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We conjecture that if £ > 2 is an integer and G is a graph of order n with minimum degree
at least (n + 2k)/2, then for any k independent edges eq,..., e, in G and for any integer
partition n = nq + -+ + ny, with n; > 4(1 < i < k), G has k disjoint cycles Cy,...,C of

orders nq,...,nk, respectively such that C; passes through e; for all 1 < i < k. We show
that this conjecture is true for the case £ = 2. The minimum degree condition is sharp in
general.
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1 Introduction

It is well known [8] that if a graph G of order n with minimum degree at least (n + 2)/2, then for each edge
e, G has a cycle of order [ passing through e for each 3 <[ < n. A set of graphs are said to be disjoint if no
two of them have any vertex in common. We ask this question: Given a graph G of order n = ny +--- 4+ ny
with n; > 3(1 <1i < k) and k independent edges ey, ..., e, in G, when does G have k disjoint cycles of orders
ni,..., Nk, respectively such that C; passes through e; for each 1 <4 < k7 If the orders of the k cycles are not
restricted, a similar problem was proposed in [7]. It was conjectured that for each integer k > 2, there exists
no(k) such that if G is a graph of order n > ng(k) and d(x)+d(y) > n+2k—2, then for any k independent edges
e1,...,ex of G, G has k disjoint cycles (', ..., Cy covering all the vertices of G such that C; passes through e;
for all 1 < ¢ < k. This conjecture was confirmed and completely solved by Egawa, Faudree, Gyori, Ishigami,
Schelp and Wang in [4]. Here we propose the following conjecture:

Conjecture A Let k > 2 be an integer and let G be a graph of order n with minimum degree at least (n+2k)/2.
Then for any k independent edges e1,...,e; in G and for any integer partition n = ny + - -+ + ng with n; >
4(1 <i < k), G has k disjoint cycles C1,...,Cy of orders ny,...,ng, respectively such that C; contains e; for
all1 <1< k.

To see the sharpness in general, we observe K, _a1—1))/2,(n—2(k—1))/2 T K2(k—1)- This graph has minimum
degree (n + 2k)/2 — 1. Let ey, ...,e; be k independent edges such that ey, ..., ex_1 are taken from the clique
Ky—1)- Let n=ny + --- + ng be such that ny is odd. Then the graph does not contain k required cycles.

In Conjecture A, the condition n; > 4(1 <14 < k) is necessary in general. This can be demonstrated in the
following example with n; = 3(1 < i < k). Choose positive integers a,b and k such that a > k/2+ 1, b > 2,
k > a+band k — b is even. Let K be the complete graph on V' = {z1,y1,..., %k, Yk, 21, .., 2k} Let (V, E)
be a graph of order 3k with V' = {z1,y1,..., Tk, Yk, 21, ..., 21} such that F = E(K) —{yizjla+1<i <k, 1 <
J < (k—=0)/2} = {zizjla+1 < i <k, (k—0b)/2+1 < j < k—>b}. This graph does not contain k disjoint
triangles containing k independent edges z;y;(1 < ¢ < k) since k — b > a and a triangle containing a vertex of
{z1,...,2k—p} and an edge of {z;y;|1 < i < k} must contain an edge of {z;y;|1 < i < a}. Its minimum degree
is min{2k — 1+ (k+0)/2,2k — 1+ a} > 5k/2.

If the k disjoint cycles are not required to pass through given edges, we have El-Zahar’s conjecture [5]. The
conjecture says that if G is a graph of order n = nj + - - - + ng with n; > 3(1 < ¢ < k) and minimum degree at



least [n1/2] +-- -+ [ng/2] then G contains k disjoint cycles of order ny, ..., ng, respectively. It was confirmed
for the case k = 2 in [5]. Abbasi[l] announced a solution of this conjecture for large n using regularity lemma.

In this paper, we prove Conjecture A for the case k = 2:

Theorem B Let G be a graph of order n with minimum degree at least (n+4)/2. Then for any two independent
edges e1 and ey in G and for any integer partition n = ny + ng with ny > 3 and ny > 3, G has two disjoint
cycles C and Cy of orders nq and na, respectively such that ey € E(C1) and es € E(C3).

We shall use terminology and notation from [2] except as indicated. Let G = (V,E) be a graph. Let
x € V(G). Let H be a subset of V(G) or a subgraph of G. We define N(x,H) = {u € N(x)|u belongs to
H}. Let d(z,H) = |N(xz,H)|. If X is a subset of V(G) or a subgraph of G, define N(X,H) = U,N(x,H)
and d(X,H) = 3, d(x, H) where x runs over X. Clearly, if X and H do not have any common vertex, then
d(X, H) is the number of edges of G between X and H. We also use [H] to denote the induced subgraph of G
by the vertices in H. For z,y € V(G), define I(zy, H) = N(x, H) N N(y, H) and let i(zy, H) = |I(xy, H)|. We
use e(G) to denote |E(G)|. The order of G is denoted by |G]|.

A path from u to v is called a u-v path. If P is a path of G and v is an endvertex of P, we use «a(P,v)
to denote the order of the longest u-v subpath of P with wv € E(G). Clearly, if a(P,v) > 3 then P + uv
has a cycle of order a(P,v). Let w € V(G) (e € E(G), respectively). Let P = wiws...w; be a longest path
starting at w = wy (e = wjwy, respectively). We say that P is an optimal path at w (e, respectively) in G if
a(P' z) < a(P,w;) for any longest path P’ = z1xo. ..z starting at w = x1 (e = z129, respectively) in G. If
e € E(P), we define o(P,e) = min{|E(P})|, |[E(P)|} where P; and P» are the two components of P — e. Thus
if o(P,e) = 0 then e is an end edge of P. For an edge e € F(G), an e-path or e-cycle is a path or a cycle that
passes through e. If P is a u-v path, we define d*(P, H) = d(uv, H).

A cycle C of G is called an end-cycle at uw € V(C) if N(x,G) C V(C) and [C] has a u-z hamiltonian path
for each x € V(C — u).

If C = 21...2021 is a cycle of GG, we assume an orientation of C is given by default such that xo is the
successor of 1. Then C[z;, z;] is the z;-z; path on C along the orientation of C' and C~[z;, z;] is the z;-z; path
on C in the direction against the orientation of C. Define C|x;, xj) = C[z;, x;]—x; and C(x;, x| = Clay, xj] — ;.
The predecessor and successor of x; on C' are denoted by x;” and xf We will use similar definitions for a path.

Let P = z1...2¢ be a path of G. If {z1z;41,22;} C E with 1 < i <t — 1, we say that z;z;4; is an
accessible edge of P. Let C = ujusa ... unu1 be a cycle of G. Let u; and u; be two distinct vertices of C. For
each e € E(C), if e is an accessible edge of either Clu;, u;] or Cluj,u;], then we say that e is an accessible edge
of C wrt. {uj,u;}.

2 Proof of Theorem B

In this section, we list Lemmas 2.1-2.7 and use them to prove the theorem. The proofs of these lemmas are
in Section 4. Let G = (V, E) be a graph order n with 6(G) > (n + 4)/2. Suppose, for a contradiction, that
theorem fails for G. Let G be a counter example with » minimal. Let n = n; + n2 be an integer partition
with ny > 3 and no > 3 and let e; and es be two independent edges such that G does not contain two
disjoint cycles of orders n; and ng passing through e; and eg, respectively. For each X C V with |X| < 3,
I(G—=X) > (n+4)/2—|X| > ((n—|X|)+1)/2 and by Lemma 3.4, G— X is hamiltonian connected. Consequently,
it is easy to see that if n; = 3 or no = 3, then G has the two required cycles, a contradiction. Therefore n; > 4,
ng > 4 and so n > 8.

For the sake of convenience, for each i € {1,2}, let P; be the set of all the subgraphs of G which have
e;-hamiltonian paths and H; the set of all the subgraphs of G which have e;-hamiltonian cycles. Furthermore,
for each i € {1,2} and J € P, let P;(J) denote the set of all the e;-hamiltonian paths of J and let P} (J)
denote the subset of P;(J) such that a path P € P;(J) belongs to P;(J) if and only if o(P,e;) > 1.

For each i € {1,2} and J € P;, let S;(J) be the set of all the vertices z of J — V(e;) such that = is an end
vertex of some P € P;(J) and let §;(J) = min{d(z, J)|z € Si(J)}.



As 0(G) > (n+4)/2, G has a hamiltonian cycle containing both e; and e;. Thus G has two disjoint
subgraphs G and Gj such that for each i € {1,2}, |G;| = n; and G; € P;. We choose G; and G such that

e(G1) + e(G2) is maximum. (1)

Let Py =1 ... 2y, and Py = y1 ... Yn, be two paths such that, P, € P1(G1), P2 € P2(G2), x1 € S1(G1), y1 €
S2(Ga), d(x1,G1) = 61(G1) and d(y1, G2) = J2(G2). For any z € V(G1) and y € V(G3), we use {(z,y) to denote
d(z, Ga) —d(z,G1) +d(y, G1) —d(y, G2) = 2d(z,y). Thus e(G1—z+y)+e(Gz—y+x) = e(G1) +e(G2) +£(z, y).
By (1), we readily obtain the following Property A and Property B. The first one is evident.

Property A Let x € V(G1) and y € V(G2). f G1 —x+y € Py and Ga — y + x € Py then {(z,y) < 0. 1

Property B Either P{(G1) # 0 or P5(G2) # 0.

Proof of Property B. Say P;j(G1) = 0 and P5(G2) = 0. Then e; = xp,—12,, and N(z,,,G1) C
{@n,—1,xn,—2}. Thus ny > d(zp,,G2) > (n1 +n2 +4)/2 —2 = (n1 + n2)/2 and so ny > ny. Similarly,
ny > (n1+n2)/2. It follows that n; = na, N(xpn,, G1) = {@n,—2, Tn,—1} and N (Yn,, G2) = {Yny—2, Yn,—1}. Thus
N(e1,G1) = {@n,—2,Tny—1,Tn, } and N(e2, G2) = {Uny—2, Yny—1, Yny }- Consequently, G1 — V(e1) + V(e2) € Po,
Go —V(e2) +V(er) € P1, e(G1 —V(er) + V(e2)) +e(Ga — V(e2) + V(e1)) > e(G1) + e(G2). This contradicts
(1) 1

To reach a contradiction, we will investigate the structure of G; and G5 which lead us to construct a
sequence (G1,G2), (G3,Gy),. .., (Gaor—1,Gar) of pairs of disjoint subgraphs of G. This will be accomplished by
seven lemmas. Lemmas 2.1-2.6 are the steps to Lemma 2.7 and we use Lemma 2.7 to show that the sequence
yields a contradiction.

Lemma 2.1 FEither d(z1,G1) < (n1 +1)/2 or d(y1,G2) < (n2 +1)/2.
Lemma 2.2 Either d(x1,G1) > (n1+2)/2 or d(y1,G2) > (n2 +2)/2.

By Lemma 2.1 and Lemma 2.2, we may assume w.l.o.g. that d(z1,G1) < (n1 + 1)/2 and d(y1,G2) >
(ne +2)/2, ie., 531(G1) < (n1 4+ 1)/2 and 62(G2) > (n2 + 2)/2. Clearly, d(x1,G2) > (ng + 3)/2.

Lemma 2.3 Gy € Hs.

By Lemma 2.3, Gy € Ha. As 02(G2) > (n2 4+ 2)/2 and by Lemma 3.3, P3(G2) = 0. Let P = v,,0p,-1 ... 01
be an optimal path of Gy at e2 = vy, Up,—1. Say a(P,v1) =r. As Go € Ho, r <ng—1. As §2(G2) > (na+2)/2
and by Lemma 3.9, J = wvjve...v,v1 is an end-cycle at v, in Gg such that d(v;,J) > (ng + 2)/2 for all
ie{l,...,r—1}. Let J* = {va,v3,...,0,—2}. Clearly, r > (n2+2)/2+ 1= (na +4)/2.

Lemma 2.4 There exists no u € V(G1) — V(e1) such that Gy —u € Py, Ga +u € Ha and d(u, J*) > 0.
Lemma 2.5 §;(G;1) < (n1 —1)/2.

Let wy € Sl(Gl) with d(wl,Gl) = 51(G1) Then d(wl,Gg) > (m + n9o + 4)/2 — (n1 — 1)/2 = (77,2 + 5)/2.
Clearly, d(w1, J) > (n2+5)/2—(n2—r) > 9/2. Thus d(wy, J*) > 0. By Lemma 2.4, Ga+w; ¢ H2. This implies
that wyv,, € E and if v,v,,—2 € E then wyv,,—1 € E. Hence P5(G2 + w1) = (). For each v € S3(Ga + wy),
if d(v,Ga2 + w1) < (n2 +4)/2, then d(v,G; — wi) > n1/2 and so G; — w; +v € P; by Lemma 3.2(a). But
e(G1 — w1 +v) + e(Ga + w1 —v) > e(G1) + e(G2), contradicting (1). Hence d2(Ga + w1) > (n1 + 5)/2. In the
meantime, we see that ng — 1 > [(ng + 5)/2]. Thus ng > 7. With G; — w; and Gy + wi, this argument also
implies the existence of the following two subgraphs Gs and Gy4.

Let G3 and G4 be two disjoint subgraphs of G with e(G3) + e(G4) maximal such that |G3| = n; — 1,
|G4| = na + 1, Gs € P1, G4 € Py and P5(G4) = 0. By the above argument, e(G3) + e(G4) > e(G1) + e(G2) —
(n1 —1)/2 + (na + 5)/2. If d(v,G4) < (|Ga| + 3)/2 for some v € S3(G4), then d(v,G3) > (|G3] +1)/2 and

e(Gs +v) + e(Gy —v) > e(G1) + e(G2). This contradicts (1) since G + v € P; by Lemma 3.2(a). Thus



92(G4) > (n2 +5)/2 = (|G4| +4)/2. This argument is the key for a generalization leading to the following
definition and the proofs of Lemma 2.6 and Lemma 2.7.

Let £ > 2 be the largest integer such that there exist a sequence (G1,G2),(Gs,G4), ..., (Gor—1,Gax) of
disjoint pairs of subgraphs of G such that for each i € {1,...,k — 1}, Ga;—1 € P1, Go; € Pa, P5(G2;) = 0 and
there exists w; € S1(Gg;—1) such that §1(Gai—1) = d(w;i, Goi—1) < (|G2i—1] — 1)/2, d(w;, Gai) > (|Gai| + 5)/2
and Go; + w; € Ha. Moreover, for each i € {1,...,k — 1}, e(Goi+1) + €(G2i+2) is maximal such that |Ge;jy1| =
|Goi—1] — 1, |Goiya| = |Gail + 1, Goiy1 € P1, Goiyo € P2 and P3(Gait2) = 0. By the above argument, k is well
defined.

Lemma 2.6 The following two statements hold:
(a) For eachi € {1,...,k}, |Gai—i| =n1 — 1+ 1 and |Gy;| = na +1i — 1.
(b) For each i € {1,...,k}, 02(Gai) > (|G| +4)/2.

Say s = |Gog—1| and |Gog| =t. Asng > 7,t > 8. By Lemm 2.6, d2(Gax) > (t+4)/2. Let L = yyy4—1 ... y1 be
an optimal path at ez = yy¢—1 in Gog. Say r = «(L,y1). Thenr > §2(Ga)+1 > [(t+4)/2+1] = [(t+6)/2] > 7.
As P3(Gox) = 0, r <t—1. Let R = [y1,92,---,¥,] and R" = R — y,. By Lemma 2.6 and Lemma 3.9,
Y1y2 ... Yry1 is an end-cycle at y, in Goi and so §(R') > (t+4)/2 —1 > (|R'| +4)/2. By the minimality of |G|,
Theorem B holds for R'. Note that R’ — {z,y} is hamiltonian connected for all {z,y} C V(R’) by Lemma 3.4.
Clearly, s > d(yt, Gog—1) > (s +t+4)/2 —2 = (s +t)/2. This implies that s > ¢ and if equality holds then
N(ys, Gor) = {ys—1,yt—2} and r < ¢ — 2.

Lemma 2.7 For no x € V(Gok_1), Gop—1 —x € P1, Gop + x € Ho and d(x, R' — {y1,yr—1}) > 0.

To prove Theorem B, let y. € V(R — {y1,yr-1}). Then d(ycys,Gog—1) > s+t +4—(t—1) = s+5
and 80 i(yeyt, Gog—1) > 5. By Lemma 2.7, Gop—1 — x & P for all x € I(ycyr, Gor—1) and so Gog—1 & Hy. If
01(Gap—1) < (s—1)/2, let wy, € S1(Gap—1) with d(wy, Gor—1) = 91(Gar—1). As d(wg, Gox) > (t+5)/2, d(wy, R’ —
{y1,yr—1}) > 1. By Lemma 2.7, Goi, + wi, & Ho. Thus wiy; ¢ E and if yy;—o € E then wiy,—1 ¢ E. Therefore
P5(Ga +wy) = 0. This allows us to define (Gag11, Gokt2) to lengthen the sequence (G1, Ga), ..., (Gag—1, Gak).
This contradicts the maximality of k. Therefore 01(Gar—1) > s/2. Recall that d(y, Gag—1) > (s +t)/2. If
P (Gar—1) # 0, then by Lemma 3.5(c), we see that Gax_1 has a u-v e;-hamiltonian path such that v & V'(eq),
d(v,Gok—1) = /2 and vy, € E. As d(v,Gor) > (t +4)/2, d(v,R' — {y1,yr—1}) > 0 and so Gor + v € Hao,
contradicting Lemma 2.7. Therefore P;(Gor_1) = 0. Let P = z5325_1...21 be an optimal path at e; = 25251
in Gog—1. Say a(P,z1) = q. As d(zs,Go—1) < 2,t > d(z5,Gox) > (s+t+4)/2 —2 and so t > s. Since s > t,
it follows that s = t and d(zs, Gox) = t = d(yt, Gox—1). By Lemma 2.7, we see that d(z;, R’ — {y1,y-—1}) =0
forallie {1,...,g—1}. Then t +2 < d(y.,G) <r —1+d(ye,Gog—1) <r—1+t—q+1=t+r—gq. Thus
r—q>2. Thent+2<d(z,G) <q—1+d(z1,Gor) < q—1+t—1r+3 <t acontradiction. This proves the
theorem.

3 Auxiliary Lemmas
In the following, G = (V, E) is a graph. We will use the following lemmas. Lemma 3.1 is an easy observation.

Lemma 3.1 Let P = x1...x, be a path of order r in G. Let u and v be two vertices of G—V (P). Suppose that
d(uv, P) > r+1 and {uzit1,vx;} € E for alli € {1,...,r —1}. Then d(uv,P) =r + 1 and {uxi,vx,} C E.
Moreover, either N(u,P) = {x1,...,2,} and N(v,P) ={zq,...,2} for some a € {1,...,7}, ord(x;,uv) =0
for some 1 <@ <r. ]

Lemma 3.2 Let P be a u-v path of order r in G, e € E(P) and x € V(G) — V(P). The following five
statements hold:
(a) If d(x, P) > /2, then P+ x has an e-hamiltonian path.



(r+1)/2, P+ z has an e-hamiltonian path ending at v.
(r+2)/2 then P+ x has a u-v e-hamiltonian path.

( P)>

( P)>

(d) If d(xzv, P) > r + 2 then [P + x] has a u-x e-hamiltonian path.
(

(

Proof. Let P and P> be the two components of P — e with v in P». If d(z, f) = 2 for some f € E(P —e)
then (a), (b) and (c) hold. So if one of (a),(b) and (c) fails then d(z, f) < 1 for all f € E(P) — {e}. This
implies that d(z, P;) < (|P;| +1)/2 for ¢ € {1,2} and so d(z, P) < (r 4+ 2)/2. Furthermore, for each i € {1, 2},
if d(x, P;) = (|P;] + 1)/2, then |F;| is odd and z is adjacent to the two endvertices of P; and so the first three
statements follow.

If one of (d) and (e) fails, then {vz,z27} € E for each z € V(P) with 221 # e. This implies that
d(zv, P) < r+ 1. So (d) holds. Obviously, (e) would hold if uv € E or d(z,uv) > 0. To see (e), say uv ¢ E
and d(z,uv) = 0. Then apply (d) to P —u and z.

To obtain (f), we see that there exists an edge ¢’ on P + uv with €’ # e such that d(z,¢’) = 2. 1

Lemma 3.3 Let P be a u-v path of order r > 3 in G. Let e € E(P). Suppose that d(uv, P) > r + € where
e=01ifo(Pe)=0ande=1 if o(P,e) > 0. Then [P] has an e-hamiltonian cycle.

Proof. If uwv € FE, nothing to prove. So assume uv ¢ FE. Then the condition implies that some edge
f € E(P) —{e} is an accessible edge and this yields a required cycle. |

Lemma 3.4 [3| If H is a graph of order r > 3 and d(xy, H) > r + 1 for each pair x and y of nonadjacent
vertices of H, then H is hamiltonian connected and so for each e € E(H), H has an e-hamiltonian cycle.

Lemma 3.5 Let P = x;...x, be a path of order r > 3 in G. Let e € E(P). Suppose that [P] does not have
an e-hamiltonian cycle and d(z1x,, P) > r. Let R = {z;|d(x;,z12,) = 0,1 <i < r} and P be the set of all the
components of P — RU{x1,x,} —e. Then o(e, P) > 0, d(z1z,, P) = r and the following three statements hold:

(a) RU{x1, 2} is an independent set;

(b) d(x;, P') <1 for all z; € R and P’ € P;

(¢) If d*(L, P) > r for every e-hamiltonian path L of [P] with o(L,e) > 0, then either V(P) has a partition
X UY such that | X|=7r/2,V(e) C X,Y = RU{x1,z,} and N(y,P) = X for ally €Y, or [P] —V(e) has
two complete components Hi and Hy such that |Hy|+ |Ha| =7 —2 and V(H; U H2) C N(z) for each x € V(e).

Proof. By Lemma 3.3, o(e, P) > 0 and d(zx,, P) = r. Clearly, |P| < |R|+2 and [P|+|R| < > picp |P'|+|R| <
r—2. Say e = x4ZTq+1. Since [P] does not have an e-hamiltonian cycle, each x;z;+1 with i # a is not an accessible
edge of P. By Lemma 3.1, d(z12,, P') < |P'|+1 for each P’ € P. Thus d(x1x,, P) < (r—2)—|R|+|P| < r. It
follows that |P| = |R|+2 and d(z1x,, P') = |P'|+1 for each P’ € P. Consequently, {z2, Z4, a1, Tr—1} R =0,
R does not contain two consecutive vertices of P, and for each P’ = P[z;,z;] € P there exists i < k < j such
that N(z1, P') = {;,...,zx} and N(z,, P') = {zg,...,z;}. In particular, {z12q41,z,2.} C E. It is easy to
see that R is an independent set for otherwise [P] has an e-hamiltonian cycle. So (a) holds.

To see (b), say d(x;, P') > 2 for some z; € R and P’ = Plz;,z;] € P. Let x;, € V(P') be such that
N(z1,P') = {zi,...,x} and N(z, P') = {,...,z;}. Say wlo.g. that I < i. Let z, € V(P’) be such that
xixp € B and p # 4. If p < k, then z1 Pz, 211 P~ [z, zp|x1 Plx141, p—1]21 is an e-hamiltonian cycle of [P]
and if p > k then a1 Plz1, 2] P|xp, 2] P~ [€p—1, Z141]21 is an e-hamiltonian cycle of [P], a contradiction. Hence
(b) holds.

To see (c), it is easy to observe that for each z; € R, [P] has an z1-z; e-hamiltonian path and an x,-z;
e-hamiltonian path. If R # ), then d(x;z1,P) > r, d(zjx,, P) > r and so d(x;, P) > r/2 for each z; € R.
Since |P| = |R| + 2 and |P| + |R| < r — 2, it follows that |P| = r/2 and |P’| = 1 for all P’ € P. Thus
XUY with Y = RU{x;1,2,} and X = V(P) —Y is a partition of V(P) satisfying (c¢). Next, assume that
R=0. Let2<b<aand a+1 <c¢ <r—1besuch that N(z1,P) = {z2,...,2p} U {2441,...,2.} and



N(zp, P) = A{xp,...,xq} U{z¢,...,xr—1}. Then we readily see that for each z; € N(x1, P) — {xp, Ta, Tat1, T}
and zj € N(x,, P)—{xp, T, Tat1, Zc}, [P has an -z, e-hamiltonian path, an z1-z; e-hamiltonian path, an x;-
xj e-hamiltonian path and so z;x; ¢ E. It follows that N(z;, P)U{z;} = N(z1, P)U{x:} and N(z;, P)U{z;} =
N(z,, P)U{z,} for all z; € N(x1, P) — {xp, Tq, Tat1, 2} and z; € N(zp, P) — {xp, Ta, Tat1, 2.} Thusif b < a
then 1P~ [zc, xpr1] P~ [T, Xer1) P~ [2p, 1] is an e-hamiltonian cycle of [P], a contradiction. Hence b = a.
Similarly, ¢ = a + 1. This proves (c). ]

Lemma 3.6 Let C be a cycle of order r in G. Let uw and v be two distinct vertices on C' and e an edge of C
with e & {uu™,vvt} = 0. Set R = {z|d(x,uv) = 0,2 € V(C) — {u,v}}. Let P be the set of all the components
of C — (RU{u,v}) —e. Suppose that d(uv,C) > r+1 and [C] does not have a ut-v*t e-hamiltonian path. Then
d(uv,C) =1+ 1 and the following four statements hold:

(a) Each edge of C — e is inaccessible on C' w.r.t. {u,v};

(b) V(e) N (RU{u,v}) =0, d(uv, P) = |P|+ 1 for all P € P and |P| = |R| + 3.

(¢) R is an independent set and d(x, P) <1 for allz € R and P € P.

(d) If d(z,C) > (r+1)/2 for all z € V(C) — V(e) then r is odd. Moreover, either [C] has a vertez-cut X
with V(e) € X and | X| = 3 such that [C] has exactly two components isomorphic to K(,_g), and X C N(y)
forally € V(C)—X, or V(C) has a partition X UY such that | X| = (r+1)/2, |Y| = (r—1)/2, Y = RU{u,v},
V(e) CX and N(y,C) =X forallyeY.

Proof. It is easy to check that (a) holds since [C] does not have a u™-vt e-hamiltonian path. In particular,
wv € E. Clearly, |P| < |R|+3 and |P|+|R| < > pep |P|+|R| = r—2. By (a) and Lemma 3.1, d(uv, P) < |P|+1
for each P € P and so d(uv,C) < r+ 1. Since d(uv,C) > r 4 1, it follows that d(uv,C) =r+1, |P| = |R| + 3,
V(e)N(RU{u,v}) =0, and d(uv, P) = |P|+ 1 for all P € P. So (b) holds.

As |P| = |R| + 3, R does not contain two consecutive vertices of C. To proves (c), Let C = z1 ... x,x; be
such that x1 = u, z9 = u™, xp = v and xpp1 = vT. W.Lo.g., say e = zqxqq1 for some g € {p+1,...,r — 1}.
We first check that R is an independent set. Let Ly = C(z1,2p), Ly = C(zp, x4 and Lz = Clzgy1, 2]
Let R; = RNV(L;) for i € {1,2,3}. Say z;x; € E for some {z;,z;} C R with ¢ < j. We shall obtain a
contradiction by showing that [C] has an x9-2,11 e-hamiltonian path. According to the locations of z; and x;
in R = Ry U Rs U R3, there are six cases to check, which are very similar in the verification. So we just show
one example with z; € Ry and x; € R3. In this case, {1241, zpzi—1} C E and {z12j_1,2pzj11} € E by (a),
(b) and Lemma 3.1. Then

1‘20[1’2, :L'Z-_l]pr_ [xp, xi]xiij[xj, :nl]xj_lC_ [xj_l, l‘p+1]

is an x9-x,41 e-hamiltonian path of [C], a contradiction.

Next, we show that d(z, P) <1 for all x € R and P € P. On the contrary, say d(z, P) > 2 for some z € R
and P € P. We shall obtain a contradiction by showing that [C] has an x2-x)41 e-hamiltonian path. According
to the locations of z in Ry U Ry U R3 and P on Ly U Ly U L3, there are nine cases to check, which are also
very similar in the verification. So we just show one example with € Ry and P on Ls. Say P = Clz;, z;].
By (a), (b) and Lemma 3.1, N(z1, P) = {zq,...,2z;} and N(zp, P) = {z;,...,z,} for some i < a < j. Since
d(xz, P) > 2, xx; € E for some x; € V(P) with ¢t # x;. If t > a, then

2oCxo, 2™ |2pC™ [2p, x]xaClay, v1]xi1C™ [X4—1, Tpt1]
is an x9-x,41 e-hamiltonian path of [C], a contradiction. Thus ¢ < a. Then

29C 22, x|z Clay, 1)a T Cla™, xplwi—1C ™ [m1—1, Tpy1]
is an x9-z,41 e-hamiltonian path of [C], a contradiction.

To prove (d), we have d(z,C) < |P| for all z € R by (¢). Since |P| < r — |R| —2 and |P| = |R| + 3, we
obtain d(z,C) < (r +1)/2 for all z € R. It follows that if R # () then r is odd and |P| = 1 for all P € P.



Consequently, if Y = RU{u,v} and X = V(C) — Y then N(y,C) = X for all y € Y and so (d) holds. So
assume that R = (). By (a), (b) and Lemma 3.1, there exists z,, € V(L;) for i € {1,2,3} such that

N(x1,C) = V(Ll[x%xcu]) UV (Ly [xaza qu U V(LS[xasvxr])
N(zp, C) = V(L1 [2ay, 2p—1]) UV (L2[Tp+1, Tay|) UV (L3[Tg41, Tas])-

We claim that for each vertex x of L1[z2, 4, )UL2(Zay, Tq) UL3(Tay, ], N(z,C) C N(z1,C)U{z1}. If thisis
false, say zy € E(G) for some vertex x of L1[x2, Zq,)UL2(Zqay, q) UL3(2q,, zr] and y € V(C) = N(z1,C) —{x1}.
We shall obtain a contradiction by showing that [C] has an zs-zp;1 e-hamiltonian path. According to the
locations of x in L1[z2, zq,) ULa(Za,, q) UL3(Zq,, zr] and y on L1 ULy U L3, there are nine cases to check, which
are very similar in the verification. So we just show one example with  in L3(xq,,2,] and y on Li(zq,, p—1].
In this case,

22C 2,y |2pC™ (2, y|2Cla, x1]z” C™ [, Tpt1]

is an x9-zp41 e-hamiltonian path of [C], a contradiction.

Similarly, N(y,C) € N(zp,C) U {x,} for each vertex y of Li(zq,,Zp—1] U La[Tpi1,Zay) U L3(Tgt1, Tay)-
As d(z,C) > (r+1)/2 for all z € V(C) — V(e), we see that r is odd and d(z1,C) = d(xp,C) = (r +1)/2.
Furthermore, if {x4,, %0} = {x¢, 2441}, then {xq,, 24, 2441} is a vertex-cut of [C] and each component of
[C]—{%ay, g, Tg41} 18 isomorphic to K(,_3) /2. Consequently, (d) holds. So assume that {za,, Tas} # {Tq, Tg+1}-
We shall obtain a contradiction by showing that [C] has an x9-x,41 e-hamiltonian path. If x441 # 24,. Then

12012, 2oy |1107 [21, Tg12]Tay 11C[Tay 11, Tp|Tg11C™ [Tgy1, Tpia]
is an xo-zp41 e-hamiltonian path of [C], a contradiction. Therefore x441 = x4, and x4 # z4,. Then
$20[$27xp]qurlqulC_[fflax;ﬂ]xq—lc_ [%g—1, Tp+1]
is an xo-xp 41 e-hamiltonian path of [C], a contradiction. This proves the lemma. ]

Lemma 3.7 Let C be a cycle of order r in G. Let X\ be a positive integer. Let e € E(C). Suppose that
d*(P,C) > r + X\ for every e-hamiltonian path P of [C]. Then d(xzy,C) > r + X for every pair x and y of
distinct vertices of C' with V (e) # {z,y}.

Proof. On the contrary, say that there are two distinct vertices = and y on C' with V(e) # {z,y} such that
d(zy,C) < r+ X — 1. Clearly, either e & {zx~,yy~} or e & {zat,yy*}. Say w.l.o.g. the former holds. Then
dzz=,C)>r+Xand d(yy—,C) >r+ A. Thus d(z"y~,C) >2(r+A) — (r+X—1) > r+2. By Lemma 3.6,
[C] has an x-y e-hamiltonian path and therefore d(zy,C) > r + A, a contradiction. ]

Lemma 3.8 Let C = zy...x2,21 be a cycle in G. Let e = x1x2. Suppose that d*(P,C) > r + 1 for each
e-hamiltonian path P of [C] with o(P,e) > 0. If there exists x; € V(C) — V(e) such that d(z;,C) < r/2 then
one of the following two statement holds:

(a) If4 <j <r—1thend(x;,C) > (r+2)/2 for all 3 <i <r with i # j;

(b) If j € {3,r} then d(z;,C) > (r+2)/2 for all 4 <i <r—1.

Proof. To prove (a), say 4 < j < r—1. Then d(z;—1,C) > r +1 —d(z;,C) > (r +2)/2. Similarly,
d(zj41,C) > (r+2)/2. If d(z;,C) < (r+1)/2 for some 3 <1 < r with ¢ # j, let z; be the one closest to x; on
C —e. Say wlo.g. ¢ > j. Then d(x;—1,C) > (r 4+ 2)/2. Thus d(z;—12i—1,C) > r + 2. By Lemma 3.6, [C] has
an z;-z; e-hamiltonian path and so d(z;xj,C) > r+1. Thus d(z;,C) > r+1—1r/2 = (r+2)/2, a contradiction.

To prove (b), say w.l.o.g. that d(z3,C) < /2, i.e., d(x3,C) < [r/2]. If r <4, nothing to prove. So assume
r > 5. Then d(x4,C) >r+1— |r/2| = [(r+2)/2]. Similarly, if d(z,,C) < r/2 then d(z,_1,C) > [(r + 2)/2]
and so d(xgxr—1,C) > r+ 2. If d(x,,C) £ r/2, ie., d(z,,C) > [(r +1)/2], then d(z4x,,C) > [(r + 2)/2] +
[(r+1)/2] =r+2. Let s € {r — 1,7} be maximal such that d(z4zs,C) > r + 2. If d(x;,C) < (r+1)/2 for
some i € {5,...,7 — 1}, let z; be the one closest to s on C' — e. Then d(z4z;+1,C) > r + 2. By Lemma 3.6,
[C] has an x3-x; e-hamiltonian path and so d(z;,C) >r+1—r/2 = (r +2)/2, a contradiction. 1



Lemma 3.9 [6] Let P = xyx—1 ... 21 be an optimal path at xy in G. Letr = a(P, x1) and ¢ > r/2. Suppose that
for each v € V(Q), if there exists a longest path starting at xy in G such that the path ends at v then d(v) > c.
Then N(z;) C {x1,22,..., 2}, [P] has an xi-x; hamiltonian path and d(x;) > ¢ for all i € {1,2,...,r — 1}.
Moreover, if t > r then x, is a cut-vertex of G.

Lemma 3.10 Let P = zx4—1...x1 be an optimal path at x; in G. Let r = a(P,x1). Suppose that r > 3
and for each v € V(G), if there exists a longest path starting at xy in G such that the path ends at v then
d(v) > (r+2)/2. Then for each pair x; and x; of distinct vertices in {x1,22,...,x,—1}, the following three
statements hold:

(a) If d(zp, {21, 22,...,2r—1}) > 3 then [P] — x; has an x4-x; hamiltonian path;

(b) If N(xr,{z1,22,...,2p-1}) = {z1,2p-1} but i & {1,7 — 1} then [P] — z; has an x-x; hamiltonian path;

(¢) If N(xr,{z1,22,...,2p-1}) = {1, 2p-1} and i € {1,r — 1} but j & {1,r — 1} then [P] — z; has an x;-x;
hamiltonian path.

Proof. Obviously, the lemma is true if » < 4. So assume r > 5. Let H = [{z1,...,2,} — {z;}]. By
Lemma 3.9, for each z; € {x1,...,2,_1}, [P] has an x4-z; hamiltonian path, N(z;,G) C V(H) U {x;} and
d(x;, H + x;) > (r + 2)/2. Moreover, z, is a cut-vertex of [P] if ¢ > r, and consequently, H + x; has an
xy-r; hamiltonian path and so H has a hamiltonian path starting at x,. Obviously, for each v € V(H — x,),
dlv,H) > (r+2)/2—1=((r—1)+1)/2. Let L be an optimal path at z, in H. Say L is an z,-y path. Then
alL,y) <r—1. As6(H —x,) > (r+2)/2—-2=(r—2)/2, H— x, is hamiltonian. If d(z,, H) > 2, then H is
2-connected and by applying Lemma 3.9 to L in H, we see that a(L,y) = r — 1. Consequently, H has an z,-z;
hamiltonian path and so [P — z;] has an x4-2; hamiltonian path. Therefore (a) and (b) hold. If d(z,, H) =1,
then z; € {x1,z,_1} and so «(L,y) = r — 2. Moreover, the vertex z with {z;, 2} = {z1,z,-1} is a cut-vertex of
H. To see (c), we have x; € {x1,2,—1} and H has an z,-z; hamiltonian path. 1

4 Proof of Lemmas 2.1-2.7

Proof of Lemma 2.1. On the contrary, say d(z1,G1) > (n1 +2)/2 and d(y1, G2) > (n2 + 2)/2, i.e., 61(G1) >
(n1 +2)/2 and 62(G2) > (n2 + 2)/2. Say w.lo.g. G1 € Hi. By Lemma 3.3, we see that Py(G1) = 0. Let
P = up,tup,—1...u1; be an optimal path at e; = up,up,—1 in G1. Then N(un,,G1) C {up,—1,un,—2}. Say
a(P,u;) =r. As 01(Gy) > (n1 +2)/2 and by Lemma 3.9, u; ... u,u; is an end-cycle at u, in G; and for each
je{l,...,r =1}, Gi has a up,-u; e;-hamiltonian path and d(uj, G1) > (n1 +2)/2. Since ny > d(up,, G2) >
(n+4)/2 — d(un,,G1) > n/2, we obtain ny > ny. Note that r — 1 > (n; +2)/2 and so n; > 6.

By Property B, P;(G2) # 0. As 02(G2) > (n2 + 2)/2 and by Lemma 3.3, Go € Hy. Thus d(y,Ga) >
(ng +2)/2 for all y € V(G2) — V(e2). Let v;...vp,v1 be a hamiltonian cycle of Go with ey = vive. Let
i,je{l,...,r—1} with ¢ ¢ {1,r — 1}. By Lemma 3.10, G1 — u; has an uy,-u; e;-hamiltonian path. Clearly,
d(up,uj,G2) > n+4—(ng —1) = ng +5. Thus for some s € {4,...,ny — 1}, d(vs, up,u;) = 2 and so
G1 —u; +vs € Hy. Thus Gy — vs +u; € Ha. As d(vs—1vs41, G2 — vs) > ng + 2 — 2 = ng and by Lemma 3.3,
Go—vs € Hy. Let C = w; ... wpw; be an ep-hamiltonian cycle of Gy —vg with t = ng — 1. As d(u;, G1) < nj —2,
d(u;,C) > (n+4)/2—(n1—2)—1> 3. As C+u; € Ha, we see that there are two distinct vertices u and v in C'
such that {u,v} NV (ez) = 0 and either {u™, v} C N(u;) or {u", v~} C N(u;). Say w.l.o.g. {ut,v"} C N(w).
As Go—vs+u; € Ha, [C] does not have a ut-v™ eg-hamiltonian path. Clearly, d(z,C) > (no+2)/2—1 = (t+1)/2
for all x € V(C) — V(ez2). Thus we may apply Lemma 3.6(d) to [C]. First, assume that [C] has a vertex-cut
X with [X| = 3 and V(e2) C X such that each of the two components [C] — X is isomorphic to K;_3y/5. As
Go — vs + u; & Ha, we see that N(u;,C') = X. Thus vex € E for all z € V(C) — X as d2(G2) > (n2 + 2)/2.
Let v' € I(up,uj,C — X). Then G; —u; +v' € Hy and Gy — v’ 4+ u; € Hp by Lemma 3.10, a contradiction.
Therefore V(C) has a partition X UY such that | X| = (t +1)/2, V(e2) C X, |Y| = (t —1)/2, {u,v} C Y
and N(y,C) = X for all y € Y. As 92(G2) > (n2 +2)/2, we obtain Y C N(vs). As Ga —vs + u; & Ha, we
see that N(u;,C) C X. As d(upn,,G1) < 2, we readily see that d(uy,,Y) > 0. Let v" € N(up,,Y). Clearly,



dv',Gy1) > (n+4)/2 — (n2 +2)/2 = (n1 + 2)/2. Thus v'u, € E for some p € {1,...,r — 1} with p # i. By
Lemma 3.10, G — u; has a uy,-u, ej-hamiltonian path. With v" and u, in place of vy and u; in the above
argument, we see that V(G2 —v’) has a partition X’UY” such that | X'| = (t+1)/2, V(e2) C X', |Y'| = (t—1)/2,
N(y,Ga—v')=X"forally e Y'Y C N(v') and N(u;, Go —v") C X'. Since Y’ #Y and Y is an independent
set, we see that Y C X’ U {v'}. Thus N(u;,Y) # 0, a contradiction. ]
Proof of Lemma 2.2. On the contrary, say d(z1,G1) < (n1 + 1)/2 and d(y1,G2) < (n2 +1)/2. Then
d(xl, GQ) Z (TLQ +3)/2 and d(yl, G1> > (n1 —|—3)/2. By Lemma 3.2(&), G1 — I —|—y1 S 7)1 and G2 — Y1 +x1 € 7)2.
By Property A, {(x1,y1) < 0. This implies that d(z1,G1) = (n1 + 1)/2, d(z1,G2) = (n2 + 3)/2, d(y1,G2) =
(ng +1)/2, d(y1,G1) = (n1 + 3)/2 and z1y; € E. Since either G; € H1 or Go & Ha, say w.l.o.g. G1 & Hi. As
01(G1) = (n1+1)/2 and by Lemma 3.3, P{(G1) = 0. Therefore e; = 2y, xpn,—1 and N(zp,, G1) C {zn,—1,Tn,—2}.
Thus ng > d(zp,,G2) > (n+4)/2 — 2. This implies ny > ny.

By Property B, P3(G2) # 0. As d2(G2) = (n2 +1)/2 and by Lemma 3.3, G2 € Hz. Then d(y,Ga) >
(ne+1)/2 for all y € V(G2) — V(ez). Let Hi = Gy — x1 and Hy = Go + 1. By Property A and Lemma 3.2(a)
as above, we readily see that Hy —y € P, if d(y, G2) = (n2 +1)/2 then yz; € E, and so d(y, H2) > (n2+3)/2
for all y € V(Hy) — V(ez2). Let C' = vyvs...vw1 be a hamiltonian cycle of Hy with ¢ = ng + 1 and ea = vyvs.
Let Y be the set of those vertices y € V(Hz) — V(e2) such that Hy —y € Hz. Then Hy +y ¢ H; for all
y € Y. For each vs € V(C) — {v1,v2,v3, 0 }, d(v5-10s41,C —vs) > na+3—2=mng+ 1 and so Hy — vs € Ha by
Lemma 3.3. Thus V(C) — {v1,v2,v3,v:} CY. Since P{(G1) =0 and N(xy,,G1) C {Tpn,—1,%Tn,—2}, We see that
d(xoy,, H1) < nj —2. It follows that d(zoxy,, H2) > n+4—(n; —2) = t+5. Consequently, vs € I(zoxy,, Ha)
for some vs € V(C) — {v1, va,v3,v;} and so Hy + vs € H1, a contradiction. ]

Proof of Lemma 2.3. On the contrary, say that G2 € Ha. Then y € S2(G2) and so d(y, G2) > (n2+2)/2 for all
y € V(G2)—V(e2) and G1 & Hi. Asd(z1,G2) > (n2+3)/2, Ga+x1 € Ha by Lemma 3.2(f) and so S2(Ga+x1) =
V(G2 + z1) — V(e2). By Property A and Lemma 3.2(a), we readily see that d(y, G2 + z1) > (ng + 3)/2 for
all y € V(Gg) - V(el). Set HH = G — 21 and Hy = Gy + x1. Let A = {U € V(HQ) - V(@Q)’HQ -V € 7‘[2}
Then Hy +v &€ H; for each v € A. Let C' = vjv2...vp,v1 be a hamiltonian cycle of G2 with e; = vive. Say

Xo = {vn,,v1,v2,v3}. We claim

Claim 1 The following two statements hold:
(a) V(Hz) — Xo C 4;
(b) If d(vl,HQ — XQ) > 1 then vy, € A and if d(vg,Hg — XQ) > 1 then vg € A.

Proof of Claim 1. Clearly, 1 € A. Let v; € V(G2)—Xo. Then d(vi—1vi+1, Ga—v;) > (ne+2)—2 = (ng—1)+1
and by Lemma 3.3, G2 — v; € Ha. Since d(z1,G2 —v;) > (n2+3)/2 -1 = ((na — 1) +2)/2, Hy — v; € Ha.
Hence (a) holds.

To see (b), we just need show the first assertion by the symmetry. If zyv1 € E then zjvy...vp,—1 €
Pao(Hy — vy, ) and d(z1Vn,—1, Ho — vp,) > n2 +3 —2 =ng + 1. By Lemma 3.3, Hy — vy, € Ha. If vjv; € E for
some v; € V(Gz) — X, then v;_qv;_o... V2UIVViq1 + - Uny—1 € PQ(GQ — UnQ) and d(Uz;lvanl, Gy — ’Un2) > no.
As above, we see Hy — vy, € Ha. Hence (b) holds. O

We now divide the proof of the lemma into the following two cases. Say I =n; — 1.

Case 1. Hy & H1.

Let P = z1...2z be an arbitrary path in P;(Hy). Then I(z12;, A) = (0. Thus d(z12;, H2) < ny + 5 and so
d(z12;, H1) > 1. By Lemma 3.3, d(212;, H1) =l and o(P,e1) > 0. Thus d(z12;, Hy) = na + 5, Xo = I(212;, Ha),
A=V (Hy)—Xpand d(x, z12) = 1 forall x € A. By Claim 1, N(vive, H2) € Xo. Thenni—1=1> d(vy, Hy) >
(n1+n2+4)/2—d(vi,G2) > (n1 +n2+4)/2 -3 and d(z1,G2) < (ng —2). As d(x1,G2) > (n2 + 3)/2, we see
that no > 7. Asng —3 > d(’U5,G2) > (712 + 2)/2, it follows that nqy > ny > 8 and d(LEl,Hl) > 4.

We apply Lemma 3.5 to Hy. First, assume that V' (H;) has a partition X UY such that | X| =1/2, V(e;) C X
and N(y,H;) = X for all y € Y. Then every two distinct vertices in Y can play the role of z; and z;. Hence
d(xz1,Y) >1/2—1 > 2 and so G; € Hi, a contradiction. Therefore H; — V(e1) has two components J; and
Jo such that Hy — V(e;) = J; U Ja, each of J; and Jy is complete and d(z, Hy) = [ — 1 for each z € V(ey).



Say w.lo.g. z; € V(J1) and d(z1, H1) < d(z;, H1). Then d(z1,G1) < (n1 +1)/2 and so d(z1,G2) > (n2 + 3)/2.
Clearly, G1 — z1 € P1 and G1 — z; has an x1-z; hamiltonian e;-path. Switching the roles of z; and x1 in the
above argument, we also obtain Xo = I(xju, G2 + z1). By Claim 1, {vs,v,,} C A, a contradiction.

Case 2. Hy € H;.

Let L = ujug...uu; be a hamiltonian cycle of Hy with e; = ujug, B=V(L—wuj) and a =ns+1— |A|. If
a > 3 then N(vi, Hy) € Xo or N(vg, Hy) C Xo by Claim 1. As d3(G2) > (ng2 + 2)/2, it follows that ng > 6 if
a > 3. We divide this case into the following three subcases.

Subcase 2.1. d*(P,H;) > 1+ 2 for all P € P1(H).

By Lemma 3.7, d(xy, H1) > 1 + 2 for all z,y € V(H;) with  # y and zy # e;. By Lemma 3.6, for all
x,y € V(Hy) with = # y and xy # e1, H; has an z-y e;-hamiltonian path. Since Hy + v; & H; for all v; € A,
we see that the following Claim 2 holds:

Claim 2 For each v; € A, if d(v;, H1) > 2 then N(v;, Hy) = V(e1). O

By Claim 2, ng > (n1 +ng2 +4)/2 — d(v;, Hy) > (n1 +ng +4)/2 — 2 for all v; € A. Thus ny > ny. By
Claim 2, d(v;, B) < 1 for all v; € A and so d(A,B) < |A] = n2 +1 —a. On the other hand, d(A4,B) >
Yuepd(u, A) >3 cp((ni +ng+4)/2 —d(u, Hi) —a) > (n1 —2)((n1 +n2 +4)/2 — (n1 — 2) — a). Therefore
(n1—2)((n1+n2+4)/2—(n1—2)—a)— (n2+1—a) < 0. Denote the left side of this inequality by f(n1)/2 with
ng =n —ny. Then f(n1) = —2n2 + (n + 14 — 2a)ng + (—4n — 18 + 6a) < 0 for 4 < ny < n/2. As f"(n1) <0,
f(n1) > min{f(4), f(n/2)} = min{6 — 2a,3n — an — 18 + 6a}. Thus a > 3 for otherwise f(n;) > 0. Thus
N(Ul,HQ) C Xpor N(’UQ,HQ) C Xp. Say w.l.o.g. N(’Ul,HQ) C Xy. Thenny—1 > d(’l}l,Hl) > (n1 —|—n2+4)/2—3
which implies that ny > ng. Let v; € A — Xy. Then ng — 1 > d(v;, Ha) > (n1 + ng + 4)/2 — 2 which implies
that ny > n; + 2, a contradiction.

Subcase 2.2. d*(P,H;) > 1+ 1 for all P € P1(H,).

By the above subcase, d*(P, H1) = I+1 for some P € Pi(Hy). Thus d*(P, Hy) > ni+no+4—1—1 = ny+4. As
d*(P,v;) < 1forallv; € A. Thus d*(P,v") = 2 and so v' € A for some v’ € {v3, vy, }. It follows that a > 3 and so
ng > 6. By Claim 1, N (v1, Hz) C Xy and we may assume that v,, ¢ A. As in the above paragraph, this implies
that ny > ng. Let z be an arbitrary vertex in A — Xo. Then ny —1 > d(z, H1) > (n1 +n2+4)/2—(ng—1) > 3.
It is easy to see that there exist two distinct vertices v and w on L such that either {u~,w™} C N(z)
and e; € {wu",ww~} or {ut,wt} C N(z) and e; & {wut,ww™}. Say w.lo.g {u",w"} C N(z) and
e1 € {uu™,wwt}. By Lemma 3.7, d(zy, H1) > [+ 1 for all {z,y} C V(H;) with z # y and xy # e;. We claim
that d(x, Hy) > (I +1)/2 for all z € V(H;). If this is false, say d(zo, H1) < /2 for some zg € V(H;). Then
d(xz,Hy) > (14+2)/2 for all x € V(H; —x¢) with zox # e; and d(xo, H2) > (n1+na+4)/2—1/2 > (n2+5)/2 > 5.
Thus d(xzg, A — Xp) > 0. It is easy to see that in the choices of the vertices u, w and z in the above, we can
choose u, w and z such that g & {u,w}. Thus d(uw,H;) > |+ 2 and by Lemma 3.6, H; has a ut-w™
er-hamiltonian path and so Hy + z € H;, a contradiction. Hence d(z, Hy) > (I +1)/2 for all z € V(H;).

We now apply Lemma 3.6(d) to H; since H; does not have a ut-w™ ej-hamiltonian path. First, assume
that H; has a vertex-cut X with |X| =3 and V(e;) C X such that H; — X = H{ U H{ where H{ and H{ are
isomorphic to K(;_3)/o- Then N(z,H1) = X as H1+2z € Hi. As z is arbitrary in A — Xo, N(A - Xo, H1) = X.
It follows that d(z,G) < (I +1)/24+4 < (n1 +no +4)/2 for x € V(H; — X), a contradiction. Therefore
V(H;) has a partition X UY such that | X| = (I 4+1)/2, V(e1) € X, {u,w} C Y, and N(y,H;) = X for
all y € Y. Clearly, {u™,w™} C X. Thus N(2,H;) C X as Hi +2 ¢ H;. Lety € Y. As d(y,A — Xp) >
(ng+ne+4)/2—(14+1)/2—4>0,let 2/ € N(y,A— Xo). With 2’ in place of z in this argument, we see
that V(H;) has a partition X' UY" such that |X'| = (I +1)/2, V(e1) € X', N(y',H,) = X' for all ¢y € Y’
and N(2/,H;) C X'. Tt follows that YN X # § and so Y/ C X. Thus |[X| > ({+1)/2+1=(1+3)/2, a
contradiction.

Subcase 2.3. For some P € Py(H1), d*(P,Hy) <.
For each P € P1(H,), as d*(P,A) < |A|, d*(P,H1) >n1+ny+4—(n2+1+a)=14+4—a>1. Thusa=4
and by Claim 1, N (v, Hy) C Xy for v € {v1,v2}. As before, it follows that n; > ng > 6. Let z be an arbitrary
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vertex in A. Then d(z, Hy) > (n1 +no +4)/2 — (ng — 2) > 4.

First, assume that there exists P € P;(H;) such that d*(P,Hy) = 1. As Hi +v ¢ H; for all v € A, it
follows that d*(P,v) = 1 for all v € A and d*(P, Xo) = 8. Say P = z122...% with d(z1, P) < d(%, P). Then
d(z1,P) <1/2,d(z1,Hs) > [(n1 +n2+4)/2] — |I/2] > 5. Let z. € {21, 2} and v, € A be such that vyz. € E.
We claim that G + z. — v; € Hs for all v; € V(G2) — V(ez). To see this, say G + 2. — v; & Ha for some
vj € V(Ga) — V(e2). Clearly, vj_1vj41 € E otherwsie Gz + 2z — v; € Ha. First assume that v; & {vs, vy, }.
Then d(vj—1vj41, G2 —v;) > ng +2 —2 = (ng — 1) + 1. This implies that C'— v; has an accessible edge €’ with
e # ey. Since N(vjv2, G2) € Xo and d(z., Xo) = 4, it follows that G2 — v; + 2. € Ha, a contradiction. Hence
vj € {v3,vp,}. Say wlo.g. v; = v3. Then P’ = vy...0p20201VnyUny—1 ... Upt1 1S an eg-hamiltonian path of
Go—v3+ 2z, with d(vqvpr1, Ga—v3+2.) > na. As d(vy,es) = 0, this implies that P’ has an accessible edge ¢’ with
¢ # eg and so G2 —vj + z. € Ha, a contradiction. Hence this claim holds. Let H] = G1 — 2z, and Hj = G2 + 2.
We claim that H] ¢ P;. To see this, say H] € P;. Then for any Q € Pi1(Hj) and v € V(Hj) — V(e2),
H{ 4+ v & H; and so d*(Q,v) < 1. Thus for any Q € P1(Hj), d*(Q, H)) < ng+ 3 and so d*(Q, H{) > 1+ 2. Let
vj € A—{x1}. Then d(v;, Hy) > (n1 +n2 +4)/2 — d(vj,Ga) — d(vj, zc) > (1 +n2+4)/2—(ng —3) — 1 > 4.
By Lemma 3.6 and Lemma 3.7, we see that H{ + v; € H1, a contradiction.

Therefore H| & P1. As d(z1, H1) < |1/2], d(z1,G2) > [(n1+na+4)/2]—[1/2] —1 > 5. The above argument
implies that Hy —z1+21 € P1 and so x12; € E. Thus z121 € F and so Hy—z+z1 € P1. Consequently, the above
argument implies that d(z;, G2) = d(z;, Xo) = 4. Thus d(x12;, H1—21) > ni+ng+4—(ne—2)—4—-2 = (I—1)+2.
By Lemma 3.2, H; — z1 + 1 € P11, a contradiction.

Therefore for each P € P{(Hy),d*(P, H1) > [+ 1. Recall that L = ujusg ... wu; is a hamiltonian cycle of H;
with e; = ujus. To apply Lemma 3.8, let us first assume that d(u:, Hy) < [/2 for some u; € V(L) — V(ey). If
4<t<I1-1,thend(uj, Hi) > (1+2)/2 for all 3 < j <[ with j #t. Asd(z, H1) > 4, it is easy to see that there
exist two distinct vertices u and w on L with u; & {u, w} such that either {u~,w™} C N(z)and e; & {u u,w" w}
or {ut,wt} C N(2) and e; € {uTu,ww}. By Lemma 3.6, we see that H; + z € H1, a contradiction. Hence
w € {us,w;}. By Lemma 3.8, d(u;, Hi) > (I +2)/2 for all 5 < j <1 —1. To avoid the existence of u and w as
above such that Hy + z € Hi, we see that N(z, Hy) = {u1,u2,us,u;—1}. As z is an arbitrary vertex in A, we
see that d(u¢, A) = 0 and so d(ug, He) < 5. Thus d(u¢, H1) > (n1 +n2+4)/2—5> (I +1)/2, a contradiction.

Therefore d(uj, Hi) > (I 4+ 1)/2 for all u; € V(Hy) — V(e1). As d(z,Hi) > 4, there exist two distinct
vertices u and w on C such that either {u=,w™} C N(2) and e; € {uu",ww~} or {ut,wt} C N(z) and
e1 & {uut,wwt}. Say wlo.g. {ut,wT} C N(z) and e; ¢ {uu™,wwt}. We now apply word by word the
argument in the last paragraph of Subcase 2.2 to H; and Hy and a contradiction follows. ]

Proof of Lemma 2.4. As P}(G2) = 0, N(vp,,G2) C {vny,—1,Vn,—2} and so ny > d(vn,, G1) > (n1 + na +
4)/2 — d(vp,, G2). Thus ny > ng and if ny = ng then N(vp,, G2) = {vn,—2,Un,—1} and so r < ng — 2. Since
ng—2>r—12>(na+2)/2, we see that ny > 6 and if r < ng — 2 then ny > 8.

On the contrary, say that the lemma fails. Let ug € V(G1) — V(e1) with d(up, G1) minimal be such that
G1 —uy € P1, Ga + up € Ho and d(ug, J*) > 0. Let v, € J* with upv, € E. As Ga + ug € Ha, we see
that ugvy, € E if vp,vn,—2 € E and d(ug, Vp,Un,—1) > 1 if vp,vp,—2 € E. Thus we may assume w.l.o.g. that
UgUn, € E. Let B be the set of all the vertices v; in G2 such that Gy — v; + up € Ha. By Lemma 3.10,
V(J) = {ve, v} € B, and if d(ug, J —vy) > 2 then v, € B. Set H = G; —ug and | = |H| = n; — 1. We claim
the following:

Claim A If d(up,G1) < (n1 4+ 1)/2 then r € {ny —2,n9 — 1} and B = {v1,...,v,—1}. Moreover, for each
P € Pi1(H) we have that d*(P,v;) < 1lforall 1 <i¢<r—1,d*(P,H)>1and if d*(P,H) =1 then r = ng — 2,
d* (P, Vpy—2Vny—1Vn,) = 6, d*(P,up) =2 and d*(P,v;) =1 forall 1 <i<r—1.

Proof of Claim A. Say d(up,G1) < (n1 + 1)/2. Then d(ug,G2) > (ne + 3)/2. As Gy + ug € Ha, for each
y € V(G2) —V(ez), Ga —y+up € Py and so if G1 —up +y € P; then &(up,y) < 0 by Property A. Let y be an
arbitrary vertex of Go — V(ea). If d(y,G2) < (n2 + 1)/2 then d(y,G1) > (n1 +3)/2 and so G1 —up+y € Py
by Lemma 3.2(a). Consequently, (ug,y) < 0. This implies that d(y, G2) = (n2 +1)/2 and upy € E. Therefore

d(y,G2) > (ne+1)/2 for all y € V(G2) — V(e2). Consequently, r € {na —2,n9 —1}. As d(ug, G2) > (n2 +3)/2
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and 1 — 1 > [(n2 + 2)/2], we see that d(uo,J —vy) > [(n2 +3)/2] — (ng —r) —1 > 3. By Lemma 3.10,
B = {vi,...,v,_1}. Let P be an arbitrary path in P;(H). Say u and w are the two endvertices of P. Then
I(uw,Go)NB =0, i.e., d*(P,v;) < 1forallie {1,...,r—1}. It follows that d(uw, G2) < n2+ 3 and if equality
holds then r = ng — 2 and {vp,—2, Uny,—1,Vn, } = I(uw, Ga). Clearly, d(uw,G1) > ny1+no+4—(n2+3) =1+2
and so d(uw, H) > 1. Claim A follows. O

We now break into two cases here.

Case 1. H € H;.

Then d*(P, H) <[ by Lemma 3.3 and so d*(P,G2) > ni1 +ne+4—1—d*(P,ug) > ny+3 for all P € P;(H).
First, assume that d(ug, H) < (n; +1)/2. By Claim A and Lemma 3.3, r = ny — 2 and for each P € P;(H),
d*(P,H) =1, o(e1, P) # 0, d*(P, {uo, Vny—2, Uny—1,Un, }) = 8, and d*(P,v;) = 1 for all 1 <i <r —1. We apply
Lemma 3.5(c) to H. First, assume that V(H) has a partition X UY such that |X| = 1/2, V(e;) € X and
N(y,H) = X for all y € Y. Then any two distinct vertices in Y can play the role of the two endvertices of
P. Hence d(v1,Y) >1/2—1 > 2 and so H + v; € Hi, a contradiction. Therefore H — V' (e1) has exactly two
components Hj and Hjy such that both H; and Hy are complete and d(x, H; U Hy) = [ — 2 for each = € V' (e1).
It follows that V(Hy U Ha) € N(ugp). Thus ny — 3 < d(up,G1) < (n1 + 1)/2. This implies that ny < 7. As
mentioned in the beginning paragraph, we have r = ng — 2 and n; > ng > 8, a contradiction.

Therefore d(ug, H) > (n1 + 2)/2. Let P = z1...z be arbitrary in Pi(H) with z; € S1(H). We claim

d(z1,G1) > (n1 +2)/2. If this is not true, say d(z1,G1) < (n1 + 1)/2. Then d(z1,G2) > (na + 3)/2. Clearly,
d(z1,J) > [(ne+3)/2—=(ng —7)] >4asr—1 > (ny+ 2)/2 and so d(z,J*) > 0. By Lemma 3.2(a),
Gy —z1=H —2z1+up €Py. Asd(z1,G1) < d(ug,G1) and by the minimality of d(ug, G1), G2 + z1 € Ha, i.e.,
21Un, € F and if vy,v,,—2 € E then zjv,,—1 ¢ E. By Lemma 3.2(b), G2 + z1 € Pa2. If v € S2(G2 + z1) then
d(v,Ga+21) > (n2+3)/2 for otherwise £(z1,v) > 0, d(v,G1) > (n1+2)/2 and G; —z1+v € P; by Lemma 3.2(a),
contradicting (1). Let s be the maximal index such that zjvs € E. Set 7' = max{r, s}. By Lemma 3.9, for all
v € {z1,v1,... 071}, d(v,Go + 2z1) > (na + 3)/2, N(v,G2 + z1) C {z1,v1,...,v} and Ga + z1 has a vp,-v es-
hamiltonian path. Therefore d(v,G2) > (na+1)/2 for all v € {v1,...,vv_1}. It follows that 7’ = r or ' = r+41.
As d(z12;,G2) > na+3, i(z121, J +v) > 3. As I(z121, B) = ), we see that I(212;, G2) = {ve, vy, Upi1}. It follows
that d(z12;, H) =1, N(z121, G2) = V(G2), d(ug, z121) = 2, B =V (J) —{v., v, } and d(v;, z212;) = 1 for all v; € B.
This argument implies that for any u-v path in Py (H), d(uv, H) = | because min{d(u, H),d(v, H)} <1/2 and
so min{d(u, G1),d(v,G1)} < (n1 +1)/2.

We now apply Lemma 3.5(c) to H. First, assume that V(H) has a partition X UY such that | X| =1/2,
V(e1) € X and N(y,H) = X for all y € Y. Then any two distinct vertices in Y can play the role of the two
endvertices of P. Hence d(v;,Y) >1/2—1> 2 and so H + v; € H; for each v; € B, a contradiction. Therefore
H — V(e1) has exactly two components H; and Hs. Say z1 € V(Hp) and z; € V(Hz). Then z; can be any
vertex in H; and z; can be any vertex in Hy for the above argument. Consequently, V(Hz2) C N(v,,) and
V(H; UHsz) C N(ve) N N(up). Clearly, G1 —x + v, € H; for any x € V(Hs). Let vg € B — {v.}. If zvg € E for
some x € V(Hz) then Gy — v, + x € Ha, a contradiction. Therefore d(vq, H2) = 0 and so N (vq, H1) = V(Hy).
As d(vg,G1) > (n1+na2+4)/2 — (ng —2) >4, |Hi| > 2. As V(H; U Hy) C N(up), we see G — 21 + vqg € Hi.
As G2 — vy has a vy,,-v. ex-hamiltonian path, Gy — vq + z; € Ha, a contradiction.

Therefore d(z1,G1) > (n1+2)/2 and so d(z1, H) > (I +1)/2. Thus 61(H) > (I+1)/2. As H ¢ H; and by
Lemma 3.3, Pf(H) = 0 and so e; = zz;—1. As d(ug, H) > (n1 +2)/2 and by Lemma 3.2(a), H — z1 + up € P1.
As H ¢ Hq, d(z12, H) <1—1 by Lemma 3.3. Choose P to be an optimal path at e; in H. Say t = a(P, z1). By
Lemma 3.9, C' = z122... 221 is an end-cycle at z; in H such that d(z;,C) > (I4+1)/2 forall i € {1,2,...,t—1}.
Thus for all i € {1,2,...,t—1}, each z; can play the role of z1 in the above and so d(z;, G1) > (n1+2)/2. Clearly,
d(up,C — z) > 0. Say w.lo.g. upz1 € E. As Py(H) =0, N(z,G1) C {z1-1, z1—2,u0}. Clearly, d(z,J —v,) >
(n1+n2+4)/2—3—(ng—r+1) > 0. Recall that ugv,, € E. Therefore if we set G' = G1 —V(e1) + V(e2) and
G" = Gy—V(ea)+V(e1), then G’ € Hy and G” € H;. Recall that if z;2;_o € E then N(z_1,G1) C {21, 21-2,u0}
as Py(H) = (. We readily see that d(e;,G1 — V(e1)) < [, d(e1,G2) > (n1 +n2 +4) —1 —2 = ng + 3,
d(€2, Gy — V(eg)) < ng9 — 2 and d(eg,Gl) >ny+ne+4— (712 — 2) —2=mn1+4. Thus
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€(G/) + C(G”) = e(Gl) — d(el, Gl — V(el)) + d(el, Gz)
+ S(GQ) — d(€2, Gy — V(el)) + d(eg, Gl) — 2d(€1, 62)
> e(Gl) + B(Gg) + 10 — 2d(61, 62). (2)

As 10 — 2d(e1,e2) > 2 and by (1), we see that ny = |G'| # na. As ny > ng, ng > na. As N(z,G1) C
{z1-2,z1-1,u0}, we obtain that no > d(z;, G2) > [(n1 +n2+4)/2 — d(2;,G1)| = na. It follows that N(z;,G1) =
{z1-2, 211, w0} and d(2;, G2) = na. As H+vj & H, for all v; € B, it follows that z;v; ¢ E foralli € {1,...,t—1}
and v; € J — {ve, v} € B. Thus d(z1,G1) + d(21,G2) < t+mnpg —r+2. Let v € J—{vs,v,}. Then
d(v,Gy)+d(v,Ga) <l—t+2+r—1. Consequently, d(z1) +d(v) < ny+ng+2. But d(z1)+d(22) > ni+n2+4
as 0(G) > (n1 +na +4)/2, a contradiction.

Case 2. H € H;.

Let C = z129...221 be an ej-hamiltonian cycle of H with e; = z129. Let v; € B. With the details stated
in the beginning paragraph, we see that d(v;, H) > [(n1 +ng +4)/2] — (r — 1) — d(v;, ug) > 4 and if equality
holds then viug € E, r € {ny — 2,ny — 1} and d(v;, G2) = r — 1. We divide this case into the following two
subcases.

Subcase 2.1. For each path P € Py (H), d"(P,H) > 1+ 1.

First, assume that d(w,C) < 1/2 for some w € V(C) —V(e1). If w & {23, 2} then d(z,C) > (I+2)/2 for all
x € V(C—w)—V(e1) by Lemma 3.8. As d(v;,C) > 4 and H+v; € H1, we readily see that there exist two distinct
vertices z;j and zp, in N (v;, C) such that either {2}, 2, } € V(C) — {21, 22, w} or {z;»“, 7} CV(C) — {21, 22, w}.
Consequently, by Lemma 3.6, H has a zj-z, e;-hamiltonian path and so H + v; is hamiltonian, a contradiction.
Therefore d(z;,C) > (1+2)/2 for all 4 < j <1—1. As above, N(v;,C) does not contain two distinct vertices z;
and zp, such that either {2}, 2, } € V(C) — {21, 22, 23, 21} or {zf,z,‘f} CV(C) —{z1, 22, 23, z1}. It follows that
N(v;, C) = {21, 292, 24, 2z1—1}. The above argument allows us to conclude that r € {ns — 2,19 — 1}, and for all
v€EB,Nw,H)={z1,22,24,21-1}. AsV(J)—{ve, v} C B, d(w,G2) <4 and so d(w,C) > (n1+na+4)/2—5 >
(I+1)/2, a contradiction.

Therefore d(z;, H) > (I +1)/2 for all ¢ € {3,...,l}. As d(v;,H) > 4 and H + v; ¢ H;, there exist
two distinct vertices w and v in C' — V(ey) such that either {u™, vt} C N(v;) or {u",v"} C N(v;). Say
w.lo.g. {ut,v"} C N(v;). Then H does not have a u™-v™ ej;-hamiltonian path. We apply Lemma 3.6(d)
to H. First, assume that H has a vertex-cut X with V(e;) € X and |X| = 3 such that H — X has exactly
two components isomorphic to K(_3yo and X C N(y) for all y € V(C) — X. Obviously, H +v; € H1, a
contradiction. Thus V(H) has a partition X UY such that | X| = (141)/2, |Y| = (I—-1)/2, {ut,vT}UV(e1) C X
and N(y,H) = X for all y € Y. As H 4+ v; € Hy, it follows that N(v;, H) € X. Let y € Y. Then
d(y,G2) > (n+n2+4)/2—(+1)/2—1 = (n2+2)/2. Thus d(y, B) > 0. Let v; € N(y, B). With v; in place of
v; in the above argument, we see that V' (H) has a partition X’ and Y’ such that |X'| = (14+1)/2, V(e1) C X/,
N(vj,H) C X' and X' = N(y/,H) for all ¥/ € Y'. As Y is an independent set, it follows that ¥ C X’ and so
| X'| > (1—1)/24 2= (L +3)/2, a contradiction.

Subcase 2.2. There exists P = z122 ...z € P{(H) such that d(z12, H) <.

Then d(z12;,G2) > n1 +n2 +4 — 1 — d(up, z121) > na + 3 and so i(z12;, G2) > 3. Say d(z1,G1) < d(z;, G1).
Then d(z1,G1) < 1/2+4+1 = (n1 +1)/2. Thus d(z1,G2) > (n2 +3)/2. Asr > 62(G2) +1 > (n2 +2)/2 + 1,
d(z1,J —vy) > [(n2 +3)/2 — (ng —r) — 1] > 3. Therefore G2 + z; has a hamiltonian path from e; to z;.

We claim that G1 — 2 € P;. If this is not true, then d(ug, P — 21) < (I —1)/2 by Lemma 3.2(a) and so
d(up,G1) < (I +1)/2. By Claim A, it follows that

d(lel, H) = l,T‘ = N9 — 2, I(lel, GQ) = {’Unz_Q,’UnQ_l,Unz} and d(uo, lel) = 2. (3)

Therefore G1 — 21 € P1. By the minimality of ug, d(ug, G1) < d(21,G1) < (n1 + 1)/2. Therefore (3) still holds
and d(up, G1) < (n1+1)/2 in any case. Moreover, d(ug, J) > [(n2+3)/2]—(ng—r) >4 and so B =V (J)—{v,}

as mentioned in the paragraph above Claim A. As r —1 > (n2 + 2)/2, ng > 8.
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We claim that for each {u,v} C V(J) — {v,} with u # v, G2 — {u,v} + {uo,z1} € Ha. To see this,
we note that ugUn,Un,—1Un,—221up is a cycle in G. Moreover, we have that for all x € V(J — {u,v,v,}),
d(z,J —{u,v,v,}) > (ng+2)/2—3 = ((ne —5) + 1)/2 and so J — {u, v, v, } is hamiltonian connected. Clearly,
for each y € {ug, 21} d(y, J — {u,v,v,}) > [(na +3)/2] =5 > 1 as ng > 8. Thus if Go — {u, v} + {ug, 21} & Ho,
then d(y, J — {u,v,v,})) = 1 for each y € {uo, z;}. Consequently, na <9. As §2(G2) > [(n2 + 2)/2], it follows
that J is complete and obviously Go — {u, v} + {ug, 21} € Ha, a contradiction. Hence the claim holds.

Therefore H — z; +u+v & H; for all u,v € V(J —v,) with u # v. For each vertex v € V(J — v,), it is easy
to see that uv € E for some u € N(z1,J — v,) since d(z1,G2) > (n2+3)/2 and d(v, J) > (n2 +2)/2. Therefore
d(z—1,J —v,) = 0 for otherwise H — z; +u + v € H; for some v € N(z;_1,J —v,) and u € N(z1,J — v,) with
wv € E. Thus d(z-1,H —2z;) > (n1 +na+4)/2 -5 = (n1 +n2)/2 — 3. Let uv € E(J — v;) with uz; € E.
Clearly, d(v,H — z) > (n1+n2+4)/2—(r—1)—2= (n1 —n2)/2+ 3. Thus d(vz—1,H —z) > (I—1)+2. By
Lemma 3.2(d), H — z; + v has an ej-hamiltonian path from z; to v and so H — z; +u+v € H;, a contradiction.
This proves the lemma. |

Proof of Lemma 2.5. Choose v/ € J*. Then d(v'v,,,G1) > n1 +na+4— (ng — 1) = ny + 5. Thus
i(v'vp,,G1) > 5. By Lemma 2.4, Gy —u ¢ Py for all u € I(v'v,,,G1) — V(e1). Therefore Gy € Hi. By
Property B, P;(G1) # (). We claim 61(G1) < (n1 —1)/2. To see this, say d1(G1) > n1/2. Choose any path from
P (G1) and then apply Lemma 3.5(c) with this path in Gi. As d(vp,, G1) > (n1+n2+4)/4—2 = (n1 +n2)/2,
we see that G has an z-y ej-hamiltonian path such that y € V(e1), d(y,G1) = n1/2 and yv,, € E. As
d(y,G2) > (ne +4)/2, d(y, J*) > 0 and so G + y € Ha, contradicting Lemma 2.4. I

Proof of Lemma 2.6. The statement (a) is evident by the definition of (G2;—1,G2;)(1 < ¢ < k). We show (b)
by contradiction. Say on the contrary that d(v,Ga;) < (|Ga;i| 4+ 3)/2 for some v € Sy(G;) and i € {1,...,k}.
0

Let ¢ be minimal. Then d(v, G2;—1) > (|G2;—1]|+1)/2 and so G2;—1 +v € Py by Lemma 3.2(a). As P3(Ga;) = 0,
P3(Goi — v) = 0. By the maximality of e(Ga;—1)-1) + €(Gai—1)), we shall have

e(Gai—1 +v) + e(Ga — v)

e(Go(i—1)-1) + e(Gai-1)) =
> e(Gai—1) +e(Ga) — (|Gai| +3)/2 + (|Gai—1] + 1) /2. (4)

Let P = vgvg—1...v1 be an optimal path at ez = vgvg—1 in Gy(_1), where ¢ = |Go_1)|. Say a(P,v1) = r.
As 02(Ga(i—1)) = (|Go@—1)| +4) and P3(Ga(i—1)) = 0, we see that vivy...vmv1 is an end-cycle at v, in Go(;_y).
As d(wi—1,Gagi—1)) = (|Gau-1)| +5)/2 and Gai_1) +wi—1 & Ha, we see that P3(Ga;_1) +wi—1) = 0. By the
maximality of e(Ga;—1) + e(Gg;), we shall have

e(Gai—1) +e(Gai) > e(Gai-1)—1 — wi—1) + e(Ga_1) + wi-1)
> e(Gagim1y—1) + e(Gaii—1)) — (|G2gi—1y)-1] = 1)/2 + (|Gai-1) +5)/2. (5)
By (4) and (5), we see that e(Ga—1)—1) + e(Gai—1)) > e(Gai—1)—1) + e(Gai—1)), a contradiction. 1

Proof of Lemma 2.7. On the contrary, say the claim fails. Let 9 € V(Ggg—1) such that Gox—1 — 9 € P1,
Gop +xo € Ho and d(xo, R —{y1,yr—1}) > 0. Let y. € V(R') — {y1,yr—1} with zgy. € E. Since Go + ¢ € Ha
and P3(Goy) = 0, either zoy; € F or xoys—1 € E with g2 € E. Say w.l.o.g. xoy: € E.

Set H=Gop_ 1 —x9and p=|H| =s—1. Ass >tandt—1 > r, for each y € V(R), d(y,H) >
[(s+t+4)/2—(r—1)—d(y,z0)] > 3.

Assume for the moment that for every P € P1(H), d*(P,H) > p + 2 for each P € P;(H). By Lemma 3.3,
H € Hi. By Lemma 3.7, d(uv, H) > p+ 2 for all u,v € V(H) with u # v and {u,v} # V(e1). Let y; and y;
be two distinct vertices of R’ — y. such that {v;,y;} # {v1,yr—1} and y;y; € E. Let C be an ej-hamiltonian
cycle of H. Then there is an orientation of C' such that for some u,v € V(C) with u # v and V(e1) # {u, v},
we have e; & {uu™,vv™} and {y;ut,y;ot} C E. Let ¥ € N(y,, R — y.) be such that v € {y;,y;}. By Lemma
3.6, H has a u™-v" e;-hamiltonian path. Since Theorem B holds for R’, R’ has two disjoint paths P” and P’
such that |P"| =ni —p, |P'| =r—1—|P"|, P" is from y; to y; and P’ is from ¢’ to y.. Thus [H,P"] € H; and
Gop — V(P") + x¢ € Ha, i.e., G contains two required cycles, a contradiction.
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Therefore d*(P,H) < p+ 1 for some P € Pi(H). Say P = z;...%,. First, assume that d(y;,z12,) > 0
for some y; € V(R') — {y1,Yr—1,vyc}. Say wlo.g. z1y; € E. Then y;z, ¢ E. If there exists zpy; € E for
some y; € N(y;, R') — {y.} then we obtain the two required cycles as above. Therefore z,y; ¢ E for all y; €
N(yi, R")—{yc}. Thus d(zp, R) < r—(d(y;, R)—2) and so d(zp, Gar) < t—r+r—(d(y;, R) —2) = t—d(yi, R) +2.
As d(y;, R) > (t+4)/2, d(zp, Ga) < t/2. Therefore d(z,, H) > (s+t+4)/2—t/2—d(zp, xo) > (s+2)/2. Similarly,
if z,y1 € E then z1y, ¢ E for each y, € N(y1, R' — {yr—1,yc}). Consequently, d(z1, R) < r — (d(y1,R) — 3) and
d(z1,Gar) <t —d(y1,R) +3 < (t+2)/2. It follows that d(z1,H) > s/2 and so d(z12p, H) > s+1=p+2, a
contradiction. Therefore 2,y ¢ E. Similarly, z,y,—1 ¢ E. Thus N(zp, R) C {yr, y.} and so d(zp, Ga) < t—r+2.
Let y; € N(yi, R') — {yc}. Then d(zpy;,Gor) <t—r+2+r—1=t+1. Thus d(zpy;,H) > s+t+4—(t+
1) — d(zo, 2pyj) > p+ 2. By Lemma 3.2(d), H + y; has a z;-y; e;-hamiltonian path and so H + y; + y; has a
¥;-y; e1-hamiltonian path. As above, we see that G contains two required cycles, a contradiction.

Therefore N (21, R) UN(zp, R) C {y1,Yr—1,Yr,Yc} and so d(z12p, Gor) < 2(t — 1) + 8. Asr > 02(Gax) +1 >
(t+6)/2, we get d(z12p, Gor,) < t+ 2. Therefore p+1 > d(z12p, H) > s+t +4 — (t+ 2) — d(xo, 212p) > p+ 1.
This implies that N(z1, R) = N(zp, R) = {y1,¥r—1,Yr, Y}, 7 = (t +6)/2 and R = K4 ,6)/2. It follows that G
contains two required cycles as above. ]
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