A Characterization of Random Bloch Functions

Fuchang Gao
Department of Mathematics, University of Idaho, Moscow, Idaho 83844-1103
E-mail: fuchang@uidaho.edu
Submitted by Ulrich Stadtmueller

Received December 13, 1999

In this paper, we introduce a necessary and sufficient condition on the complex sequence $\left\{a_{n}\right\}, \sum\left|a_{n}\right|^{2}<\infty$, so that $\sum_{n=1}^{\infty} \pm a_{n} z^{n}$ represents a Bloch function for almost all choices of signs " \pm," answering a question left open by J. M. Anderson et al. (1974, J. Reine Agnew. Math. 270, 12-37). © 2000 Academic Press

INTRODUCTION

A Bloch function is an analytic function $f(z)$ in the unit disk $D=\{z$: $|z|<1\}$, such that

$$
\sup _{z \in D}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty .
$$

When equipped with the norm

$$
\|f\|_{\mathscr{A}}=|f(0)|+\sup _{z \in D}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|,
$$

the set of all bloch functions forms a Banach space, called the Bloch space.
In this note, we study the random power series

$$
f_{\omega}(z)=\sum_{n=0}^{\infty} a_{n} \varepsilon_{n}(\omega) z^{n}
$$

where $\left\{\varepsilon_{n}(\omega)\right\}$ is a Rademacher sequence; that is, $\varepsilon_{n}= \pm 1$. In particular, we will consider the following problem raised by Anderson [2]:

Problem. Find a necessary and sufficient condition on $\left\{a_{n}\right\}$, such that for Rademacher sequence $\left\{\varepsilon_{n}(\omega)\right\}$, the series

$$
f_{\omega}(z)=\sum_{n=0}^{\infty} a_{n} \varepsilon_{n}(\omega) z^{n}
$$

represents a Bloch function almost surely.

For history and related research, see, e.g., [2-4].
The study of random series dates back at least to Paley and Zygmund (1930). For a long time, a major question was characterizing the a.s. convergence of the random Fourier series

$$
\sum_{n=0}^{\infty} a_{n} \varepsilon_{n} e^{n i \theta}
$$

where $\left\{a_{n}\right\}$ is a sequence of numbers satisfying $\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty$. This question was completely solved by Marcus and Pisier [6]. Their result will be adapted in this paper to produce the proof of the sufficient part of the following theorem.

Theorem 1. If $\left\{\varepsilon_{n}\right\}$ is a Rademacher sequence, then the random power series

$$
f_{\omega}(z)=\sum_{n=0}^{\infty} a_{n} \varepsilon_{n}(\omega) z^{n}
$$

is a Bloch function almost surely if and only if

$$
\int_{0}^{\infty} \overline{d_{n}}\left(e^{-t^{2}}\right) d t=O(n),
$$

where $\overline{d_{n}}$ is the non-decreasing rearrangement of

$$
d_{n}(t)=\sqrt{\sum_{k=1}^{n} k^{2}\left|a_{k}\right|^{2}\left|e^{2 \pi k t i}-1\right|^{2}} .
$$

Here and throughout this note, the non-decreasing rearrangement of a (Lebesgue) m-measurable function $h(t)$ on $[0,1]$ is defined by

$$
\bar{h}(s)=\sup \{y: m(\{t: h(t)<y\})<s\} .
$$

MARCUS AND PISIER

In this section, we introduce a result of Marcus and Pisier [6]. For notational simplicity, we define $\bar{\rho}(t)$ to be the non-decreasing rearrangement of

$$
\rho(t)=\left(\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}\left|e^{2 \pi n t i}-1\right|^{2}\right)^{1 / 2},
$$

and denote

$$
I:=\int_{0}^{1} \frac{\bar{\rho}(t)}{t \sqrt{-\log t}} d t
$$

The following result can be found in [6, Theorem 1.4, p. 11].
Proposition 1 (Marcus and Pisier). Let $\left\{\xi_{n}\right\}$ be a sequence of independent, symmetric random variables. Then there exists a constant K, such that

$$
\begin{aligned}
& \frac{1}{K}\left(\inf _{n} E\left|\xi_{n}\right|\right)\left[\sqrt{\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}}+I\right] \\
& \quad \leq E Z \leq K \sqrt{\left.\sup _{n}|E| \xi_{n}\right|^{2}}\left[\sqrt{\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}}+I\right]
\end{aligned}
$$

where

$$
Z:=\sup _{0 \leq \theta<2 \pi}\left|\sum_{n=0}^{\infty} a_{n} e^{n \theta i \xi_{n}(\omega)}\right| .
$$

For our purposes, we need to improve the right inequality to the following

Proposition 2. There exists a constant C, such that

$$
\left\|\sup _{0 \leq \theta<2 \pi}\left|\sum_{n=0}^{\infty} a_{n} e^{n \theta i} \varepsilon_{n}\right|\right\|_{\psi_{2}} \leq C\left[\sqrt{\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}}+I\right],
$$

where the Orlicz norm $\|\cdot\|_{\psi_{2}}$ is defined by the equation

$$
\|x\|_{\psi_{2}}:=\inf \left\{c>0: E \exp \left(\frac{|x|^{2}}{c^{2}}\right)=2\right\} .
$$

To prove Proposition 2, we need two lemmas. Lemma 1 [4, Theorem 2.1, p. 43] is called the Maurey-Pisier concentration inequality; Lemma 2 [5, p. 97], is a consequence of the contraction principle (see Lemma 3 in the next section).

Lemma 1. Let $\left\{X_{t}\right\}_{t \in T}$ be a centered Gaussian process with sample paths bounded a.s. Let $\sigma:=\sup _{t \in T} E X_{t}^{2}$. Then

$$
P\left\{\left|\sup _{t \in T} X_{t}-E \sup _{t \in T} X_{t}\right|>\lambda\right\} \leq 2 \exp \left\{-\frac{\lambda^{2}}{2 \sigma^{2}}\right\} .
$$

Lemma 2. If $\left\{g_{i}(\omega)\right\}$ is a sequence of i.i.d. standard normal random variables, then

$$
\left\|\sup _{0 \leq \theta<2 \pi}\left|\sum_{n=0}^{\infty} a_{n} e^{n \theta i} \varepsilon_{n}\right|\right\|_{\psi_{2}} \leq\left\|\sqrt{\frac{\pi}{2}} \sup _{0 \leq \theta<2 \pi}\left|\sum_{n=0}^{\infty} a_{n} e^{n \theta i} g_{n}(\omega)\right|\right\|_{\psi_{2}}
$$

Proof. Let $\left\{g_{i}(\omega)\right\}$ be a sequence of i.i.d. standard normal random variables. Denote

$$
Y_{g}:=\sqrt{\frac{\pi}{2}} \sup _{0 \leq \theta<2 \pi} \sum_{n=0}^{\infty} a_{n} e^{n \theta i} g_{n}(\omega)
$$

and

$$
Z_{g}:=\sqrt{\frac{\pi}{2}} \sup _{0 \leq \theta<2 \pi}\left|\sum_{n=0}^{\infty} a_{n} e^{n \theta i} g_{n}(\omega)\right| .
$$

By the symmetry of Gaussian variables, we have

$$
P\left\{Z_{g}>\lambda\right\} \leq 2 P\left\{Y_{g}>\lambda\right\} .
$$

Using this inequality and then applying Lemma 1 to Y_{g}, we obtain

$$
\left\|Z_{g}\right\|_{\psi_{2}} \leq 2\left\|Y_{g}\right\|_{\psi_{2}} \leq C\left(E Y_{g}+\sqrt{\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}}\right) \leq C\left(E Z_{g}+\sqrt{\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}}\right)
$$

for some constant C. On the other hand, by applying Proposition 1 to Z_{g}, we have

$$
E Z_{g} \leq K\left[\sqrt{\sum_{n=0}^{\infty}\left|a_{k}\right|^{2}}+I\right]
$$

for some constant K. The proposition follows by invoking Lemma 2 .

PROOF OF THEOREM 1

We will need the following contraction principle [5, Theorem 4.4, p. 95].
Lemma 3. Let $F: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}$be convex. For any finite sequence $\left(x_{k}\right)$ is a Banach space B and any real numbers $\left(\alpha_{k}\right)$ such that $\left|\alpha_{k}\right| \leq 1$ for every k, we have

$$
E F\left(\left\|\sum_{k} \alpha_{k} \varepsilon_{k} x_{k}\right\|\right) \leq E F\left(\left\|\sum_{k} \varepsilon_{k} x_{k}\right\|\right)
$$

We start with the following identity. For $z=r e^{i \theta}$,

$$
\begin{aligned}
(1-|z|)\left|f_{\omega}^{\prime}(z)\right| & =(1-|z|)\left|\sum_{n=1}^{\infty} n a_{n} z^{n-1} \varepsilon_{n}\right| \\
& =(1-r)\left|\sum_{n=1}^{\infty} n r^{n-1} a_{n} e^{n i \varepsilon_{n}}\right| \\
& =\left|\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} k a_{k} e^{k i \theta_{k}}\right) r^{n-1}(1-r)^{2}\right| .
\end{aligned}
$$

(i) Suppose

$$
\int_{0}^{\infty} \overline{d_{n}}\left(e^{-t^{2}}\right) d t=O(n) .
$$

By changing variable, this is equivalent to

$$
\int_{0}^{1} \frac{\overline{d_{n}}(t)}{t \sqrt{-\log t}} d t=O(n)
$$

Applying Proposition 2 to the random series $\sum_{k=0}^{n} k a_{k} e^{k \theta i} \varepsilon_{k}$, we have

$$
\left\|\sup _{0 \leq \theta<2 \pi}\left|\sum_{k=0}^{n} k a_{k} e^{k \theta i} \varepsilon_{k}\right|\right\|_{\psi_{2}} \leq C\left[\sqrt{\sum_{k=0}^{n}\left|k a_{k}\right|^{2}}+\int_{0}^{\infty} \frac{\overline{d_{n}}(t)}{t \sqrt{-\log t}} d t\right] .
$$

By Chebyshev's inequality, we deduce that

$$
\begin{aligned}
\sup _{0 \leq \theta<2 \pi}\left|\sum_{k=1}^{n} k a_{k} e^{k i \theta_{\varepsilon_{k}}}\right| & \leq n+C\left(\sqrt{\sum_{k=1}^{n}\left|k a_{k}\right|^{2}}+\int_{0}^{\infty} \frac{\overline{d_{n}}(t)}{t \sqrt{-\log t}} d t\right) \\
& \leq n+C n \sqrt{\sum_{k=1}^{n}\left|a_{k}\right|^{2}}+C \int_{0}^{\infty} \frac{\overline{d_{n}(t)}}{t \sqrt{-\log t}} d t \\
& \leq C^{\prime} n
\end{aligned}
$$

except on a set with probability less than e^{-n}. (The purpose of Proposition 2 is to produce this quantity.) Thus, with probability more than 1 $\sum_{n=m}^{\infty} e^{-n}$, we have

$$
\begin{aligned}
\sup _{z \in D} & (1-|z|)\left|f_{\omega}^{\prime}(z)\right| \\
& =\sup _{0<r<1} \sup _{0 \leq \theta \leq 2 \pi}\left|\sum_{n=1}^{\infty} r^{n-1}(1-r)^{2} \sum_{k=1}^{n} k a_{k} e^{k i \theta} \varepsilon_{k}\right| \\
& \leq C_{m}+\sup _{0<r<1} \sum_{n=m}^{\infty} r^{n-1}(1-r)^{2} \sup _{0 \leq \theta \leq 2 \pi}\left|\sum_{k=1}^{n} k a_{k} e^{k i \theta} \varepsilon_{k}\right| \\
& \leq C_{m}+\sup _{0<r<1} \sum_{n=m}^{\infty} r^{n-1}(1-r)^{2} C^{\prime} n \\
& \leq C_{m}+C^{\prime}<\infty,
\end{aligned}
$$

where C_{m} is a constant depending on m. This implies $f_{\omega}(z)$ is a Bloch function almost surely.
(ii) Suppose $f_{\omega}(z)$ is a Bloch function almost surely. Then the subGaussian process $f_{w}^{\prime}(z)$ satisfies

$$
E \sup _{z \in D}(1-|z|)\left|f_{\omega}^{\prime}(z)\right|<\infty .
$$

By changing variable, and applying the left inequality of Proposition 1 to the series $\sum_{k=1}^{n} k a_{k} e^{k i \theta} \varepsilon_{k}(\omega)$, we have

$$
\begin{aligned}
\int_{0}^{\infty} \overline{d_{n}}\left(e^{-t^{2}}\right) d t & =2 \int_{0}^{1} \frac{\overline{d_{n}}(t)}{t \sqrt{-\log t}} d t \\
& \leq 2 K E \sup _{\theta}\left|\sum_{k=1}^{n} k a_{k} e^{k i \theta} \varepsilon_{k}(\omega)\right|
\end{aligned}
$$

Consider

$$
\frac{1}{n} E \sup _{\theta}\left|\sum_{k=1}^{n} k a_{k} e^{k i \theta} \varepsilon_{k}(\omega)\right| .
$$

Because, for $k \leq n,\left(1-\frac{1}{n}\right)^{k} \geq \frac{1}{e}$, by the contraction principle (Lemma 3),

$$
\begin{aligned}
\frac{1}{n} E \sup _{\theta}\left|\sum_{k=1}^{n} k a_{k} e^{k i \theta_{k}}(\omega)\right| & \leq e E \sup _{\theta}\left|\sum_{k=1}^{n} k a_{k} e^{k i \theta} \frac{1}{n}\left(1-\frac{1}{n}\right)^{k} \varepsilon_{k}(\omega)\right| \\
& \leq e E \sup _{\theta}\left|\sum_{k=1}^{\infty} k a_{k} e^{k i \theta} \frac{1}{n}\left(1-\frac{1}{n}\right)^{k} \varepsilon_{k}(\omega)\right| \\
& \leq e E \sup _{0<r<1} \sup _{\theta}\left|\sum_{k=1}^{\infty} k a_{k}(1-r) r^{k} e^{k i \theta} \varepsilon_{k}(\omega)\right| \\
& =e E \sup _{z \in D}(1-|z|)\left|\sum_{k=1}^{\infty} k a_{k} z^{k} \varepsilon_{k}(\omega)\right| \\
& =e E \sup _{z \in D}(1-|z|)\left|f_{\omega}^{\prime}(z)\right| \\
& <\infty,
\end{aligned}
$$

which implies that

$$
\int_{0}^{\infty} \overline{d_{n}}\left(e^{-t^{2}}\right) d t=O(n)
$$

Corollary 1 (see [2]). If

$$
\sqrt{\sum_{k=1}^{n}\left|a_{k}\right|^{2} k^{2}}=O\left(\frac{n}{\sqrt{\log n}}\right)
$$

then $\sum_{n=0}^{\infty} a_{n} \varepsilon_{n} z^{n}$ represents a Bloch function almost surely.
Proof.

$$
\begin{aligned}
\int_{0}^{\infty} \overline{d_{n}}\left(e^{-t^{2}}\right) d t \leq & \int_{0}^{\infty} \sqrt{\sum_{k=1}^{n} k^{2}\left|a_{k}\right|^{2}\left|\exp \left(2 \pi k e^{-t^{2}} i\right)-1\right|^{2}} d t \\
\leq & 2 \int_{0}^{\sqrt{\log n}} \sqrt{\sum_{k=1}^{n} k^{2}\left|a_{k}\right|^{2}} d t \\
& +8 \pi^{2} \int_{\sqrt{\log n}}^{\infty} \sqrt{\sum_{k=1}^{n} k^{4}\left|a_{k}\right|^{2}} e^{-t^{2}} d t \\
\leq & 2 \sqrt{\log n} \cdot \sqrt{\sum_{k=1}^{n} k^{2}\left|a_{k}\right|^{2}}+8 \pi^{2} \sqrt{\sum_{k=1}^{n} k^{2}\left|a_{k}\right|^{2}} \\
= & O(n) .
\end{aligned}
$$

The corollary then follows from Theorem 1.

Remark. (i) The readers who are familiar with Marcus and Pisier's proof of Proposition 1 (the idea of replacing a symmetric random variable ξ_{n} by an identically distributed random variable $\xi_{n} \varepsilon_{n}$) should have noticed that Theorem 1 remains valid if ε_{n} 's are replaced by the ξ_{n} 's in Proposition 1. (ii) Anderson also asked the question of characterizing random BMO functions, to which Duren [4] had a very sharp sufficient condition. We note that Duren's sufficient condition can be replaced by a sharper Maurey-Pisier type condition. However, the technique that we used in this paper seems not to work in finding the necessary condition.

ACKNOWLEDGMENTS

The author thanks Professor Ron Blei for the inspiring discussion the referee for the valuable comments.

REFERENCES

1. R. Adler, "An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes," Institute of Mathematical Statistics Lecture Notes-Monograph Series, Vol. 12, 1990.
2. J. M. Anderson, Random power series, Lecture Notes in Math. 1573 (1994), 174-174.
3. J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
4. P. Duren, Random series and bounded mean oscillation, Michigan Math. J. 32, No. 1, (1985), 81-86.
5. M. Ledoux and M. Talagrand, "Probability in Banach spaces. Isoperimetry and Processes," Springer-Verlag, Berlin, 1991.
6. M. B. Marcus and G. Pisier, "Random Fourier Series with Applications to Harmonic Analysis," Princeton Univ. Press, Princeton, NJ, 1981.
