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We conjecture that if k ≥ 2 is an integer and G is a graph of order n with minimum degree
at least (n + 2k)/2, then for any k independent edges e1, . . . , ek in G and for any integer
partition n = n1 + · · · + nk with ni ≥ 4(1 ≤ i ≤ k), G has k disjoint cycles C1, . . . , Ck of
orders n1, . . . , nk, respectively such that Ci passes through ei for all 1 ≤ i ≤ k. We show
that this conjecture is true for the case k = 2. The minimum degree condition is sharp in
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1 Introduction

It is well known [8] that if a graph G of order n with minimum degree at least (n + 2)/2, then for each edge
e, G has a cycle of order l passing through e for each 3 ≤ l ≤ n. A set of graphs are said to be disjoint if no
two of them have any vertex in common. We ask this question: Given a graph G of order n = n1 + · · · + nk
with ni ≥ 3(1 ≤ i ≤ k) and k independent edges e1, . . . , ek in G, when does G have k disjoint cycles of orders
n1, . . . , nk, respectively such that Ci passes through ei for each 1 ≤ i ≤ k? If the orders of the k cycles are not
restricted, a similar problem was proposed in [7]. It was conjectured that for each integer k ≥ 2, there exists
n0(k) such that if G is a graph of order n ≥ n0(k) and d(x)+d(y) ≥ n+2k−2, then for any k independent edges
e1, . . . , ek of G, G has k disjoint cycles C1, . . . , Ck covering all the vertices of G such that Ci passes through ei
for all 1 ≤ i ≤ k. This conjecture was confirmed and completely solved by Egawa, Faudree, Györi, Ishigami,
Schelp and Wang in [4]. Here we propose the following conjecture:

Conjecture A Let k ≥ 2 be an integer and let G be a graph of order n with minimum degree at least (n+2k)/2.
Then for any k independent edges e1, . . . , ek in G and for any integer partition n = n1 + · · · + nk with ni ≥
4(1 ≤ i ≤ k), G has k disjoint cycles C1, . . . , Ck of orders n1, . . . , nk, respectively such that Ci contains ei for
all 1 ≤ i ≤ k.

To see the sharpness in general, we observe K(n−2(k−1))/2,(n−2(k−1))/2 + K2(k−1). This graph has minimum
degree (n + 2k)/2 − 1. Let e1, . . . , ek be k independent edges such that e1, . . . , ek−1 are taken from the clique
K2(k−1). Let n = n1 + · · ·+ nk be such that nk is odd. Then the graph does not contain k required cycles.

In Conjecture A, the condition ni ≥ 4(1 ≤ i ≤ k) is necessary in general. This can be demonstrated in the
following example with ni = 3(1 ≤ i ≤ k). Choose positive integers a, b and k such that a ≥ k/2 + 1, b ≥ 2,
k > a + b and k − b is even. Let K be the complete graph on V = {x1, y1, . . . , xk, yk, z1, . . . , zk}. Let (V,E)
be a graph of order 3k with V = {x1, y1, . . . , xk, yk, z1, . . . , zk} such that E = E(K)− {yizj |a+ 1 ≤ i ≤ k, 1 ≤
j ≤ (k − b)/2} − {xizj |a + 1 ≤ i ≤ k, (k − b)/2 + 1 ≤ j ≤ k − b}. This graph does not contain k disjoint
triangles containing k independent edges xiyi(1 ≤ i ≤ k) since k − b > a and a triangle containing a vertex of
{z1, . . . , zk−b} and an edge of {xiyi|1 ≤ i ≤ k} must contain an edge of {xiyi|1 ≤ i ≤ a}. Its minimum degree
is min{2k − 1 + (k + b)/2, 2k − 1 + a} ≥ 5k/2.

If the k disjoint cycles are not required to pass through given edges, we have El-Zahar’s conjecture [5]. The
conjecture says that if G is a graph of order n = n1 + · · ·+ nk with ni ≥ 3(1 ≤ i ≤ k) and minimum degree at
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least dn1/2e+ · · ·+ dnk/2e then G contains k disjoint cycles of order n1, . . . , nk, respectively. It was confirmed
for the case k = 2 in [5]. Abbasi[1] announced a solution of this conjecture for large n using regularity lemma.

In this paper, we prove Conjecture A for the case k = 2:

Theorem B Let G be a graph of order n with minimum degree at least (n+4)/2. Then for any two independent
edges e1 and e2 in G and for any integer partition n = n1 + n2 with n1 ≥ 3 and n2 ≥ 3, G has two disjoint
cycles C1 and C2 of orders n1 and n2, respectively such that e1 ∈ E(C1) and e2 ∈ E(C2).

We shall use terminology and notation from [2] except as indicated. Let G = (V,E) be a graph. Let
x ∈ V (G). Let H be a subset of V (G) or a subgraph of G. We define N(x,H) = {u ∈ N(x)|u belongs to
H}. Let d(x,H) = |N(x,H)|. If X is a subset of V (G) or a subgraph of G, define N(X,H) = ∪xN(x,H)
and d(X,H) =

∑
x d(x,H) where x runs over X. Clearly, if X and H do not have any common vertex, then

d(X,H) is the number of edges of G between X and H. We also use [H] to denote the induced subgraph of G
by the vertices in H. For x, y ∈ V (G), define I(xy,H) = N(x,H)∩N(y,H) and let i(xy,H) = |I(xy,H)|. We
use e(G) to denote |E(G)|. The order of G is denoted by |G|.

A path from u to v is called a u-v path. If P is a path of G and v is an endvertex of P , we use α(P, v)
to denote the order of the longest u-v subpath of P with uv ∈ E(G). Clearly, if α(P, v) ≥ 3 then P + uv
has a cycle of order α(P, v). Let w ∈ V (G) (e ∈ E(G), respectively). Let P = w1w2 . . . wt be a longest path
starting at w = w1 (e = w1w2, respectively). We say that P is an optimal path at w (e, respectively) in G if
α(P ′, xt) ≤ α(P,wt) for any longest path P ′ = x1x2 . . . xt starting at w = x1 (e = x1x2, respectively) in G. If
e ∈ E(P ), we define σ(P, e) = min{|E(P1)|, |E(P2)|} where P1 and P2 are the two components of P − e. Thus
if σ(P, e) = 0 then e is an end edge of P . For an edge e ∈ E(G), an e-path or e-cycle is a path or a cycle that
passes through e. If P is a u-v path, we define d∗(P,H) = d(uv,H).

A cycle C of G is called an end-cycle at u ∈ V (C) if N(x,G) ⊆ V (C) and [C] has a u-x hamiltonian path
for each x ∈ V (C − u).

If C = x1 . . . xtx1 is a cycle of G, we assume an orientation of C is given by default such that x2 is the
successor of x1. Then C[xi, xj ] is the xi-xj path on C along the orientation of C and C−[xi, xj ] is the xi-xj path
on C in the direction against the orientation of C. Define C[xi, xj) = C[xi, xj ]−xj and C(xi, xj ] = C[xi, xj ]−xi.
The predecessor and successor of xi on C are denoted by x−i and x+i . We will use similar definitions for a path.

Let P = x1 . . . xt be a path of G. If {x1xi+1, xtxi} ⊆ E with 1 ≤ i ≤ t − 1, we say that xixi+1 is an
accessible edge of P . Let C = u1u2 . . . umu1 be a cycle of G. Let ui and uj be two distinct vertices of C. For
each e ∈ E(C), if e is an accessible edge of either C[ui, uj ] or C[uj , ui], then we say that e is an accessible edge
of C w.r.t. {ui, uj}.

2 Proof of Theorem B

In this section, we list Lemmas 2.1-2.7 and use them to prove the theorem. The proofs of these lemmas are
in Section 4. Let G = (V,E) be a graph order n with δ(G) ≥ (n + 4)/2. Suppose, for a contradiction, that
theorem fails for G. Let G be a counter example with n minimal. Let n = n1 + n2 be an integer partition
with n1 ≥ 3 and n2 ≥ 3 and let e1 and e2 be two independent edges such that G does not contain two
disjoint cycles of orders n1 and n2 passing through e1 and e2, respectively. For each X ⊆ V with |X| ≤ 3,
δ(G−X) ≥ (n+4)/2−|X| ≥ ((n−|X|)+1)/2 and by Lemma 3.4, G−X is hamiltonian connected. Consequently,
it is easy to see that if n1 = 3 or n2 = 3, then G has the two required cycles, a contradiction. Therefore n1 ≥ 4,
n2 ≥ 4 and so n ≥ 8.

For the sake of convenience, for each i ∈ {1, 2}, let Pi be the set of all the subgraphs of G which have
ei-hamiltonian paths and Hi the set of all the subgraphs of G which have ei-hamiltonian cycles. Furthermore,
for each i ∈ {1, 2} and J ∈ Pi, let Pi(J) denote the set of all the ei-hamiltonian paths of J and let P∗i (J)
denote the subset of Pi(J) such that a path P ∈ Pi(J) belongs to P∗i (J) if and only if σ(P, ei) ≥ 1.

For each i ∈ {1, 2} and J ∈ Pi, let Si(J) be the set of all the vertices x of J − V (ei) such that x is an end
vertex of some P ∈ Pi(J) and let δi(J) = min{d(x, J)|x ∈ Si(J)}.
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As δ(G) ≥ (n + 4)/2, G has a hamiltonian cycle containing both e1 and e2. Thus G has two disjoint
subgraphs G1 and G2 such that for each i ∈ {1, 2}, |Gi| = ni and Gi ∈ Pi. We choose G1 and G2 such that

e(G1) + e(G2) is maximum. (1)

Let P1 = x1 . . . xn1 and P2 = y1 . . . yn2 be two paths such that, P1 ∈ P1(G1), P2 ∈ P2(G2), x1 ∈ S1(G1), y1 ∈
S2(G2), d(x1, G1) = δ1(G1) and d(y1, G2) = δ2(G2). For any x ∈ V (G1) and y ∈ V (G2), we use ξ(x, y) to denote
d(x,G2)−d(x,G1)+d(y,G1)−d(y,G2)−2d(x, y). Thus e(G1−x+y)+e(G2−y+x) = e(G1)+e(G2)+ξ(x, y).
By (1), we readily obtain the following Property A and Property B. The first one is evident.

Property A Let x ∈ V (G1) and y ∈ V (G2). If G1 − x+ y ∈ P1 and G2 − y + x ∈ P2 then ξ(x, y) ≤ 0.

Property B Either P∗1 (G1) 6= ∅ or P∗2 (G2) 6= ∅.
Proof of Property B. Say P∗1 (G1) = ∅ and P∗2 (G2) = ∅. Then e1 = xn1−1xn1 and N(xn1 , G1) ⊆

{xn1−1, xn1−2}. Thus n2 ≥ d(xn1 , G2) ≥ (n1 + n2 + 4)/2 − 2 = (n1 + n2)/2 and so n2 ≥ n1. Similarly,
n1 ≥ (n1 +n2)/2. It follows that n1 = n2, N(xn1 , G1) = {xn1−2, xn1−1} and N(yn2 , G2) = {yn2−2, yn2−1}. Thus
N(e1, G1) = {xn1−2, xn1−1, xn1} and N(e2, G2) = {yn2−2, yn2−1, yn2}. Consequently, G1 − V (e1) + V (e2) ∈ P2,
G2 − V (e2) + V (e1) ∈ P1, e(G1 − V (e1) + V (e2)) + e(G2 − V (e2) + V (e1)) > e(G1) + e(G2). This contradicts
(1).

To reach a contradiction, we will investigate the structure of G1 and G2 which lead us to construct a
sequence (G1, G2), (G3, G4), . . . , (G2k−1, G2k) of pairs of disjoint subgraphs of G. This will be accomplished by
seven lemmas. Lemmas 2.1-2.6 are the steps to Lemma 2.7 and we use Lemma 2.7 to show that the sequence
yields a contradiction.

Lemma 2.1 Either d(x1, G1) ≤ (n1 + 1)/2 or d(y1, G2) ≤ (n2 + 1)/2.

Lemma 2.2 Either d(x1, G1) ≥ (n1 + 2)/2 or d(y1, G2) ≥ (n2 + 2)/2.

By Lemma 2.1 and Lemma 2.2, we may assume w.l.o.g. that d(x1, G1) ≤ (n1 + 1)/2 and d(y1, G2) ≥
(n2 + 2)/2, i.e., δ1(G1) ≤ (n1 + 1)/2 and δ2(G2) ≥ (n2 + 2)/2. Clearly, d(x1, G2) ≥ (n2 + 3)/2.

Lemma 2.3 G2 6∈ H2.

By Lemma 2.3, G2 6∈ H2. As δ2(G2) ≥ (n2 + 2)/2 and by Lemma 3.3, P∗2 (G2) = ∅. Let P = vn2vn2−1 . . . v1
be an optimal path of G2 at e2 = vn2vn2−1. Say α(P, v1) = r. As G2 6∈ H2, r ≤ n2− 1. As δ2(G2) ≥ (n2 + 2)/2
and by Lemma 3.9, J = v1v2 . . . vrv1 is an end-cycle at vr in G2 such that d(vi, J) ≥ (n2 + 2)/2 for all
i ∈ {1, . . . , r − 1}. Let J∗ = {v2, v3, . . . , vr−2}. Clearly, r ≥ (n2 + 2)/2 + 1 = (n2 + 4)/2.

Lemma 2.4 There exists no u ∈ V (G1)− V (e1) such that G1 − u ∈ P1, G2 + u ∈ H2 and d(u, J∗) > 0.

Lemma 2.5 δ1(G1) ≤ (n1 − 1)/2.

Let w1 ∈ S1(G1) with d(w1, G1) = δ1(G1). Then d(w1, G2) ≥ (n1 + n2 + 4)/2 − (n1 − 1)/2 = (n2 + 5)/2.
Clearly, d(w1, J) ≥ (n2+5)/2−(n2−r) ≥ 9/2. Thus d(w1, J

∗) > 0. By Lemma 2.4, G2+w1 6∈ H2. This implies
that w1vn2 6∈ E and if vn2vn2−2 ∈ E then w1vn2−1 6∈ E. Hence P∗2 (G2 + w1) = ∅. For each v ∈ S2(G2 + w1),
if d(v,G2 + w1) ≤ (n2 + 4)/2, then d(v,G1 − w1) ≥ n1/2 and so G1 − w1 + v ∈ P1 by Lemma 3.2(a). But
e(G1 − w1 + v) + e(G2 + w1 − v) > e(G1) + e(G2), contradicting (1). Hence δ2(G2 + w1) ≥ (n1 + 5)/2. In the
meantime, we see that n2 − 1 ≥ d(n2 + 5)/2e. Thus n2 ≥ 7. With G1 − w1 and G2 + w1, this argument also
implies the existence of the following two subgraphs G3 and G4.

Let G3 and G4 be two disjoint subgraphs of G with e(G3) + e(G4) maximal such that |G3| = n1 − 1,
|G4| = n2 + 1, G3 ∈ P1, G4 ∈ P2 and P∗2 (G4) = ∅. By the above argument, e(G3) + e(G4) ≥ e(G1) + e(G2)−
(n1 − 1)/2 + (n2 + 5)/2. If d(v,G4) ≤ (|G4| + 3)/2 for some v ∈ S2(G4), then d(v,G3) ≥ (|G3| + 1)/2 and
e(G3 + v) + e(G4 − v) > e(G1) + e(G2). This contradicts (1) since G3 + v ∈ P1 by Lemma 3.2(a). Thus
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δ2(G4) ≥ (n2 + 5)/2 = (|G4| + 4)/2. This argument is the key for a generalization leading to the following
definition and the proofs of Lemma 2.6 and Lemma 2.7.

Let k ≥ 2 be the largest integer such that there exist a sequence (G1, G2), (G3, G4), . . . , (G2k−1, G2k) of
disjoint pairs of subgraphs of G such that for each i ∈ {1, . . . , k − 1}, G2i−1 ∈ P1, G2i ∈ P2, P∗2 (G2i) = ∅ and
there exists wi ∈ S1(G2i−1) such that δ1(G2i−1) = d(wi, G2i−1) ≤ (|G2i−1| − 1)/2, d(wi, G2i) ≥ (|G2i| + 5)/2
and G2i + wi 6∈ H2. Moreover, for each i ∈ {1, . . . , k − 1}, e(G2i+1) + e(G2i+2) is maximal such that |G2i+1| =
|G2i−1| − 1, |G2i+2| = |G2i|+ 1, G2i+1 ∈ P1, G2i+2 ∈ P2 and P∗2 (G2i+2) = ∅. By the above argument, k is well
defined.

Lemma 2.6 The following two statements hold:
(a) For each i ∈ {1, . . . , k}, |G2i−1| = n1 − i+ 1 and |G2i| = n2 + i− 1.
(b) For each i ∈ {1, . . . , k}, δ2(G2i) ≥ (|G2i|+ 4)/2.

Say s = |G2k−1| and |G2k| = t. As n2 ≥ 7, t ≥ 8. By Lemm 2.6, δ2(G2k) ≥ (t+4)/2. Let L = ytyt−1 . . . y1 be
an optimal path at e2 = ytyt−1 in G2k. Say r = α(L, y1). Then r ≥ δ2(G2)+1 ≥ d(t+4)/2+1e = d(t+6)/2e ≥ 7.
As P∗2 (G2k) = ∅, r ≤ t − 1. Let R = [y1, y2, . . . , yr] and R′ = R − yr. By Lemma 2.6 and Lemma 3.9,
y1y2 . . . yry1 is an end-cycle at yr in G2k and so δ(R′) ≥ (t+ 4)/2− 1 ≥ (|R′|+ 4)/2. By the minimality of |G|,
Theorem B holds for R′. Note that R′ − {x, y} is hamiltonian connected for all {x, y} ⊆ V (R′) by Lemma 3.4.
Clearly, s ≥ d(yt, G2k−1) ≥ (s + t + 4)/2 − 2 = (s + t)/2. This implies that s ≥ t and if equality holds then
N(yt, G2k) = {yt−1, yt−2} and r ≤ t− 2.

Lemma 2.7 For no x ∈ V (G2k−1), G2k−1 − x ∈ P1, G2k + x ∈ H2 and d(x,R′ − {y1, yr−1}) > 0.

To prove Theorem B, let yc ∈ V (R′ − {y1, yr−1}). Then d(ycyt, G2k−1) ≥ s + t + 4 − (t − 1) = s + 5
and so i(ycyt, G2k−1) ≥ 5. By Lemma 2.7, G2k−1 − x 6∈ P1 for all x ∈ I(ycyt, G2k−1) and so G2k−1 6∈ H1. If
δ1(G2k−1) ≤ (s−1)/2, let wk ∈ S1(G2k−1) with d(wk, G2k−1) = δ1(G2k−1). As d(wk, G2k) ≥ (t+5)/2, d(wk, R

′−
{y1, yr−1}) ≥ 1. By Lemma 2.7, G2k +wk 6∈ H2. Thus wkyt 6∈ E and if ytyt−2 ∈ E then wkyt−1 6∈ E. Therefore
P∗2 (G2k +wk) = ∅. This allows us to define (G2k+1, G2k+2) to lengthen the sequence (G1, G2), . . . , (G2k−1, G2k).
This contradicts the maximality of k. Therefore δ1(G2k−1) ≥ s/2. Recall that d(yt, G2k−1) ≥ (s + t)/2. If
P∗1 (G2k−1) 6= ∅, then by Lemma 3.5(c), we see that G2k−1 has a u-v e1-hamiltonian path such that v 6∈ V (e1),
d(v,G2k−1) = s/2 and vyt ∈ E. As d(v,G2k) ≥ (t + 4)/2, d(v,R′ − {y1, yr−1}) > 0 and so G2k + v ∈ H2,
contradicting Lemma 2.7. Therefore P∗1 (G2k−1) = ∅. Let P = zszs−1 . . . z1 be an optimal path at e1 = zszs−1
in G2k−1. Say α(P, z1) = q. As d(zs, G2k−1) ≤ 2, t ≥ d(zs, G2k) ≥ (s+ t + 4)/2− 2 and so t ≥ s. Since s ≥ t,
it follows that s = t and d(zs, G2k) = t = d(yt, G2k−1). By Lemma 2.7, we see that d(zi, R

′ − {y1, yr−1}) = 0
for all i ∈ {1, . . . , q − 1}. Then t + 2 ≤ d(yc, G) ≤ r − 1 + d(yc, G2k−1) ≤ r − 1 + t − q + 1 = t + r − q. Thus
r − q ≥ 2. Then t+ 2 ≤ d(z1, G) ≤ q − 1 + d(z1, G2k) ≤ q − 1 + t− r + 3 ≤ t, a contradiction. This proves the
theorem.

3 Auxiliary Lemmas

In the following, G = (V,E) is a graph. We will use the following lemmas. Lemma 3.1 is an easy observation.

Lemma 3.1 Let P = x1 . . . xr be a path of order r in G. Let u and v be two vertices of G−V (P ). Suppose that
d(uv, P ) ≥ r + 1 and {uxi+1, vxi} 6⊆ E for all i ∈ {1, . . . , r − 1}. Then d(uv, P ) = r + 1 and {ux1, vxr} ⊆ E.
Moreover, either N(u, P ) = {x1, . . . , xa} and N(v, P ) = {xa, . . . , xr} for some a ∈ {1, . . . , r}, or d(xi, uv) = 0
for some 1 < i < r.

Lemma 3.2 Let P be a u-v path of order r in G, e ∈ E(P ) and x ∈ V (G) − V (P ). The following five
statements hold:

(a) If d(x, P ) > r/2, then P + x has an e-hamiltonian path.
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(b) If d(x, P ) > (r + 1)/2, P + x has an e-hamiltonian path ending at v.
(c) If d(x, P ) > (r + 2)/2 then P + x has a u-v e-hamiltonian path.
(d) If d(xv, P ) ≥ r + 2 then [P + x] has a u-x e-hamiltonian path.
(e) If d(xv, P ) ≥ r + 1 then [P + x] has an e-hamiltonian path.
(f) If d(x, P ) > (r + 1)/2 and uv ∈ E then P + uv + x has an e-hamiltonian cycle.

Proof. Let P1 and P2 be the two components of P − e with v in P2. If d(x, f) = 2 for some f ∈ E(P − e)
then (a), (b) and (c) hold. So if one of (a), (b) and (c) fails then d(x, f) ≤ 1 for all f ∈ E(P ) − {e}. This
implies that d(x, Pi) ≤ (|Pi|+ 1)/2 for i ∈ {1, 2} and so d(x, P ) ≤ (r + 2)/2. Furthermore, for each i ∈ {1, 2},
if d(x, Pi) = (|Pi| + 1)/2, then |Pi| is odd and x is adjacent to the two endvertices of Pi and so the first three
statements follow.

If one of (d) and (e) fails, then {vz, xz+} 6⊆ E for each z ∈ V (P ) with zz+ 6= e. This implies that
d(xv, P ) ≤ r + 1. So (d) holds. Obviously, (e) would hold if uv ∈ E or d(x, uv) > 0. To see (e), say uv 6∈ E
and d(x, uv) = 0. Then apply (d) to P − u and x.

To obtain (f), we see that there exists an edge e′ on P + uv with e′ 6= e such that d(x, e′) = 2.

Lemma 3.3 Let P be a u-v path of order r ≥ 3 in G. Let e ∈ E(P ). Suppose that d(uv, P ) ≥ r + ε where
ε = 0 if σ(P, e) = 0 and ε = 1 if σ(P, e) > 0. Then [P ] has an e-hamiltonian cycle.

Proof. If uv ∈ E, nothing to prove. So assume uv 6∈ E. Then the condition implies that some edge
f ∈ E(P )− {e} is an accessible edge and this yields a required cycle.

Lemma 3.4 [3] If H is a graph of order r ≥ 3 and d(xy,H) ≥ r + 1 for each pair x and y of nonadjacent
vertices of H, then H is hamiltonian connected and so for each e ∈ E(H), H has an e-hamiltonian cycle.

Lemma 3.5 Let P = x1 . . . xr be a path of order r ≥ 3 in G. Let e ∈ E(P ). Suppose that [P ] does not have
an e-hamiltonian cycle and d(x1xr, P ) ≥ r. Let R = {xi|d(xi, x1xr) = 0, 1 < i < r} and P be the set of all the
components of P −R∪ {x1, xr}− e. Then σ(e, P ) > 0, d(x1xr, P ) = r and the following three statements hold:

(a) R ∪ {x1, xr} is an independent set;
(b) d(xl, P

′) ≤ 1 for all xl ∈ R and P ′ ∈ P;
(c) If d∗(L,P ) ≥ r for every e-hamiltonian path L of [P ] with σ(L, e) > 0, then either V (P ) has a partition

X ∪ Y such that |X| = r/2, V (e) ⊆ X, Y = R ∪ {x1, xr} and N(y, P ) = X for all y ∈ Y , or [P ] − V (e) has
two complete components H1 and H2 such that |H1|+ |H2| = r− 2 and V (H1 ∪H2) ⊆ N(x) for each x ∈ V (e).

Proof. By Lemma 3.3, σ(e, P ) > 0 and d(x1xr, P ) = r. Clearly, |P| ≤ |R|+2 and |P|+|R| ≤
∑

P ′∈P |P ′|+|R| ≤
r−2. Say e = xaxa+1. Since [P ] does not have an e-hamiltonian cycle, each xixi+1 with i 6= a is not an accessible
edge of P . By Lemma 3.1, d(x1xr, P

′) ≤ |P ′|+ 1 for each P ′ ∈ P. Thus d(x1xr, P ) ≤ (r− 2)− |R|+ |P| ≤ r. It
follows that |P| = |R|+2 and d(x1xr, P

′) = |P ′|+1 for each P ′ ∈ P. Consequently, {x2, xa, xa+1, xr−1}∩R = ∅,
R does not contain two consecutive vertices of P , and for each P ′ = P [xi, xj ] ∈ P there exists i ≤ k ≤ j such
that N(x1, P

′) = {xi, . . . , xk} and N(xr, P
′) = {xk, . . . , xj}. In particular, {x1xa+1, xrxa} ⊆ E. It is easy to

see that R is an independent set for otherwise [P ] has an e-hamiltonian cycle. So (a) holds.
To see (b), say d(xl, P

′) ≥ 2 for some xl ∈ R and P ′ = P [xi, xj ] ∈ P. Let xk ∈ V (P ′) be such that
N(x1, P

′) = {xi, . . . , xk} and N(xr, P
′) = {xk, . . . , xj}. Say w.l.o.g. that l < i. Let xp ∈ V (P ′) be such that

xlxp ∈ E and p 6= i. If p ≤ k, then x1P [x1, xl−1]P
−[xr, xp]xlP [xl+1, xp−1]x1 is an e-hamiltonian cycle of [P ]

and if p > k then x1P [x1, xl]P [xp, xr]P
−[xp−1, xl+1]x1 is an e-hamiltonian cycle of [P ], a contradiction. Hence

(b) holds.
To see (c), it is easy to observe that for each xl ∈ R, [P ] has an x1-xl e-hamiltonian path and an xr-xl

e-hamiltonian path. If R 6= ∅, then d(xlx1, P ) ≥ r, d(xlxr, P ) ≥ r and so d(xl, P ) ≥ r/2 for each xl ∈ R.
Since |P| = |R| + 2 and |P| + |R| ≤ r − 2, it follows that |P| = r/2 and |P ′| = 1 for all P ′ ∈ P. Thus
X ∪ Y with Y = R ∪ {x1, xr} and X = V (P ) − Y is a partition of V (P ) satisfying (c). Next, assume that
R = ∅. Let 2 ≤ b ≤ a and a + 1 ≤ c ≤ r − 1 be such that N(x1, P ) = {x2, . . . , xb} ∪ {xa+1, . . . , xc} and
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N(xr, P ) = {xb, . . . , xa} ∪ {xc, . . . , xr−1}. Then we readily see that for each xi ∈ N(x1, P )− {xb, xa, xa+1, xc}
and xj ∈ N(xr, P )−{xb, xa, xa+1, xc}, [P ] has an xi-xr e-hamiltonian path, an x1-xj e-hamiltonian path, an xi-
xj e-hamiltonian path and so xixj 6∈ E. It follows that N(xi, P )∪{xi} = N(x1, P )∪{x1} and N(xj , P )∪{xj} =
N(xr, P ) ∪ {xr} for all xi ∈ N(x1, P )− {xb, xa, xa+1, xc} and xj ∈ N(xr, P )− {xb, xa, xa+1, xc}. Thus if b < a
then x1P

−[xc, xb+1]P
−[xr, xc+1]P

−[xb, x1] is an e-hamiltonian cycle of [P ], a contradiction. Hence b = a.
Similarly, c = a+ 1. This proves (c).

Lemma 3.6 Let C be a cycle of order r in G. Let u and v be two distinct vertices on C and e an edge of C
with e 6∈ {uu+, vv+} = ∅. Set R = {x|d(x, uv) = 0, x ∈ V (C)− {u, v}}. Let P be the set of all the components
of C− (R∪{u, v})− e. Suppose that d(uv,C) ≥ r+ 1 and [C] does not have a u+-v+ e-hamiltonian path. Then
d(uv,C) = r + 1 and the following four statements hold:

(a) Each edge of C − e is inaccessible on C w.r.t. {u, v};
(b) V (e) ∩ (R ∪ {u, v}) = ∅, d(uv, P ) = |P |+ 1 for all P ∈ P and |P| = |R|+ 3.
(c) R is an independent set and d(x, P ) ≤ 1 for all x ∈ R and P ∈ P.
(d) If d(z, C) ≥ (r + 1)/2 for all z ∈ V (C) − V (e) then r is odd. Moreover, either [C] has a vertex-cut X

with V (e) ⊆ X and |X| = 3 such that [C] has exactly two components isomorphic to K(r−3)/2 and X ⊆ N(y)
for all y ∈ V (C)−X, or V (C) has a partition X∪Y such that |X| = (r+1)/2, |Y | = (r−1)/2, Y = R∪{u, v},
V (e) ⊆ X and N(y, C) = X for all y ∈ Y .

Proof. It is easy to check that (a) holds since [C] does not have a u+-v+ e-hamiltonian path. In particular,
uv 6∈ E. Clearly, |P| ≤ |R|+3 and |P|+|R| ≤

∑
P∈P |P |+|R| = r−2. By (a) and Lemma 3.1, d(uv, P ) ≤ |P |+1

for each P ∈ P and so d(uv,C) ≤ r+ 1. Since d(uv,C) ≥ r+ 1, it follows that d(uv,C) = r+ 1, |P| = |R|+ 3,
V (e) ∩ (R ∪ {u, v}) = ∅, and d(uv, P ) = |P |+ 1 for all P ∈ P. So (b) holds.

As |P| = |R| + 3, R does not contain two consecutive vertices of C. To proves (c), Let C = x1 . . . xrx1 be
such that x1 = u, x2 = u+, xp = v and xp+1 = v+. W.l.o.g., say e = xqxq+1 for some q ∈ {p + 1, . . . , r − 1}.
We first check that R is an independent set. Let L1 = C(x1, xp), L2 = C(xp, xq] and L3 = C[xq+1, xr].
Let Ri = R ∩ V (Li) for i ∈ {1, 2, 3}. Say xixj ∈ E for some {xi, xj} ⊆ R with i < j. We shall obtain a
contradiction by showing that [C] has an x2-xp+1 e-hamiltonian path. According to the locations of xi and xj
in R = R1 ∪ R2 ∪ R3, there are six cases to check, which are very similar in the verification. So we just show
one example with xi ∈ R1 and xj ∈ R3. In this case, {x1xi+1, xpxi−1} ⊆ E and {x1xj−1, xpxj+1} ⊆ E by (a),
(b) and Lemma 3.1. Then

x2C[x2, xi−1]xpC
−[xp, xi]xixjC[xj , x1]xj−1C

−[xj−1, xp+1]

is an x2-xp+1 e-hamiltonian path of [C], a contradiction.
Next, we show that d(x, P ) ≤ 1 for all x ∈ R and P ∈ P. On the contrary, say d(x, P ) ≥ 2 for some x ∈ R

and P ∈ P. We shall obtain a contradiction by showing that [C] has an x2-xp+1 e-hamiltonian path. According
to the locations of x in R1 ∪ R2 ∪ R3 and P on L1 ∪ L2 ∪ L3, there are nine cases to check, which are also
very similar in the verification. So we just show one example with x ∈ R1 and P on L3. Say P = C[xi, xj ].
By (a), (b) and Lemma 3.1, N(x1, P ) = {xa, . . . , xj} and N(xp, P ) = {xi, . . . , xa} for some i ≤ a ≤ j. Since
d(x, P ) ≥ 2, xxt ∈ E for some xt ∈ V (P ) with t 6= xi. If t > a, then

x2C[x2, x
−]xpC

−[xp, x]xxtC[xt, x1]xt−1C
−[xt−1, xp+1]

is an x2-xp+1 e-hamiltonian path of [C], a contradiction. Thus t ≤ a. Then

x2C[x2, x]xxtC[xt, x1]x
+C[x+, xp]xt−1C

−[xt−1, xp+1]

is an x2-xp+1 e-hamiltonian path of [C], a contradiction.
To prove (d), we have d(x,C) ≤ |P| for all x ∈ R by (c). Since |P| ≤ r − |R| − 2 and |P| = |R| + 3, we

obtain d(x,C) ≤ (r + 1)/2 for all x ∈ R. It follows that if R 6= ∅ then r is odd and |P | = 1 for all P ∈ P.
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Consequently, if Y = R ∪ {u, v} and X = V (C) − Y then N(y, C) = X for all y ∈ Y and so (d) holds. So
assume that R = ∅. By (a), (b) and Lemma 3.1, there exists xai ∈ V (Li) for i ∈ {1, 2, 3} such that

N(x1, C) = V (L1[x2, xa1 ]) ∪ V (L2[xa2 , xq]) ∪ V (L3[xa3 , xr])

N(xp, C) = V (L1[xa1 , xp−1]) ∪ V (L2[xp+1, xa2 ]) ∪ V (L3[xq+1, xa3 ]).

We claim that for each vertex x of L1[x2, xa1)∪L2(xa2 , xq)∪L3(xa3 , xr], N(x,C) ⊆ N(x1, C)∪{x1}. If this is
false, say xy ∈ E(G) for some vertex x of L1[x2, xa1)∪L2(xa2 , xq)∪L3(xa3 , xr] and y ∈ V (C)−N(x1, C)−{x1}.
We shall obtain a contradiction by showing that [C] has an x2-xp+1 e-hamiltonian path. According to the
locations of x in L1[x2, xa1)∪L2(xa2 , xq)∪L3(xa3 , xr] and y on L1∪L2∪L3, there are nine cases to check, which
are very similar in the verification. So we just show one example with x in L3(xa3 , xr] and y on L1(xa1 , xp−1].
In this case,

x2C[x2, y
−]xpC

−[xp, y]xC[x, x1]x
−C−[x−, xp+1]

is an x2-xp+1 e-hamiltonian path of [C], a contradiction.
Similarly, N(y, C) ⊆ N(xp, C) ∪ {xp} for each vertex y of L1(xa1 , xp−1] ∪ L2[xp+1, xa2) ∪ L3(xq+1, xa3).

As d(x,C) ≥ (r + 1)/2 for all x ∈ V (C) − V (e), we see that r is odd and d(x1, C) = d(xp, C) = (r + 1)/2.
Furthermore, if {xa2 , xa3} = {xq, xq+1}, then {xa1 , xq, xq+1} is a vertex-cut of [C] and each component of
[C]−{xa1 , xq, xq+1} is isomorphic to K(r−3)/2. Consequently, (d) holds. So assume that {xa2 , xa3} 6= {xq, xq+1}.
We shall obtain a contradiction by showing that [C] has an x2-xp+1 e-hamiltonian path. If xq+1 6= xa3 . Then

x2C[x2, xa1 ]x1C
−[x1, xq+2]xa1+1C[xa1+1, xp]xq+1C

−[xq+1, xp+1]

is an x2-xp+1 e-hamiltonian path of [C], a contradiction. Therefore xq+1 = xa3 and xq 6= xa2 . Then

x2C[x2, xp]xq+1xqx1C
−[x1, x

+
q+1]xq−1C

−[xq−1, xp+1]

is an x2-xp+1 e-hamiltonian path of [C], a contradiction. This proves the lemma.

Lemma 3.7 Let C be a cycle of order r in G. Let λ be a positive integer. Let e ∈ E(C). Suppose that
d∗(P,C) ≥ r + λ for every e-hamiltonian path P of [C]. Then d(xy,C) ≥ r + λ for every pair x and y of
distinct vertices of C with V (e) 6= {x, y}.

Proof. On the contrary, say that there are two distinct vertices x and y on C with V (e) 6= {x, y} such that
d(xy,C) ≤ r + λ − 1. Clearly, either e 6∈ {xx−, yy−} or e 6∈ {xx+, yy+}. Say w.l.o.g. the former holds. Then
d(xx−, C) ≥ r + λ and d(yy−, C) ≥ r + λ. Thus d(x−y−, C) ≥ 2(r + λ)− (r + λ− 1) ≥ r + 2. By Lemma 3.6,
[C] has an x-y e-hamiltonian path and therefore d(xy,C) ≥ r + λ, a contradiction.

Lemma 3.8 Let C = x1 . . . xrx1 be a cycle in G. Let e = x1x2. Suppose that d∗(P,C) ≥ r + 1 for each
e-hamiltonian path P of [C] with σ(P, e) > 0. If there exists xj ∈ V (C) − V (e) such that d(xj , C) ≤ r/2 then
one of the following two statement holds:

(a) If 4 ≤ j ≤ r − 1 then d(xi, C) ≥ (r + 2)/2 for all 3 ≤ i ≤ r with i 6= j;
(b) If j ∈ {3, r} then d(xi, C) ≥ (r + 2)/2 for all 4 ≤ i ≤ r − 1.

Proof. To prove (a), say 4 ≤ j ≤ r − 1. Then d(xj−1, C) ≥ r + 1 − d(xj , C) ≥ (r + 2)/2. Similarly,
d(xj+1, C) ≥ (r + 2)/2. If d(xi, C) ≤ (r + 1)/2 for some 3 ≤ i ≤ r with i 6= j, let xi be the one closest to xj on
C − e. Say w.l.o.g. i > j. Then d(xi−1, C) ≥ (r + 2)/2. Thus d(xj−1xi−1, C) ≥ r + 2. By Lemma 3.6, [C] has
an xj-xi e-hamiltonian path and so d(xixj , C) ≥ r+1. Thus d(xi, C) ≥ r+1−r/2 = (r+2)/2, a contradiction.

To prove (b), say w.l.o.g. that d(x3, C) ≤ r/2, i.e., d(x3, C) ≤ br/2c. If r ≤ 4, nothing to prove. So assume
r ≥ 5. Then d(x4, C) ≥ r + 1− br/2c = d(r + 2)/2e. Similarly, if d(xr, C) ≤ r/2 then d(xr−1, C) ≥ d(r + 2)/2e
and so d(x4xr−1, C) ≥ r + 2. If d(xr, C) 6≤ r/2, i.e., d(xr, C) ≥ d(r + 1)/2e, then d(x4xr, C) ≥ d(r + 2)/2e +
d(r + 1)/2e = r + 2. Let s ∈ {r − 1, r} be maximal such that d(x4xs, C) ≥ r + 2. If d(xi, C) ≤ (r + 1)/2 for
some i ∈ {5, . . . , r − 1}, let xi be the one closest to xs on C − e. Then d(x4xi+1, C) ≥ r + 2. By Lemma 3.6,
[C] has an x3-xi e-hamiltonian path and so d(xi, C) ≥ r + 1− r/2 = (r + 2)/2, a contradiction.
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Lemma 3.9 [6] Let P = xtxt−1 . . . x1 be an optimal path at xt in G. Let r = α(P, x1) and c > r/2. Suppose that
for each v ∈ V (G), if there exists a longest path starting at xt in G such that the path ends at v then d(v) ≥ c.
Then N(xi) ⊆ {x1, x2, . . . , xr}, [P ] has an xt-xi hamiltonian path and d(xi) ≥ c for all i ∈ {1, 2, . . . , r − 1}.
Moreover, if t > r then xr is a cut-vertex of G.

Lemma 3.10 Let P = xtxt−1 . . . x1 be an optimal path at xt in G. Let r = α(P, x1). Suppose that r ≥ 3
and for each v ∈ V (G), if there exists a longest path starting at xt in G such that the path ends at v then
d(v) ≥ (r + 2)/2. Then for each pair xi and xj of distinct vertices in {x1, x2, . . . , xr−1}, the following three
statements hold:

(a) If d(xr, {x1, x2, . . . , xr−1}) ≥ 3 then [P ]− xi has an xt-xj hamiltonian path;
(b) If N(xr, {x1, x2, . . . , xr−1}) = {x1, xr−1} but i 6∈ {1, r − 1} then [P ]− xi has an xt-xj hamiltonian path;
(c) If N(xr, {x1, x2, . . . , xr−1}) = {x1, xr−1} and i ∈ {1, r− 1} but j 6∈ {1, r− 1} then [P ]− xi has an xt-xj

hamiltonian path.

Proof. Obviously, the lemma is true if r ≤ 4. So assume r ≥ 5. Let H = [{x1, . . . , xr} − {xi}]. By
Lemma 3.9, for each xl ∈ {x1, . . . , xr−1}, [P ] has an xt-xl hamiltonian path, N(xl, G) ⊆ V (H) ∪ {xi} and
d(xl, H + xi) ≥ (r + 2)/2. Moreover, xr is a cut-vertex of [P ] if t > r, and consequently, H + xi has an
xr-xi hamiltonian path and so H has a hamiltonian path starting at xr. Obviously, for each v ∈ V (H − xr),
d(v,H) ≥ (r + 2)/2− 1 = ((r − 1) + 1)/2. Let L be an optimal path at xr in H. Say L is an xr-y path. Then
α(L, y) ≤ r − 1. As δ(H − xr) ≥ (r + 2)/2− 2 = (r − 2)/2, H − xr is hamiltonian. If d(xr, H) ≥ 2, then H is
2-connected and by applying Lemma 3.9 to L in H, we see that α(L, y) = r− 1. Consequently, H has an xr-xj
hamiltonian path and so [P − xi] has an xt-xj hamiltonian path. Therefore (a) and (b) hold. If d(xr, H) = 1,
then xi ∈ {x1, xr−1} and so α(L, y) = r− 2. Moreover, the vertex z with {xi, z} = {x1, xr−1} is a cut-vertex of
H. To see (c), we have xj 6∈ {x1, xr−1} and H has an xr-xj hamiltonian path.

4 Proof of Lemmas 2.1-2.7

Proof of Lemma 2.1. On the contrary, say d(x1, G1) ≥ (n1 + 2)/2 and d(y1, G2) ≥ (n2 + 2)/2, i.e., δ1(G1) ≥
(n1 + 2)/2 and δ2(G2) ≥ (n2 + 2)/2. Say w.l.o.g. G1 6∈ H1. By Lemma 3.3, we see that P∗1 (G1) = ∅. Let
P = un1un1−1 . . . u1 be an optimal path at e1 = un1un1−1 in G1. Then N(un1 , G1) ⊆ {un1−1, un1−2}. Say
α(P, u1) = r. As δ1(G1) ≥ (n1 + 2)/2 and by Lemma 3.9, u1 . . . uru1 is an end-cycle at ur in G1 and for each
j ∈ {1, . . . , r − 1}, G1 has a un1-uj e1-hamiltonian path and d(uj , G1) ≥ (n1 + 2)/2. Since n2 ≥ d(un1 , G2) ≥
(n+ 4)/2− d(un1 , G1) ≥ n/2, we obtain n2 ≥ n1. Note that r − 1 ≥ (n1 + 2)/2 and so n1 ≥ 6.

By Property B, P∗2 (G2) 6= ∅. As δ2(G2) ≥ (n2 + 2)/2 and by Lemma 3.3, G2 ∈ H2. Thus d(y,G2) ≥
(n2 + 2)/2 for all y ∈ V (G2) − V (e2). Let v1 . . . vn2v1 be a hamiltonian cycle of G2 with e2 = v1v2. Let
i, j ∈ {1, . . . , r − 1} with i 6∈ {1, r − 1}. By Lemma 3.10, G1 − ui has an un1-uj e1-hamiltonian path. Clearly,
d(un1uj , G2) ≥ n + 4 − (n1 − 1) = n2 + 5. Thus for some s ∈ {4, . . . , n2 − 1}, d(vs, un1uj) = 2 and so
G1 − ui + vs ∈ H1. Thus G2 − vs + ui 6∈ H2. As d(vs−1vs+1, G2 − vs) ≥ n2 + 2 − 2 = n2 and by Lemma 3.3,
G2−vs ∈ H2. Let C = w1 . . . wtw1 be an e2-hamiltonian cycle of G2−vs with t = n2−1. As d(ui, G1) ≤ n1−2,
d(ui, C) ≥ (n+4)/2− (n1−2)−1 ≥ 3. As C+ui 6∈ H2, we see that there are two distinct vertices u and v in C
such that {u, v}∩V (e2) = ∅ and either {u+, v+} ⊆ N(ui) or {u−, v−} ⊆ N(ui). Say w.l.o.g. {u+, v+} ⊆ N(ui).
As G2−vs+ui 6∈ H2, [C] does not have a u+-v+ e2-hamiltonian path. Clearly, d(x,C) ≥ (n2+2)/2−1 = (t+1)/2
for all x ∈ V (C) − V (e2). Thus we may apply Lemma 3.6(d) to [C]. First, assume that [C] has a vertex-cut
X with |X| = 3 and V (e2) ⊆ X such that each of the two components [C] −X is isomorphic to K(t−3)/2. As
G2 − vs + ui 6∈ H2, we see that N(ui, C) = X. Thus vsx ∈ E for all x ∈ V (C) − X as δ2(G2) ≥ (n2 + 2)/2.
Let v′ ∈ I(un1uj , C − X). Then G1 − ui + v′ ∈ H1 and G2 − v′ + ui ∈ H2 by Lemma 3.10, a contradiction.
Therefore V (C) has a partition X ∪ Y such that |X| = (t + 1)/2, V (e2) ⊆ X, |Y | = (t − 1)/2, {u, v} ⊆ Y
and N(y, C) = X for all y ∈ Y . As δ2(G2) ≥ (n2 + 2)/2, we obtain Y ⊆ N(vs). As G2 − vs + ui 6∈ H2, we
see that N(ui, C) ⊆ X. As d(un1 , G1) ≤ 2, we readily see that d(un1 , Y ) > 0. Let v′ ∈ N(un1 , Y ). Clearly,

8



d(v′, G1) ≥ (n + 4)/2 − (n2 + 2)/2 = (n1 + 2)/2. Thus v′up ∈ E for some p ∈ {1, . . . , r − 1} with p 6= i. By
Lemma 3.10, G1 − ui has a un1-up e1-hamiltonian path. With v′ and up in place of vs and uj in the above
argument, we see that V (G2−v′) has a partition X ′∪Y ′ such that |X ′| = (t+1)/2, V (e2) ⊆ X ′, |Y ′| = (t−1)/2,
N(y,G2− v′) = X ′ for all y ∈ Y ′, Y ′ ⊆ N(v′) and N(ui, G2− v′) ⊆ X ′. Since Y ′ 6= Y and Y is an independent
set, we see that Y ⊆ X ′ ∪ {v′}. Thus N(ui, Y ) 6= ∅, a contradiction.
Proof of Lemma 2.2. On the contrary, say d(x1, G1) ≤ (n1 + 1)/2 and d(y1, G2) ≤ (n2 + 1)/2. Then
d(x1, G2) ≥ (n2 + 3)/2 and d(y1, G1) ≥ (n1 + 3)/2. By Lemma 3.2(a), G1−x1 +y1 ∈ P1 and G2−y1 +x1 ∈ P2.
By Property A, ξ(x1, y1) ≤ 0. This implies that d(x1, G1) = (n1 + 1)/2, d(x1, G2) = (n2 + 3)/2, d(y1, G2) =
(n2 + 1)/2, d(y1, G1) = (n1 + 3)/2 and x1y1 ∈ E. Since either G1 6∈ H1 or G2 6∈ H2, say w.l.o.g. G1 6∈ H1. As
δ1(G1) = (n1+1)/2 and by Lemma 3.3, P∗1 (G1) = ∅. Therefore e1 = xn1xn1−1 andN(xn1 , G1) ⊆ {xn1−1, xn1−2}.
Thus n2 ≥ d(xn1 , G2) ≥ (n+ 4)/2− 2. This implies n2 ≥ n1.

By Property B, P∗2 (G2) 6= ∅. As δ2(G2) = (n2 + 1)/2 and by Lemma 3.3, G2 ∈ H2. Then d(y,G2) ≥
(n2 + 1)/2 for all y ∈ V (G2)− V (e2). Let H1 = G1 − x1 and H2 = G2 + x1. By Property A and Lemma 3.2(a)
as above, we readily see that H2 − y ∈ P2, if d(y,G2) = (n2 + 1)/2 then yx1 ∈ E, and so d(y,H2) ≥ (n2 + 3)/2
for all y ∈ V (H2) − V (e2). Let C = v1v2 . . . vtv1 be a hamiltonian cycle of H2 with t = n2 + 1 and e2 = v1v2.
Let Y be the set of those vertices y ∈ V (H2) − V (e2) such that H2 − y ∈ H2. Then H1 + y 6∈ H1 for all
y ∈ Y . For each vs ∈ V (C)− {v1, v2, v3, vt}, d(vs−1vs+1, C − vs) ≥ n2 + 3− 2 = n2 + 1 and so H2 − vs ∈ H2 by
Lemma 3.3. Thus V (C)−{v1, v2, v3, vt} ⊆ Y . Since P∗1 (G1) = ∅ and N(xn1 , G1) ⊆ {xn1−1, xn1−2}, we see that
d(x2xn1 , H1) ≤ n1− 2. It follows that d(x2xn1 , H2) ≥ n+ 4− (n1− 2) = t+ 5. Consequently, vs ∈ I(x2xn1 , H2)
for some vs ∈ V (C)− {v1, v2, v3, vt} and so H1 + vs ∈ H1, a contradiction.

Proof of Lemma 2.3. On the contrary, say that G2 ∈ H2. Then y ∈ S2(G2) and so d(y,G2) ≥ (n2+2)/2 for all
y ∈ V (G2)−V (e2) and G1 6∈ H1. As d(x1, G2) ≥ (n2+3)/2, G2+x1 ∈ H2 by Lemma 3.2(f) and so S2(G2+x1) =
V (G2 + x1) − V (e2). By Property A and Lemma 3.2(a), we readily see that d(y,G2 + x1) ≥ (n2 + 3)/2 for
all y ∈ V (G2) − V (e1). Set H1 = G − x1 and H2 = G2 + x1. Let A = {v ∈ V (H2) − V (e2)|H2 − v ∈ H2}.
Then H1 + v 6∈ H1 for each v ∈ A. Let C = v1v2 . . . vn2v1 be a hamiltonian cycle of G2 with e1 = v1v2. Say
X0 = {vn2 , v1, v2, v3}. We claim

Claim 1 The following two statements hold:
(a) V (H2)−X0 ⊆ A;
(b) If d(v1, H2 −X0) ≥ 1 then vn2 ∈ A and if d(v2, H2 −X0) ≥ 1 then v3 ∈ A.

Proof of Claim 1. Clearly, x1 ∈ A. Let vi ∈ V (G2)−X0. Then d(vi−1vi+1, G2−vi) ≥ (n2+2)−2 = (n2−1)+1
and by Lemma 3.3, G2 − vi ∈ H2. Since d(x1, G2 − vi) ≥ (n2 + 3)/2 − 1 = ((n2 − 1) + 2)/2, H2 − vi ∈ H2.
Hence (a) holds.

To see (b), we just need show the first assertion by the symmetry. If x1v1 ∈ E then x1v1 . . . vn2−1 ∈
P2(H2 − vn2) and d(x1vn2−1, H2 − vn2) ≥ n2 + 3− 2 = n2 + 1. By Lemma 3.3, H2 − vn2 ∈ H2. If v1vi ∈ E for
some vi ∈ V (G2) −X0, then vi−1vi−2 . . . v2v1vivi+1 . . . vn2−1 ∈ P2(G2 − vn2) and d(vi−1vn2−1, G2 − vn2) ≥ n2.
As above, we see H2 − vn2 ∈ H2. Hence (b) holds. 2

We now divide the proof of the lemma into the following two cases. Say l = n1 − 1.

Case 1. H1 6∈ H1.
Let P = z1 . . . zl be an arbitrary path in P1(H1). Then I(z1zl, A) = ∅. Thus d(z1zl, H2) ≤ n2 + 5 and so

d(z1zl, H1) ≥ l. By Lemma 3.3, d(z1zl, H1) = l and σ(P, e1) > 0. Thus d(z1zl, H2) = n2 + 5, X0 = I(z1zl, H2),
A = V (H2)−X0 and d(x, z1zl) = 1 for all x ∈ A. By Claim 1, N(v1v2, H2) ⊆ X0. Then n1−1 = l ≥ d(v1, H1) ≥
(n1 + n2 + 4)/2− d(v1, G2) ≥ (n1 + n2 + 4)/2− 3 and d(x1, G2) ≤ (n2 − 2). As d(x1, G2) ≥ (n2 + 3)/2, we see
that n2 ≥ 7. As n2 − 3 ≥ d(v5, G2) ≥ (n2 + 2)/2, it follows that n1 ≥ n2 ≥ 8 and d(x1, H1) ≥ 4.

We apply Lemma 3.5 to H1. First, assume that V (H1) has a partition X∪Y such that |X| = l/2, V (e1) ⊆ X
and N(y,H1) = X for all y ∈ Y . Then every two distinct vertices in Y can play the role of z1 and zl. Hence
d(x1, Y ) ≥ l/2 − 1 ≥ 2 and so G1 ∈ H1, a contradiction. Therefore H1 − V (e1) has two components J1 and
J2 such that H1 − V (e1) = J1 ∪ J2, each of J1 and J2 is complete and d(x,H1) = l − 1 for each x ∈ V (e1).
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Say w.l.o.g. z1 ∈ V (J1) and d(z1, H1) ≤ d(zl, H1). Then d(z1, G1) ≤ (n1 + 1)/2 and so d(z1, G2) ≥ (n2 + 3)/2.
Clearly, G1 − z1 ∈ P1 and G1 − z1 has an x1-zl hamiltonian e1-path. Switching the roles of z1 and x1 in the
above argument, we also obtain X0 = I(x1u,G2 + z1). By Claim 1, {v3, vn2} ⊆ A, a contradiction.

Case 2. H1 ∈ H1.
Let L = u1u2 . . . ulu1 be a hamiltonian cycle of H1 with e1 = u1u2, B = V (L− u1) and a = n2 + 1− |A|. If

a ≥ 3 then N(v1, H2) ⊆ X0 or N(v2, H2) ⊆ X0 by Claim 1. As δ2(G2) ≥ (n2 + 2)/2, it follows that n2 ≥ 6 if
a ≥ 3. We divide this case into the following three subcases.

Subcase 2.1. d∗(P,H1) ≥ l + 2 for all P ∈ P1(H1).
By Lemma 3.7, d(xy,H1) ≥ l + 2 for all x, y ∈ V (H1) with x 6= y and xy 6= e1. By Lemma 3.6, for all

x, y ∈ V (H1) with x 6= y and xy 6= e1, H1 has an x-y e1-hamiltonian path. Since H1 + vi 6∈ H1 for all vi ∈ A,
we see that the following Claim 2 holds:

Claim 2 For each vi ∈ A, if d(vi, H1) ≥ 2 then N(vi, H1) = V (e1). 2

By Claim 2, n2 ≥ (n1 + n2 + 4)/2 − d(vi, H1) ≥ (n1 + n2 + 4)/2 − 2 for all vi ∈ A. Thus n2 ≥ n1. By
Claim 2, d(vi, B) ≤ 1 for all vi ∈ A and so d(A,B) ≤ |A| = n2 + 1 − a. On the other hand, d(A,B) ≥∑

u∈B d(u,A) ≥
∑

u∈B((n1 + n2 + 4)/2 − d(u,H1) − a) ≥ (n1 − 2)((n1 + n2 + 4)/2 − (n1 − 2) − a). Therefore
(n1−2)((n1 +n2 +4)/2− (n1−2)−a)− (n2 +1−a) ≤ 0. Denote the left side of this inequality by f(n1)/2 with
n2 = n− n1. Then f(n1) = −2n21 + (n+ 14− 2a)n1 + (−4n− 18 + 6a) ≤ 0 for 4 ≤ n1 ≤ n/2. As f ′′(n1) < 0,
f(n1) ≥ min{f(4), f(n/2)} = min{6 − 2a, 3n − an − 18 + 6a}. Thus a ≥ 3 for otherwise f(n1) > 0. Thus
N(v1, H2) ⊆ X0 or N(v2, H2) ⊆ X0. Say w.l.o.g. N(v1, H2) ⊆ X0. Then n1−1 ≥ d(v1, H1) ≥ (n1+n2+4)/2−3
which implies that n1 ≥ n2. Let vi ∈ A −X0. Then n2 − 1 ≥ d(vi, H2) ≥ (n1 + n2 + 4)/2 − 2 which implies
that n2 ≥ n1 + 2, a contradiction.

Subcase 2.2. d∗(P,H1) ≥ l + 1 for all P ∈ P1(H1).
By the above subcase, d∗(P,H1) = l+1 for some P ∈ P1(H1). Thus d∗(P,H2) ≥ n1+n2+4−l−1 = n2+4. As

d∗(P, vi) ≤ 1 for all vi ∈ A. Thus d∗(P, v′) = 2 and so v′ 6∈ A for some v′ ∈ {v3, vv2}. It follows that a ≥ 3 and so
n2 ≥ 6. By Claim 1, N(v1, H2) ⊆ X0 and we may assume that vn2 6∈ A. As in the above paragraph, this implies
that n1 ≥ n2. Let z be an arbitrary vertex in A−X0. Then n1− 1 ≥ d(z,H1) ≥ (n1 +n2 + 4)/2− (n2− 1) ≥ 3.
It is easy to see that there exist two distinct vertices u and w on L such that either {u−, w−} ⊆ N(z)
and e1 6∈ {uu−, ww−} or {u+, w+} ⊆ N(z) and e1 6∈ {uu+, ww+}. Say w.l.o.g. {u+, w+} ⊆ N(z) and
e1 6∈ {uu+, ww+}. By Lemma 3.7, d(xy,H1) ≥ l + 1 for all {x, y} ⊆ V (H1) with x 6= y and xy 6= e1. We claim
that d(x,H1) ≥ (l + 1)/2 for all x ∈ V (H1). If this is false, say d(x0, H1) ≤ l/2 for some x0 ∈ V (H1). Then
d(x,H1) ≥ (l+2)/2 for all x ∈ V (H1−x0) with x0x 6= e1 and d(x0, H2) ≥ (n1+n2+4)/2− l/2 ≥ (n2+5)/2 ≥ 5.
Thus d(x0, A −X0) > 0. It is easy to see that in the choices of the vertices u, w and z in the above, we can
choose u, w and z such that x0 6∈ {u,w}. Thus d(uw,H1) ≥ l + 2 and by Lemma 3.6, H1 has a u+-w+

e1-hamiltonian path and so H1 + z ∈ H1, a contradiction. Hence d(x,H1) ≥ (l + 1)/2 for all x ∈ V (H1).
We now apply Lemma 3.6(d) to H1 since H1 does not have a u+-w+ e1-hamiltonian path. First, assume

that H1 has a vertex-cut X with |X| = 3 and V (e1) ⊆ X such that H1 −X = H ′1 ∪H ′′1 where H ′1 and H ′′1 are
isomorphic to K(l−3)/2. Then N(z,H1) = X as H1 + z 6∈ H1. As z is arbitrary in A−X0, N(A−X0, H1) = X.
It follows that d(x,G) ≤ (l + 1)/2 + 4 < (n1 + n2 + 4)/2 for x ∈ V (H1 − X), a contradiction. Therefore
V (H1) has a partition X ∪ Y such that |X| = (l + 1)/2, V (e1) ⊆ X, {u,w} ⊆ Y , and N(y,H1) = X for
all y ∈ Y . Clearly, {u+, w+} ⊆ X. Thus N(z,H1) ⊆ X as H1 + z 6∈ H1. Let y ∈ Y . As d(y,A − X0) ≥
(n1 + n2 + 4)/2 − (l + 1)/2 − 4 > 0, let z′ ∈ N(y,A − X0). With z′ in place of z in this argument, we see
that V (H1) has a partition X ′ ∪ Y ′ such that |X ′| = (l + 1)/2, V (e1) ⊆ X ′, N(y′, H1) = X ′ for all y′ ∈ Y ′
and N(z′, H1) ⊆ X ′. It follows that Y ′ ∩ X 6= ∅ and so Y ′ ⊆ X. Thus |X| ≥ (l + 1)/2 + 1 = (l + 3)/2, a
contradiction.

Subcase 2.3. For some P ∈ P1(H1), d
∗(P,H1) ≤ l.

For each P ∈ P1(H1), as d∗(P,A) ≤ |A|, d∗(P,H1) ≥ n1 + n2 + 4− (n2 + 1 + a) = l+ 4− a ≥ l. Thus a = 4
and by Claim 1, N(v,H2) ⊆ X0 for v ∈ {v1, v2}. As before, it follows that n1 ≥ n2 ≥ 6. Let z be an arbitrary
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vertex in A. Then d(z,H1) ≥ (n1 + n2 + 4)/2− (n2 − 2) ≥ 4.
First, assume that there exists P ∈ P∗1 (H1) such that d∗(P,H1) = l. As H1 + v 6∈ H1 for all v ∈ A, it

follows that d∗(P, v) = 1 for all v ∈ A and d∗(P,X0) = 8. Say P = z1z2 . . . zl with d(z1, P ) ≤ d(zl, P ). Then
d(z1, P ) ≤ l/2, d(z1, H2) ≥ d(n1 + n2 + 4)/2e − bl/2c ≥ 5. Let zc ∈ {z1, zl} and vb ∈ A be such that vbzc ∈ E.
We claim that G2 + zc − vj ∈ H2 for all vj ∈ V (G2) − V (e2). To see this, say G2 + zc − vj 6∈ H2 for some
vj ∈ V (G2) − V (e2). Clearly, vj−1vj+1 6∈ E otherwsie G2 + zl − vj ∈ H2. First assume that vj 6∈ {v3, vn2}.
Then d(vj−1vj+1, G2 − vj) ≥ n2 + 2− 2 = (n2 − 1) + 1. This implies that C − vj has an accessible edge e′ with
e′ 6= e2. Since N(v1v2, G2) ⊆ X0 and d(zc, X0) = 4, it follows that G2 − vj + zc ∈ H2, a contradiction. Hence
vj ∈ {v3, vn2}. Say w.l.o.g. vj = v3. Then P ′ = v4 . . . vbzcv2v1vn2vn2−1 . . . vb+1 is an e2-hamiltonian path of
G2−v3+zc with d(v4vb+1, G2−v3+zc) ≥ n2. As d(v4, e2) = 0, this implies that P ′ has an accessible edge e′′ with
e′′ 6= e2 and so G2− vj + zc ∈ H2, a contradiction. Hence this claim holds. Let H ′1 = G1− zc and H ′2 = G2 + zc.
We claim that H ′1 6∈ P1. To see this, say H ′1 ∈ P1. Then for any Q ∈ P1(H ′1) and v ∈ V (H ′2) − V (e2),
H ′1 + v 6∈ H1 and so d∗(Q, v) ≤ 1. Thus for any Q ∈ P1(H ′1), d∗(Q,H ′2) ≤ n2 + 3 and so d∗(Q,H ′1) ≥ l+ 2. Let
vj ∈ A− {x1}. Then d(vj , H

′
1) ≥ (n1 + n2 + 4)/2− d(vj , G2)− d(vj , zc) ≥ (n1 + n2 + 4)/2− (n2 − 3)− 1 ≥ 4.

By Lemma 3.6 and Lemma 3.7, we see that H ′1 + vj ∈ H1, a contradiction.
Therefore H ′1 6∈ P1. As d(z1, H1) ≤ bl/2c, d(z1, G2) ≥ d(n1+n2+4)/2e−bl/2c−1 ≥ 5. The above argument

implies that H1−z1+x1 6∈ P1 and so x1zl 6∈ E. Thus z1x1 ∈ E and so H1−zl+x1 ∈ P1. Consequently, the above
argument implies that d(zl, G2) = d(zl, X0) = 4. Thus d(x1zl, H1−z1) ≥ n1+n2+4−(n2−2)−4−2 = (l−1)+2.
By Lemma 3.2, H1 − z1 + x1 ∈ P1, a contradiction.

Therefore for each P ∈ P∗1 (H1),d
∗(P,H1) ≥ l+ 1. Recall that L = u1u2 . . . ulu1 is a hamiltonian cycle of H1

with e1 = u1u2. To apply Lemma 3.8, let us first assume that d(ut, H1) ≤ l/2 for some ut ∈ V (L)− V (e1). If
4 ≤ t ≤ l−1, then d(uj , H1) ≥ (l+2)/2 for all 3 ≤ j ≤ l with j 6= t. As d(z,H1) ≥ 4, it is easy to see that there
exist two distinct vertices u and w on L with ut 6∈ {u,w} such that either {u−, w−} ⊆ N(z) and e1 6∈ {u−u,w−w}
or {u+, w+} ⊆ N(z) and e1 6∈ {u+u,w+w}. By Lemma 3.6, we see that H1 + z ∈ H1, a contradiction. Hence
ut ∈ {u3, ul}. By Lemma 3.8, d(uj , H1) ≥ (l + 2)/2 for all 5 ≤ j ≤ l − 1. To avoid the existence of u and w as
above such that H1 + z ∈ H1, we see that N(z,H1) = {u1, u2, u4, ul−1}. As z is an arbitrary vertex in A, we
see that d(ut, A) = 0 and so d(ut, H2) ≤ 5. Thus d(ut, H1) ≥ (n1 + n2 + 4)/2− 5 ≥ (l + 1)/2, a contradiction.

Therefore d(uj , H1) ≥ (l + 1)/2 for all uj ∈ V (H1) − V (e1). As d(z,H1) ≥ 4, there exist two distinct
vertices u and w on C such that either {u−, w−} ⊆ N(z) and e1 6∈ {uu−, ww−} or {u+, w+} ⊆ N(z) and
e1 6∈ {uu+, ww+}. Say w.l.o.g. {u+, w+} ⊆ N(z) and e1 6∈ {uu+, ww+}. We now apply word by word the
argument in the last paragraph of Subcase 2.2 to H1 and H2 and a contradiction follows.

Proof of Lemma 2.4. As P∗2 (G2) = ∅, N(vn2 , G2) ⊆ {vn2−1, vn2−2} and so n1 ≥ d(vn2 , G1) ≥ (n1 + n2 +
4)/2 − d(vn2 , G2). Thus n1 ≥ n2 and if n1 = n2 then N(vn2 , G2) = {vn2−2, vn2−1} and so r ≤ n2 − 2. Since
n2 − 2 ≥ r − 1 ≥ (n2 + 2)/2, we see that n2 ≥ 6 and if r ≤ n2 − 2 then n2 ≥ 8.

On the contrary, say that the lemma fails. Let u0 ∈ V (G1) − V (e1) with d(u0, G1) minimal be such that
G1 − u0 ∈ P1, G2 + u0 ∈ H2 and d(u0, J

∗) > 0. Let vc ∈ J∗ with u0vc ∈ E. As G2 + u0 ∈ H2, we see
that u0vn2 ∈ E if vn2vn2−2 6∈ E and d(u0, vn2vn2−1) ≥ 1 if vn2vn2−2 ∈ E. Thus we may assume w.l.o.g. that
u0vn2 ∈ E. Let B be the set of all the vertices vi in G2 such that G2 − vi + u0 ∈ H2. By Lemma 3.10,
V (J)− {vc, vr} ⊆ B, and if d(u0, J − vr) ≥ 2 then vc ∈ B. Set H = G1 − u0 and l = |H| = n1 − 1. We claim
the following:

Claim A If d(u0, G1) ≤ (n1 + 1)/2 then r ∈ {n2 − 2, n2 − 1} and B = {v1, . . . , vr−1}. Moreover, for each
P ∈ P1(H) we have that d∗(P, vi) ≤ 1 for all 1 ≤ i ≤ r − 1, d∗(P,H) ≥ l and if d∗(P,H) = l then r = n2 − 2,
d∗(P, vn2−2vn2−1vn2) = 6, d∗(P, u0) = 2 and d∗(P, vi) = 1 for all 1 ≤ i ≤ r − 1.

Proof of Claim A. Say d(u0, G1) ≤ (n1 + 1)/2. Then d(u0, G2) ≥ (n2 + 3)/2. As G2 + u0 ∈ H2, for each
y ∈ V (G2)− V (e2), G2 − y + u0 ∈ P2 and so if G1 − u0 + y ∈ P1 then ξ(u0, y) ≤ 0 by Property A. Let y be an
arbitrary vertex of G2 − V (e2). If d(y,G2) ≤ (n2 + 1)/2 then d(y,G1) ≥ (n1 + 3)/2 and so G1 − u0 + y ∈ P1
by Lemma 3.2(a). Consequently, ξ(u0, y) ≤ 0. This implies that d(y,G2) = (n2 + 1)/2 and u0y ∈ E. Therefore
d(y,G2) ≥ (n2 + 1)/2 for all y ∈ V (G2)− V (e2). Consequently, r ∈ {n2− 2, n2− 1}. As d(u0, G2) ≥ (n2 + 3)/2
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and r − 1 ≥ d(n2 + 2)/2e, we see that d(u0, J − vr) ≥ d(n2 + 3)/2e − (n2 − r) − 1 ≥ 3. By Lemma 3.10,
B = {v1, . . . , vr−1}. Let P be an arbitrary path in P1(H). Say u and w are the two endvertices of P . Then
I(uw,G2)∩B = ∅, i.e., d∗(P, vi) ≤ 1 for all i ∈ {1, . . . , r−1}. It follows that d(uw,G2) ≤ n2 + 3 and if equality
holds then r = n2 − 2 and {vn2−2, vn2−1, vn2} = I(uw,G2). Clearly, d(uw,G1) ≥ n1 + n2 + 4− (n2 + 3) = l+ 2
and so d(uw,H) ≥ l. Claim A follows. 2

We now break into two cases here.

Case 1. H 6∈ H1.
Then d∗(P,H) ≤ l by Lemma 3.3 and so d∗(P,G2) ≥ n1 +n2 + 4− l− d∗(P, u0) ≥ n2 + 3 for all P ∈ P1(H).

First, assume that d(u0, H) ≤ (n1 + 1)/2. By Claim A and Lemma 3.3, r = n2 − 2 and for each P ∈ P1(H),
d∗(P,H) = l, σ(e1, P ) 6= 0, d∗(P, {u0, vn2−2, vn2−1, vn2}) = 8, and d∗(P, vi) = 1 for all 1 ≤ i ≤ r − 1. We apply
Lemma 3.5(c) to H. First, assume that V (H) has a partition X ∪ Y such that |X| = l/2, V (e1) ⊆ X and
N(y,H) = X for all y ∈ Y . Then any two distinct vertices in Y can play the role of the two endvertices of
P . Hence d(v1, Y ) ≥ l/2 − 1 ≥ 2 and so H + v1 ∈ H1, a contradiction. Therefore H − V (e1) has exactly two
components H1 and H2 such that both H1 and H2 are complete and d(x,H1 ∪H2) = l− 2 for each x ∈ V (e1).
It follows that V (H1 ∪ H2) ⊆ N(u0). Thus n1 − 3 ≤ d(u0, G1) ≤ (n1 + 1)/2. This implies that n1 ≤ 7. As
mentioned in the beginning paragraph, we have r = n2 − 2 and n1 ≥ n2 ≥ 8, a contradiction.

Therefore d(u0, H) ≥ (n1 + 2)/2. Let P = z1 . . . zl be arbitrary in P1(H) with z1 ∈ S1(H). We claim
d(z1, G1) ≥ (n1 + 2)/2. If this is not true, say d(z1, G1) ≤ (n1 + 1)/2. Then d(z1, G2) ≥ (n2 + 3)/2. Clearly,
d(z1, J) ≥ d(n2 + 3)/2 − (n2 − r)e ≥ 4 as r − 1 ≥ (n2 + 2)/2 and so d(z1, J

∗) > 0. By Lemma 3.2(a),
G1 − z1 = H − z1 + u0 ∈ P1. As d(z1, G1) < d(u0, G1) and by the minimality of d(u0, G1), G2 + z1 6∈ H2, i.e.,
z1vn2 6∈ E and if vn2vn2−2 ∈ E then z1vn2−1 6∈ E. By Lemma 3.2(b), G2 + z1 ∈ P2. If v ∈ S2(G2 + z1) then
d(v,G2+z1) ≥ (n2+3)/2 for otherwise ξ(z1, v) > 0, d(v,G1) ≥ (n1+2)/2 and G1−z1+v ∈ P1 by Lemma 3.2(a),
contradicting (1). Let s be the maximal index such that z1vs ∈ E. Set r′ = max{r, s}. By Lemma 3.9, for all
v ∈ {z1, v1, . . . vr′−1}, d(v,G2 + z1) ≥ (n2 + 3)/2, N(v,G2 + z1) ⊆ {z1, v1, . . . , vr′} and G2 + z1 has a vn2-v e2-
hamiltonian path. Therefore d(v,G2) ≥ (n2+1)/2 for all v ∈ {v1, . . . , vr′−1}. It follows that r′ = r or r′ = r+1.
As d(z1zl, G2) ≥ n2+3, i(z1zl, J+vr′) ≥ 3. As I(z1zl, B) = ∅, we see that I(z1zl, G2) = {vc, vr, vr+1}. It follows
that d(z1zl, H) = l, N(z1zl, G2) = V (G2), d(u0, z1zl) = 2, B = V (J)−{vc, vr} and d(vi, z1zl) = 1 for all vi ∈ B.
This argument implies that for any u-v path in P∗1 (H), d(uv,H) = l because min{d(u,H), d(v,H)} ≤ l/2 and
so min{d(u,G1), d(v,G1)} ≤ (n1 + 1)/2.

We now apply Lemma 3.5(c) to H. First, assume that V (H) has a partition X ∪ Y such that |X| = l/2,
V (e1) ⊆ X and N(y,H) = X for all y ∈ Y . Then any two distinct vertices in Y can play the role of the two
endvertices of P . Hence d(vi, Y ) ≥ l/2− 1 ≥ 2 and so H + vi ∈ H1 for each vi ∈ B, a contradiction. Therefore
H − V (e1) has exactly two components H1 and H2. Say z1 ∈ V (H1) and zl ∈ V (H2). Then z1 can be any
vertex in H1 and zl can be any vertex in H2 for the above argument. Consequently, V (H2) ⊆ N(vn2) and
V (H1 ∪H2) ⊆ N(vc)∩N(u0). Clearly, G1 − x+ vc ∈ H1 for any x ∈ V (H2). Let vd ∈ B −{vc}. If xvd ∈ E for
some x ∈ V (H2) then G2 − vc + x ∈ H2, a contradiction. Therefore d(vd, H2) = 0 and so N(vd, H1) = V (H1).
As d(vd, G1) ≥ (n1 + n2 + 4)/2− (n2 − 2) ≥ 4, |H1| ≥ 2. As V (H1 ∪H2) ⊆ N(u0), we see G1 − zl + vd ∈ H1.
As G2 − vd has a vn2-vc e2-hamiltonian path, G2 − vd + zl ∈ H2, a contradiction.

Therefore d(z1, G1) ≥ (n1 + 2)/2 and so d(z1, H) ≥ (l + 1)/2. Thus δ1(H) ≥ (l + 1)/2. As H 6∈ H1 and by
Lemma 3.3, P∗1 (H) = ∅ and so e1 = zlzl−1. As d(u0, H) ≥ (n1 + 2)/2 and by Lemma 3.2(a), H − z1 + u0 ∈ P1.
As H 6∈ H1, d(z1zl, H) ≤ l−1 by Lemma 3.3. Choose P to be an optimal path at e1 in H. Say t = α(P, z1). By
Lemma 3.9, C = z1z2 . . . ztz1 is an end-cycle at zt in H such that d(zi, C) ≥ (l+1)/2 for all i ∈ {1, 2, . . . , t−1}.
Thus for all i ∈ {1, 2, . . . , t−1}, each zi can play the role of z1 in the above and so d(zi, G1) ≥ (n1+2)/2. Clearly,
d(u0, C − zt) > 0. Say w.l.o.g. u0z1 ∈ E. As P∗1 (H) = 0, N(zl, G1) ⊆ {zl−1, zl−2, u0}. Clearly, d(zl, J − vr) ≥
(n1 +n2 + 4)/2− 3− (n2− r+ 1) > 0. Recall that u0vn2 ∈ E. Therefore if we set G′ = G1−V (e1) +V (e2) and
G′′ = G2−V (e2)+V (e1), then G′ ∈ H2 and G′′ ∈ H1. Recall that if zlzl−2 ∈ E then N(zl−1, G1) ⊆ {zl, zl−2, u0}
as P∗1 (H) = ∅. We readily see that d(e1, G1 − V (e1)) ≤ l, d(e1, G2) ≥ (n1 + n2 + 4) − l − 2 = n2 + 3,
d(e2, G2 − V (e2)) ≤ n2 − 2 and d(e2, G1) ≥ n1 + n2 + 4− (n2 − 2)− 2 = n1 + 4. Thus
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e(G′) + e(G′′) = e(G1)− d(e1, G1 − V (e1)) + d(e1, G2)

+ e(G2)− d(e2, G2 − V (e1)) + d(e2, G1)− 2d(e1, e2)

≥ e(G1) + e(G2) + 10− 2d(e1, e2). (2)

As 10 − 2d(e1, e2) ≥ 2 and by (1), we see that n1 = |G′| 6= n2. As n1 ≥ n2, n1 > n2. As N(zl, G1) ⊆
{zl−2, zl−1, u0}, we obtain that n2 ≥ d(zl, G2) ≥ d(n1 + n2 + 4)/2− d(zl, G1)e = n2. It follows that N(zl, G1) =
{zl−2, zl−1, u0} and d(zl, G2) = n2. As H+vj 6∈ H1 for all vj ∈ B, it follows that zivj 6∈ E for all i ∈ {1, . . . , t−1}
and vj ∈ J − {vc, vr} ⊆ B. Thus d(z1, G1) + d(z1, G2) ≤ t + n2 − r + 2. Let v ∈ J − {vc, vr}. Then
d(v,G1) +d(v,G2) ≤ l− t+ 2 + r−1. Consequently, d(z1) +d(v) ≤ n1 +n2 + 2. But d(z1) +d(z2) ≥ n1 +n2 + 4
as δ(G) ≥ (n1 + n2 + 4)/2, a contradiction.

Case 2. H ∈ H1.
Let C = z1z2 . . . zlz1 be an e1-hamiltonian cycle of H with e1 = z1z2. Let vi ∈ B. With the details stated

in the beginning paragraph, we see that d(vi, H) ≥ d(n1 + n2 + 4)/2e − (r − 1) − d(vi, u0) ≥ 4 and if equality
holds then viu0 ∈ E, r ∈ {n2 − 2, n2 − 1} and d(vi, G2) = r − 1. We divide this case into the following two
subcases.

Subcase 2.1. For each path P ∈ P∗1 (H), d∗(P,H) ≥ l + 1.
First, assume that d(w,C) ≤ l/2 for some w ∈ V (C)−V (e1). If w 6∈ {z3, zl} then d(x,C) ≥ (l+ 2)/2 for all

x ∈ V (C−w)−V (e1) by Lemma 3.8. As d(vi, C) ≥ 4 and H+vi 6∈ H1, we readily see that there exist two distinct
vertices zj and zh in N(vi, C) such that either {z−j , z

−
h } ⊆ V (C)−{z1, z2, w} or {z+j , z

+
h } ⊆ V (C)−{z1, z2, w}.

Consequently, by Lemma 3.6, H has a zj-zh e1-hamiltonian path and so H + vi is hamiltonian, a contradiction.
Therefore d(zj , C) ≥ (l+ 2)/2 for all 4 ≤ j ≤ l− 1. As above, N(vi, C) does not contain two distinct vertices zj
and zh such that either {z−j , z

−
h } ⊆ V (C)− {z1, z2, z3, zl} or {z+j , z

+
h } ⊆ V (C)− {z1, z2, z3, zl}. It follows that

N(vi, C) = {z1, z2, z4, zl−1}. The above argument allows us to conclude that r ∈ {n2 − 2, n2 − 1}, and for all
v ∈ B, N(v,H) = {z1, z2, z4, zl−1}. As V (J)−{vc, vr} ⊆ B, d(w,G2) ≤ 4 and so d(w,C) ≥ (n1+n2+4)/2−5 ≥
(l + 1)/2, a contradiction.

Therefore d(zi, H) ≥ (l + 1)/2 for all i ∈ {3, . . . , l}. As d(vi, H) ≥ 4 and H + vi 6∈ H1, there exist
two distinct vertices u and v in C − V (e1) such that either {u+, v+} ⊆ N(vi) or {u−, v−} ⊆ N(vi). Say
w.l.o.g. {u+, v+} ⊆ N(vi). Then H does not have a u+-v+ e1-hamiltonian path. We apply Lemma 3.6(d)
to H. First, assume that H has a vertex-cut X with V (e1) ⊆ X and |X| = 3 such that H − X has exactly
two components isomorphic to K(l−3)/2 and X ⊆ N(y) for all y ∈ V (C) − X. Obviously, H + vi ∈ H1, a
contradiction. Thus V (H) has a partition X∪Y such that |X| = (l+1)/2, |Y | = (l−1)/2, {u+, v+}∪V (e1) ⊆ X
and N(y,H) = X for all y ∈ Y . As H + vi 6∈ H1, it follows that N(vi, H) ⊆ X. Let y ∈ Y . Then
d(y,G2) ≥ (n1 +n2 +4)/2− (l+1)/2−1 = (n2 +2)/2. Thus d(y,B) > 0. Let vj ∈ N(y,B). With vj in place of
vi in the above argument, we see that V (H) has a partition X ′ and Y ′ such that |X ′| = (l+ 1)/2, V (e1) ⊆ X ′,
N(vj , H) ⊆ X ′ and X ′ = N(y′, H) for all y′ ∈ Y ′. As Y is an independent set, it follows that Y ⊆ X ′ and so
|X ′| ≥ (l − 1)/2 + 2 = (l + 3)/2, a contradiction.

Subcase 2.2. There exists P = z1z2 . . . zl ∈ P∗1 (H) such that d(z1zl, H) ≤ l.
Then d(z1zl, G2) ≥ n1 + n2 + 4− l − d(u0, z1zl) ≥ n2 + 3 and so i(z1zl, G2) ≥ 3. Say d(z1, G1) ≤ d(zl, G1).

Then d(z1, G1) ≤ l/2 + 1 = (n1 + 1)/2. Thus d(z1, G2) ≥ (n2 + 3)/2. As r ≥ δ2(G2) + 1 ≥ (n2 + 2)/2 + 1,
d(z1, J − vr) ≥ d(n2 + 3)/2 − (n2 − r) − 1e ≥ 3. Therefore G2 + z1 has a hamiltonian path from e1 to z1.
We claim that G1 − z1 ∈ P1. If this is not true, then d(u0, P − z1) ≤ (l − 1)/2 by Lemma 3.2(a) and so
d(u0, G1) ≤ (l + 1)/2. By Claim A, it follows that

d(z1zl, H) = l, r = n2 − 2, I(z1zl, G2) = {vn2−2, vn2−1, vn2} and d(u0, z1zl) = 2. (3)

Therefore G1 − z1 ∈ P1. By the minimality of u0, d(u0, G1) ≤ d(z1, G1) ≤ (n1 + 1)/2. Therefore (3) still holds
and d(u0, G1) ≤ (n1+1)/2 in any case. Moreover, d(u0, J) ≥ d(n2+3)/2e−(n2−r) ≥ 4 and so B = V (J)−{vr}
as mentioned in the paragraph above Claim A. As r − 1 ≥ (n2 + 2)/2, n2 ≥ 8.
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We claim that for each {u, v} ⊆ V (J) − {vr} with u 6= v, G2 − {u, v} + {u0, zl} ∈ H2. To see this,
we note that u0vn2vn2−1vn2−2zlu0 is a cycle in G. Moreover, we have that for all x ∈ V (J − {u, v, vr}),
d(x, J − {u, v, vr}) ≥ (n2 + 2)/2− 3 = ((n2 − 5) + 1)/2 and so J − {u, v, vr} is hamiltonian connected. Clearly,
for each y ∈ {u0, zl} d(y, J − {u, v, vr}) ≥ d(n2 + 3)/2e − 5 ≥ 1 as n2 ≥ 8. Thus if G2 − {u, v}+ {u0, zl} 6∈ H2,
then d(y, J − {u, v, vr})) = 1 for each y ∈ {u0, zl}. Consequently, n2 ≤ 9. As δ2(G2) ≥ d(n2 + 2)/2e, it follows
that J is complete and obviously G2 − {u, v}+ {u0, zl} ∈ H2, a contradiction. Hence the claim holds.

Therefore H − zl + u+ v 6∈ H1 for all u, v ∈ V (J − vr) with u 6= v. For each vertex v ∈ V (J − vr), it is easy
to see that uv ∈ E for some u ∈ N(z1, J − vr) since d(z1, G2) ≥ (n2 + 3)/2 and d(v, J) ≥ (n2 + 2)/2. Therefore
d(zl−1, J − vr) = 0 for otherwise H − zl + u+ v ∈ H1 for some v ∈ N(zl−1, J − vr) and u ∈ N(z1, J − vr) with
uv ∈ E. Thus d(zl−1, H − zl) ≥ (n1 + n2 + 4)/2 − 5 = (n1 + n2)/2 − 3. Let uv ∈ E(J − vr) with uz1 ∈ E.
Clearly, d(v,H − zl) ≥ (n1 + n2 + 4)/2− (r− 1)− 2 = (n1 − n2)/2 + 3. Thus d(vzl−1, H − zl) ≥ (l− 1) + 2. By
Lemma 3.2(d), H − zl + v has an e1-hamiltonian path from z1 to v and so H − zl +u+ v ∈ H1, a contradiction.
This proves the lemma.

Proof of Lemma 2.5. Choose v′ ∈ J∗. Then d(v′vn2 , G1) ≥ n1 + n2 + 4 − (n2 − 1) = n1 + 5. Thus
i(v′vn2 , G1) ≥ 5. By Lemma 2.4, G1 − u 6∈ P1 for all u ∈ I(v′vn2 , G1) − V (e1). Therefore G1 6∈ H1. By
Property B, P∗1 (G1) 6= ∅. We claim δ1(G1) ≤ (n1−1)/2. To see this, say δ1(G1) ≥ n1/2. Choose any path from
P∗1 (G1) and then apply Lemma 3.5(c) with this path in G1. As d(vn2 , G1) ≥ (n1 +n2 + 4)/4− 2 = (n1 +n2)/2,
we see that G1 has an x-y e1-hamiltonian path such that y 6∈ V (e1), d(y,G1) = n1/2 and yvn2 ∈ E. As
d(y,G2) ≥ (n2 + 4)/2, d(y, J∗) > 0 and so G2 + y ∈ H2, contradicting Lemma 2.4.

Proof of Lemma 2.6. The statement (a) is evident by the definition of (G2i−1, G2i)(1 ≤ i ≤ k). We show (b)
by contradiction. Say on the contrary that d(v,G2i) ≤ (|G2i| + 3)/2 for some v ∈ S2(G2i) and i ∈ {1, . . . , k}.
Let i be minimal. Then d(v,G2i−1) ≥ (|G2i−1|+1)/2 and so G2i−1 +v ∈ P1 by Lemma 3.2(a). As P∗2 (G2i) = ∅,
P∗2 (G2i − v) = ∅. By the maximality of e(G2(i−1)−1) + e(G2(i−1)), we shall have

e(G2(i−1)−1) + e(G2(i−1)) ≥ e(G2i−1 + v) + e(G2i − v)

≥ e(G2i−1) + e(G2i)− (|G2i|+ 3)/2 + (|G2i−1|+ 1)/2. (4)

Let P = vqvq−1 . . . v1 be an optimal path at e2 = vqvq−1 in G2(i−1), where q = |G2(i−1)|. Say α(P, v1) = r.
As δ2(G2(i−1)) ≥ (|G2(i−1)|+ 4) and P∗2 (G2(i−1)) = ∅, we see that v1v2 . . . vrv1 is an end-cycle at vr in G2(i−1).
As d(wi−1, G2(i−1)) ≥ (|G2(i−1)| + 5)/2 and G2(i−1) + wi−1 6∈ H2, we see that P∗2 (G2(i−1) + wi−1) = ∅. By the
maximality of e(G2i−1) + e(G2i), we shall have

e(G2i−1) + e(G2i) ≥ e(G2(i−1)−1 − wi−1) + e(G2(i−1) + wi−1)

≥ e(G2(i−1)−1) + e(G2(i−1))− (|G2(i−1)−1| − 1)/2 + (|G2(i−1) + 5)/2. (5)

By (4) and (5), we see that e(G2(i−1)−1) + e(G2(i−1)) > e(G2(i−1)−1) + e(G2(i−1)), a contradiction.

Proof of Lemma 2.7. On the contrary, say the claim fails. Let x0 ∈ V (G2k−1) such that G2k−1 − x0 ∈ P1,
G2k + x0 ∈ H2 and d(x0, R

′−{y1, yr−1}) > 0. Let yc ∈ V (R′)−{y1, yr−1} with x0yc ∈ E. Since G2k + x0 ∈ H2

and P∗2 (G2k) = ∅, either x0yt ∈ E or x0yt−1 ∈ E with ytyt−2 ∈ E. Say w.l.o.g. x0yt ∈ E.
Set H = G2k−1 − x0 and p = |H| = s − 1. As s ≥ t and t − 1 ≥ r, for each y ∈ V (R′), d(y,H) ≥

d(s+ t+ 4)/2− (r − 1)− d(y, x0)e ≥ 3.
Assume for the moment that for every P ∈ P1(H), d∗(P,H) ≥ p+ 2 for each P ∈ P1(H). By Lemma 3.3,

H ∈ H1. By Lemma 3.7, d(uv,H) ≥ p + 2 for all u, v ∈ V (H) with u 6= v and {u, v} 6= V (e1). Let yi and yj
be two distinct vertices of R′ − yc such that {yi, yj} 6= {y1, yr−1} and yiyj ∈ E. Let C be an e1-hamiltonian
cycle of H. Then there is an orientation of C such that for some u, v ∈ V (C) with u 6= v and V (e1) 6= {u, v},
we have e1 6∈ {uu+, vv+} and {yiu+, yjv+} ⊆ E. Let y′ ∈ N(yr, R

′ − yc) be such that y′ 6∈ {yi, yj}. By Lemma
3.6, H has a u+-v+ e1-hamiltonian path. Since Theorem B holds for R′, R′ has two disjoint paths P ′′ and P ′

such that |P ′′| = n1− p, |P ′| = r− 1− |P ′′|, P ′′ is from yi to yj and P ′ is from y′ to yc. Thus [H,P ′′] ∈ H1 and
G2k − V (P ′′) + x0 ∈ H2, i.e., G contains two required cycles, a contradiction.
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Therefore d∗(P,H) ≤ p + 1 for some P ∈ P1(H). Say P = z1 . . . zp. First, assume that d(yi, z1zp) > 0
for some yi ∈ V (R′) − {y1, yr−1, yc}. Say w.l.o.g. z1yi ∈ E. Then yizp 6∈ E. If there exists zpyj ∈ E for
some yj ∈ N(yi, R

′) − {yc} then we obtain the two required cycles as above. Therefore zpyj 6∈ E for all yj ∈
N(yi, R

′)−{yc}. Thus d(zp, R) ≤ r−(d(yi, R)−2) and so d(zp, G2k) ≤ t−r+r−(d(yi, R)−2) = t−d(yi, R)+2.
As d(yi, R) ≥ (t+4)/2, d(zp, G2k) ≤ t/2. Therefore d(zp, H) ≥ (s+t+4)/2−t/2−d(zp, x0) ≥ (s+2)/2. Similarly,
if zpy1 ∈ E then z1ya 6∈ E for each ya ∈ N(y1, R

′ − {yr−1, yc}). Consequently, d(z1, R) ≤ r− (d(y1, R)− 3) and
d(z1, G2k) ≤ t − d(y1, R) + 3 ≤ (t + 2)/2. It follows that d(z1, H) ≥ s/2 and so d(z1zp, H) ≥ s + 1 = p + 2, a
contradiction. Therefore zpy1 6∈ E. Similarly, zpyr−1 6∈ E. Thus N(zp, R) ⊆ {yr, yc} and so d(zp, G2k) ≤ t−r+2.
Let yj ∈ N(yi, R

′) − {yc}. Then d(zpyj , G2k) ≤ t − r + 2 + r − 1 = t + 1. Thus d(zpyj , H) ≥ s + t + 4 − (t +
1) − d(x0, zpyj) ≥ p + 2. By Lemma 3.2(d), H + yj has a z1-yj e1-hamiltonian path and so H + yi + yj has a
yi-yj e1-hamiltonian path. As above, we see that G contains two required cycles, a contradiction.

Therefore N(z1, R) ∪N(zp, R) ⊆ {y1, yr−1, yr, yc} and so d(z1zp, G2k) ≤ 2(t− r) + 8. As r ≥ δ2(G2k) + 1 ≥
(t+ 6)/2, we get d(z1zp, G2k) ≤ t+ 2. Therefore p+ 1 ≥ d(z1zp, H) ≥ s+ t+ 4− (t+ 2)− d(x0, z1zp) ≥ p+ 1.
This implies that N(z1, R) = N(zp, R) = {y1, yr−1, yr, yc}, r = (t + 6)/2 and R ∼= K(t+6)/2. It follows that G
contains two required cycles as above.
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[3] J. Bondy and V. Chvátal, a method in graph theory, Discrete Mathematics, 15(1976), 111–135.
[4] Y. Egawa, R. Faudree, E. Gyori, Y. Ishigami, R. Schelp, and H. Wang, Vertex-disjoint cycles containing
specified edges, Graphs and Combinatorics, 16(2000), 81–92.
[5] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50(1984), 227–230.
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