the
set F obtained from Lemma 11 for N = 3n. Define

F =
∞⋃

n=n0

{(3n, 3n, 3n) + Fn}.

Claim 1: dim F = x.
For all s-sets A ⊂ N, B ⊂ N, C ⊂ N,

|F ∩ (A × B × C)| =
∞∑

n=n0

|((3n, 3n, 3n) + Fn) ∩ (A × B × C)|

=
∞∑

n=n0

|Fn ∩ ((A − 3n) × (B − 3n) × (C − 3n))|

≤
∞∑

n=n0

25sx
n,

where
sn = max{|(A − 3n) ∩ [3n]|, |(B − 3n) ∩ [3n]|, |(C − 3n) ∩ [3n]|},

and the inequality follows from (34).
Note that

∞∑
n=n0

sx
n ≤


 ∞∑

n=n0

sn




x

≤

 ∞∑

n=n0

(|A ∩ (3n + [3n])| + |B ∩ (3n + [3n])| + |C ∩ (3n + [3n])|)



x

≤ (|A| + |B| + |C|)x = 3xsx.
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We thus conclude that
�F(s) ≤ 25 · 3xsx. (36)

On the other hand, choosing A = B = C = 3n + [3n], we obtain from (33)

|F ∩ (A × B × C)| = |(3n, 3n, 3n) + Fn| = |Fn| ≥ 1

4
(3n)α−β+1 = 1

4
(3n)

x.

Therefore, �F(3n) ≥ 1
4 (3

n)x, which together with (36), implies dim F = x.

Claim 2: dimU F = y.
We let A ⊂ N

2, B ⊂ N
2, C ⊂ N

2 be s-sets, and estimate |FU ∩ (A × B × C)|.
To this end, let

H = {k : |B1,k| > s1/α or |C2, k| > s1/α}.
Then, |H| ≤ 2s1−1/α (because

∑
(|B1,k| + |C2,k|) = |B| + |C| = 2s). We note that |FU ∩

(A × B × C)| is less than or equal to∑
k /∈H

|F ∩ (C2,k × B1,k × {k})| +
∑
k∈H

|F ∩ (A × {k})|. (37)

To estimate the first sum in (37), we observe that for every k ∈ N,

F ∩ (C2,k × B1,k × {k}) = ((3l, 3l, 3l) + Fl) ∩ (C2,k × B1,k × {k}),
where 3l ≤ k < 3l+1. By (34),

|((3l, 3l, 3l) + Fl) ∩ (C2,k × B1,k × {k})|
= |Fl ∩ ((C2,k − 3l) × (B1,k − 3l) × (3{k} − 3l))|
≤ 25(max{|B1,k|, |C2,k|})α−β .

Therefore,∑
k /∈H

|F ∩ (C2,k × B1,k × {k})| ≤
∑
k /∈H

25(max{|B1,k|, |C2,k|})α−β

≤ 25
∑
k /∈H

(max{|B1,k|, |C2,k|})(s1/α)α−β−1

≤ 25 · 2s · s1−(1+β)/α

= 50s2−(1+β)/α . (38)

To estimate the second sum in (37), denote

A(l) = A ∩ ((3l, 3l) + [3l] × [3l]), H (l) = H ∩ (3l + [3t]).
Then

∑
k∈H

|F ∩ (A × {k})| =
∞∑

l=1

|(3l, 3l, 3l) + Fl ∩ (A(l) × H (l))|

=
∞∑

l=1

|Fl ∩ ((A(l) − (3l, 3l)) × (H (l) − 3l))|. (39)
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By (35), each summand in (39) is bounded by{
5|A(l)|2−(1/α)−(β/α) if |H (l)| ≤ |A(l)|1−1/α ,

5|H (l)|(2−(1/α)−(β/α))/(1−1/α) if |H (l)| > |A(l)|1−1/α .

Therefore,

∑
k∈H

|F ∩ (A × {k})| ≤
∞∑

l=1

5|A(l)|2−(1/α)−(β/α) +
∞∑

l=1

5|H (l)|(2−(1/α)−(β/α))/(1−1/α)

≤ 5

( ∞∑
l=1

|A(l)|
)2−(1/α)−(β/α)

+ 5

( ∞∑
l=1

|A(l)|
)(2−(1/α)−(β/α))/(1−1/α)

≤ 5|A|2−(1/α)−(β/α) + 5|H|(2−(1/α)−(β/α))/(1−1/α)

≤ 5(1 + 2α/(α−1))s2−(1/α)−(β/α), (40)

where the last inequality holds because |H| ≤ 2s1−1α . By combining (37), (38), and (40),
we conclude that

�FU(s) ≤ (50 + 5(1 + 2α/(α−1)))s2−1/α−β/α = 5(11 + 2α/(α−1))sy, (41)

which implies dimU F ≤ y.
To obtain the opposite inequality, for n > n0, let m be the integer such that m − 1 <

(3n)α−1 ≤ m. Let A = (3n, 3n) + En, where En = E is obtained from Lemma 12(i) for

N = 3n, and let B = (3n, 3n) + [3n] × m and C = (3n, 3n) + [m] × [3n]. Then |A| 2∼ 3αn,
and |B| = |C| < 3αn + 3n. Applying (33), we obtain

|FU ∩ (A × B × C)| = |{(i, j, k) ∈ (3n, 3n, 3n) + Fn : (i, j) ∈ A, (j, k) ∈ B, (k, i) ∈ C}|
= |{(i, j, k) ∈ Fn : (i, j) ∈ En, k ∈ [m]}|
4∼ (3n)α−β · m

≥ 1

4
(3αn)y.

Therefore, �FU(2 · 3αn) ≥ 1
4 (3

αn)y, which implies dimU F ≥ y.

Claim 3: F is cylindrical.
We have shown that dimU F = α − β + 1. For every k ∈ N, π−1

3 {k} ∩ F �= ∅ only if
3l ≤ k ≤ 2 · 3l, in which case

π−1
3 {k} ∩ F = π−1

3 {k} ∩ ((3l, 3l, 3l) + Fl) = (3l, 3l, 3l) + π−1
3 {k − 3l} ∩ Fl.

By (34), d
π−1

3 {k}∩F
3l
(α − β) ≤ 5 for all 1 ≤ k ≤ 3l. Therefore, d

π−1
3 {k}∩F(α − β) ≤ 5 for all

k ∈ N, and hence F is cylindrical in direction 3.

(ii) The construction of (random) doubly-cylindrical sets with the desired dimension
follows a blueprint similar to the one followed in (i). Indeed, if x ∈ (2, 3), then for all
N ≥ n0 for sufficiently large n0, by using independent {0, 1}-valued random variables with
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a prescribed mean, we can produce (random sets) FN ⊂ [N]3 with the following properties:
(a) for every positive integer s ≤ N , s-subsets A and B of [N], and every l ∈ [N],
|FN ∩ (A × B × {l})| ≤ sx−1, |FN ∩ (A × {l} × B)| ≤ sx−1, |FN ∩ ({l} × A × B)| ≤ sx−1;

(b) for every l ∈ [N],

|FN ∩ ([N]2 ×{l}| 2∼ Nx−1, |FN ∩ ([N]× {l}× [N]| 2∼ Nx−1, |FN ∩ ({l}× [N]2| 2∼ Nx−1.

Then, F = ∪∞
n=n0

(F3n + (3n, 3n, 3n)) is cylindrical in each of the three directions, and
dim F = x/2. The verification is similar to the proof given in (i), and is omitted.
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