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In this paper, we introduce a necessary and sufficient condition on the complex
� 4 � � 2 � nsequence a , Ý a � �, so that Ý � a z represents a Bloch function forn n n�1 n

almost all choices of signs ‘‘�,’’ answering a question left open by J. M. Anderson
Ž .et al. 1974, J. Reine Agnew. Math. 270, 12�37 . � 2000 Academic Press

INTRODUCTION

Ž . �A Bloch function is an analytic function f z in the unit disk D � z :
� � 4z � 1 , such that

� � 2 � �sup 1 � z f � z � �.Ž .Ž .
z�D

When equipped with the norm

� � � � � � 2 � �f � f 0 � sup 1 � z f � z ,Ž . Ž .Ž .BB

z�D

the set of all bloch functions forms a Banach space, called the Bloch space.
In this note, we study the random power series

�
nf z � a � � z ,Ž . Ž .Ý� n n

n�0

� Ž .4where � � is a Rademacher sequence; that is, � � �1. In particular,n n
� �we will consider the following problem raised by Anderson 2 :

� 4Problem. Find a necessary and sufficient condition on a , such thatn
� Ž .4for Rademacher sequence � � , the seriesn

�
nf z � a � � zŽ . Ž .Ý� n n

n�0

represents a Bloch function almost surely.
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� �For history and related research, see, e.g., 2�4 .
The study of random series dates back at least to Paley and Zygmund

Ž .1930 . For a long time, a major question was characterizing the a.s.
convergence of the random Fourier series

�
ni�a � e ,Ý n n

n�0

� 4 � � � 2where a is a sequence of numbers satisfying Ý a � �. This ques-n n�0 n
� �tion was completely solved by Marcus and Pisier 6 . Their result will be

adapted in this paper to produce the proof of the sufficient part of the
following theorem.

� 4THEOREM 1. If � is a Rademacher sequence, then the random powern
series

�
nf z � a � � zŽ . Ž .Ý� n n

n�0

is a Bloch function almost surely if and only if

� 2�td e dt � O n ,Ž .Ž .H n
0

where d is the non-decreasing rearrangement ofn

n
2 22 2� k t i� � � �d t � k a e � 1 .Ž . Ýn k(

k�1

Here and throughout this note, the non-decreasing rearrangement of a
Ž . Ž . � �Lebesgue m-measurable function h t on 0, 1 is defined by

h s � sup y : m t : h t � y � s .� 4� 4Ž . Ž .Ž .

MARCUS AND PISIER

� �In this section, we introduce a result of Marcus and Pisier 6 . For
Ž .notational simplicity, we define � t to be the non-decreasing rearrange-

ment of

1�2�
2 22� nt i� � � �� t � a e � 1 ,Ž . Ý nž /

n�0
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and denote

� tŽ .1
I � dt .H 't � log t0

� �The following result can be found in 6, Theorem 1.4, p. 11 .

Ž . � 4PROPOSITION 1 Marcus and Pisier . Let 	 be a sequence of indepen-n
dent, symmetric random �ariables. Then there exists a constant K , such that

�1 2� � � �inf E 	 a � IÝž /n n(K n n�0

�
2 2� � � � �	 EZ 	 K sup E 	 a � I ,Ýn n((

n n�0

where
�

n� iZ � sup a e 	 � .Ž .Ý n n
0	��2� n�0

For our purposes, we need to improve the right inequality to the
following

PROPOSITION 2. There exists a constant C, such that

� �
2n� i � �sup a e � 	 C a � I ,Ý Ýn n n(

0	��2� 
n�0 n�02

� �where the Orlicz norm � is defined by the equation
2

� � 2x
� �x � inf c � 0 : E exp � 2 .
2 2½ 5ž /c

�To prove Proposition 2, we need two lemmas. Lemma 1 4, Theorem 2.1,
�p. 43 is called the Maurey�Pisier concentration inequality; Lemma 2

� � Ž5, p. 97 , is a consequence of the contraction principle see Lemma 3 in
.the next section .

� 4LEMMA 1. Let X be a centered Gaussian process with sample pathst t � T
bounded a.s. Let � � sup EX 2. Thent � T t

2
P sup X � E sup X �  	 2 exp � .t t½ 5 2½ 52�t�T t�T
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� Ž .4LEMMA 2. If g � is a sequence of i.i.d. standard normal randomi
�ariables, then

� ��
n� i n� isup a e � 	 sup a e g � .Ž .Ý Ý(n n n n20	��2� 0	��2�
 
n�0 n�02 2

� Ž .4Proof. Let g � be a sequence of i.i.d. standard normal randomi
variables. Denote

��
n� iY � sup a e g �Ž .Ý(g n n2 0	��2� n�0

and
��

n� iZ � sup a e g � .Ž .Ý(g n n2 0	��2� n�0

By the symmetry of Gaussian variables, we have

P Z �  	 2 P Y �  .� 4 � 4g g

Using this inequality and then applying Lemma 1 to Y , we obtaing

� �
2 2� � � � � � � �Z 	 2 Y 	 C EY � a 	 C EZ � aÝ Ý
 
g g g n g n2 2 ( (ž / ž /n�0 n�0

for some constant C. On the other hand, by applying Proposition 1 to Z ,g
we have

�
2� �EZ 	 K a � IÝg k(

n�0

for some constant K. The proposition follows by invoking Lemma 2.

PROOF OF THEOREM 1

� �We will need the following contraction principle 5, Theorem 4.4, p. 95 .

Ž .LEMMA 3. Let F: R � R be con�ex. For any finite sequence x is a� � k
Ž . � �Banach space B and any real numbers � such that � 	 1 for e�ery k, wek k

ha�e

EF � � x 	 EF � x .Ý Ýk k k k kž / ž /
k k
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We start with the following identity. For z � rei�,

�
� n�1� � � � � �1 � z f z � 1 � z na z �Ž . Ž . Ž . Ý� n n

n�1

�
n�1 ni�� 1 � r nr a e �Ž . Ý n n

n�1

� n
2k i� n�1� ka e � r 1 � r .Ž .Ý Ý k kž /

n�1 k�1

Ž .i Suppose

� 2�td e dt � O n .Ž .Ž .H n
0

By changing variable, this is equivalent to

d tŽ .1 n
dt � O n .Ž .H 't � log t0

Applying Proposition 2 to the random series Ýn ka ek� i� , we havek�0 k k

n n � d tŽ .n2k� i � �sup ka e � 	 C ka � dt .Ý Ý Hk k k( 't � log t00	��2� 
k�0 k�02

By Chebyshev’s inequality, we deduce that

n n � d tŽ .n2k i� � �sup ka e � 	 n � C ka � dtÝ Ý Hk k k(ž /'t � log t00	��2� k�1 k�1

n � d tŽ .n2� �	 n � Cn a � C dtÝ Hk( 't � log t0k�1

	 C�n
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�n Žexcept on a set with probability less than e . The purpose of Proposition
.2 is to produce this quantity. Thus, with probability more than 1 �

Ý� e�n, we haven�m

� � � � �sup 1 � z f zŽ . Ž .�
z�D

� n
2n�1 k i�� sup sup r 1 � r ka e �Ž .Ý Ý k k

0�r�1 0	�	2� n�1 k�1

� n
2n�1 k i�	 C � sup r 1 � r sup ka e �Ž .Ý Ým k k

0�r�1 0	�	2�n�m k�1

�
2n�1	 C � sup r 1 � r C�nŽ .Ým

0�r�1 n�m

	 C � C� � �,m

Ž .where C is a constant depending on m. This implies f z is a Blochm �

function almost surely.
Ž . Ž .ii Suppose f z is a Bloch function almost surely. Then the sub-�

� Ž .Gaussian process f z satisfiesw

� � � � �E sup 1 � z f z � �.Ž . Ž .�
z�D

By changing variable, and applying the left inequality of Proposition 1 to
n k i� Ž .the series Ý ka e � � , we havek�1 k k

� d tŽ .12 n�td e dt � 2 dtŽ .H Hn 't � log t0 0

n
k i�	 2 KE sup ka e � � .Ž .Ý k k

� k�1

Consider

n1
k i�E sup ka e � � .Ž .Ý k kn � k�1
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1 1kŽ . Ž .Because, for k 	 n, 1 � 
 , by the contraction principle Lemma 3 ,n e

kn n1 1 1
k i� k i�E sup ka e � � 	 eE sup ka e 1 � � �Ž . Ž .Ý Ýk k k kž /n n n� �k�1 k�1

k� 1 1
k i�	 eE sup ka e 1 � � �Ž .Ý k kž /n n� k�1

�
k k i�	 eE sup sup ka 1 � r r e � �Ž . Ž .Ý k k

0�r�1 � k�1

�
k� �� eE sup 1 � z ka z � �Ž . Ž .Ý k k

z�D k�1

� � � � �� eE sup 1 � z f zŽ . Ž .�
z�D

� �,
which implies that

� 2�td e dt � O n .Ž .Ž .H n
0

Ž � �.COROLLARY 1 see 2 . If
n n2 2� �a k � O ,Ý k( ž /'log nk�1

then Ý� a � z n represents a Bloch function almost surely.n�0 n n

Proof.
n� �2 22 2�t 2 �t� � � �d e dt 	 k a exp 2� ke i � 1 dtŽ . Ž .ÝH Hn k(

0 0 k�1

n
log n' 22 � �	 2 k a dtÝH k(

0 k�1

n� 222 4 �t� �� 8� k a e dtÝH k(
log n' k�1

n n
2 22 2 2� � � �'	 2 log n � k a � 8� k aÝ Ýk k( (

k�1 k�1

� O n .Ž .
The corollary then follows from Theorem 1.
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Ž .Remark. i The readers who are familiar with Marcus and Pisier’s
Žproof of Proposition 1 the idea of replacing a symmetric random variable

.	 by an identically distributed random variable 	 � should have noticedn n n
that Theorem 1 remains valid if � ’s are replaced by the 	 ’s in Proposi-n n

Ž .tion 1. ii Anderson also asked the question of characterizing random
� �BMO functions, to which Duren 4 had a very sharp sufficient condition.

We note that Duren’s sufficient condition can be replaced by a sharper
Maurey�Pisier type condition. However, the technique that we used in this
paper seems not to work in finding the necessary condition.
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