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1 Introduction and terminology

A set of graphs are said to be disjoint if no two of them have any vertex in common. Erdés and Callai [9]
showed that if G is a 2-connected graph of order n and every vertex of GG, possibly except one, has degree
at least k, then G contains a cycle of order at least min{n, 2k}. El-Zahar [8] proved that if G is a graph
of order n = ny + no with minimum degree at least [ny/2] + [n2/2] then G contains two disjoint cycles
of order ny and na, respectively. In [13], we showed that if G is a graph of order n > 6 with minimum
degree at least (n 4 1)/2 then for any two integers s and ¢ with s > 3, ¢ > 3 and s +t < n, G contains
two disjoint cycles of order s and ¢, respectively unless s, ¢ and n are odd and G = K(,,_1)/2,(n—1)/2 + K1.
We ask the question: given a graph of order at least 2k, when does G have two disjoint cycles of order
at least k7 Corrddi and Hajnal [5] proved that a graph G of order at least 3k with §(G) > 2k contains
k disjoint cycles. In [12], we proved that if G is a graph of order at least rk with 6(G) > (k — 1)r then
G contains r disjoint cycles of order at least k. In terms of the lower bound on the orders of cycles only,
this minimum degree condition might be in general far from being sharp with & > 4. In this paper, we
prove the following theorem:

Main Theorem. Let k be an integer with k > 9 and G a graph of order at least 2k. If the minimum
degree of G is at least k 4+ 1, then G contains two disjoint cycles of order at least k.

For any integer k > 3 and m > 3, K3+ mKj_o has minimum degree k but it does not have two disjoint
cycles of order at least k. In addition, for any odd integer k > 3, K ,,, with m > k£ has minimum degree
k but it does not have two disjoint cycles of order at least k.

For each integer k > 3, let Gy be the set of all the graphs G of order at least k such that V(G) has
a partition X UY with |X| = [(k — 2)/2] and Ng(y) = X for all y € Y. We use K,, - K,, to denote a
graph of order n + m — 1 obtained from K, and K,, by identifying a vertex of K,, with a vertex of K,,.
In order to provide a unified proof, we did not include particular details here to show that the theorem
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is true for k£ < 9 for otherwise we would add some special lengthy details which would interrupt the flow
of the proof.

Let G be a graph. A path from u to v is called a u-v path. If P is a path of G and v is an endvertex
of P, we use a(P,v) to denote the order of the longest u-v subpath of P with uwv € E(G). Clearly, if
a(P,v) > 3 then P + uv has a cycle of order a(P,v). Let w € V(G). Let P = wiwsy---w; be a longest
path starting at w = w;. We say that P is an optimal path at w in G if o(P’,z;) < a(P,w;) for any
longest path P’ = zyx9 - - ¢ starting at w = x; in G. In this case, if P is also a longest path of G, we
say that P is an optimal path of G.

Let x € V(G). Let H be a subset of V(G) or a subgraph of G. We define N(z, H) = {u € Ng(z)|u
belongs to H}. Let d(x, H) = |N(z, H)|. If X is a subset of V/(G) or a subgraph of G, define N(X,H) =
U, N(z,H) and d(X,H) = ) d(x,H), where x runs over X. Clearly, if X and H do not have any
common vertex, then d(X, H) is the number of edges of G between X and H. For z,y € V(G), define
I(xy,H) = N(x, H) N N(y, H) and let i(zy, H) = |I(xy, H)|. We use e(G) to denote |E(G)|. The order
of G is denoted by |G].

If C = x1---x¢x1 is a cycle of G, we assume an orientation of C is given by default such that
xo is the successor of z1. Then C[xz;,z;| is the z;-z; path on C along the orientation of C. Define
Clzi,z;) = Clay, xj] — x; and C(z;, ;] = Clz;,z;] — ;. The predecessor and successor of ; on C are
denoted by z; and a::r We will use similar definitions for a path. We use C> and Py to represent a
cycle of order at least k and a path of order k, respectively. We use kG to represent a set of disjoint k
copies of G. In addition, rC>j means that a set of r disjoint cycles of order at least k. If S is a set of
subgraphs of G, we write G 2 S.

An endblock of G is a block of G which contains at most one cut-vertex of G. Thus a 2-connected
component of G is an endblock. If each X; (1 < i < m) is a subset of V(G) or a subgraph of G, then
[X1,...,Xm] is the subgraph of G induced by the set of all the vertices belonging to at least one of
X1, Xom.

A linear forest of GG is a subgraph of G such that each component in this subgraph is a path.

We use “h-cycle”, “h-connected” and “h-path” for “hamiltonian cycle”, “hamiltonian connected” and
“hamiltonian path”, respectively.

We use [2] for standard terminology and notation except as indicated above. Readers can refer to
references [1-3,6, 10, 11] on relevant topics.

2 Main ideas in the proof of Main Theorem

Let £ > 9 be an integer and G = (V, E) a graph of order n > 2k with §(G) > k + 1. By El-Zahar’s
result [8], we see that G D 2C5y, if n < 2k + 1. If G is not 2-connected, we readily see, by observing two
endblocks of G, that G D 2Csy. Therefore we may assume that n > 2k + 2 and G is 2-connected. On
the contrary, say G 2 2C>j. By Lemma 3.8, G O Csopy2. Therefore G has two subgraphs G and G»
such that V(G1) NV(G2) =0, V(G1 UG2) = V(G), G1 D Py—1 with |G1| = k and G2 2 P,. We choose
G and G9 such that

e(G1) + e(G2) is maximum. (1)
Subject to (1), we choose Gy and G such that
|G1] is minimum. (2)

We first show that |G| = k and G2 D Csp41. This will be accomplished in Section 4. Thus G 2 Csy.
Let up € V(G1) with d(ug, G1) minimal such that G1 —ug O Py_1. As G1 2 Csp, d(uo, G1) < (k—1)/2.
Let Hy = G1 — ug and Hy = G + ug. Clearly, G(Hl) + G(HQ) = G(Gl) + e(Gg) + d(’u,o, GQ) — d(uo, Gl) >
G(Gl) + e(Gg) + 2.

Then we choose an h-path P = z1---x_1 of H; and a shortest path L = vy ---v, of Hy such that
{z1v1, 28104} C E. Set H = Hy—V(L). Thus PUL+x1v1 +x,_174 is a cycle of order at least &k and so
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H 2 Csy. We carefully choose P and L such that §(Hsz) > (k+3)/2, |[H| > k+1 and §(H) > (k—1)/2.
This will be accomplished in Section 5. Let By, ..., B; be a list of endblocks of H. Ideally, we wish to find
two disjoint paths P’ and P” in H such that [P, P'] D Csy and [L, P"] O Cs). Otherwise we will find a
subset X C V(H) such that Ho—X D Py and e(H1+X)+e(Ho—X) > e(Hy)+e(Hz)—2 > e(G1)+e(G2),
contradicting (1). This will be accomplished in Sections 6 and 7. Section 6 proves that ¢ = 2 and
|B1 N Byl = 1. Let V(By) N V(By) = {wy}. Section 7 proves that there exists v, € V(L) such that
[z1,v1 - vp, B1] 2 Cs and [vp41 -+ - vg, P — 21, By — w1] 2 Cp.

3 Lemmas

Let G = (V,E) be a graph of order n > 3. We will use the following lemmas. Lemma 3.1 is an easy
observation.

Lemma 3.1.  Let P be a u-v path of order l in G. Then the following three statements hold:

(a) If x € V(G) — V(P) and P + x does not contain a u-v path of order <1, then d(x, P) < 3 and if
equality holds then N(x, P) contains three consecutive vertices of P.

(b) If zy is an edge of G — V (P) with d(xzy, P) > 5 and P+ x +y does not contain a u-v path of order
<, then i(xy, P) > 1 and if d(xy, P) = 6 then i(xy, P) > 2.

(¢c) If P" is an x-y path of order at least r in G—V (P) such that d(z, P) > 0, d(y, P) > 0, d(z, P) > k—r
and d(y, P) > k —r — 1, then [P, P'] contains a cycle of order > k.

Lemma 3.2 (See [8]). Let P = x122---2, be a path of G withr > 2 and y € V(G) — V(P). If
d(y,P) = r/2, then P +y has a path P with V(P') = V(P)U{y}. Furthermore, if d(y, P) > r/2 then
P’ is an x1-x, path or r is odd and N(y, P) = {x9;—1 |1 =1,2,...,(r +1)/2}.

Lemma 3.3 (See [9]).  Let C be a cycle of order k in G. Let {z,y} C V(C) with x # y. Suppose that
d(z,C)+d(y,C) > k+ 1. Then [C] has a path P from x* to y* with V(P) =V (C).

Lemma 3.4 (See [4,13]).  Suppose that G has an h-path and that for any two endvertices x and y of
an h-path of G, d(x,G) + d(y,G) = n +r holds, where r is a fized positive integer. Then for any two
distinct vertices u and v of G, d(u,G) + d(v,G) = n + r holds. Moreover, for any linear forest F in G
with e(F) < r, G has an h-cycle passing through all the edges of F.

Lemma 3.5 (See [7]).  Let d > 2 be an integer and let G be a 2-connected graph of order at least 3
such that if d > 3 then the order of G is at least 4. Let x and y be two distinct vertices of G. If every
vertex in V(G) — {x,y}, possibly except one, has degree at least d in G, then G contains an x-y path of
order at least d + 1.

Lemma 3.6.  Let P be a path of order v in G with r < |G|. If G is connected and d(x) = r/2 for each
x € V(G) = V(P) then G contains a path of order at least r + 1.

Proof. Let @ be a longest u-v path in G-V (P) with d(u, P) > 0. It is easy to see that [P, Q] 2 Pr41.

Lemma 3.7 (See [9]). Let P = x1x2---x¢ be an optimal path at x1 in G. Let r = a(P,xt). Suppose
that for each v € V(Q), if there exists a longest path starting at x1 in G such that the path ends at v
then d(v) > r/2. Then N(x;) C {Zi—pt1,Tt—rt2,...,2¢}, [P] has an x1-z; h-path and d(x;) > r/2 for
allie {t—r+2,t —r+3,...,t}. Moreover, if t > r then x;_,11 is a cut-vertex of G.

Lemma 3.8 (See [9]).  Let h > 2 be an integer. If B is a 2-connected graph such that every verter,
possibly except one, has degree at least h/2, then B contains a cycle of order at least min(|B|, 2h).

Lemma 3.9. Let k > 5 be an integer. Let B be a 2-connected graph of order at least k. Let w be a
vertex of B. Suppose that B 2 Csy, and d(z,B) > (k—1)/2 for allx € V(B)—{w}. Then k is odd and B
has a cycle C of order k—1. Moreover, for some vertex uw on C, d(x,C) = (k—1)/2 and N(x, B) C V(C)
for each x € {u~,u"}. In addition, if w € V(C) then w = u.

Proof. Let P = x1x2--- x4 be an optimal path at w = z1. As B has no cut-vertex and by Lemma 3.7,
a(Pyzy) =k—1. Sayr =t—k+2. Then C = x, 2,41 - - - 242, is a cycle of order k—1. As B is 2-connected
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and by the optimality of P, there exists s € {r+2,...,¢t— 1} such that d(zs, B—V(C)) > 1. Let a and b
be the smallest and largest numbers in {r+2,...,¢— 1}, respectively such that d(z,, B—V(C)) > 1 and
d(zp, B—V(C)) =2 1. So N(z;,B) CV(C) foralli e {r+1,7r+2,...,a—1,b+1,b+2,...,2:}. By the
optimality of P, [C] does not have an x,-z, h-path. By Lemma 3.3, d(z124-1,C) < k— 1. Thus k — 1 is
even with d(xy,C) = d(xq—1,C) = (k — 1)/2. Similarly, d(z,+1,C) = d(zp1+1,C) = (k — 1)/2. Thus the
lemma holds with u = z,..

Lemma 3.10.  Let k > 3 be an integer. Let H be a non-h-graph of order k with H O Py_1. Suppose
that d(x,H) > (k —1)/2 for each x € V(H) with H —x O Py_1. Then k is odd and either H € G, or
H = K1) 2K (k1) /2-
Proof. By Lemma 3.2, H D Py. First, assume that H has a cycle C of order k — 1. Then d(v,C) >
(k — 1)/2 where {v} = V(H) — V(C). It follows that k is odd and there exists X C V(C) with
|X| = (k—1)/2 such that no two vertices of X are consecutive on C' and N(v,C) = X. Then H—u D P,
and so d(u,H) > (k —1)/2 for each w € Y = V(H) — X. Thus N(u,H) = X for each u € Y as
H 2 Cy, ie, H e G,. If H Ci_1, then by Lemma 3.7, H has a cut-vertex and it follows that
H = Ketr) 2 K o) f2-
Lemma 3.11.  Let k > 10 be an even integer. Let H be a mon-h-graph of order k with H 2 Pj_
such that d(z, H) > (k —2)/2 for each x € V(H) with H —x O Py_1. Then one of the following two
statements hold:
(a) H has an h-path and two endblocks X1 and Xy such that V(H) = V(X; U X3) and | X1 N Xa| < 1.
(b) There is a partition V(H) = X UY with | X| = (k—2)/2 and |Y| = (k+2)/2 such that' Y has two
vertices uy and ug such that N(y, H) = X for ally € Y — {u1,us} and d(u;, X U{ug,us}) = (k —2)/2
for each i € {1,2}.

Proof. First, assume that H 2 Py. Let y € V(H) and P = 21 - - - 21 be an h-path of H —y. Applying
Lemma 3.2 to H — x1 — xx_1, we get N(y, H) = {x2,24,...,2k-2}. As H P Py, {y,x1,23,...,2-1}
is independent. Clearly, for each i € {1,3,...,k — 1}, H —2; 2 Py—1 and so d(x;, H) > (k—2)/2. Tt
follows that H € Gy, i.e., (b) holds. Next, assume that H has an h-path. As d(x, H) > (k —2)/2 for each
endvertex x of an h-path of H, we see that if H has a cut-vertex then (a) holds.

We now assume that H is 2-connected, H O Py, and H ¢ Gj,. Let P be a u-v h-path of H with a(P,v)
maximal. As H is 2-connected and by Lemma 3.7, a(P,v) > (k — 2). First, assume that H D Cj_1.
Let C be a cycle of order k — 1. Let = be the vertex not on C. Since k — 1 is odd, d(z,C) > (k — 2)/2
and H 2 Cj, there exists a labelling C' = ujusg - - - up—juy such that N(x,C) = {ug, us,...,up—1}. Say
X = N(z,C) and Y’ = {z,ug, ug,...,ux—2}. Since H 2 Cy, Y' U{u;} is an independent set of H for
i € {1,2}. Clearly, each y € Y' U {u1,us} is an endvertex of an h-path of H and so d(y, H) > (k —2)/2.
Thus (b) holds with Y =YY" U {uy, ua}.

Therefore we may assume that «(P,v) = k—2. Say P = x1z2ujus - - - up—o with ujug_o € E. Let C =
P —x1—x9. As H is 2-connected, either d(x1,C —wu1) > 0 or z1u1 € F and d(z2,C'—uq) > 0. Say w.l.o.g.
d(x1,C —u1) > 0. Then zyu; ¢ E for each i € {2,3,k -3,k —2}. As H 2 Cx(,—1), d(z, Clug, up—4]) <
(k —6)/2 by Lemma 3.2. As d(z1) > (k — 2)/2, it follows that N(x1) = {2, u1,us, g, ..., Uk—4a}.
Let Y = {us,ur,...,up—5}. As k > 10, Y # 0. Clearly, each y € Y U {z1, T2, us, u3, up—3, ug—2}
is an endvertex of an h-path of H. Since H 2 Cy(;—1), Y U {u;} is an independent set of H for
each i € {2,3,k — 3,k — 2} and d(ugus, up_3ur—2) = 0. It follows that N(z2,C) = N(zy,C). Thus
d(y, H) < (k—4)/2 for each y € Y, a contradiction.

Lemma 3.12.  Let k > 5 be an integer. Let H be a 2-connected graph of order at least k. Suppose that

H 2 Csy and 6(H) > (k—1)/2. Then k is odd. Moreover, either H € Gy, or H has a vertex-cut {x,y}
such that H — {x,y} has at least three components and each of them is isomorphic to K,_3) /2.

Proof. Let P be an optimal path of H. Say P is an optimal u-v path at u. By Lemma 3.9, we see that k
is odd and «(P,v) =k — 1. Say P = xy@a - - - vyuqug - - - up—1 with uyug_1 € E. Let P’ = wyjxywi—q1 -+ - 11
and C' = ujug - - up—1u;1. Then P’ is a longest path starting at uy in H — {ug, ..., up_1}.

Let us first assume that for each longest path @ starting at uq in H—{us, ..., ur_1}, if @ ends at w then
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d(w,C—wuq) = 0. In this situation, we may assume that P’ is an optimal path at uy in H —{usa, ..., up_1}.
As H is 2-connected and by Lemma 3.7, we see that a(P’,z1) = k — 1. Hence H — {ug,...,ux_1} has a
cycle C” of order k — 1. Since H is 2-connected, there exist two disjoint paths from C” to C. This implies
H D Cyy, a contradiction.

Therefore we may assume w.l.o.g. that d(x;,C —uy) > 1. Say N(z1,C —uy) = {us,,...,u;, } with
1<ip <---<ip<k—1. Since H 2 Csj, and d(z1,H) > (k —1)/2, we see that d(x1,H) = (k—1)/2,
{z2,...,z, 1} C N(z1,H), i1 =t+2, k—t—1=d,and ij4 =4;+2for 1 < j<r—1 Let [} =
{’U,Q, PN ,ut+1}, IQ = {uk_t, PN ,uk_l}, Ig = {’U,H_QH_l | 1= 1, 2, ceey (k‘ - 1)/2 —t— 1}, I4 = {.131, PN ,xt}.
As H 2 Csy, we readily see that d(I,,Ip) = 0 for 1 < a < b < 4 and I3 is an independent set. It is easy
to see that each y € I3 U Iy U {uz2, ux—1} is an endvertex of an h-path of [P] which is a longest path of H
and so N(y, H) C V(P). As 6(H) > (k —1)/2. It follows that N(z;, H) = N(x1,H) fori=1,2,...,t,
N(ug,H) =11 UN(z1,C) —{u2}, N(up—1,H) = [UN(z1,C) —{ur—1} and N(u;, H) = N(z1,C) for all
u; € Is. If I3 # 0 then t = 1 for otherwise d(u;, H) < (k—1)/2 for each u; € Is. Consequently, N(y, H) =
{u1,us,...,up_2} for each y € I3 U I,. This argument implies that N(y, H) = {u1,us,...,ux_2} for all
y € V(H) —{u1,us,...,ux—2} and so H € Gy. If I3 = (), then t = (k — 3)/2 and i3 =4, = (k+ 1)/2.
Thus N(ug, H) = It U {u1, u(p41y/2} — {u2} and so each u; € I is an endvertex of an h-path of [P].
As 0(H) = (k —1)/2, it follows that N(u;, H) = I U {u1,u@41)/2} — {us} for each u; € I;. Similarly,
N(us, H) = Io U{u1, u(pq1y 2} — {ui} for each u; € I. Thus the three components of [P] — {u1, u(p41)/2}
are isomorphic to K(;_s)/2 and they are components of H — {u1,u(41)/2}. This argument implies that
all the other components of H — {u1,u(;11)/2} are isomorphic to K;_3) /2, too.

4 Four properties on G; and G-

Let G7 and G5 be the two subgraphs satisfying (1). We shall show the following four properties.

Property 1.  For each x € V(G1) with G1 —x D Pr_1 UKy, d(x,Gy) = (k+ 1)/2, and for each
y € V(Gg) with Go —y D Py, d(y,G2) > (k+ 1)/2. Furthermore, Gy contains at most two components
and Gy is connected. In addition, if G1 has a component of order at least k containing Py_1 then G1 is
connected.

Proof. By (1), for each x € V(G1) with G; —x 2 Py_1 UKy, e(G1) + e(G2) = e(G1 — x) + e(Ga + x)
which implies d(z,G1) > d(x,G2) and so d(z,G1) > (k+ 1)/2. Similarly, for each y € V(G2) with
Gy O Py, d(y,G2) > (k+1)/2. As G is connected, we see that if Gy contains a component C' with
G1—-V(C) 2 P,_1 UK, then e(G1 =V (C))+e(G2+V(C)) > e(G1)+e(G2), contradicting (1). Therefore
G does not have such a component. Similarly, G5 shall not have a component C” with Go — V' (C") D P.
This proves Property 1.

Property 2.  For each i € {1,2}, if G; 2 Ciy1, then |G| = k.

Proof. We first show that if Go 2 Cj41, then |G2| = k. On the contrary, say that Gy 2 Cspy1 and
|Ga| > k. Let P = 129 ---x; be an optimal path in Gy with (P, z;) maximal. By Lemma 3.6, ¢t > k.
Thus for any longest path P’ in Go, if v is an endvertex of P’ then Go—v D Py, and so d(v, G2) > (k+1)/2
by Property 1. Say a(P,z;) = r. Then zy2i—r41 € E. AsG2 2 Cspq1, 7 < k. Say B = {Z—rt2,..., 3¢}
By Lemma 3.7, N(x;,G3) € By U{zt_ry1} and (k +1)/2 < d(x;,G2) for all x; € By. So x4_,41 is a
cut-vertex of Go. Let L = P — B;. We may assume that L is an optimal path at x;_,41 in Go — B1. Say
a(L,z1) = sand By = {z1,...,2s_1}. Similarly, s < k, N(x;,G2) C BoU{zs} and (k+1)/2 < d(z;, G2)
for all x; € By. By the maximality of (P, ), s <r. Let s —1 =a+bsuch that if t — (s —1) > k
then a = 0and ift — (s —1) < kthena =k —t+ (s —1). Let X = {x1,22,...,2p}. Then X C Bo,
Gy — X D P, d(X,Gs — X) <bla+1) and d(X,G1) =, (k+1—d(z;,Ga)) 2 blk+1—(s—1)).
This yields

r,€X

6(G2 — X) —|-6(G1 —l—X) > G(Gg) + G(Gl) — b(a—|— 1) +b(k — S+ 2)
=e(Ga) +e(G1)+blk—s—a+1)>e(Ga) + e(Gy),
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contradicting (1). Therefore if Go 2 Cj41, then |Ga| = k.

Next, assume that Gy 2 Cspy1 but |Gi| > k. Let F' be a component of Gy with FF D P,_;. If
|F| = k — 1, then G7 has another component F’ and d(x, F')> (k +1)/2 for all z €V (F’) by Property 1.
Let B be an endblock of F’. Then B has a vertex w € V(B) such that N(z, F') C V(B) for all
x € V(B) — {w}. As Gi 2 Cspy1 and by Lemma 3.8, |B| < k. Therefore d(xz,G2) > 2 for all
x € V(B)—{w}. Thus e(G1 —V(B—w))+e(G2+ V(B —w)) > e(G1)+e(G2), contradicting (1). Hence
|F| > k and so G; = F by Property 1. By Lemma 3.6 and Property 1, G; 2 Py41. Then a contradiction
follows by exchanging the roles of G; and G5 in the above paragraph.

Subject to (1), we now choose G1 and G5 to satisfy (2). By Property 2, we see that either |G1| = k or
|G2o| = k. If |G| =k, then |G| > k and G1 D Cspy1. As G O P, U K; and Gy O Py, we shall have
|G1| = k by (2), a contradiction. Hence |G1| =k and |G2| > n—k > k+ 2 and so G2 O Csp41. Thus
Go—1x DO Py for all x € V(G3). Subject to (1) and (2), we further choose G, G2 and a vertex ug € V(Gy)
with G1 — ug 2 Px—1 such that d(ug,G1) is minimum. If d(ug,G1) = k/2 then G; has an h-path by
Lemma 3.2 and so d(uv,G1) > k for any u-v h-path of G;. Consequently, G1 O Csy, a contradiction.
Hence d(ug,G1) < (k—1)/2.

Property 3. Gs is 2-connected with 6(G2) = (k + 2)/2.

Proof. First, suppose that d(xzg,G2) = (k + 1)/2 for some zg € V(Gz2). Then d(x¢,G1) > (k+ 1)/2.
Thus e(G1 4+ xo) + (G2 — xg) = e(G1) + e(G2) with equality only if d(x¢, G1) = (k+1)/2. With G + x¢
and G2 — ¢ in place of GG; and G, we see that G1 + 29 2 Cxpy1 and Go — xp 2 Cxp41 by Property 2
since |G1 + xo| > k and |G2 — xg| > k, a contradiction. Therefore §(G2) > (k + 2)/2. Next, suppose
that G5 has a cut-vertex w. Then G5 — w has two subgraphs J; and Js such that Go — w = J; U Ja,
JiNJy="0and Jo+w D Cskp1. Then J; B Csp. Let L = vy ---v, be a longest path in J;. Say
d(vi,L) > d(vp, L). Then k —2 > d(v1, L) and d(v;, Gy —uo) 2 k+1—2—d(v;, L) > k — (d(vi, L) + 1)
for i € {1,p}. Since G1 — ug has an h-path and p > d(vi, L) + 1, it follows that [L,G1 — ug] 2 Csy by
Lemma 3.1(c), a contradiction.

Property 4. For each x € V(G3), G1 +x 2 Csy.

Proof.  Assume by contradiction that Gy + z¢ O Csy for some zg € V(Gz). Say H = G — xy. Then
H 2 Csy and 6(H) > (k+2)/2—1=k/2. By Lemma 3.8, H is not 2-connected. Let By and By be
two endblocks of H. Say r = |By| < s = |Bz|. For each i € {1,2}, let w; be the cut-vertex of H with
w; € V(B;). Say B, = V(B;) —{w;}(i = 1,2). By Lemma 3.8, r < k and s < k. By Lemma 3.7, for each
i € {1,2} and each « € B}, B; has a w;-x h-path. Let P = z1x3 - - - x4 be a longest path of H with z1 € B}
and x; € BY. Then By = [21,...,%s], B1 = [Tt—rt1,- ., 2], wa =z and wy = x_ry1. Let r—1=a+Db
with ¢ = max{0,k—1—(¢t—r+1)}. Then [z, 21, ..., Tt—rt1+a) 2 Pr. Let X = {@s_pr1, Tt—pt2,..., Tt}
Then we have

e(Gh+X) +e(G2 — X)
> G(Gl) + Z (k +1-— d(x,Bl + a?())) + E(Gg) - Z d(l‘,Bl - X + .230)
zeX zeX
>e(Gy) +e(Ge)+blk—r+1)—bla+2)=e(Gy)+e(G2)+blk—r—a—1).

Ask>s>randt>r+s—1, weseethat k—r—a—12> 0. By (1), it follows that r = sand k = r+a+ 1.
Furthermore, zxg € F and d(z, B;) =r —1 for all z € X. Since each x; € B} can play the role of z;, this
argument implies that B; = K, and d(xg, B}) = r — 1. Similarly, B = K, and d(xg, B5) = r — 1. Thus
G2 — X D 20,21, s Tt—rt14a) 2 Csk. Then G; + X 2 Csy. Since (1) is maintained with G; + X and
G2 — X in place of G; and G3, we obtain |G; + X| = k by Property 2, a contradiction.

5 Properties on G; — ug and G2 + ug

For convenience, let Hy = G — ug and Hy = G2 + ug. We will choose an h-path P = 1 ---x,_1 of Hy
and a shortest path L = vy ---v, in Hy with {z1v1, 25104} C E. Then we set H = Hy — V(L). The
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following cases tell us how to choose P and L so that the properties on Hi, Ho and H allow us to find
2C5y, in G or we find that (1) is violated.

As d(uo,G1) < |(k —1)/2], d(up,G2) = [(k + 3)/2]. For x € V(G1) and y € V(G2), we define
&(z,y) = d(z,G2) + d(y,G1) — d(z,G1) — d(y,G2) — 2d(z,y). Then e(G1 —x +vy) +e(Ge —y + ) =
e(G1) + e(G2) + &(x,y). Clearly, Go —y O Py and &(x,y) > 2(k + 1) — 2(d(x, G1) + d(y, G2) + d(x, y)).
IfGi —x+y 2D Pr_1 UK, then

§(z,y) <0 and so d(z,G1) +d(y, G2) +d(z,y) > k + 1. (3)

We consider the following cases.
Case 1. G; is 2-connected and e(ug, G1) = [(k—1)/2] = [(k — 2)/2].

In this case, by Lemmas 3.10 and 3.11, V(G;) has a partition X UY with |X| = [(k — 1)/2] and
Y] = [(k + 2)/2] such that either N(y,G1) = X for all y € Y, or k is even and [Y] has an edge uqus
such that N(y,G1) = X for all y € Y — {uy,u2} and d(u;, G1) = (k — 2)/2 for each ¢ € {1,2}. Among
all the choices of G; and G2 satistying (1) and (2) in Case 1, we may assume that G; and G2 have been
chosen with e([Y]) maximal. Thus e([Y]) < 1 and if equality holds then k is even.

Let L = vy --- v, be a shortest path of Hy such that {viy,v,y’'} C E for some vertices y and y’ of YV
with y # y/. Moreover, if e([Y]) = 1 then {y,y’} €Y — {uy,us}. Subject to the above assumption on
G, and Ga, we further choose Gy, G2 and L with |L| being minimal. As k > 9, we may choose ug € Y
such that N(ug,G1) = X and ug & {y,y’'}. Then P =z --- 41 is defined to be an h-path of H; from
y to y'. Clearly,

d(zixp—1, Hy) = 2|(k—1)/2] and so d(zv1zk—1,H) 2 2(k+1) = 2|(k—1)/2] =2 > k + 1. (4)
We claim that
0(Hsa) = [(k+3)/2] and d(z, L) = 0 for each z € V(H) with d(z, Hs) = [(k + 3)/2]. (5)

Proof of (5). By Property 4, for all z € V(Gz), G1 + 2z 2 Csj and so d(z,Y) < 1. In particular, ¢ > 2.
Then we see that for each z € V(Gs), there is y € Y with d(y,G1) = | (k — 1)/2] such that zy ¢ E. By
(3),d(z,G2) = (k+1)— |(k—1)/2] = [(k+3)/2]. Hence 6(H2) > [(k+3)/2]. Assume that d(z,L) >0
and d(z, Hy) = [(k + 3)/2] for some z € V(H). Then d(z,H,) > k+1—[(k+3)/2] = |(k—1)/2] and
d(z,Y) <1 Ifd(z,Y) =1 then z # ug, k is even and e([Y]) = 0 since H; + z 2 C>j. Furthermore, we
may replace G and G2 by Hy + z and Hs — z in Case 1 and obtain e([Y U{z} — {uo}]) = 1, contradicting
the maximality of e([Y]). Hence N(z,Hy) = X. As d(z, L) > 0, we see that L has a u-v subpath L’ with
|L'| < |L| such that {uz,vz’'} C F for some 2’ € {y,y'}, contradicting the minimality of |L| if we replace
G, and Go with Hy + z and Hy — 2. Therefore d(z, L) = 0.

Case 2. (G is not 2-connected and d(ug, G1) = [(k—1)/2].

Let ¢g be a cut-vertex of G1. First, assume that k is odd. By Lemma 3.10, G; has two complete
subgraphs X; and X5 of order (k + 1)/2 with V(X;) N V(X2) = {co}. Let z be an arbitrary vertex
of Go. By Property 4, N(z,G1) C V(X;) or N(2,G1) C V(X32). Say w.lo.g. N(z,G1) C V(X3). Let
x € V(X1)—{co} By (3),d(z,Ga) > k+1—d(x,G1) = (k+3)/2. It d(z,G2) = (k+3)/2 then {(x, z) > 0
and so &(x,2) =0, i.e., (G —x+2)+e(Ga—z+2) = e(G1) +e(G2) and d(y, Gy —x+ 2) = (k—3)/2 for
all y € V(X1 — ¢o), contradicting the minimality of d(ug, G1). Thus 6(G2) > (k+5)/2. Let L=1v;--- v,
be a shortest path of Ga such that {v1y,v,y'} C E for some y € V(X1 — ¢p) and ' € V(X3 — ¢p). We
may choose ug € V(G1) — {y,v',co}. Let P =z1 - -1 be a y-y' h-path of H;. By the minimality of
|L|, we conclude that if k is odd then

d(x1zi—1,H1) =k — 2 and so d(x1x5—1, H) = k + 2; (6)
d(uovHQ) = (k+3)/27 5(H2 —UO) > (k+5)/27 Uo g V(L)a d(UOaL) <1
and if d(ug, L) = 1 then d(ug, v1v4) = 1. (7)
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Next, assume that k is even. By Lemma 3.11, G; has an h-path and two endblocks X; and X5 with
V(G1) = V(X1 UXs). Say | X1] <|X2|. Then | X;| =k/2 and | X5| < k/2+4 1. Let ¢; € V(X;) be the cut-
vertex of Gy for i € {1,2}. Asd(xz,G1) > (k—2)/2 for each endvertex z of an h-path of Gy, it follows that
X1 = K} j2. Moreover, we see, by Lemma 3.7, that d(z, Xo) > (k—2)/2forallz € V(X3 —c2). Ask > 9,
§(X2—c2) = (k—2)/2—1 > k/4 and so Xa —cg is h-connected by Lemma 3.4. Let z be an arbitrary vertex
of Go. By Property 4, N(z,G1) C V(X1)U{c2} or N(2,G1) CV(X2)U{c1}. If N(2,G1) 2 V(X1)—{c1},
let € V(X1) — {c1} with zz ¢ E, and by (3), we see that d(z,G2) > k+ 1 —d(z,G1) > (k+4)/2.
Moreover, if equality holds then d(z, Xo —c2) > 0 and e(G1 —z+2) +e(G2 —z+x) > e(G1) +e(G2). But
then we see that d(y, Gy —x+2z) = (k—4)/2 for each y € V(X1) —{z, c1}, contradicting the minimality of
d(ug, G1). Therefore if N(z,G1) 2 V(X1) —{c1} then d(z,G2) > (k+6)/2. If N(2,G1) 2 V(X1) —{a1},
then d(z, Xo —c2) = 0 and by (3), d(z,G2) > k+1—d(w,G1) > (k+2)/2 where w € V(X3) — {c2}. We
conclude that if k is even then for each z € V(G2),

if N(z,G1) 2 V(X1 — c¢1) then d(x, Gs)
if N(z,G1) 2 V(X1 — ¢1) then d(x, Gs)

(k +6)/2 (8)
(k +2)/2. (9)

Let L = v1---v, be a shortest path in Ga such that {yvi,y'vy} C FE for some y € V(X1 — ¢1)
and y' € V(X3 — ¢2). In this Case 2 with k even, we further choose Gy, G2 and L such that |L]| is
minimal. Then we choose uy € V(X1) — {y,c1}. Let P = 21+ 241 be a y-y' h-path of H;. By (8)
and (9), we see that §(Hz) > (k +4)/2. Moreover, if d(z, Hy) = (k +4)/2 with z € V(Hz), then either
zup € E and &(ug,z) = 0 or z = up. Consequently, by the assumption on Gy, G2 and L, we see that
it d(z,Hs) = (k+4)/2 with z € V(H), then (1) and (2) are maintained if z and w are exchanged with
w € V(X3) — {c2,¥'} and wz ¢ E, and so d(z, L) < 1 by the minimality of |L|. We conclude that if % is
even then

d(x12p—1,Hy) < k—2and so d(xiap_1,H) > k+2; (10)
d(x,L) <1 for each x € V(H) with d(z, Hy) = (k+4)/2. (12)

— =

Case 3. d(uog,G1) < |(k—1)/2] —1=|(k—3)/2].

Then d(ug,G2) = [(k +5)/2]. Let z be an arbitrary vertex of Go with d(z,G2) = §(G2). By (3),
&(ug,z) < 0 and so d(z,G2) = [(k + 3)/2]. Moreover, if d(z,G2) = [(k + 3)/2] then upz € E. Thus
6(Hz) = [(k+5)/2].

We claim that H; is not h-connected. If this is not true, say H; is h-connected. By Property 4,
d(z,H1) <1 and so d(x, Hy) > k for all z € V(Hj). Let R = uq - - - uq be a shortest path of Hy such that
{z1u1, T2us} C E for some {z1, 22} C V(Hy) with z1 # x2. Then Hi+V(R) 2O Csg. Say S = Ho—V/(L).
Then

1S|> > d(z,Hy)—2>(k—1)(k+1—(k—2))—2> 2k
z€V (Hy)

By the minimality of |L|, we see that d(x, R) < 2 for each € N(H1,S). Therefore 6(S) > k — 2. As
S 2 Cxj, and by Lemma 3.8, we see that each end block is a complete graph of order k — 1. Let B; and
Bs be two distinct end blocks of S. Let w be a vertex of By such that if By contains a cut-vertex of S
then w is the vertex. Let {z1,22} C V(B2) — {w} with z; # z3. Then d(z;, Hi UR) > 3 for i € {1, 2}.
By the minimality of |L|, we readily see that there exists a vertex v € I(z122, R). Thus By +v 2 Cxyp.
Clearly, [H1 + V(R) — v, By — w| 2 Csy, a contradiction. Hence H; is not h-connected.

Let P =2y -+ xx_1 be an h-path of Hy with d(z12—1, H1) minimal. By Lemma 3.4, d(x125_1, H1) <
k—1. Let L = vy - - -vq be a shortest path of Hy with {z1v1,2r_1v4} C E. We conclude:

d(.]?ll‘k_l,Hl) <k-—1, d(xlxk_l,H) >k+1 and 6(H2) > (k—‘r 5)/2 (13)
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6 Nine propositions on H

The purpose of this section is to prove that H is connected and has exactly two blocks. By (5), (7),
(11)-(13) and Lemma 3.1(a), we see that 6(Hz) > (k + 3)/2 and if x € V(H) then

d(z,H) > d(z, Hy) — d(z,L) > (k — 1)/2 with the last equality
only if d(x, Hz) = (k +5)/2 and d(z, L) = 3. (14)

Therefore §(H) > (k—1)/2. Let L denote the h-cycle PUL+xq1v1+x,—1vq of [Hy, L]. Clearly, |I~J| >k+1
and so H 2 Csy. Let Bi,...,B; be a list of endblocks of H. Let w; be any fixed vertex of B; if B;
is a component of H. Otherwise let w; be the cut-vertex of H that contained in B;. Set r; = |B;| and
Bl =V(B;))—{w;}(1<i<t). Aso(H) > (k—1)/2, 7, > (k+1)/2foralli € {1,2,...,¢}. By Lemma 3.8,
for cach i € {1,2,...,t}, if r; <k —1 then B; is hamiltonian. As §([B}]) > (k—1)/2—1= (k—3)/2, we
also see that if r; < k — 2 then [B]] is hamiltonian and if r; < k — 3 then [B]] is h-connected. For each
i€{1,2,...,t}, let Bf ={z € V(B;)|d(z,L) = 3,d(x,B;) =r; —1 and d(z, H;) = k —r; — 1}. By the
minimality of |L|,

for each x € V(H) with d(z, L) = 3, N(x, L) is consecutive on L; (15)
for each zy € E(H) with d(xy,L) > 5, N(z,L)N N(y,L) # 0; (16)
for each © € N(v125-1,H),d(x,L) <2 and so x ¢ B for all 1 <i <1, (17)

Let € = d(ug, G2) — d(ug, G1). For each X C V(Hs), let £(X) = d(X, Hy) — d(X, Hy — X). Clearly,
d(X, Hy) > Z(k +1—d(z,Hs)) and so

reX
EX) = (k+1)|X|—d(X,Hy) —d(X, Hs — X) for all X C V(H3). (18)
If X C Hy, we define (X)) = &(V(X)). Clearly, e > [(k+3)/2] — |[(k—1)/2] > 2 and e(H1) + e(Hs2) =
e(G1) +e(Gs) +e Thus e(H1 + X)+e(Hy — X) = e(G1) + e(Ga) + e+ &(X) for all X C V(Hs). By (1
and Property 2, we obtain
For each ) # X C V(H3), if Ho — X 2 Py, then £(X) < —2
and in addition if |Hy + X| > k and |Hy — X| > k then {(X) < —2. (19)

By (4), (6), (10), (13) and Property 4, we have
|H| > |N(z12p—1, H)| = d(x121-1, H) 2 k + 1. (20)

By Lemma 3.5, the following Propositions 1 and 2 hold:
Proposition 1.  In each B;, any two vertices of B; are connected by a path of order at least [(k+1)/2]
and therefore [B;, Bj, L] O Pyy1 for all {i,7} C {1,2,...,t} with i # j. Moreover, for any {i,j} C
{1, . ,t} with i 7& j, Zf d(B;,Hl) > 1 and d(B;,Hl) > 1 then [Bi,Bj,Hl] D) Pk+1.
Proposition 2.  If B, and B; are in the same component of H with i # j, then for each x € B] and
y € B}, H has an x-y path P’ of order at least k and therefore [B;, B;, P', L] 2 Csyy1. Furthermore, if
d(B;,Hl) 2 1 and d(B;,Hl) 2 1, then [Bi,Bj,P/,Hl] 2 C>k+1.
Proposition 3.  Ifr; > k, then [B], Hi] O Csy and [B],L] O Cxy.
Proof. As B; 2 Csy and by Lemma 3.9, [B]] has a path u-v path of order k£ — 1 such that d(u, B;) =
d(v,B;) = (k—1)/2. By (14), d(u, L) = d(v, L) = 3 and so d(u, H1) > (k—3)/2 and d(v, Hy) > (k—3)/2.
Thus [B;,Hl] 2 C}k and [B;,L] 2 C}k.
Proposition 4.  For each x € B, d(x, H1) = k—r;—1 and so x € B if and only if d(x, H1) < k—r;—1.
In addition, if Bf D Bl then B; = K., and if Bf D B — {u} for some u € B, then B; + wyu = K,,.
Proof. For each x € B., d(z,Hy) 2 k+1—d(z,B;) —d(z,L) 2 k+1—(r; —1) —=3=k—r; — 1, and
then the proposition follows.
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Proposition 5.  Leti € {1,2,...,t}. The following two statements hold:

(a) If a is the minimal number in {1,2,...,q} and b is the mazimal number in {1,2,...,q} such that
d(va, B}) > 1 and d(vy, B)) = 1. Then [L — {v1,...,va}, Bl] D Csy and [L — {vy,...,v,}, B D Csi

(b) If [B;, H1] 2 Csy, then vy < k —1 and for some u € V(B;), B — {u} C Bf and if r; < k —2
then w = w;. In addition, if B; is a component of H then |Bf| > k-2 ifri =k —1 and B =V (B;) if
T < k—2.

Proof. Ifr; >k, Csy C [Hy, Bj] C [Hy, B;] by Proposition 3, and so Proposition 5 holds. We now assume
r; < k—1. Then B; has an h-cycle C' = yy -+ y,,y1 with y; = w;. Clearly, d(yj,i —{v1,...,0.}) =
E+1—(r; —1) =1 ="k~ (r; —1) for j € {2,7}. By Lemma 3.1(c), [Bl,L — {v1,...,v4}] 2 Csp.
Similarly, [B], L — {vp,...,v4}] 2 Csk. Thus (a) holds. To show (b), we have that d(y, H;) > k 4+ 1 —
d(y,B;) —d(y,L) > k —r; — 1 for all y € V(B;) except possibly y = w; with w; being a cut-vertex of
B;. By Proposition 4, we see that if (b) fails, d(y., H1) > k — r; for some y.. As either y; # y.—1 or
Y1 # Yet1, say wlo.g. that y1 # ye—1. As [B;, Hi] 2 C>) and by Lemma 3.1(c), we must have that
d(Ye—1,H1) =k—r;—1=0and so y.—1 € B} with 7, = k— 1. It follows that for each ys € B} — {yc, 1},
B; has a y.-ys h-path and so d(ys, H1) = 0 as [B;, Hi] 2 C>), and so ys € Bf. Thus B} O B, — {y.}. If
B; is a component, then y, can take on y; as well. Thus (b) holds.

Proposition 6. Let i€ {1,2,...,t}. The following two statements hold:

(a) If [B],H1] 2 Csi and [Bl,L] 2 Csyi, thenr; < k—2 and if r; = k — 2 then B; =2 Kj_o and for
each x € Bl, d(xz, Hy) = d(z,L) = 2. Moreover, if r; < k — 3 then either B, — {u} C B} for some u € B
or d(x,Hy) <k —r; and so d(x, L) > 2 for all x € B.

(b) If [Bi, H1] 2 Cs and [B;, L] 2 Csy, then r; < k —4 and B} C B}.

Proof. By Proposition 3, we may assume r; < k — 1. Then B; has an h-cycle. We show (a) first. Let
ug -+ uyp, be an h-path of [B}] with d(ug, H1) maximal. First, assume that d(ug, H1) > k —r; + 1. As
[B], H1] 2 C>) and by Lemma 3.1(c), d(u,,, H1) < k —r; — 1, i.e., u,, € Bf by Proposition 4. Thus for
each u; € B] — {us}, [Bj] has a us-u; h-path and consequently, u; € B;. As [Bj, L] 2 Cxy, this yields
r; < k—3 and so (a) holds. Next, assume d(ug, Hy) < k—r;. Then d(uz, L) = k+1—(k—r;))—(r;—1) = 2.
Similarly, d(u,,, H1) < k —r; and d(u,,, L) > 2. These two inequalities will hold for each x € B} if [B!]
is h-connected. Hence (a) holds if r; < k — 3. So assume that r; > k — 2. As [B},L] 2 Cxy, it follows
that 7, = k — 2 then d(u2, L) = d(ug—2,L) = 2 and so d(uz, B;) = d(ug—2,B;) = k — 3. Thus for each
x € B — {ua}, [B]] has a us-z h-path and so d(x, B;) = k — 3 and d(z, L) = 2, i.e., (a) holds. To prove
(b), we see that r; <k —2 by (a) as [B]] C B;. As [B;, H1] 2 C>i and by Proposition 5(b), B, C B;.
Thus r; < k—4 as [B;, L] 2 Csy.
Proposition 7. It holds that t > 2 and the following two statements hold:

(a) For each i € {1,2,...,t}, either (B}, H1] 2 Csy or [B},L] 2 Cs) and if B; is a component of H
or d(w;, H—V(B;)) =1 then [B;, H1] 2 Csy or By, L] 2 Csy.

(b) For alli € {1,2,...,t} and v € V(L) and wv € E(L), we have that r; < k —1, [Ii —v,B]] D Cxy,
[L —u—wv,B;] D Csy and d(Bl, Hy) > 0. Moreover, if ¢ < 2k —9 then r; <k —2 for alli € {1,2,...,t}.

Proof. First, we show that ¢t > 2. On the contrary, say t = 1. Then H is 2-connected. Let Y = {z €
V(H)|d(z,H) = (k—1)/2}. By Lemma 3.12, we see that |H| — |Y| =2 or (k — 1)/2. By (14), we see
that d(x, L) = 3 for all z € Y. By (17), d(x125-1,Y) = 0. By (20), |[H| — |Y| > k + 1, a contradiction.
Hence t > 2.

Next, we show (a). With B; in place of B}, the proof of the conclusion with respect to B; is the same as
(somehow simpler than) the proof of the conclusion with respect to B} since we have no concern with w;.
So we provide the proof of the conclusion with respect to B.. On the contrary, say [B}, Hi] 2 Cs) and
[Bi,L] O Csy. Let j € {1,2,...,t} — {i}. Then [B;, Hi] 2 C>} and [B;, L] 2 C>. By Proposition 6(b),
r; <k—4and B; C B}. By (17) d(z125-1, B}) = 0. If t > 3, let [ € {1,2,...,t} — {7, j}. Then we also
have that r; < k —4 and B; C B}. Thus B; and B; are not in the same component of H for otherwise
[H — B],L] O Csg4+1 by Proposition 2. It follows that H has a component F with B; ¢ F such that
only one of Bj and By, say By, is in F. As [F,L] 2 C>j and by Proposition 2, we see that F' = B;. As
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rn<k—4,dx,H)>k+1—(;—1)—3 >3 forall z € V(B;) and so {(B;) > 0. By Proposition 1,
Hy —V(Bi) D Pet1. By (19), £(B;) < —2, a contradiction. Hence ¢ = 2.

We claim that V(H) = V(B;UBz). If this is not true, then H must be connected. As §(H) > (k—1)/2,
H has another block B with |B| > 6(H) + 1 > (k + 1)/2 such that B contains exactly two cut-vertices,
say ¢1 and cg, of H. As B 2 Cxy, we readily see that d(w, B) < k for some w € V(B) — {c1,c2}. Thus
d(w,L) > 0 or d(w,Hy) > 0. By Lemma 3.5, w is connected to ¢z in B by a path of order at least
(k+1)/2. Let P’ be a we-co path of H. By Proposition 2, [B, P’, B, L] O Csy, or [B, P/, By, H1] D Cxy,
and so G D 2C%y, a contradiction. Hence the claim holds.

Recall that ro < k —4, By C B and d(z1x,-1,B5) = 0. By (20), m+1 > |H — By > k+ 1.
Therefore r1 > k. By Lemma 3.9, B; has a cycle C' = ug - - - ugp—1u; such that N(ugug—_1,B1) C V(C),
d(ug, B1) = d(up—1,B1) = (k—1)/2 and wy ¢ V(C —u1). By (14), d(u2, L) = d(ug—1,L) = 3. Let
z € BY. Say N(z,L) = {vs,vs11,vst2}. Let v, be the first vertex and v, be the last vertex on L such that
d(vg, uguk—1) > 0 and d(vp, uguk—1) > 0. Clearly, [L[v1, vs|, H1, Ba] 2 Csp. So [C — ui, Lvst1,v,]] 2
Csp. This implies that a < s. Say w.l.o.g. usv, € E. Similarly, b > s+ 1. Then vpyur—1 € E. As
VaU2U1UK—1Vp 18 a path and by the minimality of |L|, a = s —1 and b = s+2. Thus [C' —u1, L[vst1,v4]] 2
Csk, a contradiction.

To prove (b), we see, by (a) and Proposition 3, that r; < k —1 for all ¢ € {1,2,...,¢}. Thus B; is
hamiltonian and [B}] has an h-path for all i € {1,2,...,t}. As d(z,L) > k+1— (r; —1) =k —7r; +2 for

all z € B and ¢ € {1,2,...,t} and by Lemma 3.1(c), [L — v, B}] 2 Csy and [L — u — v, B;] 2 C5y, for
alli € {1,2,...,t}, v € V(L) and wv € E(L). If d(B}, H;) = 0 for some i € {1,2,...,t}, then B, = B}
and r; = k—1 as 0(G) > k+ 1. Thus B; + v O C5y, for some v € V(L). Consequently, G O 2C>, as
[L—w, Bj] 2 Cxy, for j # i, a contradiction.

If g < 2k—9and r;, £ k— 2 for some i € {1,2,...,t}, let C = wuy---uk_1u1 be an h-cycle of
B; with w; = u;. As e(C — up — up, L) > Y scicho1 (b + 1 —d(u, By)) = 3(k —3) > |L| + 1. This
implies that there exists v € I(uqup, L) # 0 for some 3 < a < b < k—1. Let j € {1,2,...,t} — {i}.
Since [L — v, Bj] O Csk, Bi +v 2 Cs and so B; does not have a u,-up h-path. By Lemma 3.3,
d(ug—1up—1,C) < k—1. As 6(H) > (k — 1)/2, it follows that k is odd and d(uq—1, Bi) = d(up—1, B;) =
(k—1)/2. By (14), d(ug—1up—1, L) = 6. Thus I(uq—1up—1, L) # 0. Similarly, we obtain d(uqup, B;) = 6.
Thus I(ug—1uq, L) # 0 and so B; +v' D Csy, for some v' € V(L), a contradiction. This proves (b).

Proposition 8.  For each i € {1,2,...,t}, d(w;, H — V(B;)) > 2. In addition, if t = 2 then wy = ws.

Proof. On the contrary, say w.l.o.g. that d(wy, H—V(B)) < 1 and d(ws, H—V (By)) < d(w;, H—V (B;))
for all B;. First, assume that ¢ > 3. We claim that for all 1 < ¢ < j < ¢t —1, B; and B; are
not in the same component of H. If this is not true, say for ¢ = 1 and j = 2. Then H — V(By)
has an wi-wy path P’ with wy ¢ V(P’). By Propositions 2 and 7(b), [B1,Bs, P',L] O Csp41 and
[B1, B2, P',H1] O Cspt1. By Proposition 6(b), 7 < k —4 and B, C Bf. By (19), {(B;) < —2. As
e(Bi, L) < 3¢, e(By, Hy — V(By)) < 3r: +1. By (18), &(By) = re(k+1— (i —1) —3-3)—2> -2, a
contradiction.

Therefore B; is a component of H for eachi € {1,2,...,t—1} since d(wy, H—V (By)) < d(w;, H=V(B;))
for all B;. Thus B, is a component of H. As [B;,B;,L] D Pyq for all 1 < i < j < k and by (19),
&(B;) < —2andsor; > k—3forallie{1,2,...,t}. We claim that [B;, L] 2 Csy for alli € {1,2,...,t}.
If this is false, say w.l.o.g. that [By, L] O Csy. Then [B;, H1] 2 Csy for all i € {1,2,...,t — 1}. Let
i€ {1,2,...,t —1}. By Proposition 5(b), for all i € {1,2,...,t =1}, |BfY| > k—2ifr, = k— 1 and
Bf = V(B;) it r; < k—2. It follows that [B1,L] O Csi as r1 > k — 3. Similarly, we must have
that [By, H1] 2 Csi, |Bf| > k—2ifr, = k—1 and B} = V(By) if r, < k — 2. By Proposition 7(b),
[L —u—v,Bj] D Csy, and so [uv, B;] 2 Cy, for all wv € E(L) and {i,5} C {1,2,...,t} with i # j. This
implies that r; = k — 3 for all ¢ € {1,2,...,t}. Thus B = B; and so d(z1z5-1,B;) = 0 by (17) for
all i € {1,2,...,t}, e, d(x12x_1, H) = 0, a contradiction. Therefore [B;, L] 2 Csy for all B;. Let ¢
be arbitrary in {1,2,...,¢} and uy ---u,,u; be an h-cycle of B;. As Hy is 2-connected, there are two
independent edges ujv and w;v" between B; and L. As 6(Hz) > (k + 3)/2, either d(u;_1,L) > 2 or
d(uj—1,B;) > (k+1)/2. If the latter holds then d(u;j_1w—1,B;) > (k+1)/2+(k—1)/2=(k—1)+1 and
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by Lemma 3.3, B; has a u;-u; h-path. In either situation, we see that [Bi, L] 2 Csyy40. Thus r; =k —3
for all i € {1,2,...,t}. Let C be an h-cycle of By. As [By, L] 2 Csy, d(za™,L) < 4 for all x € V(C).
Thus e(By, L) < 2r¢. By (18), £(B¢) > 0, a contradiction.

Therefore t = 2. Then either By and By are two components of H or H has a sequence D1, ..., D,, of
blocks with |D,,| = 2 such that a wq-ws path P’ passes through Dy, ..., D,, successively. We claim that
there is no D; with |D;| > 3. If this is false, let i be the largest index with |D;| > 3. Let ¢; and ¢z be the
two cut-vertices of H that are contained in D; with co behind ¢; on P’. By Lemma 3.5, each vertex of
D; — ¢; is connected to ¢; by a path of order at least (k+1)/2 in D;. Consequently, H — V(B3) 2 Py11.
If ro < k — 4, then by (18), £(B2) > —2, contradicting (19). Hence ro > k — 3. If d(x, H;) = 0 for all
x € V(D;) —{c1} then d(x, D;) > k—2 for all z € V/(D;) — {c1,c2} and d(c2, D;) > k—3. As D; 2 Cxy,
|D;| < k—1 by Lemma 3.8. It follows that |D;| = k—1, d(D—c1—c2, L) = 3(k—3) and D;+c1c0 & Ky, 1.
Then [D;,v] D Csy, for some v € V(L). By Proposition 7(b), [Ba, L — v] 2 Cs}, a contradiction. Hence
d(D; — c1,H1) > 0. As d(B{,H;) > 0 by Proposition 7(b), we see that [H — V(Bsz), H1] 2 Csy.
Thus [Ba,L] 2 Csk. Then [Bg, Hi] O C5y for otherwise ro < k — 4 by Proposition 6(b). Hence
[H — V(B2),L] 2 Cs. As d(Bi,L) > 0, it follows that d(D; — ¢1,L) = 0. As §(Hz) > (k + 3)/2,
dlz,D) > (k+3)/2—-1=(k+1)/2 for all x € V(D;) — {c1}. As D; 2 C>j and by Lemma 3.8, it
follows that |D;| < k — 1 and so (D — ¢1) > 0 by (18) . By Proposition 2, [By, B2, L] 2 P41 and so
&(D —¢1) < —2 by (19), a contradiction. Therefore the claim holds.

As §(H) > (k—1)/2, it follows that either m = 1 with wywy € E or By and Bs are two components of
H. We claim that ¢ < 7. If this is not true, then I(zy, H) = 0 for each {x,y} C {x1,xr—1,v3,v6} with
x # y by the minimality of ¢. As §(Hz) > (k+3)/2, d(vi, H) > (k+3)/2 — 2 for each v; € V(L), we see
that 2(k — 1) > |H| > d(z12k-1, H) + d(vsvs, H) > k + 14 (k — 1) > 2k, a contradiction. Hence ¢ < 7.
By Proposition 7(b), r1 < k—2 and r2 < k—2. So by Lemma 3.7, for each ¢ € {1,2} and = € B}, B; has
a w;-z h-path. We shall find X C V(Bs) such that (19) is violated.

Let L' be a longest u-v subpath of L with d(u, B{) > 0 such that if B; and By are two components
of H then d(v,B}) > 0. Set ¢ = |L'|. Let 72 = a + b with a = max{0,k —r; —¢'}. As ¢ > 2 and H,
is 2-connected, ¢ > 2. Let z1--- 2,21 be an h-cycle of B such that if wywy € E then z; = wsy and
if wywe € E then z1v € E. Clearly, [L', By, 21 -+ z,] has an h-path P’ of order r; + ¢ +a > k. Let
X ={za41,---,2r,}. By (19), £(X) < —2.

We now divide the remaining proof into two cases.

Casel. ri >k—3andry >k —3.

By Propositions 6-7, for each i € {1,2}, either [B;, Hi] O Csy and [B;, L] 2 Csy, or [B;, H1] 2 Csi
and [B;, L] D Csy. First, assume that [Bq, H1] 2 Csk and [B1,L] O Csy. Then [By, Hi] 2 Csk. By
Proposition 5(b), for each ¢ € {1,2}, B, C Bf as r; < k—2. By (17), d(x125-1, H) < 2, a contradiction.
Therefore [By, H1] 2 Csy, and [Bi1, L] 2 Csy. Similarly, [Be, H1] 2 Cs and [Bg, L] 2 Csy. Say w.lo.g.
1 > ro.

Let 7 = k —2 —ry. Then 7 € {0,1}. Clearly, 1 > a and if a = 1 then ¢ = 2 and r; = k — 3.
Thus if @ = 1 then 1 = ro = k—3 and so 7 = 1. As [Bo,L] 2 Csy, d(zizi41,L) < 3+ 7 for all
i€ {l,...,ro —1}. Thus if b is even, then d(X,L) < b(3+ 7)/2. If b is odd, then d(z.,,L) < 3 and
dX, L)< (b=1)B4+7)/2+d(w1, X)+3 < b(3+7)/2+d(w1,X)+ (3—7)/2. Obviously, d(wy, X) = 0 if
a > 0 and otherwise d(w1, X) < 1. Clearly, d(X, H—X) < ba+d(wy, X). Then d(X, Hy) > o (k+1—
(ro—1)—d(z,L))—d(wi,X) = b(k+1—(ro—1))—b(3+7)/2—d(w1, X)—6, where = (3—7)/2if b is odd
and otherwise § = 0. Thus —2 > {(X) > b(k—ra—1—7—a) —2d(wy, X) —20 = b(1 —a) — 2d(wy, X) —26.
As 19 > k — 3 > 6, this implies that « = 1. Thus 7 = 1 and —2 > £(X) > —20 = —2. It follows that
d(zm,, L) = 3. As r; = ro, this argument implies d(y,L) = 3 for some y € B]. Thus ¢ = 3, a
contradiction.

Case 2. Eitherrqi <k—4orro <k—4.

For the proof, say r1 > ro and o < k — 4. As d(viwk—1,H) > k+ 1, d(x1wk-1,B) > 2. As
rm =2 k+1)/2,a<k—(k+1)/2—2and sob =1y —a > 3. Let \ = maxgexd(z,L). Then
d(X, Hy) > 3, o (k1—d(z, Hy)) > b(k+2—rs—\)—d(wy, X) and d(X, Hy—X) = ", d(z, Hy—X) <
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bla+ A) 4+ d(wy, X). Thus (X)) > b(k+2 —ry —a — 2X) — 2d(wy, X).

First, assume A < 2. Since £(X) < =2, a > 0 and so d(wy,X) = 0. Then £(X) > b(k—ry —a—2) =
b(ri —ro 4+ ¢ —2) > 0, a contradiction.

Therefore A = 3, i.e., d(xg, L) = 3 for some 2y € X, and so £(X) > bk —ro —a —4) — 2d(wy, X).
First, assume that ¢ = 0. By (17), d(x, L) < 2 and so d(x, Hy) > k — ro for each z € N(x1xp_1, BS). Tt
follows that £(X) > b(k — ro — 4) — 2d(w1, X) + 2d(z125-1, B5) > 0, a contradiction. Hence a > 0 and
so d(wy, X) =0.

Assume r; = ro. Similarly, d(yo, L) = 3 for some yo € V(B;y) with d(yo, B2) = 0. Thus ¢ > 3.
Say w.lo.g. d(ziax_1,B2) > d(zixk—1,B1). Let S = N(z121-1,X). As d(v128-1,H) > k + 1,
d(z1xk—1, B2) = (k+1)/2and so |S| = (k+1)/2—a. Asb=ros—a, 2|S|—b > k+1—ry—a = ¢’+1 > 0. Thus
d(X,Hy—X) =d(X, H-X)+d(X, L) < ba+2|S|+3(b—|S|) and d(X, Hy) = |S|(k—r2)+(b—|S|)(k—r2—1).
Then £(X) 2 bk —ra—a—3)+2[S|—-b=2b(¢ —3)+¢ +1>0, a contradiction.

Therefore 11 > ro. If ¢/ >3 0or 1y =19+ 2 then §(X) 2 b(k+2—ro—a—2\) =b(r; —ro+¢ —4) >0,
a contradiction. Hence ¢ = 2 and r1 = o + 1. Say N(zo, L) = {vc,Vet1,Vet2}. As ¢ = 2 and Hs is
2-connected, N(Bj,L) C {vey1} and wywe € E. Let 1 = d+1 with d = k —ro — 3 and wjug - - uy,
be an h-path of By with u; = wy. Set Y = {ugq1,...,ur }. Then [L, Bo,uj---ug] 2 Pg. Clearly,
EY)>2l(k—r +1)—1(d+1) >0, a contradiction.

Proposition 9. ¢ =2.

Proof. On the contrary, say ¢ > 3. First, assume that H is disconnected. By Proposition 8, each
component contains at least two end blocks. Thus if Dy and D5 are two components then [D1, L] O Csgi1
by Proposition 2 and [Da, H1] O Cs 41 by Proposition 2 and Proposition 7(b), a contradiction.

Hence H is connected. Let v, and v, be the first two vertices on L such that d(v,, B;) > 0 and
d(vy, Bj) > 0 for some {3, j} C {1,2,...,t} with i # j. Say d(va, B{) > 0 and d(vy, B3) > 0. Then
[Va -+ vp, H— B4] O Cspy1 by Proposition 2. Clearly, d(z,v,---vp) < 1 for all « € B;. Thus d(z, L —
{vi,...,u}) =k — (r3 — 1) for all € B;. As [B4] has an h-path, [B, L — {va,...,u}] 2 Csp by
Lemma 3.1(c), a contradiction.

7 Proof of Main Theorem

We now have that t = 2, w; = wp and r; < k—1 (1 = 1,2). As 6(G) > k+ 1, d(z;, H) > 2 for
i1€{l,k—1}. Asd(x125—1, H) > k+ 1, we may assume w.l.o.g. that d(z1,B]) > 1 and d(zy—1, BS) > 1.
As 0(H) > (k — 1)/2, we see that the distance of any two vertices of H is at most 4 in H. Thus ¢ < 5.
By Proposition 7(b), r1 < k—2and r; < k—2. As §(H) > (k—1)/2 and by Lemma 3.7, there is a w;-z
h-path in B; for each i € {1,2} and = € Bj]. Set A = max,¢p; d(x, L). The proof consists of the following
six claims.

Claim a. For eachi € {1,2}, [B},L] 2 Cs.

Proof. On the contrary, say w.lo.g. that [Bj,L] O Cs. By Proposition 5(b), B, C Bj. By (17),
d(z1zK-1,B5) = 0. Thus 1 > d(z125—1,H) > k + 1, a contradiction.

Claim b.  Let {i,j} = {1,2}. If [Bi, L] 2 Py thenrj =k — 2 if maxyep d(z, L) <2 and rj 2 k — 4 if
maxyep d(z, L) = 3. '

Proof. On the contrary, say w.l.o.g. that [By,L] D P such that 7o < k—3if A< 2andr < k-5
it A = 3. Clearly, d(B}, Ho — B}) < (ro — 1)(A+ 1), d(By,Hy) = (ra — 1)(k+1— (r2 — 1) — X). Then
E(BY) = (ra —1)(k+1—ry —2X) > 0, contradicting (19).

Claim c. For each i€ {1,2}, r; <k —3.

Proof. On the contrary, say r1 = k — 2. Let u and v be the two end vertices of an arbitrary h-path of
[Bi]. As [B},L] 2 Csk by Claim a, d(uv, L) < 4. Moreover, we see that if d(uv, L) = 4 with d(u,L) =1
then d(u,vivg) = 0. By (5), (7), (11)—(13), d(uwv, B1) > d(uwv, Hy) — d(uwv,L) > k + 1. Consequently,
d(uv,By) 2 k+1—2 = |Bj| + 2. By Lemma 3.4, we see that d(zy, B}) > |B}| + 2 for all {z,y} C B]
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with © # y. Let uq - - - ug_suq be an h-cycle of [B] with d(u1, L) maximal. We break into two cases.
Case 1. Either d(u;, L) =3 or d(u;, L) < 1 forallie {2,...,m —1}.

Set BY = B} — {u1}. Since [B{,L] 2 Csj and [B}] is h-connected, we see that if d(uy, L) = 3 then
d(z,L) <1 for all x € Bf by Lemma 3.1. In either situation, we have that d(BY, Hy — BY) < 3(k — 4)
and d(BY,Hy) > (k—4)(k+1—(k—3)—1) =3(k—4). Thus {(BY) > 0. By (19), [B2, L,u1] 2 P;. Thus
ro < k—3. As [By1, L] D Py and by Claim b, A = 3 and 5 > k—4. Moreover, we see that d(uy, L) = 1 and
d(u1,v1v4) = 0 as [Ba, L,u1] 2 Py. Hence d(vivg, B}) = 0 for otherwise we may choose u € N(v1v4, BY)
to replace u; in the above argument and a contradiction follows. Thus d(vivg, Be) > 26(Hs) —2 > k+1
and so [Bz, L] has an h-cycle. Consequently, [Bz, L, u1] 2 Py, a contradiction.

Case 2. For some u,, € B} — {u1}, d(um, L) = d(us, L) = 2.

Since [B]] is h-connected and [B], L] 2 Cs by Claim a, we see that N (B}, L) = {vp, vp+1} for some
1<b<qg—1 Clearly, d(u,Hy) 2 k+1—(k—3)—2=2for u € {uy,up} and d(u;, Hy) > 1 for all u,.
Thus [B1, H1] 2 Csy by Lemma 3.1. Say Z = {w, vp41}-

First, assume that [B1, Z] O Csk. Let s and t be the two end vertices of an arbitrary h-path of [B5].
Then d(z, L — Z) > k+1—(rg —1) =2 =k —1— (ry — 1) for each z € {s,t}. As [By, L — Z] 2 Csy,
it follows that d(s,L — Z) = d(t,L —Z) =k —1— (ry — 1), N(s,L — Z) = N(t,L — Z), Z C I(st, L),
and d(st, B1) = 2(ry — 1). Moreover, the vertices of N(s, L — Z) are consecutive on L. Thus s and t
can be any two distinct vertices of B in this argument and so these equalities hold for all {s,t} C B}
with s # t. Choose s € N(zg_1,B5) > 0. By the minimality of ¢, vp11 = v4. Then we see that
[TryTryt1 -+ Th—1, Ba] 2 Csp. Since d(x1, B}) > 0 and [B]] is h-connected, we see that [x1, L, Bf] D Cxy,
a contradiction.

Therefore [By,Z] 2 Csy. If N(wy,B1) # {u1,um} or |N(vyvps1, BY)| # {u1,um}, we can readily
choose two pairs (u;,u;) and (u,,u;) of vertices of Bi such that u; # w;, u, # wy, [{us, uj, ur, w}| > 3,
d(u;, Z) > 1, d(uj, Z) = 2 and {u,,w;} € N(wi). By Lemma 3.4, [B]] + u;u; + u,u; has an h-cycle
passing through u;u; and w,u;. Thus [By, Z] is hamiltonian, a contradiction. Therefore d(u;, L) = 0
for all u; € V(B]) — {u1,um} and N(wy, B1) = {u1,um}. Say X = B} — {u1,um}. By (18), {(X) >
I X|(k+1—(r1 —2))—2|X]| > 0. By (19), [L, B2, u1, U] 2 Pg. This implies 7o < k — 5, contradicting
Claim b as [By, L] D P.

Claim d. |7“1 — T2| < 1.

Proof.  On the contrary, say w.l.o.g. 11 = ra+2. Then ro < k—5. Let P =y -- -y, be an h-path of By
with y; = wy and let P’ be a longest u-v path on L with d(v, B}) > 1. Say ¢’ = |P’|. Then ¢’ > 2. Let
ro —1=a+bwith a = max{0,k —r — ¢} and X = {yry—v+1,---,Yro }. Then [B1, L' y1 - Yat1] 2 Pr
and (X)) 2 bk+1—(ra—1)—=A) =bla+1+A) =bk+1—ry—a—2)). By (19), £&(X) < —2. Thus
a>0andsoa=k—r —q. Hencek+1—1ry—a—2\=r; —ryg +1+¢ — 2\. It follows that A = 3,
¢ =2and r1 =ro+2. As ¢ =2, we obtain that ¢ = 3 and N(B}) = {v2}.

Asro = (k+1)/2,b=ro—1—a=¢q¢ +r1 +ro—1—k > 4. Assume that d(x, L) = 3 for at most two
vertices © € X. Then §(X) > (b—2)(r1 —ro+14+q¢ —4) 4+ 2(r1 —r2+ 1+ ¢ — 6) > 0, a contradiction.
Therefore there exist two vertices z; and zo in X such that d(z122, L) = 6 and d(w1, By — {z1,22}) > 1.
Clearly, [21, L —vg] D Csp and §([By—{z1}]) = (k—1)/2—2 = (k—5)/2. As |By|—1 < (k—5)—1 and by
Lemma 3.4, [B}, — {21}] is h-connected and it follows that [By, Bs — {21}, v2] 2 Csy, a contradiction.

Let vo = @1 and vgy1 = xp—1. Set L* = vgLvgr1. By (5), (7), (11)-(13) and (17), for each x €
N(zixp—1,H —wy), d(x,H) > (k+1)/2. Thus r; > (k+3)/2 and o > (k + 3)/2.
Claim e. There exists vy, on L such that N(B{, L*) C{vo,v1,...,0m} and N(BL, L*) C{vm, ..., Vg+1}-
Proof. On the contrary, say that the claim is false. Since d(vo, By) > 0, d(vgy1,B5) > 0, d(B}, L) >
0 and d(Bj, L) > 0, we see that there exists v. € V(L) such that either d(L[vi,v.],B5) > 1 and
d(L*[veg1,vg+1], BY) = 1 or d(L*[vo, ve—1], BS) > 1 and d(L[vc,vg], B]) = 1. Say that d(L[v1,v.], By) > 1
and d(L*[vet1,vg41], B]) = 1. Choose v, with ¢ maximal. Then d(Bj, L*(vcy1,v4+1]) = 0 and so
N(B{,L*) C V(L*[vg, vet1]) with d(vey1, By) > 0. Note that if d(xp—1, B]) > 0 then vep1 = vg41 = Tp—1.

Let {21,220} C By with {z121,220.41} C E. Since d(z1z5-1,H) > k+ 1, i(x125-1,H) = 0 and
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ro < k — 3, we get that d(xi2;_1,B}) > 4. Thus we may choose z; and z5 such that z; # 22 and
d(wy, B} —{z1,22}) = 1. Subject to this, we choose z; and zy with the distance between z; and 2z
minimized in [Bf]. If z120 € E, then i(z122, B1) > 26(H) — (r1—2) > (k—1) — (k—5) = 4 and we choose
zo € I(z122, B}) such that d(wy, B} — {21, 22,20}) = 1. For convenience, we define zg = 29 if 2129 € E.
Then [Hy, L*[Veq1, Vg41], 212220] 2 Csi and so F' B Csy, where F' = [By — {z1, 22, 20}, L[v1, vc], B2]. Let
B! = By — {z1,22,20} and M = u;y ---u; an arbitrary longest path at w; = u; in Bf. By (14), we see
that for each x € V(BY) — {u1}, d(x, BY) = d(z, H2) — d(z, L) — d(z, z12022) = (k — 7)/2 and if equality
holds then d(z, Hy) = (k+5)/2, d(z, L) = 3 and d(z, 212022) =3. Thus t > (k —7)/2+ 1= (k —5)/2.

First, assume that u,v; € E for some v; € {v1,...,v.}. Let v; € {v1,...,v.} and z € B with vjz € E.
Choose v; and v; with |j — ¢| maximal. Let P’ be a wi-z h-path of By. Then [M, P, L[vi, v ]] has a
cycle C with |C| > rg+t+|j —i|. Since k —1 > |C|, ro > (k+3)/2 and t > (k — 5)/2, we obtain that
k—1>|0|> (k—5)/2+ (k+3)/2+|j —i| =k —1+]j—i|. Thusi =7, rs = (k+3)/2,t = (k — 5)/2
and d(u¢, BY) = (k — 7)/2. Consequently, d(us, L) = 3 and d(ut, Llvy,ve]) > 2. Thus |i —j| > 1, a
contradiction.

We conclude that d(ut, Lvi,ve]) = 0. Thus N(u, L) C {ver1}. As 11 < k — 3 and by (5), (7),
(11)—(13), we see that d(ug, M) = [(k+3)/2] —d(ug, ver1) —d(ug, z12220) = [(k+1-2s)/2] = (|BY|+1)/2
where s = |{z1,22,20}| and |BY| = 11 —s. Let M be optimal at w; in [Bf] and set r = a(N,uy),
D = [ut—ry1,-..,ut)and D' = V(D) —{ut—r11}. By Lemma 3.7, for each u; € D', d(u;, D) > (|BY|+1)/2,
N(u;, BY) C V(D) and [M] has a uj-u; h-path. This argument implies that N(D’, L) C {vc41}. Since
k—3>m and 6(H) > (k—1)/2, d(z,D') > 1 for all x € V(B}]). Thus BY — {u1} C V(D) and
re{t—1,t}.

By (5), (7), (11)—(13), D’ contains a vertex = with d(z,H) > (k+4)/2 -1 = (k + 2)/2 and so
r>dx,D)+1>(k+2)/2—d(z,z12022) + 1 = (k—2)/2.

Suppose that d(z12220, L) > 1. Let L’ be a longest path starting at u;—,41 in

[utfrJrlutfr ccrUg, B27 Lv 2122, ZO]~

As d(L[v1,v.], BY) > 0, we see that |L'| = ro+ 0 with 0 > 3 and if 0 = 3 then t = 7, Vo1 = Vg1 = Tp—1
and N (B, U {z1,20,22}) = {w} for some | € {1,...,¢}. Let r — 1 = a+ b with a« = max{0,k — o — o}
and Y = {us—py1,...,ut}. Then [L' wus—pio- - Ut—riar1} 2 Pr. Asr > (E—2)/2 and r2 > (k+ 3)/2,
we see that Y # ().

Let y € Y. Clearly, d(y,BiUL —Y) < a+ 1+ d(y,ver1212220) and d(y,Hy) > k+1— (r —
1) — d(y,ver1212220). If |{z0, 21,22} = 3, then by the minimality of the distance between z; and zs,
d(y, 21ve1) < 1. Thus §(Y) = 37y (k+1—r—a—2d(y, ve+1212220)) 2 b(k+1—-r—a—6) = b(k—r—a—5).
By (19), £(Y) < —2. Asr < 11— {20, 21, 22}| < k—5, we see that a > 0 and so a = k —rg — 0. Therefore
k—r—a—5=ro+0—r—>5. As |r; —r3| <1 by Claim d, we obtain that ro +0 —r —5 < 0 implies that
o =3 and [{z1,20,22}| = 2. Thus vep1 = vg41 = Tp—1. As N(D',L*) C {vet1}, we obtain d(Y, L) = 0.
Thus £&(Y) 2 b(k —r —a—3) =b(ro —r+ 0 —3) > 0, a contradiction.

Therefore d(z1z022,L) = 0. Let 11 — 1 =d+ 1 withd =k —re — 2 and Z = {ugyo,...,ur}. Then
[L, Ba,ugug -+~ ugs1] 2 Pp. Asr € {t —1,t}, {ug,...,us} C V(D). Set Z' = Z U {z1,20,22}. Since
N(D',L) C {vey1}, we see that d(Z',Hy — Z) < U(d+2) and d(Z',Hy) 2 I(k+1— (r;y —1) — 1). Thus
&2z l(k—r1—d—1)>0asr; <ry+ 1, a contradiction.

By Claim e, for some v, € V(L), N(Bj,L*) C {vo,v1,...,0n} and N(B, L*) C {vpm, ..., 0q, Vg41}-
In particular, d(vi, By) > 0 and d(vg, By) > 0. Let p = max,ep; d(z, L). Recall \ = max,ep, d(z, L).
Thus g > p+A—1.

Claim f. p =3 and A =3.

Proof. On the contrary, say that it is false. Say w.l.o.g. that r; > ro. First, assume A < 2. Let ug - - - s,
be an h-path of By with uy = wy. Let ro—1 = a+b with a = max{0, k—r;—q} and X = {ury—pt1,.. ., Ur, }.
Then [L, By, uy -+ tgt1] 2 Pr, d(X,Hy — X) < bla+ 1+ A) and d(X,Hy) 2 blk+1— (r2 — 1) = ).
Thus £(X) 2 b(k+1—ry —a—2X). As {(X) < —2 by (19) and r2 < k — 3, we see that a > 0 and so
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a=k—ry—q. Thus {(X) > b(r1 —ra+q+1—2N). It follows that m = ro, ¢ = 2 and A = 2. Exchanging
the roles of By and By in the above argument, we see that pu < 2. Thus g > 3, a contradiction.
Therefore A = 3 and so p < 2. By the above argument, we see that r1 {rs. So 71 =72 + 1 by Claim d.
Let y1 -+ -y, be an h-path of By with y; = wy. Let 11 — 1 = ¢+ 1 with ¢ = max{0,k — 72 — ¢} and
Y ={yr,—141,---,Yr }. Then [L,Bo,y1 - Yey1] 2 Py and =2 2 &Y ) 2 l(k+1 -1 — ¢ —2u). Thus
c>0andsoc=k—ro—q<k—ry—(u+3—1). Then &(Y') > l(rg —r1+3—pu) > 0, a contradiction.

By Claim f, ¢ > 5. We claim that r;, > k —4 (i = 1,2). If this is not true, say r1 > ro and
ro < k—5. Let uy - - - uy, be an h-path with uy = wy Let ro — 1 = a + b with ¢ = max{0,k —r — 5} and
X ={Ury—bt1s--- U, }. Then [L, By, uy - tgt1] 2 Prand §(X) 2 b(k+1—(ra—1)=A)=bla+1+\) =
b(k—ry—a—"5) > 0. By (19), £&(X) < —2, a contradiction. Hence r; > k—4 (i = 1,2). Let r be maximal
with v,z € F for some z € B}. Clearly, d(z, L — {vo,...,v.}) 2 k+1—(rg—1) =1 =Fk — (5 — 1) for all
x € BYy. By Lemma 3.1(c), [B}, L—{vo,...,v.}] 2 Csp. Asd(z1z_1, B}) > k+1—1r9 >4, d(z1, B}) > 4.
We can choose an h-cycle C' of By and a vertex y € B} such that {yz1,zv,} and wy & {y~, 2" }. Since
5(H) > (k—1)/2 and by Lemma 3.3, By has a y-z h-path and so [By,z1v1 -+ v;] 2 Csg. This proves
Main Theorem.
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