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1 Introduction and terminology

A set of graphs are said to be disjoint if no two of them have any vertex in common. Erdős and Callai [9]

showed that if G is a 2-connected graph of order n and every vertex of G, possibly except one, has degree

at least k, then G contains a cycle of order at least min{n, 2k}. El-Zahar [8] proved that if G is a graph

of order n = n1 + n2 with minimum degree at least �n1/2�+ �n2/2� then G contains two disjoint cycles

of order n1 and n2, respectively. In [13], we showed that if G is a graph of order n � 6 with minimum

degree at least (n + 1)/2 then for any two integers s and t with s � 3, t � 3 and s+ t � n, G contains

two disjoint cycles of order s and t, respectively unless s, t and n are odd and G ∼= K(n−1)/2,(n−1)/2+K1.

We ask the question: given a graph of order at least 2k, when does G have two disjoint cycles of order

at least k? Corrádi and Hajnal [5] proved that a graph G of order at least 3k with δ(G) � 2k contains

k disjoint cycles. In [12], we proved that if G is a graph of order at least rk with δ(G) � (k − 1)r then

G contains r disjoint cycles of order at least k. In terms of the lower bound on the orders of cycles only,

this minimum degree condition might be in general far from being sharp with k � 4. In this paper, we

prove the following theorem:

Main Theorem. Let k be an integer with k � 9 and G a graph of order at least 2k. If the minimum

degree of G is at least k + 1, then G contains two disjoint cycles of order at least k.

For any integer k � 3 and m � 3, K3+mKk−2 has minimum degree k but it does not have two disjoint

cycles of order at least k. In addition, for any odd integer k � 3, Kk,m with m � k has minimum degree

k but it does not have two disjoint cycles of order at least k.

For each integer k � 3, let Gk be the set of all the graphs G of order at least k such that V (G) has

a partition X ∪ Y with |X | = �(k − 2)/2� and NG(y) = X for all y ∈ Y . We use Kn ·Km to denote a

graph of order n+m− 1 obtained from Kn and Km by identifying a vertex of Kn with a vertex of Km.

In order to provide a unified proof, we did not include particular details here to show that the theorem
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is true for k < 9 for otherwise we would add some special lengthy details which would interrupt the flow

of the proof.

Let G be a graph. A path from u to v is called a u-v path. If P is a path of G and v is an endvertex

of P , we use α(P, v) to denote the order of the longest u-v subpath of P with uv ∈ E(G). Clearly, if

α(P, v) � 3 then P + uv has a cycle of order α(P, v). Let w ∈ V (G). Let P = w1w2 · · ·wt be a longest

path starting at w = w1. We say that P is an optimal path at w in G if α(P ′, xt) � α(P,wt) for any

longest path P ′ = x1x2 · · ·xt starting at w = x1 in G. In this case, if P is also a longest path of G, we

say that P is an optimal path of G.

Let x ∈ V (G). Let H be a subset of V (G) or a subgraph of G. We define N(x,H) = {u ∈ NG(x)|u
belongs to H}. Let d(x,H) = |N(x,H)|. If X is a subset of V (G) or a subgraph of G, define N(X,H) =⋃

x N(x,H) and d(X,H) =
∑

x d(x,H), where x runs over X . Clearly, if X and H do not have any

common vertex, then d(X,H) is the number of edges of G between X and H . For x, y ∈ V (G), define

I(xy,H) = N(x,H) ∩N(y,H) and let i(xy,H) = |I(xy,H)|. We use e(G) to denote |E(G)|. The order

of G is denoted by |G|.
If C = x1 · · ·xtx1 is a cycle of G, we assume an orientation of C is given by default such that

x2 is the successor of x1. Then C[xi, xj ] is the xi-xj path on C along the orientation of C. Define

C[xi, xj) = C[xi, xj ] − xj and C(xi, xj ] = C[xi, xj ] − xi. The predecessor and successor of xi on C are

denoted by x−
i and x+

i . We will use similar definitions for a path. We use C�k and Pk to represent a

cycle of order at least k and a path of order k, respectively. We use kG to represent a set of disjoint k

copies of G. In addition, rC�k means that a set of r disjoint cycles of order at least k. If S is a set of

subgraphs of G, we write G ⊇ S.

An endblock of G is a block of G which contains at most one cut-vertex of G. Thus a 2-connected

component of G is an endblock. If each Xi (1 � i � m) is a subset of V (G) or a subgraph of G, then

[X1, . . . , Xm] is the subgraph of G induced by the set of all the vertices belonging to at least one of

X1, . . . , Xm.

A linear forest of G is a subgraph of G such that each component in this subgraph is a path.

We use “h-cycle”, “h-connected” and “h-path” for “hamiltonian cycle”, “hamiltonian connected” and

“hamiltonian path”, respectively.

We use [2] for standard terminology and notation except as indicated above. Readers can refer to

references [1–3, 6, 10, 11] on relevant topics.

2 Main ideas in the proof of Main Theorem

Let k � 9 be an integer and G = (V,E) a graph of order n � 2k with δ(G) � k + 1. By El-Zahar’s

result [8], we see that G ⊇ 2C�k if n � 2k + 1. If G is not 2-connected, we readily see, by observing two

endblocks of G, that G ⊇ 2C�k. Therefore we may assume that n � 2k + 2 and G is 2-connected. On

the contrary, say G 	⊇ 2C�k. By Lemma 3.8, G ⊇ C�2k+2. Therefore G has two subgraphs G1 and G2

such that V (G1) ∩ V (G2) = ∅, V (G1 ∪G2) = V (G), G1 ⊇ Pk−1 with |G1| � k and G2 ⊇ Pk. We choose

G1 and G2 such that

e(G1) + e(G2) is maximum. (1)

Subject to (1), we choose G1 and G2 such that

|G1| is minimum. (2)

We first show that |G1| = k and G2 ⊇ C�k+1. This will be accomplished in Section 4. Thus G1 	⊇ C�k.

Let u0 ∈ V (G1) with d(u0, G1) minimal such that G1 − u0 ⊇ Pk−1. As G1 	⊇ C�k, d(u0, G1) � (k− 1)/2.

Let H1 = G1 − u0 and H2 = G2 + u0. Clearly, e(H1) + e(H2) = e(G1) + e(G2) + d(u0, G2)− d(u0, G1) �
e(G1) + e(G2) + 2.

Then we choose an h-path P = x1 · · ·xk−1 of H1 and a shortest path L = v1 · · · vq of H2 such that

{x1v1, xk−1vq} ⊆ E. Set H = H2−V (L). Thus P ∪L+x1v1+xk−1vq is a cycle of order at least k and so
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H 	⊇ C�k. We carefully choose P and L such that δ(H2) � (k+3)/2, |H | � k+1 and δ(H) � (k− 1)/2.

This will be accomplished in Section 5. Let B1, . . . , Bt be a list of endblocks of H . Ideally, we wish to find

two disjoint paths P ′ and P ′′ in H such that [P, P ′] ⊇ C�k and [L, P ′′] ⊇ C�k. Otherwise we will find a

subset X ⊆ V (H) such that H2−X ⊇ Pk and e(H1+X)+e(H2−X) > e(H1)+e(H2)−2 � e(G1)+e(G2),

contradicting (1). This will be accomplished in Sections 6 and 7. Section 6 proves that t = 2 and

|B1 ∩ B2| = 1. Let V (B1) ∩ V (B2) = {w1}. Section 7 proves that there exists vr ∈ V (L) such that

[x1, v1 · · · vr, B1] ⊇ C�k and [vr+1 · · · vq, P − x1, B2 − w1] ⊇ C�k.

3 Lemmas

Let G = (V,E) be a graph of order n � 3. We will use the following lemmas. Lemma 3.1 is an easy

observation.

Lemma 3.1. Let P be a u-v path of order l in G. Then the following three statements hold:

(a) If x ∈ V (G) − V (P ) and P + x does not contain a u-v path of order < l, then d(x, P ) � 3 and if

equality holds then N(x, P ) contains three consecutive vertices of P .

(b) If xy is an edge of G− V (P ) with d(xy, P ) � 5 and P +x+ y does not contain a u-v path of order

< l, then i(xy, P ) � 1 and if d(xy, P ) = 6 then i(xy, P ) � 2.

(c) If P ′ is an x-y path of order at least r in G−V (P ) such that d(x, P ) > 0, d(y, P ) > 0, d(x, P ) � k−r

and d(y, P ) � k − r − 1, then [P, P ′] contains a cycle of order � k.

Lemma 3.2 (See [8]). Let P = x1x2 · · ·xr be a path of G with r � 2 and y ∈ V (G) − V (P ). If

d(y, P ) � r/2, then P + y has a path P ′ with V (P ′) = V (P ) ∪ {y}. Furthermore, if d(y, P ) > r/2 then

P ′ is an x1-xr path or r is odd and N(y, P ) = {x2i−1 | i = 1, 2, . . . , (r + 1)/2}.
Lemma 3.3 (See [9]). Let C be a cycle of order k in G. Let {x, y} ⊆ V (C) with x 	= y. Suppose that

d(x,C) + d(y, C) � k + 1. Then [C] has a path P from x+ to y+ with V (P ) = V (C).

Lemma 3.4 (See [4, 13]). Suppose that G has an h-path and that for any two endvertices x and y of

an h-path of G, d(x,G) + d(y,G) � n + r holds, where r is a fixed positive integer. Then for any two

distinct vertices u and v of G, d(u,G) + d(v,G) � n + r holds. Moreover, for any linear forest F in G

with e(F ) � r, G has an h-cycle passing through all the edges of F .

Lemma 3.5 (See [7]). Let d � 2 be an integer and let G be a 2-connected graph of order at least 3

such that if d � 3 then the order of G is at least 4. Let x and y be two distinct vertices of G. If every

vertex in V (G) − {x, y}, possibly except one, has degree at least d in G, then G contains an x-y path of

order at least d+ 1.

Lemma 3.6. Let P be a path of order r in G with r < |G|. If G is connected and d(x) � r/2 for each

x ∈ V (G)− V (P ) then G contains a path of order at least r + 1.

Proof. Let Q be a longest u-v path in G−V (P ) with d(u, P ) > 0. It is easy to see that [P,Q] ⊇ Pr+1.

Lemma 3.7 (See [9]). Let P = x1x2 · · ·xt be an optimal path at x1 in G. Let r = α(P, xt). Suppose

that for each v ∈ V (G), if there exists a longest path starting at x1 in G such that the path ends at v

then d(v) > r/2. Then N(xi) ⊆ {xt−r+1, xt−r+2, . . . , xt}, [P ] has an x1-xi h-path and d(xi) > r/2 for

all i ∈ {t− r + 2, t− r + 3, . . . , t}. Moreover, if t > r then xt−r+1 is a cut-vertex of G.

Lemma 3.8 (See [9]). Let h � 2 be an integer. If B is a 2-connected graph such that every vertex,

possibly except one, has degree at least h/2, then B contains a cycle of order at least min(|B|, 2h).
Lemma 3.9. Let k � 5 be an integer. Let B be a 2-connected graph of order at least k. Let w be a

vertex of B. Suppose that B 	⊇ C�k and d(x,B) � (k−1)/2 for all x ∈ V (B)−{w}. Then k is odd and B

has a cycle C of order k−1. Moreover, for some vertex u on C, d(x,C) = (k−1)/2 and N(x,B) ⊆ V (C)

for each x ∈ {u−, u+}. In addition, if w ∈ V (C) then w = u.

Proof. Let P = x1x2 · · ·xt be an optimal path at w = x1. As B has no cut-vertex and by Lemma 3.7,

α(P, xt) = k−1. Say r = t−k+2. Then C = xrxr+1 · · ·xtxr is a cycle of order k−1. As B is 2-connected
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and by the optimality of P , there exists s ∈ {r+2, . . . , t− 1} such that d(xs, B−V (C)) � 1. Let a and b

be the smallest and largest numbers in {r+2, . . . , t− 1}, respectively such that d(xa, B−V (C)) � 1 and

d(xb, B − V (C)) � 1. So N(xi, B) ⊆ V (C) for all i ∈ {r+ 1, r+ 2, . . . , a− 1, b+ 1, b+ 2, . . . , xt}. By the

optimality of P , [C] does not have an xr-xa h-path. By Lemma 3.3, d(xtxa−1, C) � k− 1. Thus k− 1 is

even with d(xt, C) = d(xa−1, C) = (k − 1)/2. Similarly, d(xr+1, C) = d(xb+1, C) = (k − 1)/2. Thus the

lemma holds with u = xr.

Lemma 3.10. Let k � 3 be an integer. Let H be a non-h-graph of order k with H ⊇ Pk−1. Suppose

that d(x,H) � (k − 1)/2 for each x ∈ V (H) with H − x ⊇ Pk−1. Then k is odd and either H ∈ Gk or

H ∼= K(k+1)/2·K(k+1)/2.

Proof. By Lemma 3.2, H ⊇ Pk. First, assume that H has a cycle C of order k − 1. Then d(v, C) �
(k − 1)/2 where {v} = V (H) − V (C). It follows that k is odd and there exists X ⊆ V (C) with

|X | = (k−1)/2 such that no two vertices ofX are consecutive on C andN(v, C) = X . ThenH−u ⊇ Pk−1

and so d(u,H) � (k − 1)/2 for each u ∈ Y = V (H) − X . Thus N(u,H) = X for each u ∈ Y as

H 	⊇ Ck, i.e., H ∈ Gk. If H 	⊇ Ck−1, then by Lemma 3.7, H has a cut-vertex and it follows that

H ∼= K(k+1)/2·K(k+1)/2.

Lemma 3.11. Let k � 10 be an even integer. Let H be a non-h-graph of order k with H ⊇ Pk−1

such that d(x,H) � (k − 2)/2 for each x ∈ V (H) with H − x ⊇ Pk−1. Then one of the following two

statements hold:

(a) H has an h-path and two endblocks X1 and X2 such that V (H) = V (X1 ∪X2) and |X1 ∩X2| � 1.

(b) There is a partition V (H) = X ∪ Y with |X | = (k− 2)/2 and |Y | = (k +2)/2 such that Y has two

vertices u1 and u2 such that N(y,H) = X for all y ∈ Y − {u1, u2} and d(ui, X ∪ {u1, u2}) � (k − 2)/2

for each i ∈ {1, 2}.
Proof. First, assume that H 	⊇ Pk. Let y ∈ V (H) and P = x1 · · ·xk−1 be an h-path of H − y. Applying

Lemma 3.2 to H − x1 − xk−1, we get N(y,H) = {x2, x4, . . . , xk−2}. As H 	⊇ Pk, {y, x1, x3, . . . , xk−1}
is independent. Clearly, for each i ∈ {1, 3, . . . , k − 1}, H − xi ⊇ Pk−1 and so d(xi, H) � (k − 2)/2. It

follows that H ∈ Gk, i.e., (b) holds. Next, assume that H has an h-path. As d(x,H) � (k− 2)/2 for each

endvertex x of an h-path of H , we see that if H has a cut-vertex then (a) holds.

We now assume that H is 2-connected, H ⊇ Pk and H 	∈ Gk. Let P be a u-v h-path of H with α(P, v)

maximal. As H is 2-connected and by Lemma 3.7, α(P, v) � (k − 2). First, assume that H ⊇ Ck−1.

Let C be a cycle of order k − 1. Let x be the vertex not on C. Since k − 1 is odd, d(x,C) � (k − 2)/2

and H 	⊇ Ck, there exists a labelling C = u1u2 · · ·uk−1u1 such that N(x,C) = {u3, u5, . . . , uk−1}. Say

X = N(x,C) and Y ′ = {x, u4, u6, . . . , uk−2}. Since H 	⊇ Ck, Y
′ ∪ {ui} is an independent set of H for

i ∈ {1, 2}. Clearly, each y ∈ Y ′ ∪ {u1, u2} is an endvertex of an h-path of H and so d(y,H) � (k − 2)/2.

Thus (b) holds with Y = Y ′ ∪ {u1, u2}.
Therefore we may assume that α(P, v) = k−2. Say P = x1x2u1u2 · · ·uk−2 with u1uk−2 ∈ E. Let C =

P −x1−x2. As H is 2-connected, either d(x1, C−u1) > 0 or x1u1 ∈ E and d(x2, C−u1) > 0. Say w.l.o.g.

d(x1, C − u1) > 0. Then x1ui 	∈ E for each i ∈ {2, 3, k − 3, k − 2}. As H 	⊇ C�(k−1), d(x,C[u4, uk−4]) �
(k − 6)/2 by Lemma 3.2. As d(x1) � (k − 2)/2, it follows that N(x1) = {x2, u1, u4, u6, . . . , uk−4}.
Let Y = {u5, u7, . . . , uk−5}. As k � 10, Y 	= ∅. Clearly, each y ∈ Y ∪ {x1, x2, u2, u3, uk−3, uk−2}
is an endvertex of an h-path of H . Since H 	⊇ C�(k−1), Y ∪ {ui} is an independent set of H for

each i ∈ {2, 3, k − 3, k − 2} and d(u2u3, uk−3uk−2) = 0. It follows that N(x2, C) = N(x1, C). Thus

d(y,H) � (k − 4)/2 for each y ∈ Y , a contradiction.

Lemma 3.12. Let k � 5 be an integer. Let H be a 2-connected graph of order at least k. Suppose that

H 	⊇ C�k and δ(H) � (k − 1)/2. Then k is odd. Moreover, either H ∈ Gk or H has a vertex-cut {x, y}
such that H − {x, y} has at least three components and each of them is isomorphic to K(k−3)/2.

Proof. Let P be an optimal path of H . Say P is an optimal u-v path at u. By Lemma 3.9, we see that k

is odd and α(P, v) = k − 1. Say P = x1x2 · · ·xtu1u2 · · ·uk−1 with u1uk−1 ∈ E. Let P ′ = u1xtxt−1 · · ·x1

and C = u1u2 · · ·uk−1u1. Then P ′ is a longest path starting at u1 in H − {u2, . . . , uk−1}.
Let us first assume that for each longest path Q starting at u1 inH−{u2, . . . , uk−1}, if Q ends at w then
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d(w,C−u1) = 0. In this situation, we may assume that P ′ is an optimal path at u1 in H−{u2, . . . , uk−1}.
As H is 2-connected and by Lemma 3.7, we see that α(P ′, x1) = k − 1. Hence H − {u2, . . . , uk−1} has a

cycle C ′ of order k− 1. Since H is 2-connected, there exist two disjoint paths from C′ to C. This implies

H ⊇ C�k, a contradiction.

Therefore we may assume w.l.o.g. that d(x1, C − u1) � 1. Say N(x1, C − u1) = {ui1 , . . . , uir} with

1 < i1 < · · · < ir < k − 1. Since H 	⊇ C�k and d(x1, H) � (k − 1)/2, we see that d(x1, H) = (k − 1)/2,

{x2, . . . , xt, u1} ⊆ N(x1, H), i1 = t + 2, k − t − 1 = ir and ij+1 = ij + 2 for 1 � j � r − 1. Let I1 =

{u2, . . . , ut+1}, I2 = {uk−t, . . . , uk−1}, I3 = {ut+2i+1 | i = 1, 2, . . . , (k − 1)/2− t− 1}, I4 = {x1, . . . , xt}.
As H 	⊇ C�k, we readily see that d(Ia, Ib) = 0 for 1 � a < b � 4 and I3 is an independent set. It is easy

to see that each y ∈ I3 ∪ I4 ∪ {u2, uk−1} is an endvertex of an h-path of [P ] which is a longest path of H

and so N(y,H) ⊆ V (P ). As δ(H) � (k − 1)/2. It follows that N(xi, H) = N(x1, H) for i = 1, 2, . . . , t,

N(u2, H) = I1 ∪N(x1, C)−{u2}, N(uk−1, H) = I2 ∪N(x1, C)−{uk−1} and N(ui, H) = N(x1, C) for all

ui ∈ I3. If I3 	= ∅ then t = 1 for otherwise d(ui, H) < (k−1)/2 for each ui ∈ I3. Consequently, N(y,H) =

{u1, u3, . . . , uk−2} for each y ∈ I3 ∪ I4. This argument implies that N(y,H) = {u1, u3, . . . , uk−2} for all

y ∈ V (H) − {u1, u3, . . . , uk−2} and so H ∈ Gk. If I3 = ∅, then t = (k − 3)/2 and i1 = ir = (k + 1)/2.

Thus N(u2, H) = I1 ∪ {u1, u(k+1)/2} − {u2} and so each ui ∈ I1 is an endvertex of an h-path of [P ].

As δ(H) � (k − 1)/2, it follows that N(ui, H) = I1 ∪ {u1, u(k+1)/2} − {ui} for each ui ∈ I1. Similarly,

N(ui, H) = I2 ∪{u1, u(k+1)/2}−{ui} for each ui ∈ I2. Thus the three components of [P ]−{u1, u(k+1)/2}
are isomorphic to K(k−3)/2 and they are components of H − {u1, u(k+1)/2}. This argument implies that

all the other components of H − {u1, u(k+1)/2} are isomorphic to K(k−3)/2, too.

4 Four properties on G1 and G2

Let G1 and G2 be the two subgraphs satisfying (1). We shall show the following four properties.

Property 1. For each x ∈ V (G1) with G1 − x ⊇ Pk−1 ∪ K1, d(x,G1) � (k + 1)/2, and for each

y ∈ V (G2) with G2 − y ⊇ Pk, d(y,G2) � (k + 1)/2. Furthermore, G1 contains at most two components

and G2 is connected. In addition, if G1 has a component of order at least k containing Pk−1 then G1 is

connected.

Proof. By (1), for each x ∈ V (G1) with G1 − x ⊇ Pk−1 ∪K1, e(G1) + e(G2) � e(G1 − x) + e(G2 + x)

which implies d(x,G1) � d(x,G2) and so d(x,G1) � (k + 1)/2. Similarly, for each y ∈ V (G2) with

G2 ⊇ Pk, d(y,G2) � (k + 1)/2. As G is connected, we see that if G1 contains a component C with

G1−V (C) ⊇ Pk−1∪K1 then e(G1−V (C))+e(G2+V (C)) > e(G1)+e(G2), contradicting (1). Therefore

G1 does not have such a component. Similarly, G2 shall not have a component C′ with G2−V (C ′) ⊇ Pk.

This proves Property 1.

Property 2. For each i ∈ {1, 2}, if Gi 	⊇ Ck+1, then |Gi| = k.

Proof. We first show that if G2 	⊇ Ck+1, then |G2| = k. On the contrary, say that G2 	⊇ C�k+1 and

|G2| > k. Let P = x1x2 · · ·xt be an optimal path in G2 with α(P, xt) maximal. By Lemma 3.6, t > k.

Thus for any longest path P ′ in G2, if v is an endvertex of P ′, then G2−v ⊇ Pk and so d(v,G2) � (k+1)/2

by Property 1. Say α(P, xt) = r. Then xtxt−r+1 ∈ E. As G2 	⊇ C�k+1, r � k. SayB1 = {xt−r+2, . . . , xt}.
By Lemma 3.7, N(xi, G2) ⊆ B1 ∪ {xt−r+1} and (k + 1)/2 � d(xi, G2) for all xi ∈ B1. So xt−r+1 is a

cut-vertex of G2. Let L = P −B1. We may assume that L is an optimal path at xt−r+1 in G2 −B1. Say

α(L, x1) = s and B2 = {x1, . . . , xs−1}. Similarly, s � k, N(xi, G2) ⊆ B2 ∪{xs} and (k+1)/2 � d(xi, G2)

for all xi ∈ B2. By the maximality of α(P, xt), s � r. Let s − 1 = a + b such that if t − (s − 1) � k

then a = 0 and if t − (s − 1) < k then a = k − t + (s − 1). Let X = {x1, x2, . . . , xb}. Then X ⊆ B2,

G2 −X ⊇ Pk, d(X,G2 −X) � b(a+ 1) and d(X,G1) �
∑

xi∈X(k + 1− d(xi, G2)) � b(k + 1 − (s − 1)).

This yields

e(G2 −X) + e(G1 +X) � e(G2) + e(G1)− b(a+ 1) + b(k − s+ 2)

= e(G2) + e(G1) + b(k − s− a+ 1) > e(G2) + e(G1),
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contradicting (1). Therefore if G2 	⊇ Ck+1, then |G2| = k.

Next, assume that G1 	⊇ C�k+1 but |G1| > k. Let F be a component of G1 with F ⊇ Pk−1. If

|F | = k− 1, then G1 has another component F ′ and d(x, F ′)�(k + 1)/2 for all x∈V (F ′) by Property 1.

Let B be an endblock of F ′. Then B has a vertex w ∈ V (B) such that N(x, F ′) ⊆ V (B) for all

x ∈ V (B) − {w}. As G1 	⊇ C�k+1 and by Lemma 3.8, |B| � k. Therefore d(x,G2) � 2 for all

x ∈ V (B)−{w}. Thus e(G1−V (B−w))+ e(G2+V (B−w)) > e(G1)+ e(G2), contradicting (1). Hence

|F | � k and so G1 = F by Property 1. By Lemma 3.6 and Property 1, G1 ⊇ Pk+1. Then a contradiction

follows by exchanging the roles of G1 and G2 in the above paragraph.

Subject to (1), we now choose G1 and G2 to satisfy (2). By Property 2, we see that either |G1| = k or

|G2| = k. If |G2| = k, then |G1| > k and G1 ⊇ C�k+1. As G2 ⊇ Pk−1 ∪K1 and G1 ⊇ Pk, we shall have

|G1| = k by (2), a contradiction. Hence |G1| = k and |G2| � n − k � k + 2 and so G2 ⊇ C�k+1. Thus

G2−x ⊇ Pk for all x ∈ V (G2). Subject to (1) and (2), we further choose G1, G2 and a vertex u0 ∈ V (G1)

with G1 − u0 ⊇ Pk−1 such that d(u0, G1) is minimum. If d(u0, G1) � k/2 then G1 has an h-path by

Lemma 3.2 and so d(uv,G1) � k for any u-v h-path of G1. Consequently, G1 ⊇ C�k, a contradiction.

Hence d(u0, G1) � (k − 1)/2.

Property 3. G2 is 2-connected with δ(G2) � (k + 2)/2.

Proof. First, suppose that d(x0, G2) = (k + 1)/2 for some x0 ∈ V (G2). Then d(x0, G1) � (k + 1)/2.

Thus e(G1 + x0)+ e(G2 − x0) � e(G1)+ e(G2) with equality only if d(x0, G1) = (k+1)/2. With G1 + x0

and G2 − x0 in place of G1 and G2, we see that G1 + x0 ⊇ C�k+1 and G2 − x0 ⊇ C�k+1 by Property 2

since |G1 + x0| > k and |G2 − x0| > k, a contradiction. Therefore δ(G2) � (k + 2)/2. Next, suppose

that G2 has a cut-vertex w. Then G2 − w has two subgraphs J1 and J2 such that G2 − w = J1 ∪ J2,

J1 ∩ J2 = ∅ and J2 + w ⊇ C�k+1. Then J1 	⊇ C�k. Let L = v1 · · · vp be a longest path in J1. Say

d(v1, L) � d(vp, L). Then k − 2 � d(v1, L) and d(vi, G1 − u0) � k + 1− 2− d(vi, L) � k − (d(v1, L) + 1)

for i ∈ {1, p}. Since G1 − u0 has an h-path and p � d(v1, L) + 1, it follows that [L,G1 − u0] ⊇ C�k by

Lemma 3.1(c), a contradiction.

Property 4. For each x ∈ V (G2), G1 + x 	⊇ C�k.

Proof. Assume by contradiction that G1 + x0 ⊇ C�k for some x0 ∈ V (G2). Say H = G2 − x0. Then

H 	⊇ C�k and δ(H) � (k + 2)/2 − 1 = k/2. By Lemma 3.8, H is not 2-connected. Let B1 and B2 be

two endblocks of H . Say r = |B1| � s = |B2|. For each i ∈ {1, 2}, let wi be the cut-vertex of H with

wi ∈ V (Bi). Say B′
i = V (Bi)−{wi}(i = 1, 2). By Lemma 3.8, r < k and s < k. By Lemma 3.7, for each

i ∈ {1, 2} and each x ∈ B′
i, Bi has a wi-x h-path. Let P = x1x2 · · ·xt be a longest path ofH with x1 ∈ B′

2

and xt ∈ B′
1. Then B2 = [x1, . . . , xs], B1 = [xt−r+1, . . . , xt], w2 = xs and w1 = xt−r+1. Let r− 1 = a+ b

with a = max{0, k−1− (t−r+1)}. Then [x0, x1, . . . , xt−r+1+a] ⊇ Pk. Let X = {xt−b+1, xt−b+2, . . . , xt}.
Then we have

e(G1 +X) + e(G2 −X)

� e(G1) +
∑

x∈X

(k + 1− d(x,B1 + x0)) + e(G2)−
∑

x∈X

d(x,B1 −X + x0)

� e(G1) + e(G2) + b(k − r + 1)− b(a+ 2) = e(G1) + e(G2) + b(k − r − a− 1).

As k > s � r and t � r+s−1, we see that k−r−a−1 � 0. By (1), it follows that r = s and k = r+a+1.

Furthermore, xx0 ∈ E and d(x,B1) = r− 1 for all x ∈ X . Since each xi ∈ B′
1 can play the role of xt, this

argument implies that B1
∼= Kr and d(x0, B

′
1) = r − 1. Similarly, B2

∼= Kr and d(x0, B
′
2) = r − 1. Thus

G2 −X ⊇ [x0, x1, . . . , xt−r+1+a] ⊇ C�k. Then G1 +X 	⊇ C�k. Since (1) is maintained with G1 +X and

G2 −X in place of G1 and G2, we obtain |G1 +X | = k by Property 2, a contradiction.

5 Properties on G1 − u0 and G2 + u0

For convenience, let H1 = G − u0 and H2 = G2 + u0. We will choose an h-path P = x1 · · ·xk−1 of H1

and a shortest path L = v1 · · · vq in H2 with {x1v1, xk−1vq} ⊆ E. Then we set H = H2 − V (L). The
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following cases tell us how to choose P and L so that the properties on H1, H2 and H allow us to find

2C�k in G or we find that (1) is violated.

As d(u0, G1) � �(k − 1)/2
, d(u0, G2) � �(k + 3)/2�. For x ∈ V (G1) and y ∈ V (G2), we define

ξ(x, y) = d(x,G2) + d(y,G1) − d(x,G1) − d(y,G2) − 2d(x, y). Then e(G1 − x + y) + e(G2 − y + x) =

e(G1) + e(G2) + ξ(x, y). Clearly, G2 − y ⊇ Pk and ξ(x, y) � 2(k + 1)− 2(d(x,G1) + d(y,G2) + d(x, y)).

If G1 − x+ y ⊇ Pk−1 ∪K1 then

ξ(x, y) � 0 and so d(x,G1) + d(y,G2) + d(x, y) � k + 1. (3)

We consider the following cases.

Case 1. G1 is 2-connected and e(u0, G1) = �(k − 1)/2
 = �(k − 2)/2�.
In this case, by Lemmas 3.10 and 3.11, V (G1) has a partition X ∪ Y with |X | = �(k − 1)/2
 and

|Y | = �(k + 2)/2
 such that either N(y,G1) = X for all y ∈ Y , or k is even and [Y ] has an edge u1u2

such that N(y,G1) = X for all y ∈ Y − {u1, u2} and d(ui, G1) � (k − 2)/2 for each i ∈ {1, 2}. Among

all the choices of G1 and G2 satisfying (1) and (2) in Case 1, we may assume that G1 and G2 have been

chosen with e([Y ]) maximal. Thus e([Y ]) � 1 and if equality holds then k is even.

Let L = v1 · · · vq be a shortest path of H2 such that {v1y, vqy′} ⊆ E for some vertices y and y′ of Y
with y 	= y′. Moreover, if e([Y ]) = 1 then {y, y′} ⊆ Y − {u1, u2}. Subject to the above assumption on

G1 and G2, we further choose G1, G2 and L with |L| being minimal. As k � 9, we may choose u0 ∈ Y

such that N(u0, G1) = X and u0 	∈ {y, y′}. Then P = x1 · · ·xk−1 is defined to be an h-path of H1 from

y to y′. Clearly,

d(x1xk−1, H1) = 2�(k − 1)/2
 and so d(x1xk−1, H) � 2(k + 1)− 2�(k − 1)/2
 − 2 � k + 1. (4)

We claim that

δ(H2) � �(k + 3)/2� and d(z, L) = 0 for each z ∈ V (H) with d(z,H2) = �(k + 3)/2�. (5)

Proof of (5). By Property 4, for all z ∈ V (G2), G1 + z 	⊇ C�k and so d(z, Y ) � 1. In particular, q � 2.

Then we see that for each z ∈ V (G2), there is y ∈ Y with d(y,G1) = �(k − 1)/2
 such that zy 	∈ E. By

(3), d(z,G2) � (k+1)− �(k− 1)/2
 = �(k+3)/2�. Hence δ(H2) � �(k+3)/2�. Assume that d(z, L) > 0

and d(z,H2) = �(k + 3)/2� for some z ∈ V (H). Then d(z,H1) � k + 1 − �(k + 3)/2� = �(k − 1)/2
 and

d(z, Y ) � 1. If d(z, Y ) = 1 then z 	= u0, k is even and e([Y ]) = 0 since H1 + z 	⊇ C�k. Furthermore, we

may replace G1 and G2 by H1+ z and H2− z in Case 1 and obtain e([Y ∪{z}−{u0}]) = 1, contradicting

the maximality of e([Y ]). Hence N(z,H1) = X . As d(z, L) > 0, we see that L has a u-v subpath L′ with
|L′| < |L| such that {uz, vz′} ⊆ E for some z′ ∈ {y, y′}, contradicting the minimality of |L| if we replace

G1 and G2 with H1 + z and H2 − z. Therefore d(z, L) = 0.

Case 2. G1 is not 2-connected and d(u0, G1) = �(k − 1)/2
.
Let c0 be a cut-vertex of G1. First, assume that k is odd. By Lemma 3.10, G1 has two complete

subgraphs X1 and X2 of order (k + 1)/2 with V (X1) ∩ V (X2) = {c0}. Let z be an arbitrary vertex

of G2. By Property 4, N(z,G1) ⊆ V (X1) or N(z,G1) ⊆ V (X2). Say w.l.o.g. N(z,G1) ⊆ V (X2). Let

x ∈ V (X1)−{c0}. By (3), d(z,G2) � k+1−d(x,G1) � (k+3)/2. If d(z,G2) = (k+3)/2 then ξ(x, z) � 0

and so ξ(x, z) = 0, i.e., e(G1−x+ z)+ e(G2− z+x) = e(G1)+ e(G2) and d(y,G1−x+ z) = (k−3)/2 for

all y ∈ V (X1 − c0), contradicting the minimality of d(u0, G1). Thus δ(G2) � (k+ 5)/2. Let L = v1 · · · vq
be a shortest path of G2 such that {v1y, vqy′} ⊆ E for some y ∈ V (X1 − c0) and y′ ∈ V (X2 − c0). We

may choose u0 ∈ V (G1)− {y, y′, c0}. Let P = x1 · · ·xk−1 be a y-y′ h-path of H1. By the minimality of

|L|, we conclude that if k is odd then

d(x1xk−1, H1) = k − 2 and so d(x1xk−1, H) � k + 2; (6)

d(u0, H2) � (k + 3)/2, δ(H2 − u0) � (k + 5)/2, u0 	∈ V (L), d(u0, L) � 1

and if d(u0, L) = 1 then d(u0, v1vq) = 1. (7)
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Next, assume that k is even. By Lemma 3.11, G1 has an h-path and two endblocks X1 and X2 with

V (G1) = V (X1∪X2). Say |X1| � |X2|. Then |X1| = k/2 and |X2| � k/2+1. Let ci ∈ V (Xi) be the cut-

vertex of G1 for i ∈ {1, 2}. As d(x,G1) � (k−2)/2 for each endvertex x of an h-path of G1, it follows that

X1
∼= Kk/2. Moreover, we see, by Lemma 3.7, that d(x,X2) � (k−2)/2 for all x ∈ V (X2− c2). As k � 9,

δ(X2−c2) � (k−2)/2−1 > k/4 and soX2−c2 is h-connected by Lemma 3.4. Let z be an arbitrary vertex

of G2. By Property 4, N(z,G1) ⊆ V (X1)∪{c2} or N(z,G1) ⊆ V (X2)∪{c1}. If N(z,G1) 	⊇ V (X1)−{c1},
let x ∈ V (X1) − {c1} with xz 	∈ E, and by (3), we see that d(z,G2) � k + 1 − d(x,G1) � (k + 4)/2.

Moreover, if equality holds then d(z,X2− c2) > 0 and e(G1−x+z)+e(G2−z+x) � e(G1)+e(G2). But

then we see that d(y,G1−x+z) = (k−4)/2 for each y ∈ V (X1)−{x, c1}, contradicting the minimality of

d(u0, G1). Therefore if N(z,G1) 	⊇ V (X1)−{c1} then d(z,G2) � (k+6)/2. If N(z,G1) ⊇ V (X1)−{c1},
then d(z,X2 − c2) = 0 and by (3), d(z,G2) � k+ 1− d(w,G1) � (k+2)/2 where w ∈ V (X2)− {c2}. We

conclude that if k is even then for each x ∈ V (G2),

if N(x,G1) 	⊇ V (X1 − c1) then d(x,G2) � (k + 6)/2; (8)

if N(x,G1) ⊇ V (X1 − c1) then d(x,G2) � (k + 2)/2. (9)

Let L = v1 · · · vq be a shortest path in G2 such that {yv1, y′vq} ⊆ E for some y ∈ V (X1 − c1)

and y′ ∈ V (X2 − c2). In this Case 2 with k even, we further choose G1, G2 and L such that |L| is
minimal. Then we choose u0 ∈ V (X1) − {y, c1}. Let P = x1 · · ·xk−1 be a y-y′ h-path of H1. By (8)

and (9), we see that δ(H2) � (k + 4)/2. Moreover, if d(z,H2) = (k + 4)/2 with z ∈ V (H2), then either

zu0 ∈ E and ξ(u0, z) = 0 or z = u0. Consequently, by the assumption on G1, G2 and L, we see that

if d(z,H2) = (k + 4)/2 with z ∈ V (H), then (1) and (2) are maintained if z and w are exchanged with

w ∈ V (X2)− {c2, y′} and wz 	∈ E, and so d(z, L) � 1 by the minimality of |L|. We conclude that if k is

even then

d(x1xk−1, H1) � k − 2 and so d(x1xk−1, H) � k + 2; (10)

u0 	∈ V (L), d(u0, L) � 1, δ(H2) � (k + 4)/2; (11)

d(x, L) � 1 for each x ∈ V (H) with d(x,H2) = (k + 4)/2. (12)

Case 3. d(u0, G1) � �(k − 1)/2
 − 1 = �(k − 3)/2
.
Then d(u0, G2) � �(k + 5)/2�. Let z be an arbitrary vertex of G2 with d(z,G2) = δ(G2). By (3),

ξ(u0, z) � 0 and so d(z,G2) � �(k + 3)/2�. Moreover, if d(z,G2) = �(k + 3)/2� then u0z ∈ E. Thus

δ(H2) � �(k + 5)/2�.
We claim that H1 is not h-connected. If this is not true, say H1 is h-connected. By Property 4,

d(x,H1) � 1 and so d(x,H2) � k for all x ∈ V (H2). Let R = u1 · · ·uq be a shortest path of H2 such that

{x1u1, x2uq} ⊆ E for some {x1, x2} ⊆ V (H1) with x1 	= x2. Then H1+V (R) ⊇ C�k. Say S = H2−V (L).

Then

|S| �
∑

x∈V (H1)

d(x,H2)− 2 � (k − 1)(k + 1− (k − 2))− 2 > 2k.

By the minimality of |L|, we see that d(x,R) � 2 for each x ∈ N(H1, S). Therefore δ(S) � k − 2. As

S 	⊇ C�k and by Lemma 3.8, we see that each end block is a complete graph of order k − 1. Let B1 and

B2 be two distinct end blocks of S. Let w be a vertex of B2 such that if B2 contains a cut-vertex of S

then w is the vertex. Let {z1, z2} ⊆ V (B2) − {w} with z1 	= z2. Then d(zi, H1 ∪ R) � 3 for i ∈ {1, 2}.
By the minimality of |L|, we readily see that there exists a vertex v ∈ I(z1z2, R). Thus B2 + v ⊇ C�k.

Clearly, [H1 + V (R)− v,B1 − w] ⊇ C�k, a contradiction. Hence H1 is not h-connected.

Let P = x1 · · ·xk−1 be an h-path of H1 with d(x1xk−1, H1) minimal. By Lemma 3.4, d(x1xk−1, H1) �
k − 1. Let L = v1 · · · vq be a shortest path of H2 with {x1v1, xk−1vq} ⊆ E. We conclude:

d(x1xk−1, H1) � k − 1, d(x1xk−1, H) � k + 1 and δ(H2) � (k + 5)/2. (13)
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6 Nine propositions on H

The purpose of this section is to prove that H is connected and has exactly two blocks. By (5), (7),

(11)–(13) and Lemma 3.1(a), we see that δ(H2) � (k + 3)/2 and if x ∈ V (H) then

d(x,H) � d(x,H2)− d(x, L) � (k − 1)/2 with the last equality

only if d(x,H2) = (k + 5)/2 and d(x, L) = 3. (14)

Therefore δ(H) � (k−1)/2. Let L̃ denote the h-cycle P ∪L+x1v1+xk−1vq of [H1, L]. Clearly, |L̃| � k+1

and so H 	⊇ C�k. Let B1, . . . , Bt be a list of endblocks of H . Let wi be any fixed vertex of Bi if Bi

is a component of H . Otherwise let wi be the cut-vertex of H that contained in Bi. Set ri = |Bi| and
B′

i = V (Bi)−{wi}(1 � i � t). As δ(H) � (k−1)/2, ri � (k+1)/2 for all i ∈ {1, 2, . . . , t}. By Lemma 3.8,

for each i ∈ {1, 2, . . . , t}, if ri � k− 1 then Bi is hamiltonian. As δ([B′
i]) � (k − 1)/2− 1 = (k− 3)/2, we

also see that if ri � k − 2 then [B′
i] is hamiltonian and if ri � k − 3 then [B′

i] is h-connected. For each

i ∈ {1, 2, . . . , t}, let B∗
i = {x ∈ V (Bi)|d(x, L) = 3, d(x,Bi) = ri − 1 and d(x,H1) = k − ri − 1}. By the

minimality of |L|,
for each x ∈ V (H) with d(x, L) = 3, N(x, L) is consecutive on L; (15)

for each xy ∈ E(H) with d(xy, L) � 5, N(x, L) ∩N(y, L) 	= ∅; (16)

for each x ∈ N(x1xk−1, H), d(x, L) � 2 and so x 	∈ B∗
i for all 1 � i � t. (17)

Let ε = d(u0, G2)− d(u0, G1). For each X ⊆ V (H2), let ξ(X) = d(X,H1)− d(X,H2 −X). Clearly,

d(X,H1) �
∑

x∈X

(k + 1− d(x,H2)) and so

ξ(X) � (k + 1)|X | − d(X,H2)− d(X,H2 −X) for all X ⊆ V (H2). (18)

If X ⊆ H2, we define ξ(X) = ξ(V (X)). Clearly, ε � �(k + 3)/2� − �(k − 1)/2
 � 2 and e(H1) + e(H2) =

e(G1) + e(G2) + ε. Thus e(H1 +X) + e(H2 −X) = e(G1) + e(G2) + ε+ ξ(X) for all X ⊆ V (H2). By (1)

and Property 2, we obtain

For each ∅ 	= X ⊆ V (H2), if H2 −X ⊇ Pk, then ξ(X) � −2

and in addition if |H1 +X | > k and |H2 −X | > k then ξ(X) < −2. (19)

By (4), (6), (10), (13) and Property 4, we have

|H | � |N(x1xk−1, H)| = d(x1xk−1, H) � k + 1. (20)

By Lemma 3.5, the following Propositions 1 and 2 hold:

Proposition 1. In each Bi, any two vertices of Bi are connected by a path of order at least �(k+1)/2�
and therefore [Bi, Bj , L] ⊇ Pk+1 for all {i, j} ⊆ {1, 2, . . . , t} with i 	= j. Moreover, for any {i, j} ⊆
{1, . . . , t} with i 	= j, if d(B′

i, H1) � 1 and d(B′
j , H1) � 1 then [Bi, Bj , H1] ⊇ Pk+1.

Proposition 2. If Bi and Bj are in the same component of H with i 	= j, then for each x ∈ B′
i and

y ∈ B′
j, H has an x-y path P ′ of order at least k and therefore [Bi, Bj , P

′, L] ⊇ C�k+1. Furthermore, if

d(B′
i, H1) � 1 and d(B′

j , H1) � 1, then [Bi, Bj , P
′, H1] ⊇ C�k+1.

Proposition 3. If ri � k, then [B′
i, H1] ⊇ C�k and [B′

i, L] ⊇ C�k.

Proof. As Bi 	⊇ C�k and by Lemma 3.9, [B′
i] has a path u-v path of order k − 1 such that d(u,Bi) =

d(v,Bi) = (k−1)/2. By (14), d(u, L) = d(v, L) = 3 and so d(u,H1) � (k−3)/2 and d(v,H1) � (k−3)/2.

Thus [B′
i, H1] ⊇ C�k and [B′

i, L] ⊇ C�k.

Proposition 4. For each x ∈ B′
i, d(x,H1) � k−ri−1 and so x ∈ B∗

i if and only if d(x,H1) � k−ri−1.

In addition, if B∗
i ⊇ B′

i then Bi
∼= Kri and if B∗

i ⊇ B′
i − {u} for some u ∈ B′

i then Bi + wiu ∼= Kri .

Proof. For each x ∈ B′
i, d(x,H1) � k + 1 − d(x,Bi) − d(x, L) � k + 1 − (ri − 1) − 3 = k − ri − 1, and

then the proposition follows.
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Proposition 5. Let i ∈ {1, 2, . . . , t}. The following two statements hold:

(a) If a is the minimal number in {1, 2, . . . , q} and b is the maximal number in {1, 2, . . . , q} such that

d(va, B
′
i) � 1 and d(vb, B

′
i) � 1. Then [L̃− {v1, . . . , va}, B′

i] ⊇ C�k and [L̃− {vb, . . . , vq}, B′
i] ⊇ C�k

(b) If [Bi, H1] 	⊇ C�k, then ri � k − 1 and for some u ∈ V (Bi), B
′
i − {u} ⊆ B∗

i and if ri � k − 2

then u = wi. In addition, if Bi is a component of H then |B∗
i | � k − 2 if ri = k − 1 and B∗

i = V (Bi) if

ri � k − 2.

Proof. If ri � k, C�k ⊆ [H1, B
′
i] ⊆ [H1, Bi] by Proposition 3, and so Proposition 5 holds. We now assume

ri � k − 1. Then Bi has an h-cycle C = y1 · · · yriy1 with y1 = wi. Clearly, d(yj , L̃ − {v1, . . . , va}) �
k + 1 − (ri − 1) − 1 = k − (ri − 1) for j ∈ {2, ri}. By Lemma 3.1(c), [B′

i, L̃ − {v1, . . . , va}] ⊇ C�k.

Similarly, [B′
i, L̃ − {vb, . . . , vq}] ⊇ C�k. Thus (a) holds. To show (b), we have that d(y,H1) � k + 1 −

d(y,Bi) − d(y, L) � k − ri − 1 for all y ∈ V (Bi) except possibly y = wi with wi being a cut-vertex of

Bi. By Proposition 4, we see that if (b) fails, d(yc, H1) � k − ri for some yc. As either y1 	= yc−1 or

y1 	= yc+1, say w.l.o.g. that y1 	= yc−1. As [Bi, H1] 	⊇ C�k and by Lemma 3.1(c), we must have that

d(yc−1, H1) = k− ri− 1 = 0 and so yc−1 ∈ B∗
i with ri = k− 1. It follows that for each ys ∈ B′

i−{yc, y1},
Bi has a yc-ys h-path and so d(ys, H1) = 0 as [Bi, H1] 	⊇ C�k and so ys ∈ B∗

i . Thus B∗
i ⊇ B′

i − {yc}. If
Bi is a component, then ys can take on y1 as well. Thus (b) holds.

Proposition 6. Let i ∈ {1, 2, . . . , t}. The following two statements hold:

(a) If [B′
i, H1] 	⊇ C�k and [B′

i, L] 	⊇ C�k, then ri � k − 2 and if ri = k − 2 then Bi
∼= Kk−2 and for

each x ∈ B′
i, d(x,H1) = d(x, L) = 2. Moreover, if ri � k− 3 then either B′

i − {u} ⊆ B∗
i for some u ∈ B′

i

or d(x,H1) � k − ri and so d(x, L) � 2 for all x ∈ B′
i.

(b) If [Bi, H1] 	⊇ C�k and [Bi, L] 	⊇ C�k, then ri � k − 4 and B′
i ⊆ B∗

i .

Proof. By Proposition 3, we may assume ri � k − 1. Then Bi has an h-cycle. We show (a) first. Let

u2 · · ·uri be an h-path of [B′
i] with d(u2, H1) maximal. First, assume that d(u2, H1) � k − ri + 1. As

[B′
i, H1] 	⊇ C�k and by Lemma 3.1(c), d(uri , H1) � k − ri − 1, i.e., uri ∈ B∗

i by Proposition 4. Thus for

each uj ∈ B′
i − {u2}, [B′

i] has a u2-uj h-path and consequently, uj ∈ B∗
i . As [B′

i, L] 	⊇ C�k, this yields

ri � k−3 and so (a) holds. Next, assume d(u2, H1) � k−ri. Then d(u2, L) � k+1−(k−ri)−(ri−1) = 2.

Similarly, d(uri , H1) � k − ri and d(uri , L) � 2. These two inequalities will hold for each x ∈ B′
i if [B

′
i]

is h-connected. Hence (a) holds if ri � k − 3. So assume that ri � k − 2. As [B′
i, L] 	⊇ C�k, it follows

that ri = k − 2 then d(u2, L) = d(uk−2, L) = 2 and so d(u2, Bi) = d(uk−2, Bi) = k − 3. Thus for each

x ∈ B′
i − {u2}, [B′

i] has a u2-x h-path and so d(x,Bi) = k − 3 and d(x, L) = 2, i.e., (a) holds. To prove

(b), we see that ri � k − 2 by (a) as [B′
i] ⊆ Bi. As [Bi, H1] 	⊇ C�k and by Proposition 5(b), B′

i ⊆ B∗
i .

Thus ri � k − 4 as [Bi, L] 	⊇ C�k.

Proposition 7. It holds that t � 2 and the following two statements hold:

(a) For each i ∈ {1, 2, . . . , t}, either [B′
i, H1] 	⊇ C�k or [B′

i, L] 	⊇ C�k and if Bi is a component of H

or d(wi, H − V (Bi)) = 1 then [Bi, H1] 	⊇ C�k or [Bi, L] 	⊇ C�k.

(b) For all i ∈ {1, 2, . . . , t} and v ∈ V (L̃) and uv ∈ E(L̃), we have that ri � k − 1, [L̃− v,B′
i] ⊇ C�k,

[L̃− u− v,Bi] ⊇ C�k and d(B′
i, H1) > 0. Moreover, if q � 2k− 9 then ri � k− 2 for all i ∈ {1, 2, . . . , t}.

Proof. First, we show that t � 2. On the contrary, say t = 1. Then H is 2-connected. Let Y = {x ∈
V (H) | d(x,H) = (k − 1)/2}. By Lemma 3.12, we see that |H | − |Y | = 2 or (k − 1)/2. By (14), we see

that d(x, L) = 3 for all x ∈ Y . By (17), d(x1xk−1, Y ) = 0. By (20), |H | − |Y | � k + 1, a contradiction.

Hence t � 2.

Next, we show (a). With Bi in place of B′
i, the proof of the conclusion with respect to Bi is the same as

(somehow simpler than) the proof of the conclusion with respect to B′
i since we have no concern with wi.

So we provide the proof of the conclusion with respect to B′
i. On the contrary, say [B′

i, H1] ⊇ C�k and

[B′
i, L] ⊇ C�k. Let j ∈ {1, 2, . . . , t} − {i}. Then [Bj , H1] 	⊇C�k and [Bj , L] 	⊇C�k. By Proposition 6(b),

rj � k − 4 and B′
j ⊆ B∗

j . By (17) d(x1xk−1, B
′
j) = 0. If t � 3, let l ∈ {1, 2, . . . , t} − {i, j}. Then we also

have that rl � k − 4 and B′
l ⊆ B∗

l . Thus Bj and Bl are not in the same component of H for otherwise

[H − B′
i, L] ⊇ C�k+1 by Proposition 2. It follows that H has a component F with Bi 	⊆ F such that

only one of Bj and Bl, say Bl, is in F . As [F,L] 	⊇ C�k and by Proposition 2, we see that F = Bl. As
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rl � k − 4, d(x,H1) � k + 1 − (rl − 1) − 3 � 3 for all x ∈ V (Bl) and so ξ(Bl) � 0. By Proposition 1,

H2 − V (Bl) ⊇ Pk+1. By (19), ξ(Bl) � −2, a contradiction. Hence t = 2.

We claim that V (H) = V (B1∪B2). If this is not true, then H must be connected. As δ(H) � (k−1)/2,

H has another block B with |B| � δ(H) + 1 � (k + 1)/2 such that B contains exactly two cut-vertices,

say c1 and c2, of H . As B 	⊇ C�k, we readily see that d(w,B) < k for some w ∈ V (B) − {c1, c2}. Thus

d(w,L) > 0 or d(w,H1) > 0. By Lemma 3.5, w is connected to c2 in B by a path of order at least

(k+1)/2. Let P ′ be a w2-c2 path of H . By Proposition 2, [B,P ′, B2, L] ⊇ C�k or [B,P ′, B2, H1] ⊇ C�k,

and so G ⊇ 2C�k, a contradiction. Hence the claim holds.

Recall that r2 � k − 4, B′
2 ⊆ B∗

2 and d(x1xk−1, B
′
2) = 0. By (20), r1 + 1 � |H − B′

2| � k + 1.

Therefore r1 � k. By Lemma 3.9, B1 has a cycle C = u1 · · ·uk−1u1 such that N(u2uk−1, B1) ⊆ V (C),

d(u2, B1) = d(uk−1, B1) = (k − 1)/2 and w1 	∈ V (C − u1). By (14), d(u2, L) = d(uk−1, L) = 3. Let

z ∈ B′
2. Say N(z, L) = {vs, vs+1, vs+2}. Let va be the first vertex and vb be the last vertex on L such that

d(va, u2uk−1) > 0 and d(vb, u2uk−1) > 0. Clearly, [L[v1, vs], H1, B2] ⊇ C�k. So [C − u1, L[vs+1, vq]] 	⊇
C�k. This implies that a < s. Say w.l.o.g. u2va ∈ E. Similarly, b > s + 1. Then vbuk−1 ∈ E. As

vau2u1uk−1vb is a path and by the minimality of |L|, a = s−1 and b = s+2. Thus [C−u1, L[vs+1, vq]] ⊇
C�k, a contradiction.

To prove (b), we see, by (a) and Proposition 3, that ri � k − 1 for all i ∈ {1, 2, . . . , t}. Thus Bi is

hamiltonian and [B′
i] has an h-path for all i ∈ {1, 2, . . . , t}. As d(x, L̃) � k+ 1− (ri − 1) = k − ri + 2 for

all x ∈ B′
i and i ∈ {1, 2, . . . , t} and by Lemma 3.1(c), [L̃ − v,B′

i] ⊇ C�k and [L̃ − u − v,Bi] ⊇ C�k for

all i ∈ {1, 2, . . . , t}, v ∈ V (L) and uv ∈ E(L̃). If d(B′
i, H1) = 0 for some i ∈ {1, 2, . . . , t}, then B′

i = B∗
i

and ri = k − 1 as δ(G) � k + 1. Thus Bi + v ⊇ C�k for some v ∈ V (L). Consequently, G ⊇ 2C�k as

[L̃− v,B′
j ] ⊇ C�k for j 	= i, a contradiction.

If q � 2k − 9 and ri 	� k − 2 for some i ∈ {1, 2, . . . , t}, let C = u1 · · ·uk−1u1 be an h-cycle of

Bi with wi = u1. As e(C − u1 − u2, L̃) �
∑

3�l�k−1(k + 1 − d(ul, Bi)) � 3(k − 3) � |L̃| + 1. This

implies that there exists v ∈ I(uaub, L̃) 	= ∅ for some 3 � a < b � k − 1. Let j ∈ {1, 2, . . . , t} − {i}.
Since [L̃ − v,B′

j ] ⊇ C�k, Bi + v 	⊇ C�k and so Bi does not have a ua-ub h-path. By Lemma 3.3,

d(ua−1ub−1, C) � k − 1. As δ(H) � (k − 1)/2, it follows that k is odd and d(ua−1, Bi) = d(ub−1, Bi) =

(k − 1)/2. By (14), d(ua−1ub−1, L) = 6. Thus I(ua−1ub−1, L) 	= ∅. Similarly, we obtain d(uaub, Bi) = 6.

Thus I(ua−1ua, L) 	= ∅ and so Bi + v′ ⊇ C�k for some v′ ∈ V (L), a contradiction. This proves (b).

Proposition 8. For each i ∈ {1, 2, . . . , t}, d(wi, H − V (Bi)) � 2. In addition, if t = 2 then w1 = w2.

Proof. On the contrary, say w.l.o.g. that d(wt, H−V (Bt)) � 1 and d(wt, H−V (Bt)) � d(wi, H−V (Bi))

for all Bi. First, assume that t � 3. We claim that for all 1 � i < j � t − 1, Bi and Bj are

not in the same component of H . If this is not true, say for i = 1 and j = 2. Then H − V (Bt)

has an w1-w2 path P ′ with wt 	∈ V (P ′). By Propositions 2 and 7(b), [B1, B2, P
′, L] ⊇ C�k+1 and

[B1, B2, P
′, H1] ⊇ C�k+1. By Proposition 6(b), rt � k − 4 and B′

t ⊆ B∗
t . By (19), ξ(Bt) < −2. As

e(Bt, L) � 3rt, e(Bt, H2 − V (Bt)) � 3rt + 1. By (18), ξ(Bt) � rt(k + 1 − (rt − 1)− 3 − 3)− 2 � −2, a

contradiction.

ThereforeBi is a component ofH for each i ∈ {1, 2, . . . , t−1} since d(wt, H−V (Bt)) � d(wi, H−V (Bi))

for all Bi. Thus Bt is a component of H . As [Bi, Bj , L] ⊇ Pk+1 for all 1 � i < j � k and by (19),

ξ(Bi) < −2 and so ri � k− 3 for all i ∈ {1, 2, . . . , t}. We claim that [Bi, L] 	⊇ C�k for all i ∈ {1, 2, . . . , t}.
If this is false, say w.l.o.g. that [Bt, L] ⊇ C�k. Then [Bi, H1] 	⊇ C�k for all i ∈ {1, 2, . . . , t − 1}. Let

i ∈ {1, 2, . . . , t − 1}. By Proposition 5(b), for all i ∈ {1, 2, . . . , t − 1}, |B∗
i | � k − 2 if ri = k − 1 and

B∗
i = V (Bi) if ri � k − 2. It follows that [B1, L] ⊇ C�k as r1 � k − 3. Similarly, we must have

that [Bt, H1] 	⊇ C�k, |B∗
t | � k − 2 if rt = k − 1 and B∗

t = V (Bt) if rt � k − 2. By Proposition 7(b),

[L̃ − u − v,Bj ] ⊇ C�k and so [uv,Bi] 	⊇ Ck for all uv ∈ E(L) and {i, j} ⊆ {1, 2, . . . , t} with i 	= j. This

implies that ri = k − 3 for all i ∈ {1, 2, . . . , t}. Thus B∗
i = Bi and so d(x1xk−1, Bi) = 0 by (17) for

all i ∈ {1, 2, . . . , t}, i.e., d(x1xk−1, H) = 0, a contradiction. Therefore [Bi, L] 	⊇ C�k for all Bi. Let i

be arbitrary in {1, 2, . . . , t} and u1 · · ·uriu1 be an h-cycle of Bi. As H2 is 2-connected, there are two

independent edges ujv and ulv
′ between Bi and L. As δ(H2) � (k + 3)/2, either d(uj−1, L) � 2 or

d(uj−1, Bi) � (k+1)/2. If the latter holds then d(uj−1ul−1, Bi) � (k+1)/2+(k−1)/2 = (k−1)+1 and
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by Lemma 3.3, Bi has a uj-ul h-path. In either situation, we see that [Bi, L] ⊇ C�ri+2. Thus ri = k − 3

for all i ∈ {1, 2, . . . , t}. Let C be an h-cycle of Bt. As [Bt, L] 	⊇ C�k, d(xx
+, L) � 4 for all x ∈ V (C).

Thus e(Bt, L) � 2rt. By (18), ξ(Bt) > 0, a contradiction.

Therefore t = 2. Then either B1 and B2 are two components of H or H has a sequence D1, . . . , Dm of

blocks with |Dm| = 2 such that a w1-w2 path P ′ passes through D1, . . . , Dm successively. We claim that

there is no Di with |Di| � 3. If this is false, let i be the largest index with |Di| � 3. Let c1 and c2 be the

two cut-vertices of H that are contained in Di with c2 behind c1 on P ′. By Lemma 3.5, each vertex of

Di − c1 is connected to c1 by a path of order at least (k+1)/2 in Di. Consequently, H − V (B2) ⊇ Pk+1.

If r2 � k − 4, then by (18), ξ(B2) � −2, contradicting (19). Hence r2 � k − 3. If d(x,H1) = 0 for all

x ∈ V (Di)−{c1} then d(x,Di) � k− 2 for all x ∈ V (Di)−{c1, c2} and d(c2, Di) � k− 3. As Di 	⊇ C�k,

|Di| � k−1 by Lemma 3.8. It follows that |Di| = k−1, d(D−c1−c2, L) = 3(k−3) and Di+c1c2 ∼= Kk−1.

Then [Di, v] ⊇ C�k for some v ∈ V (L). By Proposition 7(b), [B2, L̃ − v] ⊇ C�k, a contradiction. Hence

d(Di − c1, H1) > 0. As d(B′
1, H1) > 0 by Proposition 7(b), we see that [H − V (B2), H1] ⊇ C�k.

Thus [B2, L] 	⊇ C�k. Then [B2, H1] ⊇ C�k for otherwise r2 � k − 4 by Proposition 6(b). Hence

[H − V (B2), L] 	⊇ C�k. As d(B′
1, L) > 0, it follows that d(Di − c1, L) = 0. As δ(H2) � (k + 3)/2,

d(x,D) � (k + 3)/2 − 1 = (k + 1)/2 for all x ∈ V (Di) − {c1}. As Di 	⊇ C�k and by Lemma 3.8, it

follows that |Di| � k − 1 and so ξ(D − c1) > 0 by (18) . By Proposition 2, [B1, B2, L] ⊇ Pk+1 and so

ξ(D − c1) < −2 by (19), a contradiction. Therefore the claim holds.

As δ(H) � (k− 1)/2, it follows that either m = 1 with w1w2 ∈ E or B1 and B2 are two components of

H . We claim that q � 7. If this is not true, then I(xy,H) = ∅ for each {x, y} ⊆ {x1, xk−1, v3, v6} with

x 	= y by the minimality of q. As δ(H2) � (k + 3)/2, d(vi, H) � (k + 3)/2− 2 for each vi ∈ V (L), we see

that 2(k − 1) � |H | � d(x1xk−1, H) + d(v3v6, H) � k + 1 + (k − 1) � 2k, a contradiction. Hence q � 7.

By Proposition 7(b), r1 � k− 2 and r2 � k− 2. So by Lemma 3.7, for each i ∈ {1, 2} and x ∈ B′
i, Bi has

a wi-x h-path. We shall find X ⊆ V (B2) such that (19) is violated.

Let L′ be a longest u-v subpath of L with d(u,B′
1) > 0 such that if B1 and B2 are two components

of H then d(v,B′
2) > 0. Set q′ = |L′|. Let r2 = a + b with a = max{0, k − r1 − q′}. As q � 2 and H2

is 2-connected, q′ � 2. Let z1 · · · zr2z1 be an h-cycle of B2 such that if w1w2 ∈ E then z1 = w2 and

if w1w2 	∈ E then z1v ∈ E. Clearly, [L′, B1, z1 · · · za] has an h-path P ′ of order r1 + q′ + a � k. Let

X = {za+1, . . . , zr2}. By (19), ξ(X) � −2.

We now divide the remaining proof into two cases.

Case 1. r1 � k − 3 and r2 � k − 3.

By Propositions 6–7, for each i ∈ {1, 2}, either [Bi, H1] ⊇ C�k and [Bi, L] 	⊇ C�k, or [Bi, H1] 	⊇ C�k

and [Bi, L] ⊇ C�k. First, assume that [B1, H1] 	⊇ C�k and [B1, L] ⊇ C�k. Then [B2, H1] 	⊇ C�k. By

Proposition 5(b), for each i ∈ {1, 2}, B′
i ⊆ B∗

i as ri � k − 2. By (17), d(x1xk−1, H) � 2, a contradiction.

Therefore [B1, H1] ⊇ C�k and [B1, L] 	⊇ C�k. Similarly, [B2, H1] ⊇ C�k and [B2, L] 	⊇ C�k. Say w.l.o.g.

r1 � r2.

Let τ = k − 2 − r2. Then τ ∈ {0, 1}. Clearly, 1 � a and if a = 1 then q′ = 2 and r1 = k − 3.

Thus if a = 1 then r1 = r2 = k − 3 and so τ = 1. As [B2, L] 	⊇ C�k, d(zizi+1, L) � 3 + τ for all

i ∈ {1, . . . , r2 − 1}. Thus if b is even, then d(X,L) � b(3 + τ)/2. If b is odd, then d(zr2 , L) � 3 and

d(X,L) � (b− 1)(3+ τ)/2+ d(w1, X)+ 3 � b(3+ τ)/2+ d(w1, X)+ (3− τ)/2. Obviously, d(w1, X) = 0 if

a > 0 and otherwise d(w1, X) � 1. Clearly, d(X,H−X) � ba+d(w1, X). Then d(X,H1) �
∑

z∈X(k+1−
(r2−1)−d(z, L))−d(w1, X) � b(k+1−(r2−1))−b(3+τ)/2−d(w1, X)−θ, where θ = (3−τ)/2 if b is odd

and otherwise θ = 0. Thus −2 � ξ(X) � b(k−r2−1−τ−a)−2d(w1, X)−2θ = b(1−a)−2d(w1, X)−2θ.

As r2 � k − 3 � 6, this implies that a = 1. Thus τ = 1 and −2 � ξ(X) � −2θ = −2. It follows that

d(zr2 , L) = 3. As r1 = r2, this argument implies d(y, L) = 3 for some y ∈ B′
1. Thus q′ = 3, a

contradiction.

Case 2. Either r1 � k − 4 or r2 � k − 4.

For the proof, say r1 � r2 and r2 � k − 4. As d(x1xk−1, H) � k + 1, d(x1xk−1, B
′
2) � 2. As

r1 � (k + 1)/2, a � k − (k + 1)/2 − 2 and so b = r2 − a � 3. Let λ = maxx∈X d(x, L). Then

d(X,H1) �
∑

x∈X(k+1−d(x,H2)) � b(k+2−r2−λ)−d(w1, X) and d(X,H2−X) =
∑

x∈X d(x,H2−X) �
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b(a+ λ) + d(w1, X). Thus ξ(X) � b(k + 2− r2 − a− 2λ)− 2d(w1, X).

First, assume λ � 2. Since ξ(X) � −2, a > 0 and so d(w1, X) = 0. Then ξ(X) � b(k − r2 − a− 2) =

b(r1 − r2 + q′ − 2) � 0, a contradiction.

Therefore λ = 3, i.e., d(x0, L) = 3 for some x0 ∈ X , and so ξ(X) � b(k − r2 − a − 4) − 2d(w1, X).

First, assume that a = 0. By (17), d(x, L) � 2 and so d(x,H1) � k − r2 for each x ∈ N(x1xk−1, B
′
2). It

follows that ξ(X) � b(k − r2 − 4) − 2d(w1, X) + 2d(x1xk−1, B
′
2) > 0, a contradiction. Hence a > 0 and

so d(w1, X) = 0.

Assume r1 = r2. Similarly, d(y0, L) = 3 for some y0 ∈ V (B1) with d(y0, B2) = 0. Thus q′ � 3.

Say w.l.o.g. d(x1xk−1, B2) � d(x1xk−1, B1). Let S = N(x1xk−1, X). As d(x1xk−1, H) � k + 1,

d(x1xk−1, B2) � (k+1)/2 and so |S| � (k+1)/2−a. As b = r2−a, 2|S|−b � k+1−r2−a = q′+1 > 0. Thus

d(X,H2−X) = d(X,H−X)+d(X,L) � ba+2|S|+3(b−|S|) and d(X,H1) � |S|(k−r2)+(b−|S|)(k−r2−1).

Then ξ(X) � b(k − r2 − a− 3) + 2|S| − b � b(q′ − 3) + q′ + 1 > 0, a contradiction.

Therefore r1 > r2. If q
′ � 3 or r1 � r2 +2 then ξ(X) � b(k+2− r2− a− 2λ) = b(r1 − r2 + q′− 4) � 0,

a contradiction. Hence q′ = 2 and r1 = r2 + 1. Say N(x0, L) = {vc, vc+1, vc+2}. As q′ = 2 and H2 is

2-connected, N(B′
1, L) ⊆ {vc+1} and w1w2 ∈ E. Let r1 = d + l with d = k − r2 − 3 and u1u2 · · ·ur1

be an h-path of B1 with u1 = w1. Set Y = {ud+1, . . . , ur1}. Then [L,B2, u1 · · ·ud] ⊇ Pk. Clearly,

ξ(Y ) � l(k − r1 + 1)− l(d+ 1) > 0, a contradiction.

Proposition 9. t = 2.

Proof. On the contrary, say t � 3. First, assume that H is disconnected. By Proposition 8, each

component contains at least two end blocks. Thus ifD1 andD2 are two components then [D1, L] ⊇ C�k+1

by Proposition 2 and [D2, H1] ⊇ C�k+1 by Proposition 2 and Proposition 7(b), a contradiction.

Hence H is connected. Let va and vb be the first two vertices on L such that d(va, B
′
i) > 0 and

d(vb, B
′
j) > 0 for some {i, j} ⊆ {1, 2, . . . , t} with i 	= j. Say d(va, B

′
1) > 0 and d(vb, B

′
2) > 0. Then

[va · · · vb, H − B′
3] ⊇ C�k+1 by Proposition 2. Clearly, d(x, va · · · vb) � 1 for all x ∈ B′

3. Thus d(x, L̃ −
{v1, . . . , vb}) � k − (r3 − 1) for all x ∈ B′

3. As [B′
3] has an h-path, [B′

3, L̃ − {va, . . . , vb}] ⊇ C�k by

Lemma 3.1(c), a contradiction.

7 Proof of Main Theorem

We now have that t = 2, w1 = w2 and ri � k − 1 (i = 1, 2). As δ(G) � k + 1, d(xi, H) � 2 for

i ∈ {1, k− 1}. As d(x1xk−1, H) � k+1, we may assume w.l.o.g. that d(x1, B
′
1) � 1 and d(xk−1, B

′
2) � 1.

As δ(H) � (k − 1)/2, we see that the distance of any two vertices of H is at most 4 in H . Thus q � 5.

By Proposition 7(b), r1 � k− 2 and r2 � k− 2. As δ(H) � (k− 1)/2 and by Lemma 3.7, there is a wi-x

h-path in Bi for each i ∈ {1, 2} and x ∈ B′
i. Set λ = maxx∈B′

2
d(x, L). The proof consists of the following

six claims.

Claim a. For each i ∈ {1, 2}, [B′
i, L] 	⊇ C�k.

Proof. On the contrary, say w.l.o.g. that [B′
1, L] ⊇ C�k. By Proposition 5(b), B′

2 ⊆ B∗
2 . By (17),

d(x1xk−1, B
∗
2 ) = 0. Thus r1 � d(x1xk−1, H) � k + 1, a contradiction.

Claim b. Let {i, j} = {1, 2}. If [Bi, L] ⊇ Pk then rj = k − 2 if maxx∈B′
j
d(x, L) � 2 and rj � k − 4 if

maxx∈B′
j
d(x, L) = 3.

Proof. On the contrary, say w.l.o.g. that [B1, L] ⊇ Pk such that r2 � k − 3 if λ � 2 and r2 � k − 5

if λ = 3. Clearly, d(B′
2, H2 − B′

2) � (r2 − 1)(λ + 1), d(B′
2, H1) � (r2 − 1)(k + 1 − (r2 − 1) − λ). Then

ξ(B′
2) � (r2 − 1)(k + 1− r2 − 2λ) � 0, contradicting (19).

Claim c. For each i ∈ {1, 2}, ri � k − 3.

Proof. On the contrary, say r1 = k − 2. Let u and v be the two end vertices of an arbitrary h-path of

[B′
1]. As [B

′
1, L] 	⊇ C�k by Claim a, d(uv, L) � 4. Moreover, we see that if d(uv, L) = 4 with d(u, L) = 1

then d(u, v1vq) = 0. By (5), (7), (11)–(13), d(uv,B1) � d(uv,H2) − d(uv, L) � k + 1. Consequently,

d(uv,B′
1) � k + 1 − 2 = |B′

1| + 2. By Lemma 3.4, we see that d(xy,B′
1) � |B′

1| + 2 for all {x, y} ⊆ B′
1
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with x 	= y. Let u1 · · ·uk−3u1 be an h-cycle of [B′
1] with d(u1, L) maximal. We break into two cases.

Case 1. Either d(u1, L) = 3 or d(ui, L) � 1 for all i ∈ {2, . . . , r1 − 1}.
Set B′′

1 = B′
1 − {u1}. Since [B′

1, L] 	⊇ C�k and [B′
1] is h-connected, we see that if d(u1, L) = 3 then

d(x, L) � 1 for all x ∈ B′′
1 by Lemma 3.1. In either situation, we have that d(B′′

1 , H2 − B′′
1 ) � 3(k − 4)

and d(B′′
1 , H1) � (k− 4)(k+1− (k− 3)− 1) = 3(k−4). Thus ξ(B′′

1 ) � 0. By (19), [B2, L, u1] 	⊇ Pk. Thus

r2 � k−3. As [B1, L] ⊇ Pk and by Claim b, λ = 3 and r2 � k−4. Moreover, we see that d(u1, L) = 1 and

d(u1, v1vq) = 0 as [B2, L, u1] 	⊇ Pk. Hence d(v1vq, B
′
1) = 0 for otherwise we may choose u ∈ N(v1vq, B

′
1)

to replace u1 in the above argument and a contradiction follows. Thus d(v1vq, B2) � 2δ(H2)− 2 � k+ 1

and so [B2, L] has an h-cycle. Consequently, [B2, L, u1] ⊇ Pk, a contradiction.

Case 2. For some um ∈ B′
1 − {u1}, d(um, L) = d(u1, L) = 2.

Since [B′
1] is h-connected and [B′

1, L] 	⊇ C�k by Claim a, we see that N(B′
1, L) = {vb, vb+1} for some

1 � b � q − 1. Clearly, d(u,H1) � k + 1 − (k − 3)− 2 = 2 for u ∈ {u1, um} and d(ui, H1) � 1 for all ui.

Thus [B1, H1] ⊇ C�k by Lemma 3.1. Say Z = {vb, vb+1}.
First, assume that [B1, Z] ⊇ C�k. Let s and t be the two end vertices of an arbitrary h-path of [B′

2].

Then d(z, L̃ − Z) � k + 1 − (r2 − 1) − 2 = k − 1 − (r2 − 1) for each z ∈ {s, t}. As [B′
2, L̃ − Z] 	⊇ C�k,

it follows that d(s, L̃ − Z) = d(t, L̃ − Z) = k − 1 − (r2 − 1), N(s, L̃ − Z) = N(t, L̃ − Z), Z ⊆ I(st, L),

and d(st, B1) = 2(r2 − 1). Moreover, the vertices of N(s, L̃ − Z) are consecutive on L̃. Thus s and t

can be any two distinct vertices of B′
2 in this argument and so these equalities hold for all {s, t} ⊆ B′

2

with s 	= t. Choose s ∈ N(xk−1, B
′
2) > 0. By the minimality of q, vb+1 = vq. Then we see that

[xr2xr2+1 · · ·xk−1, B2] ⊇ C�k. Since d(x1, B
′
1) > 0 and [B′

1] is h-connected, we see that [x1, L,B
′
1] ⊇ C�k,

a contradiction.

Therefore [B1, Z] 	⊇ C�k. If N(w1, B1) 	= {u1, um} or |N(vbvb+1, B
′
1)| 	= {u1, um}, we can readily

choose two pairs (ui, uj) and (ur, ul) of vertices of B
′
1 such that ui 	= uj, ur 	= ul, |{ui, uj, ur, ul}| � 3,

d(ui, Z) � 1, d(uj , Z) = 2 and {ur, ul} ⊆ N(w1). By Lemma 3.4, [B′
1] + uiuj + urul has an h-cycle

passing through uiuj and urul. Thus [B1, Z] is hamiltonian, a contradiction. Therefore d(ui, L) = 0

for all ui ∈ V (B′
1) − {u1, um} and N(w1, B1) = {u1, um}. Say X = B′

1 − {u1, um}. By (18), ξ(X) �
|X |(k + 1 − (r1 − 2)) − 2|X | > 0. By (19), [L,B2, u1, um] 	⊇ Pk. This implies r2 � k − 5, contradicting

Claim b as [B1, L] ⊇ Pk.

Claim d. |r1 − r2| � 1.

Proof. On the contrary, say w.l.o.g. r1 � r2+2. Then r2 � k−5. Let P = y1 · · · yr2 be an h-path of B2

with y1 = w1 and let P ′ be a longest u-v path on L with d(v,B′
1) � 1. Say q′ = |P ′|. Then q′ � 2. Let

r2 − 1 = a+ b with a = max{0, k − r1 − q′} and X = {yr2−b+1, . . . , yr2}. Then [B1, L
′, y1 · · · ya+1] ⊇ Pk

and ξ(X) � b(k + 1− (r2 − 1)− λ) − b(a+ 1 + λ) = b(k + 1− r2 − a− 2λ). By (19), ξ(X) � −2. Thus

a > 0 and so a = k − r1 − q′. Hence k + 1 − r2 − a − 2λ = r1 − r2 + 1 + q′ − 2λ. It follows that λ = 3,

q′ = 2 and r1 = r2 + 2. As q′ = 2, we obtain that q = 3 and N(B′
1) = {v2}.

As r2 � (k + 1)/2, b = r2 − 1− a = q′ + r1 + r2 − 1− k � 4. Assume that d(x, L) = 3 for at most two

vertices x ∈ X . Then ξ(X) � (b− 2)(r1 − r2 + 1+ q′ − 4) + 2(r1 − r2 + 1 + q′ − 6) � 0, a contradiction.

Therefore there exist two vertices z1 and z2 in X such that d(z1z2, L) = 6 and d(w1, B
′
2 − {z1, z2}) � 1.

Clearly, [z1, L̃−v2] ⊇ C�k and δ([B′
2−{z1}]) � (k−1)/2−2 = (k−5)/2. As |B′

2|−1 � (k−5)−1 and by

Lemma 3.4, [B′
2 −{z1}] is h-connected and it follows that [B1, B2 −{z1}, v2] ⊇ C�k, a contradiction.

Let v0 = x1 and vq+1 = xk−1. Set L∗ = v0Lvq+1. By (5), (7), (11)–(13) and (17), for each x ∈
N(x1xk−1, H − w1), d(x,H) � (k + 1)/2. Thus r1 � (k + 3)/2 and r2 � (k + 3)/2.

Claim e. There exists vm on L such that N(B′
1, L

∗)⊆{v0, v1, . . . , vm} and N(B′
2, L

∗)⊆{vm, . . . , vq+1}.
Proof. On the contrary, say that the claim is false. Since d(v0, B

′
1) > 0, d(vq+1, B

′
2) > 0, d(B′

1, L) >

0 and d(B′
2, L) > 0, we see that there exists vc ∈ V (L) such that either d(L[v1, vc], B

′
2) � 1 and

d(L∗[vc+1, vq+1], B
′
1) � 1 or d(L∗[v0, vc−1], B

′
2) � 1 and d(L[vc, vq], B

′
1) � 1. Say that d(L[v1, vc], B

′
2) � 1

and d(L∗[vc+1, vq+1], B
′
1) � 1. Choose vc with c maximal. Then d(B′

1, L
∗(vc+1, vq+1]) = 0 and so

N(B′
1, L

∗) ⊆ V (L∗[v0, vc+1]) with d(vc+1, B
′
1) > 0. Note that if d(xk−1, B

′
1) > 0 then vc+1 = vq+1 = xk−1.

Let {z1, z2} ⊆ B′
1 with {z1x1, z2vc+1} ⊆ E. Since d(x1xk−1, H) � k + 1, i(x1xk−1, H) = 0 and



Wang H Sci China Math October 2013 Vol. 56 No. 10 1997

r2 � k − 3, we get that d(x1xk−1, B
′
1) � 4. Thus we may choose z1 and z2 such that z1 	= z2 and

d(w1, B
′
1 − {z1, z2}) � 1. Subject to this, we choose z1 and z2 with the distance between z1 and z2

minimized in [B′
1]. If z1z2 	∈ E, then i(z1z2, B1) � 2δ(H)− (r1− 2) � (k− 1)− (k− 5) = 4 and we choose

z0 ∈ I(z1z2, B
′
1) such that d(w1, B

′
1 − {z1, z2, z0}) � 1. For convenience, we define z0 = z2 if z1z2 ∈ E.

Then [H1, L
∗[vc+1, vq+1], z1z2z0] ⊇ C�k and so F 	⊇ C�k, where F = [B1 −{z1, z2, z0}, L[v1, vc], B2]. Let

B′′
1 = B1 − {z1, z2, z0} and M = u1 · · ·ut an arbitrary longest path at w1 = u1 in B′′

1 . By (14), we see

that for each x ∈ V (B′′
1 )− {u1}, d(x,B′′

1 ) � d(x,H2)− d(x, L)− d(x, z1z0z2) � (k − 7)/2 and if equality

holds then d(x,H2) = (k + 5)/2, d(x, L) = 3 and d(x, z1z0z2) = 3. Thus t � (k − 7)/2 + 1 = (k − 5)/2.

First, assume that utvi ∈ E for some vi ∈ {v1, . . . , vc}. Let vj ∈ {v1, . . . , vc} and z ∈ B′
2 with vjz ∈ E.

Choose vi and vj with |j − i| maximal. Let P ′ be a w1-z h-path of B2. Then [M,P ′, L[v1, vc]] has a

cycle C with |C| � r2 + t+ |j − i|. Since k − 1 � |C|, r2 � (k + 3)/2 and t � (k − 5)/2, we obtain that

k − 1 � |C| � (k − 5)/2 + (k + 3)/2 + |j − i| = k − 1 + |j − i|. Thus i = j, r2 = (k + 3)/2, t = (k − 5)/2

and d(ut, B
′′
1 ) = (k − 7)/2. Consequently, d(ut, L) = 3 and d(ut, L[v1, vc]) � 2. Thus |i − j| � 1, a

contradiction.

We conclude that d(ut, L[v1, vc]) = 0. Thus N(ut, L) ⊆ {vc+1}. As r1 � k − 3 and by (5), (7),

(11)–(13), we see that d(ut,M) � �(k+3)/2�−d(ut, vc+1)−d(ut, z1z2z0) � �(k+1−2s)/2� � (|B′′
1 |+1)/2

where s = |{z1, z2, z0}| and |B′′
1 | = r1 − s. Let M be optimal at w1 in [B′′

1 ] and set r = α(N, ut),

D = [ut−r+1, . . . , ut] andD′ = V (D)−{ut−r+1}. By Lemma 3.7, for each ui ∈ D′, d(ui, D) � (|B′′
1 |+1)/2,

N(ui, B
′′
1 ) ⊆ V (D) and [M ] has a u1-ui h-path. This argument implies that N(D′, L) ⊆ {vc+1}. Since

k − 3 � r1 and δ(H) � (k − 1)/2, d(x,D′) � 1 for all x ∈ V (B′
1). Thus B′′

1 − {u1} ⊆ V (D) and

r ∈ {t− 1, t}.
By (5), (7), (11)–(13), D′ contains a vertex x with d(x,H) � (k + 4)/2 − 1 = (k + 2)/2 and so

r � d(x,D) + 1 � (k + 2)/2− d(x, z1z0z2) + 1 � (k − 2)/2.

Suppose that d(z1z2z0, L) � 1. Let L′ be a longest path starting at ut−r+1 in

[ut−r+1ut−r · · ·u1, B2, L, z1z2, z0].

As d(L[v1, vc], B
′
2) > 0, we see that |L′| = r2 + σ with σ � 3 and if σ = 3 then t = r, vc+1 = vq+1 = xk−1

and N(B′
2 ∪ {z1, z0, z2}) = {vl} for some l ∈ {1, . . . , c}. Let r − 1 = a + b with a = max{0, k − r2 − σ}

and Y = {ut−b+1, . . . , ut}. Then [L′, ut−r+2 · · ·ut−r+a+1} ⊇ Pk. As r � (k − 2)/2 and r2 � (k + 3)/2,

we see that Y 	= ∅.
Let y ∈ Y . Clearly, d(y,B1 ∪ L − Y ) � a + 1 + d(y, vc+1z1z2z0) and d(y,H1) � k + 1 − (r −

1) − d(y, vc+1z1z2z0). If |{z0, z1, z2}| = 3, then by the minimality of the distance between z1 and z2,

d(y, z1vc+1) � 1. Thus ξ(Y ) �
∑

y∈Y (k+1−r−a−2d(y, vc+1z1z2z0)) � b(k+1−r−a−6) = b(k−r−a−5).

By (19), ξ(Y ) � −2. As r � r1−|{z0, z1, z2}| � k−5, we see that a > 0 and so a = k− r2−σ. Therefore

k− r− a− 5 = r2 + σ− r− 5. As |r1 − r2| � 1 by Claim d, we obtain that r2 + σ− r− 5 � 0 implies that

σ = 3 and |{z1, z0, z2}| = 2. Thus vc+1 = vq+1 = xk−1. As N(D′, L∗) ⊆ {vc+1}, we obtain d(Y, L) = 0.

Thus ξ(Y ) � b(k − r − a− 3) = b(r2 − r + σ − 3) � 0, a contradiction.

Therefore d(z1z0z2, L) = 0. Let r1 − 1 = d + l with d = k − r2 − 2 and Z = {ud+2, . . . , ut}. Then

[L,B2, u1u2 · · ·ud+1] ⊇ Pk. As r ∈ {t − 1, t}, {u2, . . . , ut} ⊆ V (D). Set Z ′ = Z ∪ {z1, z0, z2}. Since

N(D′, L) ⊆ {vc+1}, we see that d(Z ′, H2 − Z) � l(d+ 2) and d(Z ′, H1) � l(k + 1 − (r1 − 1)− 1). Thus

ξ(Z ′) � l(k − r1 − d− 1) � 0 as r1 � r2 + 1, a contradiction.

By Claim e, for some vm ∈ V (L), N(B′
1, L

∗) ⊆ {v0, v1, . . . , vm} and N(B′
2, L

∗) ⊆ {vm, . . . , vq, vq+1}.
In particular, d(v1, B

′
1) > 0 and d(vq, B

′
2) > 0. Let μ = maxx∈B′

1
d(x, L). Recall λ = maxx∈B′

2
d(x, L).

Thus q � μ+ λ− 1.

Claim f. μ = 3 and λ = 3.

Proof. On the contrary, say that it is false. Say w.l.o.g. that r1 � r2. First, assume λ � 2. Let u1 · · ·ur2

be an h-path ofB2 with u1 = w1. Let r2−1 = a+b with a = max{0, k−r1−q} andX = {ur2−b+1, . . . , ur2}.
Then [L,B1, u1 · · ·ua+1] ⊇ Pk, d(X,H2 − X) � b(a + 1 + λ) and d(X,H1) � b(k + 1 − (r2 − 1) − λ).

Thus ξ(X) � b(k + 1 − r2 − a − 2λ). As ξ(X) � −2 by (19) and r2 � k − 3, we see that a > 0 and so
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a = k− r1− q. Thus ξ(X) � b(r1− r2+ q+1−2λ). It follows that r1 = r2, q = 2 and λ = 2. Exchanging

the roles of B1 and B2 in the above argument, we see that μ 	< 2. Thus q � 3, a contradiction.

Therefore λ = 3 and so μ � 2. By the above argument, we see that r1 	�r2. So r1=r2 + 1 by Claim d.

Let y1 · · · yr1 be an h-path of B1 with y1 = w1. Let r1 − 1 = c + l with c = max{0, k − r2 − q} and

Y = {yr1−l+1, . . . , yr1}. Then [L,B2, y1 · · · yc+1] ⊇ Pk and −2 � ξ(Y ) � l(k + 1 − r1 − c − 2μ). Thus

c > 0 and so c = k− r2− q � k− r2− (μ+3−1). Then ξ(Y ) � l(r2− r1+3−μ) � 0, a contradiction.

By Claim f, q � 5. We claim that ri � k − 4 (i = 1, 2). If this is not true, say r1 � r2 and

r2 � k − 5. Let u1 · · ·ur2 be an h-path with u1 = w1 Let r2 − 1 = a+ b with a = max{0, k− r1 − 5} and

X = {ur2−b+1, . . . , ur2}. Then [L,B1, u1 · · ·ua+1] ⊇ Pk and ξ(X) � b(k+1− (r2−1)−λ)−b(a+1+λ) =

b(k− r2−a−5) � 0. By (19), ξ(X) � −2, a contradiction. Hence ri � k−4 (i = 1, 2). Let r be maximal

with vrz ∈ E for some z ∈ B′
1. Clearly, d(x, L̃−{v0, . . . , vr}) � k+1− (r2 − 1)− 1 = k− (r2 − 1) for all

x ∈ B′
2. By Lemma 3.1(c), [B′

1, L̃−{v0, . . . , vr}] ⊇ C�k. As d(x1xk−1, B
′
1) � k+1−r2 � 4, d(x1, B

′
1) � 4.

We can choose an h-cycle C of B1 and a vertex y ∈ B′
1 such that {yx1, zvr} and w1 	∈ {y−, z−}. Since

δ(H) � (k − 1)/2 and by Lemma 3.3, B1 has a y-z h-path and so [B1, x1v1 · · · vr] ⊇ C�k. This proves

Main Theorem.
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