Disjoint long cycles in a graph

WANG Hong
Department of Mathematics, The University of Idaho, Idaho 83844, USA
Email: hwang@uidaho.edu

Received October 25, 2011; accepted September 6, 2012; published online December 25, 2012

Abstract

We prove that if G is a graph of order at least $2 k$ with $k \geqslant 9$ and the minimum degree of G is at least $k+1$, then G contains two vertex-disjoint cycles of order at least k. Moreover, the condition on the minimum degree is sharp.

Keywords cycles, disjoint cycles, long cycles
MSC(2010) 05C38, 05C70, 05C75
$\begin{array}{ll}\text { Citation: Wang H. Disjoint long cycles in a graph. Sci China Math, 2013, 56: 1983-1998, doi: 10.1007/s11425-012- } \\ & 4539-z\end{array}$

1 Introduction and terminology

A set of graphs are said to be disjoint if no two of them have any vertex in common. Erdős and Callai [9] showed that if G is a 2-connected graph of order n and every vertex of G, possibly except one, has degree at least k, then G contains a cycle of order at least $\min \{n, 2 k\}$. El-Zahar [8] proved that if G is a graph of order $n=n_{1}+n_{2}$ with minimum degree at least $\left\lceil n_{1} / 2\right\rceil+\left\lceil n_{2} / 2\right\rceil$ then G contains two disjoint cycles of order n_{1} and n_{2}, respectively. In [13], we showed that if G is a graph of order $n \geqslant 6$ with minimum degree at least $(n+1) / 2$ then for any two integers s and t with $s \geqslant 3, t \geqslant 3$ and $s+t \leqslant n, G$ contains two disjoint cycles of order s and t, respectively unless s, t and n are odd and $G \cong K_{(n-1) / 2,(n-1) / 2}+K_{1}$. We ask the question: given a graph of order at least $2 k$, when does G have two disjoint cycles of order at least k ? Corrádi and Hajnal [5] proved that a graph G of order at least $3 k$ with $\delta(G) \geqslant 2 k$ contains k disjoint cycles. In [12], we proved that if G is a graph of order at least $r k$ with $\delta(G) \geqslant(k-1) r$ then G contains r disjoint cycles of order at least k. In terms of the lower bound on the orders of cycles only, this minimum degree condition might be in general far from being sharp with $k \geqslant 4$. In this paper, we prove the following theorem:
Main Theorem. Let k be an integer with $k \geqslant 9$ and G a graph of order at least $2 k$. If the minimum degree of G is at least $k+1$, then G contains two disjoint cycles of order at least k.

For any integer $k \geqslant 3$ and $m \geqslant 3, K_{3}+m K_{k-2}$ has minimum degree k but it does not have two disjoint cycles of order at least k. In addition, for any odd integer $k \geqslant 3, K_{k, m}$ with $m \geqslant k$ has minimum degree k but it does not have two disjoint cycles of order at least k.

For each integer $k \geqslant 3$, let \mathcal{G}_{k} be the set of all the graphs G of order at least k such that $V(G)$ has a partition $X \cup Y$ with $|X|=\lceil(k-2) / 2\rceil$ and $N_{G}(y)=X$ for all $y \in Y$. We use $K_{n} \cdot K_{m}$ to denote a graph of order $n+m-1$ obtained from K_{n} and K_{m} by identifying a vertex of K_{n} with a vertex of K_{m}. In order to provide a unified proof, we did not include particular details here to show that the theorem
is true for $k<9$ for otherwise we would add some special lengthy details which would interrupt the flow of the proof.

Let G be a graph. A path from u to v is called a u-v path. If P is a path of G and v is an endvertex of P, we use $\alpha(P, v)$ to denote the order of the longest $u-v$ subpath of P with $u v \in E(G)$. Clearly, if $\alpha(P, v) \geqslant 3$ then $P+u v$ has a cycle of order $\alpha(P, v)$. Let $w \in V(G)$. Let $P=w_{1} w_{2} \cdots w_{t}$ be a longest path starting at $w=w_{1}$. We say that P is an optimal path at w in G if $\alpha\left(P^{\prime}, x_{t}\right) \leqslant \alpha\left(P, w_{t}\right)$ for any longest path $P^{\prime}=x_{1} x_{2} \cdots x_{t}$ starting at $w=x_{1}$ in G. In this case, if P is also a longest path of G, we say that P is an optimal path of G.

Let $x \in V(G)$. Let H be a subset of $V(G)$ or a subgraph of G. We define $N(x, H)=\left\{u \in N_{G}(x) \mid u\right.$ belongs to $H\}$. Let $d(x, H)=|N(x, H)|$. If X is a subset of $V(G)$ or a subgraph of G, define $N(X, H)=$ $\bigcup_{x} N(x, H)$ and $d(X, H)=\sum_{x} d(x, H)$, where x runs over X. Clearly, if X and H do not have any common vertex, then $d(X, H)$ is the number of edges of G between X and H. For $x, y \in V(G)$, define $I(x y, H)=N(x, H) \cap N(y, H)$ and let $i(x y, H)=|I(x y, H)|$. We use $e(G)$ to denote $|E(G)|$. The order of G is denoted by $|G|$.

If $C=x_{1} \cdots x_{t} x_{1}$ is a cycle of G, we assume an orientation of C is given by default such that x_{2} is the successor of x_{1}. Then $C\left[x_{i}, x_{j}\right]$ is the $x_{i}-x_{j}$ path on C along the orientation of C. Define $C\left[x_{i}, x_{j}\right)=C\left[x_{i}, x_{j}\right]-x_{j}$ and $C\left(x_{i}, x_{j}\right]=C\left[x_{i}, x_{j}\right]-x_{i}$. The predecessor and successor of x_{i} on C are denoted by x_{i}^{-}and x_{i}^{+}. We will use similar definitions for a path. We use $C \geqslant k$ and P_{k} to represent a cycle of order at least k and a path of order k, respectively. We use $k G$ to represent a set of disjoint k copies of G. In addition, $r C_{\geqslant k}$ means that a set of r disjoint cycles of order at least k. If S is a set of subgraphs of G, we write $G \supseteq S$.

An endblock of G is a block of G which contains at most one cut-vertex of G. Thus a 2 -connected component of G is an endblock. If each $X_{i}(1 \leqslant i \leqslant m)$ is a subset of $V(G)$ or a subgraph of G, then [$\left.X_{1}, \ldots, X_{m}\right]$ is the subgraph of G induced by the set of all the vertices belonging to at least one of X_{1}, \ldots, X_{m}.

A linear forest of G is a subgraph of G such that each component in this subgraph is a path.
We use " h-cycle", " h-connected" and " h-path" for "hamiltonian cycle", "hamiltonian connected" and "hamiltonian path", respectively.

We use [2] for standard terminology and notation except as indicated above. Readers can refer to references $[1-3,6,10,11]$ on relevant topics.

2 Main ideas in the proof of Main Theorem

Let $k \geqslant 9$ be an integer and $G=(V, E)$ a graph of order $n \geqslant 2 k$ with $\delta(G) \geqslant k+1$. By El-Zahar's result [8], we see that $G \supseteq 2 C_{\geqslant k}$ if $n \leqslant 2 k+1$. If G is not 2 -connected, we readily see, by observing two endblocks of G, that $G \supseteq 2 C \geqslant k$. Therefore we may assume that $n \geqslant 2 k+2$ and G is 2 -connected. On the contrary, say $G \nsupseteq 2 C_{\geqslant k}$. By Lemma 3.8, $G \supseteq C_{\geqslant 2 k+2}$. Therefore G has two subgraphs G_{1} and G_{2} such that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset, V\left(G_{1} \cup G_{2}\right)=V(G), G_{1} \supseteq P_{k-1}$ with $\left|G_{1}\right| \geqslant k$ and $G_{2} \supseteq P_{k}$. We choose G_{1} and G_{2} such that

$$
\begin{equation*}
e\left(G_{1}\right)+e\left(G_{2}\right) \text { is maximum. } \tag{1}
\end{equation*}
$$

Subject to (1), we choose G_{1} and G_{2} such that

$$
\begin{equation*}
\left|G_{1}\right| \text { is minimum. } \tag{2}
\end{equation*}
$$

We first show that $\left|G_{1}\right|=k$ and $G_{2} \supseteq C_{\geqslant k+1}$. This will be accomplished in Section 4. Thus $G_{1} \nsupseteq C_{\geqslant k}$. Let $u_{0} \in V\left(G_{1}\right)$ with $d\left(u_{0}, G_{1}\right)$ minimal such that $G_{1}-u_{0} \supseteq P_{k-1}$. As $G_{1} \nsupseteq C_{\geqslant k}, d\left(u_{0}, G_{1}\right) \leqslant(k-1) / 2$. Let $H_{1}=G_{1}-u_{0}$ and $H_{2}=G_{2}+u_{0}$. Clearly, $e\left(H_{1}\right)+e\left(H_{2}\right)=e\left(G_{1}\right)+e\left(G_{2}\right)+d\left(u_{0}, G_{2}\right)-d\left(u_{0}, G_{1}\right) \geqslant$ $e\left(G_{1}\right)+e\left(G_{2}\right)+2$.

Then we choose an h-path $P=x_{1} \cdots x_{k-1}$ of H_{1} and a shortest path $L=v_{1} \cdots v_{q}$ of H_{2} such that $\left\{x_{1} v_{1}, x_{k-1} v_{q}\right\} \subseteq E$. Set $H=H_{2}-V(L)$. Thus $P \cup L+x_{1} v_{1}+x_{k-1} v_{q}$ is a cycle of order at least k and so
$H \nsupseteq C_{\geqslant k}$. We carefully choose P and L such that $\delta\left(H_{2}\right) \geqslant(k+3) / 2,|H| \geqslant k+1$ and $\delta(H) \geqslant(k-1) / 2$. This will be accomplished in Section 5. Let B_{1}, \ldots, B_{t} be a list of endblocks of H. Ideally, we wish to find two disjoint paths P^{\prime} and $P^{\prime \prime}$ in H such that $\left[P, P^{\prime}\right] \supseteq C_{\geqslant k}$ and $\left[L, P^{\prime \prime}\right] \supseteq C_{\geqslant k}$. Otherwise we will find a subset $X \subseteq V(H)$ such that $H_{2}-X \supseteq P_{k}$ and $e\left(H_{1}+X\right)+e\left(H_{2}-X\right)>e\left(H_{1}\right)+e\left(H_{2}\right)-2 \geqslant e\left(G_{1}\right)+e\left(G_{2}\right)$, contradicting (1). This will be accomplished in Sections 6 and 7. Section 6 proves that $t=2$ and $\left|B_{1} \cap B_{2}\right|=1$. Let $V\left(B_{1}\right) \cap V\left(B_{2}\right)=\left\{w_{1}\right\}$. Section 7 proves that there exists $v_{r} \in V(L)$ such that $\left[x_{1}, v_{1} \cdots v_{r}, B_{1}\right] \supseteq C_{\geqslant k}$ and $\left[v_{r+1} \cdots v_{q}, P-x_{1}, B_{2}-w_{1}\right] \supseteq C_{\geqslant k}$.

3 Lemmas

Let $G=(V, E)$ be a graph of order $n \geqslant 3$. We will use the following lemmas. Lemma 3.1 is an easy observation.

Lemma 3.1. Let P be a u-v path of order l in G. Then the following three statements hold:
(a) If $x \in V(G)-V(P)$ and $P+x$ does not contain a u-v path of order $<l$, then $d(x, P) \leqslant 3$ and if equality holds then $N(x, P)$ contains three consecutive vertices of P.
(b) If $x y$ is an edge of $G-V(P)$ with $d(x y, P) \geqslant 5$ and $P+x+y$ does not contain a u-v path of order $<l$, then $i(x y, P) \geqslant 1$ and if $d(x y, P)=6$ then $i(x y, P) \geqslant 2$.
(c) If P^{\prime} is an $x-y$ path of order at least r in $G-V(P)$ such that $d(x, P)>0, d(y, P)>0, d(x, P) \geqslant k-r$ and $d(y, P) \geqslant k-r-1$, then $\left[P, P^{\prime}\right]$ contains a cycle of order $\geqslant k$.
Lemma 3.2 (See [8]). Let $P=x_{1} x_{2} \cdots x_{r}$ be a path of G with $r \geqslant 2$ and $y \in V(G)-V(P)$. If $d(y, P) \geqslant r / 2$, then $P+y$ has a path P^{\prime} with $V\left(P^{\prime}\right)=V(P) \cup\{y\}$. Furthermore, if $d(y, P)>r / 2$ then P^{\prime} is an $x_{1}-x_{r}$ path or r is odd and $N(y, P)=\left\{x_{2 i-1} \mid i=1,2, \ldots,(r+1) / 2\right\}$.
Lemma 3.3 (See [9]). Let C be a cycle of order k in G. Let $\{x, y\} \subseteq V(C)$ with $x \neq y$. Suppose that $d(x, C)+d(y, C) \geqslant k+1$. Then $[C]$ has a path P from x^{+}to y^{+}with $V(P)=V(C)$.
Lemma 3.4 (See [4,13]). Suppose that G has an h-path and that for any two endvertices x and y of an h-path of $G, d(x, G)+d(y, G) \geqslant n+r$ holds, where r is a fixed positive integer. Then for any two distinct vertices u and v of $G, d(u, G)+d(v, G) \geqslant n+r$ holds. Moreover, for any linear forest F in G with $e(F) \leqslant r, G$ has an h-cycle passing through all the edges of F.

Lemma 3.5 (See [7]). Let $d \geqslant 2$ be an integer and let G be a 2-connected graph of order at least 3 such that if $d \geqslant 3$ then the order of G is at least 4 . Let x and y be two distinct vertices of G. If every vertex in $V(G)-\{x, y\}$, possibly except one, has degree at least d in G, then G contains an x-y path of order at least $d+1$.
Lemma 3.6. Let P be a path of order r in G with $r<|G|$. If G is connected and $d(x) \geqslant r / 2$ for each $x \in V(G)-V(P)$ then G contains a path of order at least $r+1$.
Proof. Let Q be a longest $u-v$ path in $G-V(P)$ with $d(u, P)>0$. It is easy to see that $[P, Q] \supseteq P_{r+1}$.
Lemma 3.7 (See [9]). Let $P=x_{1} x_{2} \cdots x_{t}$ be an optimal path at x_{1} in G. Let $r=\alpha\left(P, x_{t}\right)$. Suppose that for each $v \in V(G)$, if there exists a longest path starting at x_{1} in G such that the path ends at v then $d(v)>r / 2$. Then $N\left(x_{i}\right) \subseteq\left\{x_{t-r+1}, x_{t-r+2}, \ldots, x_{t}\right\},[P]$ has an $x_{1}-x_{i} h$-path and $d\left(x_{i}\right)>r / 2$ for all $i \in\{t-r+2, t-r+3, \ldots, t\}$. Moreover, if $t>r$ then x_{t-r+1} is a cut-vertex of G.

Lemma 3.8 (See [9]). Let $h \geqslant 2$ be an integer. If B is a 2 -connected graph such that every vertex, possibly except one, has degree at least $h / 2$, then B contains a cycle of order at least $\min (|B|, 2 h)$.

Lemma 3.9. Let $k \geqslant 5$ be an integer. Let B be a 2-connected graph of order at least k. Let w be a vertex of B. Suppose that $B \nsupseteq C_{\geqslant k}$ and $d(x, B) \geqslant(k-1) / 2$ for all $x \in V(B)-\{w\}$. Then k is odd and B has a cycle C of order $k-1$. Moreover, for some vertex u on $C, d(x, C)=(k-1) / 2$ and $N(x, B) \subseteq V(C)$ for each $x \in\left\{u^{-}, u^{+}\right\}$. In addition, if $w \in V(C)$ then $w=u$.

Proof. Let $P=x_{1} x_{2} \cdots x_{t}$ be an optimal path at $w=x_{1}$. As B has no cut-vertex and by Lemma 3.7, $\alpha\left(P, x_{t}\right)=k-1$. Say $r=t-k+2$. Then $C=x_{r} x_{r+1} \cdots x_{t} x_{r}$ is a cycle of order $k-1$. As B is 2 -connected
and by the optimality of P, there exists $s \in\{r+2, \ldots, t-1\}$ such that $d\left(x_{s}, B-V(C)\right) \geqslant 1$. Let a and b be the smallest and largest numbers in $\{r+2, \ldots, t-1\}$, respectively such that $d\left(x_{a}, B-V(C)\right) \geqslant 1$ and $d\left(x_{b}, B-V(C)\right) \geqslant 1$. So $N\left(x_{i}, B\right) \subseteq V(C)$ for all $i \in\left\{r+1, r+2, \ldots, a-1, b+1, b+2, \ldots, x_{t}\right\}$. By the optimality of $P,[C]$ does not have an $x_{r}-x_{a} h$-path. By Lemma 3.3, $d\left(x_{t} x_{a-1}, C\right) \leqslant k-1$. Thus $k-1$ is even with $d\left(x_{t}, C\right)=d\left(x_{a-1}, C\right)=(k-1) / 2$. Similarly, $d\left(x_{r+1}, C\right)=d\left(x_{b+1}, C\right)=(k-1) / 2$. Thus the lemma holds with $u=x_{r}$.

Lemma 3.10. Let $k \geqslant 3$ be an integer. Let H be a non-h-graph of order k with $H \supseteq P_{k-1}$. Suppose that $d(x, H) \geqslant(k-1) / 2$ for each $x \in V(H)$ with $H-x \supseteq P_{k-1}$. Then k is odd and either $H \in \mathcal{G}_{k}$ or $H \cong K_{(k+1) / 2} \cdot K_{(k+1) / 2}$.
Proof. By Lemma 3.2, $H \supseteq P_{k}$. First, assume that H has a cycle C of order $k-1$. Then $d(v, C) \geqslant$ $(k-1) / 2$ where $\{v\}=V(H)-V(C)$. It follows that k is odd and there exists $X \subseteq V(C)$ with $|X|=(k-1) / 2$ such that no two vertices of X are consecutive on C and $N(v, C)=X$. Then $H-u \supseteq P_{k-1}$ and so $d(u, H) \geqslant(k-1) / 2$ for each $u \in Y=V(H)-X$. Thus $N(u, H)=X$ for each $u \in Y$ as $H \nsupseteq C_{k}$, i.e., $H \in \mathcal{G}_{k}$. If $H \nsupseteq C_{k-1}$, then by Lemma 3.7, H has a cut-vertex and it follows that $H \cong K_{(k+1) / 2} \cdot K_{(k+1) / 2}$.
Lemma 3.11. Let $k \geqslant 10$ be an even integer. Let H be a non-h-graph of order k with $H \supseteq P_{k-1}$ such that $d(x, H) \geqslant(k-2) / 2$ for each $x \in V(H)$ with $H-x \supseteq P_{k-1}$. Then one of the following two statements hold:
(a) H has an h-path and two endblocks X_{1} and X_{2} such that $V(H)=V\left(X_{1} \cup X_{2}\right)$ and $\left|X_{1} \cap X_{2}\right| \leqslant 1$.
(b) There is a partition $V(H)=X \cup Y$ with $|X|=(k-2) / 2$ and $|Y|=(k+2) / 2$ such that Y has two vertices u_{1} and u_{2} such that $N(y, H)=X$ for all $y \in Y-\left\{u_{1}, u_{2}\right\}$ and $d\left(u_{i}, X \cup\left\{u_{1}, u_{2}\right\}\right) \geqslant(k-2) / 2$ for each $i \in\{1,2\}$.
Proof. First, assume that $H \nsupseteq P_{k}$. Let $y \in V(H)$ and $P=x_{1} \cdots x_{k-1}$ be an h-path of $H-y$. Applying Lemma 3.2 to $H-x_{1}-x_{k-1}$, we get $N(y, H)=\left\{x_{2}, x_{4}, \ldots, x_{k-2}\right\}$. As $H \nsupseteq P_{k},\left\{y, x_{1}, x_{3}, \ldots, x_{k-1}\right\}$ is independent. Clearly, for each $i \in\{1,3, \ldots, k-1\}, H-x_{i} \supseteq P_{k-1}$ and so $d\left(x_{i}, H\right) \geqslant(k-2) / 2$. It follows that $H \in \mathcal{G}_{k}$, i.e., (b) holds. Next, assume that H has an h-path. As $d(x, H) \geqslant(k-2) / 2$ for each endvertex x of an h-path of H, we see that if H has a cut-vertex then (a) holds.

We now assume that H is 2-connected, $H \supseteq P_{k}$ and $H \notin \mathcal{G}_{k}$. Let P be a $u-v h$-path of H with $\alpha(P, v)$ maximal. As H is 2 -connected and by Lemma 3.7, $\alpha(P, v) \geqslant(k-2)$. First, assume that $H \supseteq C_{k-1}$. Let C be a cycle of order $k-1$. Let x be the vertex not on C. Since $k-1$ is odd, $d(x, C) \geqslant(k-2) / 2$ and $H \nsupseteq C_{k}$, there exists a labelling $C=u_{1} u_{2} \cdots u_{k-1} u_{1}$ such that $N(x, C)=\left\{u_{3}, u_{5}, \ldots, u_{k-1}\right\}$. Say $X=N(x, C)$ and $Y^{\prime}=\left\{x, u_{4}, u_{6}, \ldots, u_{k-2}\right\}$. Since $H \nsupseteq C_{k}, Y^{\prime} \cup\left\{u_{i}\right\}$ is an independent set of H for $i \in\{1,2\}$. Clearly, each $y \in Y^{\prime} \cup\left\{u_{1}, u_{2}\right\}$ is an endvertex of an h-path of H and so $d(y, H) \geqslant(k-2) / 2$. Thus (b) holds with $Y=Y^{\prime} \cup\left\{u_{1}, u_{2}\right\}$.

Therefore we may assume that $\alpha(P, v)=k-2$. Say $P=x_{1} x_{2} u_{1} u_{2} \cdots u_{k-2}$ with $u_{1} u_{k-2} \in E$. Let $C=$ $P-x_{1}-x_{2}$. As H is 2 -connected, either $d\left(x_{1}, C-u_{1}\right)>0$ or $x_{1} u_{1} \in E$ and $d\left(x_{2}, C-u_{1}\right)>0$. Say w.l.o.g. $d\left(x_{1}, C-u_{1}\right)>0$. Then $x_{1} u_{i} \notin E$ for each $i \in\{2,3, k-3, k-2\}$. As $H \nsupseteq C_{\geqslant(k-1)}, d\left(x, C\left[u_{4}, u_{k-4}\right]\right) \leqslant$ $(k-6) / 2$ by Lemma 3.2. As $d\left(x_{1}\right) \geqslant(k-2) / 2$, it follows that $N\left(x_{1}\right)=\left\{x_{2}, u_{1}, u_{4}, u_{6}, \ldots, u_{k-4}\right\}$. Let $Y=\left\{u_{5}, u_{7}, \ldots, u_{k-5}\right\}$. As $k \geqslant 10, Y \neq \emptyset$. Clearly, each $y \in Y \cup\left\{x_{1}, x_{2}, u_{2}, u_{3}, u_{k-3}, u_{k-2}\right\}$ is an endvertex of an h-path of H. Since $H \nsupseteq C_{\geqslant(k-1)}, Y \cup\left\{u_{i}\right\}$ is an independent set of H for each $i \in\{2,3, k-3, k-2\}$ and $d\left(u_{2} u_{3}, u_{k-3} u_{k-2}\right)=0$. It follows that $N\left(x_{2}, C\right)=N\left(x_{1}, C\right)$. Thus $d(y, H) \leqslant(k-4) / 2$ for each $y \in Y$, a contradiction.
Lemma 3.12. Let $k \geqslant 5$ be an integer. Let H be a 2 -connected graph of order at least k. Suppose that $H \nsupseteq C_{\geqslant k}$ and $\delta(H) \geqslant(k-1) / 2$. Then k is odd. Moreover, either $H \in \mathcal{G}_{k}$ or H has a vertex-cut $\{x, y\}$ such that $H-\{x, y\}$ has at least three components and each of them is isomorphic to $K_{(k-3) / 2}$.
Proof. Let P be an optimal path of H. Say P is an optimal $u-v$ path at u. By Lemma 3.9, we see that k is odd and $\alpha(P, v)=k-1$. Say $P=x_{1} x_{2} \cdots x_{t} u_{1} u_{2} \cdots u_{k-1}$ with $u_{1} u_{k-1} \in E$. Let $P^{\prime}=u_{1} x_{t} x_{t-1} \cdots x_{1}$ and $C=u_{1} u_{2} \cdots u_{k-1} u_{1}$. Then P^{\prime} is a longest path starting at u_{1} in $H-\left\{u_{2}, \ldots, u_{k-1}\right\}$.

Let us first assume that for each longest path Q starting at u_{1} in $H-\left\{u_{2}, \ldots, u_{k-1}\right\}$, if Q ends at w then
$d\left(w, C-u_{1}\right)=0$. In this situation, we may assume that P^{\prime} is an optimal path at u_{1} in $H-\left\{u_{2}, \ldots, u_{k-1}\right\}$. As H is 2 -connected and by Lemma 3.7, we see that $\alpha\left(P^{\prime}, x_{1}\right)=k-1$. Hence $H-\left\{u_{2}, \ldots, u_{k-1}\right\}$ has a cycle C^{\prime} of order $k-1$. Since H is 2-connected, there exist two disjoint paths from C^{\prime} to C. This implies $H \supseteq C_{\geqslant k}$, a contradiction.

Therefore we may assume w.l.o.g. that $d\left(x_{1}, C-u_{1}\right) \geqslant 1$. Say $N\left(x_{1}, C-u_{1}\right)=\left\{u_{i_{1}}, \ldots, u_{i_{r}}\right\}$ with $1<i_{1}<\cdots<i_{r}<k-1$. Since $H \nsupseteq C_{\geqslant k}$ and $d\left(x_{1}, H\right) \geqslant(k-1) / 2$, we see that $d\left(x_{1}, H\right)=(k-1) / 2$, $\left\{x_{2}, \ldots, x_{t}, u_{1}\right\} \subseteq N\left(x_{1}, H\right), i_{1}=t+2, k-t-1=i_{r}$ and $i_{j+1}=i_{j}+2$ for $1 \leqslant j \leqslant r-1$. Let $I_{1}=$ $\left\{u_{2}, \ldots, u_{t+1}\right\}, I_{2}=\left\{u_{k-t}, \ldots, u_{k-1}\right\}, I_{3}=\left\{u_{t+2 i+1} \mid i=1,2, \ldots,(k-1) / 2-t-1\right\}, I_{4}=\left\{x_{1}, \ldots, x_{t}\right\}$. As $H \nsupseteq C_{\geqslant k}$, we readily see that $d\left(I_{a}, I_{b}\right)=0$ for $1 \leqslant a<b \leqslant 4$ and I_{3} is an independent set. It is easy to see that each $y \in I_{3} \cup I_{4} \cup\left\{u_{2}, u_{k-1}\right\}$ is an endvertex of an h-path of $[P]$ which is a longest path of H and so $N(y, H) \subseteq V(P)$. As $\delta(H) \geqslant(k-1) / 2$. It follows that $N\left(x_{i}, H\right)=N\left(x_{1}, H\right)$ for $i=1,2, \ldots, t$, $N\left(u_{2}, H\right)=I_{1} \cup N\left(x_{1}, C\right)-\left\{u_{2}\right\}, N\left(u_{k-1}, H\right)=I_{2} \cup N\left(x_{1}, C\right)-\left\{u_{k-1}\right\}$ and $N\left(u_{i}, H\right)=N\left(x_{1}, C\right)$ for all $u_{i} \in I_{3}$. If $I_{3} \neq \emptyset$ then $t=1$ for otherwise $d\left(u_{i}, H\right)<(k-1) / 2$ for each $u_{i} \in I_{3}$. Consequently, $N(y, H)=$ $\left\{u_{1}, u_{3}, \ldots, u_{k-2}\right\}$ for each $y \in I_{3} \cup I_{4}$. This argument implies that $N(y, H)=\left\{u_{1}, u_{3}, \ldots, u_{k-2}\right\}$ for all $y \in V(H)-\left\{u_{1}, u_{3}, \ldots, u_{k-2}\right\}$ and so $H \in \mathcal{G}_{k}$. If $I_{3}=\emptyset$, then $t=(k-3) / 2$ and $i_{1}=i_{r}=(k+1) / 2$. Thus $N\left(u_{2}, H\right)=I_{1} \cup\left\{u_{1}, u_{(k+1) / 2}\right\}-\left\{u_{2}\right\}$ and so each $u_{i} \in I_{1}$ is an endvertex of an h-path of $[P]$. As $\delta(H) \geqslant(k-1) / 2$, it follows that $N\left(u_{i}, H\right)=I_{1} \cup\left\{u_{1}, u_{(k+1) / 2}\right\}-\left\{u_{i}\right\}$ for each $u_{i} \in I_{1}$. Similarly, $N\left(u_{i}, H\right)=I_{2} \cup\left\{u_{1}, u_{(k+1) / 2}\right\}-\left\{u_{i}\right\}$ for each $u_{i} \in I_{2}$. Thus the three components of $[P]-\left\{u_{1}, u_{(k+1) / 2}\right\}$ are isomorphic to $K_{(k-3) / 2}$ and they are components of $H-\left\{u_{1}, u_{(k+1) / 2}\right\}$. This argument implies that all the other components of $H-\left\{u_{1}, u_{(k+1) / 2}\right\}$ are isomorphic to $K_{(k-3) / 2}$, too.

4 Four properties on G_{1} and G_{2}

Let G_{1} and G_{2} be the two subgraphs satisfying (1). We shall show the following four properties.
Property 1. For each $x \in V\left(G_{1}\right)$ with $G_{1}-x \supseteq P_{k-1} \cup K_{1}, d\left(x, G_{1}\right) \geqslant(k+1) / 2$, and for each $y \in V\left(G_{2}\right)$ with $G_{2}-y \supseteq P_{k}, d\left(y, G_{2}\right) \geqslant(k+1) / 2$. Furthermore, G_{1} contains at most two components and G_{2} is connected. In addition, if G_{1} has a component of order at least k containing P_{k-1} then G_{1} is connected.

Proof. By (1), for each $x \in V\left(G_{1}\right)$ with $G_{1}-x \supseteq P_{k-1} \cup K_{1}, e\left(G_{1}\right)+e\left(G_{2}\right) \geqslant e\left(G_{1}-x\right)+e\left(G_{2}+x\right)$ which implies $d\left(x, G_{1}\right) \geqslant d\left(x, G_{2}\right)$ and so $d\left(x, G_{1}\right) \geqslant(k+1) / 2$. Similarly, for each $y \in V\left(G_{2}\right)$ with $G_{2} \supseteq P_{k}, d\left(y, G_{2}\right) \geqslant(k+1) / 2$. As G is connected, we see that if G_{1} contains a component C with $G_{1}-V(C) \supseteq P_{k-1} \cup K_{1}$ then $e\left(G_{1}-V(C)\right)+e\left(G_{2}+V(C)\right)>e\left(G_{1}\right)+e\left(G_{2}\right)$, contradicting (1). Therefore G_{1} does not have such a component. Similarly, G_{2} shall not have a component C^{\prime} with $G_{2}-V\left(C^{\prime}\right) \supseteq P_{k}$. This proves Property 1.
Property 2. For each $i \in\{1,2\}$, if $G_{i} \nsupseteq C_{k+1}$, then $\left|G_{i}\right|=k$.
Proof. We first show that if $G_{2} \nsupseteq C_{k+1}$, then $\left|G_{2}\right|=k$. On the contrary, say that $G_{2} \nsupseteq C_{\geqslant k+1}$ and $\left|G_{2}\right|>k$. Let $P=x_{1} x_{2} \cdots x_{t}$ be an optimal path in G_{2} with $\alpha\left(P, x_{t}\right)$ maximal. By Lemma $3.6, t>k$. Thus for any longest path P^{\prime} in G_{2}, if v is an endvertex of P^{\prime}, then $G_{2}-v \supseteq P_{k}$ and so $d\left(v, G_{2}\right) \geqslant(k+1) / 2$ by Property 1. Say $\alpha\left(P, x_{t}\right)=r$. Then $x_{t} x_{t-r+1} \in E$. As $G_{2} \nsupseteq C \geqslant k+1, r \leqslant k$. Say $B_{1}=\left\{x_{t-r+2}, \ldots, x_{t}\right\}$. By Lemma 3.7, $N\left(x_{i}, G_{2}\right) \subseteq B_{1} \cup\left\{x_{t-r+1}\right\}$ and $(k+1) / 2 \leqslant d\left(x_{i}, G_{2}\right)$ for all $x_{i} \in B_{1}$. So x_{t-r+1} is a cut-vertex of G_{2}. Let $L=P-B_{1}$. We may assume that L is an optimal path at x_{t-r+1} in $G_{2}-B_{1}$. Say $\alpha\left(L, x_{1}\right)=s$ and $B_{2}=\left\{x_{1}, \ldots, x_{s-1}\right\}$. Similarly, $s \leqslant k, N\left(x_{i}, G_{2}\right) \subseteq B_{2} \cup\left\{x_{s}\right\}$ and $(k+1) / 2 \leqslant d\left(x_{i}, G_{2}\right)$ for all $x_{i} \in B_{2}$. By the maximality of $\alpha\left(P, x_{t}\right), s \leqslant r$. Let $s-1=a+b$ such that if $t-(s-1) \geqslant k$ then $a=0$ and if $t-(s-1)<k$ then $a=k-t+(s-1)$. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{b}\right\}$. Then $X \subseteq B_{2}$, $G_{2}-X \supseteq P_{k}, d\left(X, G_{2}-X\right) \leqslant b(a+1)$ and $d\left(X, G_{1}\right) \geqslant \sum_{x_{i} \in X}\left(k+1-d\left(x_{i}, G_{2}\right)\right) \geqslant b(k+1-(s-1))$. This yields

$$
\begin{aligned}
e\left(G_{2}-X\right)+e\left(G_{1}+X\right) & \geqslant e\left(G_{2}\right)+e\left(G_{1}\right)-b(a+1)+b(k-s+2) \\
& =e\left(G_{2}\right)+e\left(G_{1}\right)+b(k-s-a+1)>e\left(G_{2}\right)+e\left(G_{1}\right)
\end{aligned}
$$

contradicting (1). Therefore if $G_{2} \nsupseteq C_{k+1}$, then $\left|G_{2}\right|=k$.
Next, assume that $G_{1} \nsupseteq C_{\geqslant k+1}$ but $\left|G_{1}\right|>k$. Let F be a component of G_{1} with $F \supseteq P_{k-1}$. If $|F|=k-1$, then G_{1} has another component F^{\prime} and $d\left(x, F^{\prime}\right) \geqslant(k+1) / 2$ for all $x \in V\left(F^{\prime}\right)$ by Property 1. Let B be an endblock of F^{\prime}. Then B has a vertex $w \in V(B)$ such that $N\left(x, F^{\prime}\right) \subseteq V(B)$ for all $x \in V(B)-\{w\}$. As $G_{1} \nsupseteq C_{\geqslant k+1}$ and by Lemma 3.8, $|B| \leqslant k$. Therefore $d\left(x, G_{2}\right) \geqslant 2$ for all $x \in V(B)-\{w\}$. Thus $e\left(G_{1}-V(B-w)\right)+e\left(G_{2}+V(B-w)\right)>e\left(G_{1}\right)+e\left(G_{2}\right)$, contradicting (1). Hence $|F| \geqslant k$ and so $G_{1}=F$ by Property 1. By Lemma 3.6 and Property $1, G_{1} \supseteq P_{k+1}$. Then a contradiction follows by exchanging the roles of G_{1} and G_{2} in the above paragraph.

Subject to (1), we now choose G_{1} and G_{2} to satisfy (2). By Property 2, we see that either $\left|G_{1}\right|=k$ or $\left|G_{2}\right|=k$. If $\left|G_{2}\right|=k$, then $\left|G_{1}\right|>k$ and $G_{1} \supseteq C_{\geqslant k+1}$. As $G_{2} \supseteq P_{k-1} \cup K_{1}$ and $G_{1} \supseteq P_{k}$, we shall have $\left|G_{1}\right|=k$ by (2), a contradiction. Hence $\left|G_{1}\right|=k$ and $\left|G_{2}\right| \geqslant n-k \geqslant k+2$ and so $G_{2} \supseteq C \geqslant k+1$. Thus $G_{2}-x \supseteq P_{k}$ for all $x \in V\left(G_{2}\right)$. Subject to (1) and (2), we further choose G_{1}, G_{2} and a vertex $u_{0} \in V\left(G_{1}\right)$ with $G_{1}-u_{0} \supseteq P_{k-1}$ such that $d\left(u_{0}, G_{1}\right)$ is minimum. If $d\left(u_{0}, G_{1}\right) \geqslant k / 2$ then G_{1} has an h-path by Lemma 3.2 and so $d\left(u v, G_{1}\right) \geqslant k$ for any u-v h-path of G_{1}. Consequently, $G_{1} \supseteq C_{\geqslant k}$, a contradiction. Hence $d\left(u_{0}, G_{1}\right) \leqslant(k-1) / 2$.
Property 3. $\quad G_{2}$ is 2-connected with $\delta\left(G_{2}\right) \geqslant(k+2) / 2$.
Proof. First, suppose that $d\left(x_{0}, G_{2}\right)=(k+1) / 2$ for some $x_{0} \in V\left(G_{2}\right)$. Then $d\left(x_{0}, G_{1}\right) \geqslant(k+1) / 2$. Thus $e\left(G_{1}+x_{0}\right)+e\left(G_{2}-x_{0}\right) \geqslant e\left(G_{1}\right)+e\left(G_{2}\right)$ with equality only if $d\left(x_{0}, G_{1}\right)=(k+1) / 2$. With $G_{1}+x_{0}$ and $G_{2}-x_{0}$ in place of G_{1} and G_{2}, we see that $G_{1}+x_{0} \supseteq C_{\geqslant k+1}$ and $G_{2}-x_{0} \supseteq C_{\geqslant k+1}$ by Property 2 since $\left|G_{1}+x_{0}\right|>k$ and $\left|G_{2}-x_{0}\right|>k$, a contradiction. Therefore $\delta\left(G_{2}\right) \geqslant(k+2) / 2$. Next, suppose that G_{2} has a cut-vertex w. Then $G_{2}-w$ has two subgraphs J_{1} and J_{2} such that $G_{2}-w=J_{1} \cup J_{2}$, $J_{1} \cap J_{2}=\emptyset$ and $J_{2}+w \supseteq C_{\geqslant k+1}$. Then $J_{1} \nsupseteq C_{\geqslant k}$. Let $L=v_{1} \cdots v_{p}$ be a longest path in J_{1}. Say $d\left(v_{1}, L\right) \geqslant d\left(v_{p}, L\right)$. Then $k-2 \geqslant d\left(v_{1}, L\right)$ and $d\left(v_{i}, G_{1}-u_{0}\right) \geqslant k+1-2-d\left(v_{i}, L\right) \geqslant k-\left(d\left(v_{1}, L\right)+1\right)$ for $i \in\{1, p\}$. Since $G_{1}-u_{0}$ has an h-path and $p \geqslant d\left(v_{1}, L\right)+1$, it follows that $\left[L, G_{1}-u_{0}\right] \supseteq C \geqslant k$ by Lemma 3.1(c), a contradiction.

Property 4. For each $x \in V\left(G_{2}\right), G_{1}+x \nsupseteq C_{\geqslant k}$.
Proof. Assume by contradiction that $G_{1}+x_{0} \supseteq C_{\geqslant k}$ for some $x_{0} \in V\left(G_{2}\right)$. Say $H=G_{2}-x_{0}$. Then $H \nsupseteq C_{\geqslant k}$ and $\delta(H) \geqslant(k+2) / 2-1=k / 2$. By Lemma $3.8, H$ is not 2 -connected. Let B_{1} and B_{2} be two endblocks of H. Say $r=\left|B_{1}\right| \leqslant s=\left|B_{2}\right|$. For each $i \in\{1,2\}$, let w_{i} be the cut-vertex of H with $w_{i} \in V\left(B_{i}\right)$. Say $B_{i}^{\prime}=V\left(B_{i}\right)-\left\{w_{i}\right\}(i=1,2)$. By Lemma 3.8, $r<k$ and $s<k$. By Lemma 3.7, for each $i \in\{1,2\}$ and each $x \in B_{i}^{\prime}, B_{i}$ has a $w_{i}-x h$-path. Let $P=x_{1} x_{2} \cdots x_{t}$ be a longest path of H with $x_{1} \in B_{2}^{\prime}$ and $x_{t} \in B_{1}^{\prime}$. Then $B_{2}=\left[x_{1}, \ldots, x_{s}\right], B_{1}=\left[x_{t-r+1}, \ldots, x_{t}\right], w_{2}=x_{s}$ and $w_{1}=x_{t-r+1}$. Let $r-1=a+b$ with $a=\max \{0, k-1-(t-r+1)\}$. Then $\left[x_{0}, x_{1}, \ldots, x_{t-r+1+a}\right] \supseteq P_{k}$. Let $X=\left\{x_{t-b+1}, x_{t-b+2}, \ldots, x_{t}\right\}$. Then we have

$$
\begin{aligned}
& e\left(G_{1}+X\right)+e\left(G_{2}-X\right) \\
& \quad \geqslant e\left(G_{1}\right)+\sum_{x \in X}\left(k+1-d\left(x, B_{1}+x_{0}\right)\right)+e\left(G_{2}\right)-\sum_{x \in X} d\left(x, B_{1}-X+x_{0}\right) \\
& \quad \geqslant e\left(G_{1}\right)+e\left(G_{2}\right)+b(k-r+1)-b(a+2)=e\left(G_{1}\right)+e\left(G_{2}\right)+b(k-r-a-1)
\end{aligned}
$$

As $k>s \geqslant r$ and $t \geqslant r+s-1$, we see that $k-r-a-1 \geqslant 0$. By (1), it follows that $r=s$ and $k=r+a+1$. Furthermore, $x x_{0} \in E$ and $d\left(x, B_{1}\right)=r-1$ for all $x \in X$. Since each $x_{i} \in B_{1}^{\prime}$ can play the role of x_{t}, this argument implies that $B_{1} \cong K_{r}$ and $d\left(x_{0}, B_{1}^{\prime}\right)=r-1$. Similarly, $B_{2} \cong K_{r}$ and $d\left(x_{0}, B_{2}^{\prime}\right)=r-1$. Thus $G_{2}-X \supseteq\left[x_{0}, x_{1}, \ldots, x_{t-r+1+a}\right] \supseteq C_{\geqslant k}$. Then $G_{1}+X \nsupseteq C_{\geqslant k}$. Since (1) is maintained with $G_{1}+X$ and $G_{2}-X$ in place of G_{1} and G_{2}, we obtain $\left|G_{1}+X\right|=k$ by Property 2, a contradiction.

5 Properties on $G_{1}-u_{0}$ and $G_{2}+u_{0}$

For convenience, let $H_{1}=G-u_{0}$ and $H_{2}=G_{2}+u_{0}$. We will choose an h-path $P=x_{1} \cdots x_{k-1}$ of H_{1} and a shortest path $L=v_{1} \cdots v_{q}$ in H_{2} with $\left\{x_{1} v_{1}, x_{k-1} v_{q}\right\} \subseteq E$. Then we set $H=H_{2}-V(L)$. The
following cases tell us how to choose P and L so that the properties on H_{1}, H_{2} and H allow us to find $2 C_{\geqslant k}$ in G or we find that (1) is violated.

As $d\left(u_{0}, G_{1}\right) \leqslant\lfloor(k-1) / 2\rfloor, d\left(u_{0}, G_{2}\right) \geqslant\lceil(k+3) / 2\rceil$. For $x \in V\left(G_{1}\right)$ and $y \in V\left(G_{2}\right)$, we define $\xi(x, y)=d\left(x, G_{2}\right)+d\left(y, G_{1}\right)-d\left(x, G_{1}\right)-d\left(y, G_{2}\right)-2 d(x, y)$. Then $e\left(G_{1}-x+y\right)+e\left(G_{2}-y+x\right)=$ $e\left(G_{1}\right)+e\left(G_{2}\right)+\xi(x, y)$. Clearly, $G_{2}-y \supseteq P_{k}$ and $\xi(x, y) \geqslant 2(k+1)-2\left(d\left(x, G_{1}\right)+d\left(y, G_{2}\right)+d(x, y)\right)$. If $G_{1}-x+y \supseteq P_{k-1} \cup K_{1}$ then

$$
\begin{equation*}
\xi(x, y) \leqslant 0 \text { and so } d\left(x, G_{1}\right)+d\left(y, G_{2}\right)+d(x, y) \geqslant k+1 \tag{3}
\end{equation*}
$$

We consider the following cases.
Case 1. $\quad G_{1}$ is 2-connected and $e\left(u_{0}, G_{1}\right)=\lfloor(k-1) / 2\rfloor=\lceil(k-2) / 2\rceil$.
In this case, by Lemmas 3.10 and 3.11, $V\left(G_{1}\right)$ has a partition $X \cup Y$ with $|X|=\lfloor(k-1) / 2\rfloor$ and $|Y|=\lfloor(k+2) / 2\rfloor$ such that either $N\left(y, G_{1}\right)=X$ for all $y \in Y$, or k is even and $[Y]$ has an edge $u_{1} u_{2}$ such that $N\left(y, G_{1}\right)=X$ for all $y \in Y-\left\{u_{1}, u_{2}\right\}$ and $d\left(u_{i}, G_{1}\right) \geqslant(k-2) / 2$ for each $i \in\{1,2\}$. Among all the choices of G_{1} and G_{2} satisfying (1) and (2) in Case 1, we may assume that G_{1} and G_{2} have been chosen with $e([Y])$ maximal. Thus $e([Y]) \leqslant 1$ and if equality holds then k is even.

Let $L=v_{1} \cdots v_{q}$ be a shortest path of H_{2} such that $\left\{v_{1} y, v_{q} y^{\prime}\right\} \subseteq E$ for some vertices y and y^{\prime} of Y with $y \neq y^{\prime}$. Moreover, if $e([Y])=1$ then $\left\{y, y^{\prime}\right\} \subseteq Y-\left\{u_{1}, u_{2}\right\}$. Subject to the above assumption on G_{1} and G_{2}, we further choose G_{1}, G_{2} and L with $|L|$ being minimal. As $k \geqslant 9$, we may choose $u_{0} \in Y$ such that $N\left(u_{0}, G_{1}\right)=X$ and $u_{0} \notin\left\{y, y^{\prime}\right\}$. Then $P=x_{1} \cdots x_{k-1}$ is defined to be an h-path of H_{1} from y to y^{\prime}. Clearly,

$$
\begin{equation*}
d\left(x_{1} x_{k-1}, H_{1}\right)=2\lfloor(k-1) / 2\rfloor \text { and so } d\left(x_{1} x_{k-1}, H\right) \geqslant 2(k+1)-2\lfloor(k-1) / 2\rfloor-2 \geqslant k+1 \tag{4}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\delta\left(H_{2}\right) \geqslant\lceil(k+3) / 2\rceil \text { and } d(z, L)=0 \text { for each } z \in V(H) \text { with } d\left(z, H_{2}\right)=\lceil(k+3) / 2\rceil . \tag{5}
\end{equation*}
$$

Proof of (5). By Property 4, for all $z \in V\left(G_{2}\right), G_{1}+z \nsupseteq C_{\geqslant k}$ and so $d(z, Y) \leqslant 1$. In particular, $q \geqslant 2$. Then we see that for each $z \in V\left(G_{2}\right)$, there is $y \in Y$ with $d\left(y, G_{1}\right)=\lfloor(k-1) / 2\rfloor$ such that $z y \notin E$. By (3), $d\left(z, G_{2}\right) \geqslant(k+1)-\lfloor(k-1) / 2\rfloor=\lceil(k+3) / 2\rceil$. Hence $\delta\left(H_{2}\right) \geqslant\lceil(k+3) / 2\rceil$. Assume that $d(z, L)>0$ and $d\left(z, H_{2}\right)=\lceil(k+3) / 2\rceil$ for some $z \in V(H)$. Then $d\left(z, H_{1}\right) \geqslant k+1-\lceil(k+3) / 2\rceil=\lfloor(k-1) / 2\rfloor$ and $d(z, Y) \leqslant 1$. If $d(z, Y)=1$ then $z \neq u_{0}, k$ is even and $e([Y])=0$ since $H_{1}+z \nsupseteq C_{\geqslant k}$. Furthermore, we may replace G_{1} and G_{2} by $H_{1}+z$ and $H_{2}-z$ in Case 1 and obtain $e\left(\left[Y \cup\{z\}-\left\{u_{0}\right\}\right]\right)=1$, contradicting the maximality of $e([Y])$. Hence $N\left(z, H_{1}\right)=X$. As $d(z, L)>0$, we see that L has a u - v subpath L^{\prime} with $\left|L^{\prime}\right|<|L|$ such that $\left\{u z, v z^{\prime}\right\} \subseteq E$ for some $z^{\prime} \in\left\{y, y^{\prime}\right\}$, contradicting the minimality of $|L|$ if we replace G_{1} and G_{2} with $H_{1}+z$ and $H_{2}-z$. Therefore $d(z, L)=0$.
Case 2. $\quad G_{1}$ is not 2 -connected and $d\left(u_{0}, G_{1}\right)=\lfloor(k-1) / 2\rfloor$.
Let c_{0} be a cut-vertex of G_{1}. First, assume that k is odd. By Lemma 3.10, G_{1} has two complete subgraphs X_{1} and X_{2} of order $(k+1) / 2$ with $V\left(X_{1}\right) \cap V\left(X_{2}\right)=\left\{c_{0}\right\}$. Let z be an arbitrary vertex of G_{2}. By Property $4, N\left(z, G_{1}\right) \subseteq V\left(X_{1}\right)$ or $N\left(z, G_{1}\right) \subseteq V\left(X_{2}\right)$. Say w.l.o.g. $N\left(z, G_{1}\right) \subseteq V\left(X_{2}\right)$. Let $x \in V\left(X_{1}\right)-\left\{c_{0}\right\}$. By $(3), d\left(z, G_{2}\right) \geqslant k+1-d\left(x, G_{1}\right) \geqslant(k+3) / 2$. If $d\left(z, G_{2}\right)=(k+3) / 2$ then $\xi(x, z) \geqslant 0$ and so $\xi(x, z)=0$, i.e., $e\left(G_{1}-x+z\right)+e\left(G_{2}-z+x\right)=e\left(G_{1}\right)+e\left(G_{2}\right)$ and $d\left(y, G_{1}-x+z\right)=(k-3) / 2$ for all $y \in V\left(X_{1}-c_{0}\right)$, contradicting the minimality of $d\left(u_{0}, G_{1}\right)$. Thus $\delta\left(G_{2}\right) \geqslant(k+5) / 2$. Let $L=v_{1} \cdots v_{q}$ be a shortest path of G_{2} such that $\left\{v_{1} y, v_{q} y^{\prime}\right\} \subseteq E$ for some $y \in V\left(X_{1}-c_{0}\right)$ and $y^{\prime} \in V\left(X_{2}-c_{0}\right)$. We may choose $u_{0} \in V\left(G_{1}\right)-\left\{y, y^{\prime}, c_{0}\right\}$. Let $P=x_{1} \cdots x_{k-1}$ be a y - $y^{\prime} h$-path of H_{1}. By the minimality of $|L|$, we conclude that if k is odd then

$$
\begin{align*}
& d\left(x_{1} x_{k-1}, H_{1}\right)=k-2 \text { and so } d\left(x_{1} x_{k-1}, H\right) \geqslant k+2 \tag{6}\\
& d\left(u_{0}, H_{2}\right) \geqslant(k+3) / 2, \quad \delta\left(H_{2}-u_{0}\right) \geqslant(k+5) / 2, \quad u_{0} \notin V(L), \quad d\left(u_{0}, L\right) \leqslant 1 \\
& \text { and if } d\left(u_{0}, L\right)=1 \text { then } d\left(u_{0}, v_{1} v_{q}\right)=1 \tag{7}
\end{align*}
$$

Next, assume that k is even. By Lemma 3.11, G_{1} has an h-path and two endblocks X_{1} and X_{2} with $V\left(G_{1}\right)=V\left(X_{1} \cup X_{2}\right)$. Say $\left|X_{1}\right| \leqslant\left|X_{2}\right|$. Then $\left|X_{1}\right|=k / 2$ and $\left|X_{2}\right| \leqslant k / 2+1$. Let $c_{i} \in V\left(X_{i}\right)$ be the cutvertex of G_{1} for $i \in\{1,2\}$. As $d\left(x, G_{1}\right) \geqslant(k-2) / 2$ for each endvertex x of an h-path of G_{1}, it follows that $X_{1} \cong K_{k / 2}$. Moreover, we see, by Lemma 3.7, that $d\left(x, X_{2}\right) \geqslant(k-2) / 2$ for all $x \in V\left(X_{2}-c_{2}\right)$. As $k \geqslant 9$, $\delta\left(X_{2}-c_{2}\right) \geqslant(k-2) / 2-1>k / 4$ and so $X_{2}-c_{2}$ is h-connected by Lemma 3.4. Let z be an arbitrary vertex of G_{2}. By Property $4, N\left(z, G_{1}\right) \subseteq V\left(X_{1}\right) \cup\left\{c_{2}\right\}$ or $N\left(z, G_{1}\right) \subseteq V\left(X_{2}\right) \cup\left\{c_{1}\right\}$. If $N\left(z, G_{1}\right) \nsupseteq V\left(X_{1}\right)-\left\{c_{1}\right\}$, let $x \in V\left(X_{1}\right)-\left\{c_{1}\right\}$ with $x z \notin E$, and by (3), we see that $d\left(z, G_{2}\right) \geqslant k+1-d\left(x, G_{1}\right) \geqslant(k+4) / 2$. Moreover, if equality holds then $d\left(z, X_{2}-c_{2}\right)>0$ and $e\left(G_{1}-x+z\right)+e\left(G_{2}-z+x\right) \geqslant e\left(G_{1}\right)+e\left(G_{2}\right)$. But then we see that $d\left(y, G_{1}-x+z\right)=(k-4) / 2$ for each $y \in V\left(X_{1}\right)-\left\{x, c_{1}\right\}$, contradicting the minimality of $d\left(u_{0}, G_{1}\right)$. Therefore if $N\left(z, G_{1}\right) \nsupseteq V\left(X_{1}\right)-\left\{c_{1}\right\}$ then $d\left(z, G_{2}\right) \geqslant(k+6) / 2$. If $N\left(z, G_{1}\right) \supseteq V\left(X_{1}\right)-\left\{c_{1}\right\}$, then $d\left(z, X_{2}-c_{2}\right)=0$ and by $(3), d\left(z, G_{2}\right) \geqslant k+1-d\left(w, G_{1}\right) \geqslant(k+2) / 2$ where $w \in V\left(X_{2}\right)-\left\{c_{2}\right\}$. We conclude that if k is even then for each $x \in V\left(G_{2}\right)$,

$$
\begin{align*}
& \text { if } N\left(x, G_{1}\right) \nsupseteq V\left(X_{1}-c_{1}\right) \text { then } d\left(x, G_{2}\right) \geqslant(k+6) / 2 ; \tag{8}\\
& \text { if } N\left(x, G_{1}\right) \supseteq V\left(X_{1}-c_{1}\right) \text { then } d\left(x, G_{2}\right) \geqslant(k+2) / 2 . \tag{9}
\end{align*}
$$

Let $L=v_{1} \cdots v_{q}$ be a shortest path in G_{2} such that $\left\{y v_{1}, y^{\prime} v_{q}\right\} \subseteq E$ for some $y \in V\left(X_{1}-c_{1}\right)$ and $y^{\prime} \in V\left(X_{2}-c_{2}\right)$. In this Case 2 with k even, we further choose G_{1}, G_{2} and L such that $|L|$ is minimal. Then we choose $u_{0} \in V\left(X_{1}\right)-\left\{y, c_{1}\right\}$. Let $P=x_{1} \cdots x_{k-1}$ be a y - $y^{\prime} h$-path of H_{1}. By (8) and (9), we see that $\delta\left(H_{2}\right) \geqslant(k+4) / 2$. Moreover, if $d\left(z, H_{2}\right)=(k+4) / 2$ with $z \in V\left(H_{2}\right)$, then either $z u_{0} \in E$ and $\xi\left(u_{0}, z\right)=0$ or $z=u_{0}$. Consequently, by the assumption on G_{1}, G_{2} and L, we see that if $d\left(z, H_{2}\right)=(k+4) / 2$ with $z \in V(H)$, then (1) and (2) are maintained if z and w are exchanged with $w \in V\left(X_{2}\right)-\left\{c_{2}, y^{\prime}\right\}$ and $w z \notin E$, and so $d(z, L) \leqslant 1$ by the minimality of $|L|$. We conclude that if k is even then

$$
\begin{align*}
& d\left(x_{1} x_{k-1}, H_{1}\right) \leqslant k-2 \text { and so } d\left(x_{1} x_{k-1}, H\right) \geqslant k+2 \tag{10}\\
& u_{0} \notin V(L), \quad d\left(u_{0}, L\right) \leqslant 1, \quad \delta\left(H_{2}\right) \geqslant(k+4) / 2 \tag{11}\\
& d(x, L) \leqslant 1 \text { for each } x \in V(H) \text { with } d\left(x, H_{2}\right)=(k+4) / 2 \tag{12}
\end{align*}
$$

Case 3. $\quad d\left(u_{0}, G_{1}\right) \leqslant\lfloor(k-1) / 2\rfloor-1=\lfloor(k-3) / 2\rfloor$.
Then $d\left(u_{0}, G_{2}\right) \geqslant\lceil(k+5) / 2\rceil$. Let z be an arbitrary vertex of G_{2} with $d\left(z, G_{2}\right)=\delta\left(G_{2}\right)$. By (3), $\xi\left(u_{0}, z\right) \leqslant 0$ and so $d\left(z, G_{2}\right) \geqslant\lceil(k+3) / 2\rceil$. Moreover, if $d\left(z, G_{2}\right)=\lceil(k+3) / 2\rceil$ then $u_{0} z \in E$. Thus $\delta\left(H_{2}\right) \geqslant\lceil(k+5) / 2\rceil$.

We claim that H_{1} is not h-connected. If this is not true, say H_{1} is h-connected. By Property 4, $d\left(x, H_{1}\right) \leqslant 1$ and so $d\left(x, H_{2}\right) \geqslant k$ for all $x \in V\left(H_{2}\right)$. Let $R=u_{1} \cdots u_{q}$ be a shortest path of H_{2} such that $\left\{x_{1} u_{1}, x_{2} u_{q}\right\} \subseteq E$ for some $\left\{x_{1}, x_{2}\right\} \subseteq V\left(H_{1}\right)$ with $x_{1} \neq x_{2}$. Then $H_{1}+V(R) \supseteq C_{\geqslant k}$. Say $S=H_{2}-V(L)$. Then

$$
|S| \geqslant \sum_{x \in V\left(H_{1}\right)} d\left(x, H_{2}\right)-2 \geqslant(k-1)(k+1-(k-2))-2>2 k .
$$

By the minimality of $|L|$, we see that $d(x, R) \leqslant 2$ for each $x \in N\left(H_{1}, S\right)$. Therefore $\delta(S) \geqslant k-2$. As $S \nsupseteq C_{\geqslant k}$ and by Lemma 3.8, we see that each end block is a complete graph of order $k-1$. Let B_{1} and B_{2} be two distinct end blocks of S. Let w be a vertex of B_{2} such that if B_{2} contains a cut-vertex of S then w is the vertex. Let $\left\{z_{1}, z_{2}\right\} \subseteq V\left(B_{2}\right)-\{w\}$ with $z_{1} \neq z_{2}$. Then $d\left(z_{i}, H_{1} \cup R\right) \geqslant 3$ for $i \in\{1,2\}$. By the minimality of $|L|$, we readily see that there exists a vertex $v \in I\left(z_{1} z_{2}, R\right)$. Thus $B_{2}+v \supseteq C \geqslant k$. Clearly, $\left[H_{1}+V(R)-v, B_{1}-w\right] \supseteq C \geqslant k$, a contradiction. Hence H_{1} is not h-connected.

Let $P=x_{1} \cdots x_{k-1}$ be an h-path of H_{1} with $d\left(x_{1} x_{k-1}, H_{1}\right)$ minimal. By Lemma $3.4, d\left(x_{1} x_{k-1}, H_{1}\right) \leqslant$ $k-1$. Let $L=v_{1} \cdots v_{q}$ be a shortest path of H_{2} with $\left\{x_{1} v_{1}, x_{k-1} v_{q}\right\} \subseteq E$. We conclude:

$$
\begin{equation*}
d\left(x_{1} x_{k-1}, H_{1}\right) \leqslant k-1, \quad d\left(x_{1} x_{k-1}, H\right) \geqslant k+1 \quad \text { and } \quad \delta\left(H_{2}\right) \geqslant(k+5) / 2 \tag{13}
\end{equation*}
$$

6 Nine propositions on \boldsymbol{H}

The purpose of this section is to prove that H is connected and has exactly two blocks. By (5), (7), (11)-(13) and Lemma 3.1(a), we see that $\delta\left(H_{2}\right) \geqslant(k+3) / 2$ and if $x \in V(H)$ then

$$
\begin{align*}
& d(x, H) \geqslant d\left(x, H_{2}\right)-d(x, L) \geqslant(k-1) / 2 \text { with the last equality } \\
& \text { only if } d\left(x, H_{2}\right)=(k+5) / 2 \text { and } d(x, L)=3 \tag{14}
\end{align*}
$$

Therefore $\delta(H) \geqslant(k-1) / 2$. Let \tilde{L} denote the h-cycle $P \cup L+x_{1} v_{1}+x_{k-1} v_{q}$ of $\left[H_{1}, L\right]$. Clearly, $|\tilde{L}| \geqslant k+1$ and so $H \nsupseteq C_{\geqslant k}$. Let B_{1}, \ldots, B_{t} be a list of endblocks of H. Let w_{i} be any fixed vertex of B_{i} if B_{i} is a component of H. Otherwise let w_{i} be the cut-vertex of H that contained in B_{i}. Set $r_{i}=\left|B_{i}\right|$ and $B_{i}^{\prime}=V\left(B_{i}\right)-\left\{w_{i}\right\}(1 \leqslant i \leqslant t)$. As $\delta(H) \geqslant(k-1) / 2, r_{i} \geqslant(k+1) / 2$ for all $i \in\{1,2, \ldots, t\}$. By Lemma 3.8, for each $i \in\{1,2, \ldots, t\}$, if $r_{i} \leqslant k-1$ then B_{i} is hamiltonian. As $\delta\left(\left[B_{i}^{\prime}\right]\right) \geqslant(k-1) / 2-1=(k-3) / 2$, we also see that if $r_{i} \leqslant k-2$ then [B_{i}^{\prime}] is hamiltonian and if $r_{i} \leqslant k-3$ then [B_{i}^{\prime}] is h-connected. For each $i \in\{1,2, \ldots, t\}$, let $B_{i}^{*}=\left\{x \in V\left(B_{i}\right) \mid d(x, L)=3, d\left(x, B_{i}\right)=r_{i}-1\right.$ and $\left.d\left(x, H_{1}\right)=k-r_{i}-1\right\}$. By the minimality of $|L|$,
for each $x \in V(H)$ with $d(x, L)=3, N(x, L)$ is consecutive on L;
for each $x y \in E(H)$ with $d(x y, L) \geqslant 5, N(x, L) \cap N(y, L) \neq \emptyset$;
for each $x \in N\left(x_{1} x_{k-1}, H\right), d(x, L) \leqslant 2$ and so $x \notin B_{i}^{*}$ for all $1 \leqslant i \leqslant t$.
Let $\epsilon=d\left(u_{0}, G_{2}\right)-d\left(u_{0}, G_{1}\right)$. For each $X \subseteq V\left(H_{2}\right)$, let $\xi(X)=d\left(X, H_{1}\right)-d\left(X, H_{2}-X\right)$. Clearly,

$$
\begin{align*}
& d\left(X, H_{1}\right) \geqslant \sum_{x \in X}\left(k+1-d\left(x, H_{2}\right)\right) \text { and so } \\
& \xi(X) \geqslant(k+1)|X|-d\left(X, H_{2}\right)-d\left(X, H_{2}-X\right) \text { for all } X \subseteq V\left(H_{2}\right) \tag{18}
\end{align*}
$$

If $X \subseteq H_{2}$, we define $\xi(X)=\xi(V(X))$. Clearly, $\epsilon \geqslant\lceil(k+3) / 2\rceil-\lfloor(k-1) / 2\rfloor \geqslant 2$ and $e\left(H_{1}\right)+e\left(H_{2}\right)=$ $e\left(G_{1}\right)+e\left(G_{2}\right)+\epsilon$. Thus $e\left(H_{1}+X\right)+e\left(H_{2}-X\right)=e\left(G_{1}\right)+e\left(G_{2}\right)+\epsilon+\xi(X)$ for all $X \subseteq V\left(H_{2}\right)$. By (1) and Property 2, we obtain

$$
\begin{align*}
& \text { For each } \emptyset \neq X \subseteq V\left(H_{2}\right) \text {, if } H_{2}-X \supseteq P_{k} \text {, then } \xi(X) \leqslant-2 \\
& \text { and in addition if }\left|H_{1}+X\right|>k \text { and }\left|H_{2}-X\right|>k \text { then } \xi(X)<-2 \text {. } \tag{19}
\end{align*}
$$

By (4), (6), (10), (13) and Property 4, we have

$$
\begin{equation*}
|H| \geqslant\left|N\left(x_{1} x_{k-1}, H\right)\right|=d\left(x_{1} x_{k-1}, H\right) \geqslant k+1 \tag{20}
\end{equation*}
$$

By Lemma 3.5, the following Propositions 1 and 2 hold:
Proposition 1. In each B_{i}, any two vertices of B_{i} are connected by a path of order at least $\lceil(k+1) / 2\rceil$ and therefore $\left[B_{i}, B_{j}, L\right] \supseteq P_{k+1}$ for all $\{i, j\} \subseteq\{1,2, \ldots, t\}$ with $i \neq j$. Moreover, for any $\{i, j\} \subseteq$ $\{1, \ldots, t\}$ with $i \neq j$, if $d\left(B_{i}^{\prime}, H_{1}\right) \geqslant 1$ and $d\left(B_{j}^{\prime}, H_{1}\right) \geqslant 1$ then $\left[B_{i}, B_{j}, H_{1}\right] \supseteq P_{k+1}$.
Proposition 2. If B_{i} and B_{j} are in the same component of H with $i \neq j$, then for each $x \in B_{i}^{\prime}$ and $y \in B_{j}^{\prime}$, H has an x-y path P^{\prime} of order at least k and therefore $\left[B_{i}, B_{j}, P^{\prime}, L\right] \supseteq C_{\geqslant k+1}$. Furthermore, if $d\left(B_{i}^{\prime}, H_{1}\right) \geqslant 1$ and $d\left(B_{j}^{\prime}, H_{1}\right) \geqslant 1$, then $\left[B_{i}, B_{j}, P^{\prime}, H_{1}\right] \supseteq C_{\geqslant k+1}$.
Proposition 3. If $r_{i} \geqslant k$, then $\left[B_{i}^{\prime}, H_{1}\right] \supseteq C_{\geqslant k}$ and $\left[B_{i}^{\prime}, L\right] \supseteq C_{\geqslant k}$.
Proof. As $B_{i} \nsupseteq C_{\geqslant k}$ and by Lemma 3.9, [$\left.B_{i}^{\prime}\right]$ has a path u-v path of order $k-1$ such that $d\left(u, B_{i}\right)=$ $d\left(v, B_{i}\right)=(k-1) / 2$. By (14), $d(u, L)=d(v, L)=3$ and so $d\left(u, H_{1}\right) \geqslant(k-3) / 2$ and $d\left(v, H_{1}\right) \geqslant(k-3) / 2$. Thus $\left[B_{i}^{\prime}, H_{1}\right] \supseteq C_{\geqslant k}$ and $\left[B_{i}^{\prime}, L\right] \supseteq C_{\geqslant k}$.
Proposition 4. For each $x \in B_{i}^{\prime}, d\left(x, H_{1}\right) \geqslant k-r_{i}-1$ and so $x \in B_{i}^{*}$ if and only if $d\left(x, H_{1}\right) \leqslant k-r_{i}-1$. In addition, if $B_{i}^{*} \supseteq B_{i}^{\prime}$ then $B_{i} \cong K_{r_{i}}$ and if $B_{i}^{*} \supseteq B_{i}^{\prime}-\{u\}$ for some $u \in B_{i}^{\prime}$ then $B_{i}+w_{i} u \cong K_{r_{i}}$.
Proof. For each $x \in B_{i}^{\prime}, d\left(x, H_{1}\right) \geqslant k+1-d\left(x, B_{i}\right)-d(x, L) \geqslant k+1-\left(r_{i}-1\right)-3=k-r_{i}-1$, and then the proposition follows.

Proposition 5. Let $i \in\{1,2, \ldots, t\}$. The following two statements hold:
(a) If a is the minimal number in $\{1,2, \ldots, q\}$ and b is the maximal number in $\{1,2, \ldots, q\}$ such that $d\left(v_{a}, B_{i}^{\prime}\right) \geqslant 1$ and $d\left(v_{b}, B_{i}^{\prime}\right) \geqslant 1$. Then $\left[\tilde{L}-\left\{v_{1}, \ldots, v_{a}\right\}, B_{i}^{\prime}\right] \supseteq C_{\geqslant k}$ and $\left[\tilde{L}-\left\{v_{b}, \ldots, v_{q}\right\}, B_{i}^{\prime}\right] \supseteq C_{\geqslant k}$
(b) If $\left[B_{i}, H_{1}\right] \nsupseteq C_{\geqslant k}$, then $r_{i} \leqslant k-1$ and for some $u \in V\left(B_{i}\right), B_{i}^{\prime}-\{u\} \subseteq B_{i}^{*}$ and if $r_{i} \leqslant k-2$ then $u=w_{i}$. In addition, if B_{i} is a component of H then $\left|B_{i}^{*}\right| \geqslant k-2$ if $r_{i}=k-1$ and $B_{i}^{*}=V\left(B_{i}\right)$ if $r_{i} \leqslant k-2$.

Proof. If $r_{i} \geqslant k, C_{\geqslant k} \subseteq\left[H_{1}, B_{i}^{\prime}\right] \subseteq\left[H_{1}, B_{i}\right]$ by Proposition 3, and so Proposition 5 holds. We now assume $r_{i} \leqslant k-1$. Then B_{i} has an h-cycle $C=y_{1} \cdots y_{r_{i}} y_{1}$ with $y_{1}=w_{i}$. Clearly, $d\left(y_{j}, \tilde{L}-\left\{v_{1}, \ldots, v_{a}\right\}\right) \geqslant$ $k+1-\left(r_{i}-1\right)-1=k-\left(r_{i}-1\right)$ for $j \in\left\{2, r_{i}\right\}$. By Lemma 3.1(c), $\left[B_{i}^{\prime}, \tilde{L}-\left\{v_{1}, \ldots, v_{a}\right\}\right] \supseteq C_{\geqslant k}$. Similarly, $\left[B_{i}^{\prime}, \tilde{L}-\left\{v_{b}, \ldots, v_{q}\right\}\right] \supseteq C_{\geqslant k}$. Thus (a) holds. To show (b), we have that $d\left(y, H_{1}\right) \geqslant k+1-$ $d\left(y, B_{i}\right)-d(y, L) \geqslant k-r_{i}-1$ for all $y \in V\left(B_{i}\right)$ except possibly $y=w_{i}$ with w_{i} being a cut-vertex of B_{i}. By Proposition 4, we see that if (b) fails, $d\left(y_{c}, H_{1}\right) \geqslant k-r_{i}$ for some y_{c}. As either $y_{1} \neq y_{c-1}$ or $y_{1} \neq y_{c+1}$, say w.l.o.g. that $y_{1} \neq y_{c-1}$. As $\left[B_{i}, H_{1}\right] \nsupseteq C_{\geqslant k}$ and by Lemma 3.1(c), we must have that $d\left(y_{c-1}, H_{1}\right)=k-r_{i}-1=0$ and so $y_{c-1} \in B_{i}^{*}$ with $r_{i}=k-1$. It follows that for each $y_{s} \in B_{i}^{\prime}-\left\{y_{c}, y_{1}\right\}$, B_{i} has a $y_{c}-y_{s} h$-path and so $d\left(y_{s}, H_{1}\right)=0$ as $\left[B_{i}, H_{1}\right] \nsupseteq C_{\geqslant k}$ and so $y_{s} \in B_{i}^{*}$. Thus $B_{i}^{*} \supseteq B_{i}^{\prime}-\left\{y_{c}\right\}$. If B_{i} is a component, then y_{s} can take on y_{1} as well. Thus (b) holds.

Proposition 6. Let $i \in\{1,2, \ldots, t\}$. The following two statements hold:
(a) If $\left[B_{i}^{\prime}, H_{1}\right] \nsupseteq C_{\geqslant k}$ and $\left[B_{i}^{\prime}, L\right] \nsupseteq C_{\geqslant k}$, then $r_{i} \leqslant k-2$ and if $r_{i}=k-2$ then $B_{i} \cong K_{k-2}$ and for each $x \in B_{i}^{\prime}, d\left(x, H_{1}\right)=d(x, L)=2$. Moreover, if $r_{i} \leqslant k-3$ then either $B_{i}^{\prime}-\{u\} \subseteq B_{i}^{*}$ for some $u \in B_{i}^{\prime}$ or $d\left(x, H_{1}\right) \leqslant k-r_{i}$ and so $d(x, L) \geqslant 2$ for all $x \in B_{i}^{\prime}$.
(b) If $\left[B_{i}, H_{1}\right] \nsupseteq C_{\geqslant k}$ and $\left[B_{i}, L\right] \nsupseteq C_{\geqslant k}$, then $r_{i} \leqslant k-4$ and $B_{i}^{\prime} \subseteq B_{i}^{*}$.

Proof. By Proposition 3, we may assume $r_{i} \leqslant k-1$. Then B_{i} has an h-cycle. We show (a) first. Let $u_{2} \cdots u_{r_{i}}$ be an h-path of [$\left.B_{i}^{\prime}\right]$ with $d\left(u_{2}, H_{1}\right)$ maximal. First, assume that $d\left(u_{2}, H_{1}\right) \geqslant k-r_{i}+1$. As $\left[B_{i}^{\prime}, H_{1}\right] \nsupseteq C_{\geqslant k}$ and by Lemma 3.1(c), $d\left(u_{r_{i}}, H_{1}\right) \leqslant k-r_{i}-1$, i.e., $u_{r_{i}} \in B_{i}^{*}$ by Proposition 4. Thus for each $u_{j} \in B_{i}^{\prime}-\left\{u_{2}\right\},\left[B_{i}^{\prime}\right]$ has a $u_{2}-u_{j} h$-path and consequently, $u_{j} \in B_{i}^{*}$. As $\left[B_{i}^{\prime}, L\right] \nsupseteq C_{\geqslant k}$, this yields $r_{i} \leqslant k-3$ and so (a) holds. Next, assume $d\left(u_{2}, H_{1}\right) \leqslant k-r_{i}$. Then $d\left(u_{2}, L\right) \geqslant k+1-\left(k-r_{i}\right)-\left(r_{i}-1\right)=2$. Similarly, $d\left(u_{r_{i}}, H_{1}\right) \leqslant k-r_{i}$ and $d\left(u_{r_{i}}, L\right) \geqslant 2$. These two inequalities will hold for each $x \in B_{i}^{\prime}$ if [B_{i}^{\prime}] is h-connected. Hence (a) holds if $r_{i} \leqslant k-3$. So assume that $r_{i} \geqslant k-2$. As $\left[B_{i}^{\prime}, L\right] \nsupseteq C_{\geqslant k}$, it follows that $r_{i}=k-2$ then $d\left(u_{2}, L\right)=d\left(u_{k-2}, L\right)=2$ and so $d\left(u_{2}, B_{i}\right)=d\left(u_{k-2}, B_{i}\right)=k-3$. Thus for each $x \in B_{i}^{\prime}-\left\{u_{2}\right\},\left[B_{i}^{\prime}\right]$ has a $u_{2}-x h$-path and so $d\left(x, B_{i}\right)=k-3$ and $d(x, L)=2$, i.e., (a) holds. To prove (b), we see that $r_{i} \leqslant k-2$ by (a) as $\left[B_{i}^{\prime}\right] \subseteq B_{i}$. As $\left[B_{i}, H_{1}\right] \nsupseteq C_{\geqslant k}$ and by Proposition 5 (b), $B_{i}^{\prime} \subseteq B_{i}^{*}$. Thus $r_{i} \leqslant k-4$ as $\left[B_{i}, L\right] \nsupseteq C_{\geqslant k}$.
Proposition 7. It holds that $t \geqslant 2$ and the following two statements hold:
(a) For each $i \in\{1,2, \ldots, t\}$, either $\left[B_{i}^{\prime}, H_{1}\right] \nsupseteq C_{\geqslant k}$ or $\left[B_{i}^{\prime}, L\right] \nsupseteq C_{\geqslant k}$ and if B_{i} is a component of H or $d\left(w_{i}, H-V\left(B_{i}\right)\right)=1$ then $\left[B_{i}, H_{1}\right] \nsupseteq C_{\geqslant k}$ or $\left[B_{i}, L\right] \nsupseteq C_{\geqslant k}$.
(b) For all $i \in\{1,2, \ldots, t\}$ and $v \in V(\tilde{L})$ and $u v \in E(\tilde{L})$, we have that $r_{i} \leqslant k-1,\left[\tilde{L}-v, B_{i}^{\prime}\right] \supseteq C_{\geqslant k}$, $\left[\tilde{L}-u-v, B_{i}\right] \supseteq C_{\geqslant k}$ and $d\left(B_{i}^{\prime}, H_{1}\right)>0$. Moreover, if $q \leqslant 2 k-9$ then $r_{i} \leqslant k-2$ for all $i \in\{1,2, \ldots, t\}$.
Proof. First, we show that $t \geqslant 2$. On the contrary, say $t=1$. Then H is 2-connected. Let $Y=\{x \in$ $V(H) \mid d(x, H)=(k-1) / 2\}$. By Lemma 3.12, we see that $|H|-|Y|=2$ or $(k-1) / 2$. By (14), we see that $d(x, L)=3$ for all $x \in Y$. By (17), $d\left(x_{1} x_{k-1}, Y\right)=0$. By $(20),|H|-|Y| \geqslant k+1$, a contradiction. Hence $t \geqslant 2$.

Next, we show (a). With B_{i} in place of B_{i}^{\prime}, the proof of the conclusion with respect to B_{i} is the same as (somehow simpler than) the proof of the conclusion with respect to B_{i}^{\prime} since we have no concern with w_{i}. So we provide the proof of the conclusion with respect to B_{i}^{\prime}. On the contrary, say $\left[B_{i}^{\prime}, H_{1}\right] \supseteq C_{\geqslant k}$ and $\left[B_{i}^{\prime}, L\right] \supseteq C_{\geqslant k}$. Let $j \in\{1,2, \ldots, t\}-\{i\}$. Then $\left[B_{j}, H_{1}\right] \nsupseteq C_{\geqslant k}$ and $\left[B_{j}, L\right] \nsupseteq C_{\geqslant k}$. By Proposition 6(b), $r_{j} \leqslant k-4$ and $B_{j}^{\prime} \subseteq B_{j}^{*}$. By (17) $d\left(x_{1} x_{k-1}, B_{j}^{\prime}\right)=0$. If $t \geqslant 3$, let $l \in\{1,2, \ldots, t\}-\{i, j\}$. Then we also have that $r_{l} \leqslant k-4$ and $B_{l}^{\prime} \subseteq B_{l}^{*}$. Thus B_{j} and B_{l} are not in the same component of H for otherwise [$\left.H-B_{i}^{\prime}, L\right] \supseteq C_{\geqslant k+1}$ by Proposition 2. It follows that H has a component F with $B_{i} \nsubseteq F$ such that only one of B_{j} and B_{l}, say B_{l}, is in F. As $[F, L] \nsupseteq C \geqslant k$ and by Proposition 2 , we see that $F=B_{l}$. As
$r_{l} \leqslant k-4, d\left(x, H_{1}\right) \geqslant k+1-\left(r_{l}-1\right)-3 \geqslant 3$ for all $x \in V\left(B_{l}\right)$ and so $\xi\left(B_{l}\right) \geqslant 0$. By Proposition 1, $H_{2}-V\left(B_{l}\right) \supseteq P_{k+1}$. By (19), $\xi\left(B_{l}\right) \leqslant-2$, a contradiction. Hence $t=2$.

We claim that $V(H)=V\left(B_{1} \cup B_{2}\right)$. If this is not true, then H must be connected. As $\delta(H) \geqslant(k-1) / 2$, H has another block B with $|B| \geqslant \delta(H)+1 \geqslant(k+1) / 2$ such that B contains exactly two cut-vertices, say c_{1} and c_{2}, of H. As $B \nsupseteq C_{\geqslant k}$, we readily see that $d(w, B)<k$ for some $w \in V(B)-\left\{c_{1}, c_{2}\right\}$. Thus $d(w, L)>0$ or $d\left(w, H_{1}\right)>0$. By Lemma 3.5, w is connected to c_{2} in B by a path of order at least $(k+1) / 2$. Let P^{\prime} be a $w_{2}-c_{2}$ path of H. By Proposition 2 , $\left[B, P^{\prime}, B_{2}, L\right] \supseteq C_{\geqslant k}$ or $\left[B, P^{\prime}, B_{2}, H_{1}\right] \supseteq C_{\geqslant k}$, and so $G \supseteq 2 C_{\geqslant k}$, a contradiction. Hence the claim holds.

Recall that $r_{2} \leqslant k-4, B_{2}^{\prime} \subseteq B_{2}^{*}$ and $d\left(x_{1} x_{k-1}, B_{2}^{\prime}\right)=0$. By $(20), r_{1}+1 \geqslant\left|H-B_{2}^{\prime}\right| \geqslant k+1$. Therefore $r_{1} \geqslant k$. By Lemma $3.9, B_{1}$ has a cycle $C=u_{1} \cdots u_{k-1} u_{1}$ such that $N\left(u_{2} u_{k-1}, B_{1}\right) \subseteq V(C)$, $d\left(u_{2}, B_{1}\right)=d\left(u_{k-1}, B_{1}\right)=(k-1) / 2$ and $w_{1} \notin V\left(C-u_{1}\right)$. By $(14), d\left(u_{2}, L\right)=d\left(u_{k-1}, L\right)=3$. Let $z \in B_{2}^{\prime}$. Say $N(z, L)=\left\{v_{s}, v_{s+1}, v_{s+2}\right\}$. Let v_{a} be the first vertex and v_{b} be the last vertex on L such that $d\left(v_{a}, u_{2} u_{k-1}\right)>0$ and $d\left(v_{b}, u_{2} u_{k-1}\right)>0$. Clearly, $\left[L\left[v_{1}, v_{s}\right], H_{1}, B_{2}\right] \supseteq C \geqslant k$. So $\left[C-u_{1}, L\left[v_{s+1}, v_{q}\right]\right] \nsupseteq$ $C \geqslant k$. This implies that $a<s$. Say w.l.o.g. $u_{2} v_{a} \in E$. Similarly, $b>s+1$. Then $v_{b} u_{k-1} \in E$. As $v_{a} u_{2} u_{1} u_{k-1} v_{b}$ is a path and by the minimality of $|L|, a=s-1$ and $b=s+2$. Thus $\left[C-u_{1}, L\left[v_{s+1}, v_{q}\right]\right] \supseteq$ $C_{\geqslant k}$, a contradiction.

To prove (b), we see, by (a) and Proposition 3, that $r_{i} \leqslant k-1$ for all $i \in\{1,2, \ldots, t\}$. Thus B_{i} is hamiltonian and $\left[B_{i}^{\prime}\right]$ has an h-path for all $i \in\{1,2, \ldots, t\}$. As $d(x, \tilde{L}) \geqslant k+1-\left(r_{i}-1\right)=k-r_{i}+2$ for all $x \in B_{i}^{\prime}$ and $i \in\{1,2, \ldots, t\}$ and by Lemma $3.1(c),\left[\tilde{L}-v, B_{i}^{\prime}\right] \supseteq C_{\geqslant k}$ and $\left[\tilde{L}-u-v, B_{i}\right] \supseteq C_{\geqslant k}$ for all $i \in\{1,2, \ldots, t\}, v \in V(L)$ and $u v \in E(\tilde{L})$. If $d\left(B_{i}^{\prime}, H_{1}\right)=0$ for some $i \in\{1,2, \ldots, t\}$, then $B_{i}^{\prime}=B_{i}^{*}$ and $r_{i}=k-1$ as $\delta(G) \geqslant k+1$. Thus $B_{i}+v \supseteq C_{\geqslant k}$ for some $v \in V(L)$. Consequently, $G \supseteq 2 C \geqslant k$ as $\left[\tilde{L}-v, B_{j}^{\prime}\right] \supseteq C_{\geqslant k}$ for $j \neq i$, a contradiction.

If $q \leqslant 2 k-9$ and $r_{i} \nless k-2$ for some $i \in\{1,2, \ldots, t\}$, let $C=u_{1} \cdots u_{k-1} u_{1}$ be an h-cycle of B_{i} with $w_{i}=u_{1}$. As $e\left(C-u_{1}-u_{2}, \tilde{L}\right) \geqslant \sum_{3 \leqslant l \leqslant k-1}\left(k+1-d\left(u_{l}, B_{i}\right)\right) \geqslant 3(k-3) \geqslant|\tilde{L}|+1$. This implies that there exists $v \in I\left(u_{a} u_{b}, \tilde{L}\right) \neq \emptyset$ for some $3 \leqslant a<b \leqslant k-1$. Let $j \in\{1,2, \ldots, t\}-\{i\}$. Since $\left[\tilde{L}-v, B_{j}^{\prime}\right] \supseteq C_{\geqslant k}, B_{i}+v \nsupseteq C_{\geqslant k}$ and so B_{i} does not have a $u_{a}-u_{b} h$-path. By Lemma 3.3, $d\left(u_{a-1} u_{b-1}, C\right) \leqslant k-1$. As $\delta(H) \geqslant(k-1) / 2$, it follows that k is odd and $d\left(u_{a-1}, B_{i}\right)=d\left(u_{b-1}, B_{i}\right)=$ $(k-1) / 2$. By (14), $d\left(u_{a-1} u_{b-1}, L\right)=6$. Thus $I\left(u_{a-1} u_{b-1}, L\right) \neq \emptyset$. Similarly, we obtain $d\left(u_{a} u_{b}, B_{i}\right)=6$. Thus $I\left(u_{a-1} u_{a}, L\right) \neq \emptyset$ and so $B_{i}+v^{\prime} \supseteq C_{\geqslant k}$ for some $v^{\prime} \in V(L)$, a contradiction. This proves (b).

Proposition 8. For each $i \in\{1,2, \ldots, t\}, d\left(w_{i}, H-V\left(B_{i}\right)\right) \geqslant 2$. In addition, if $t=2$ then $w_{1}=w_{2}$.
Proof. On the contrary, say w.l.o.g. that $d\left(w_{t}, H-V\left(B_{t}\right)\right) \leqslant 1$ and $d\left(w_{t}, H-V\left(B_{t}\right)\right) \leqslant d\left(w_{i}, H-V\left(B_{i}\right)\right)$ for all B_{i}. First, assume that $t \geqslant 3$. We claim that for all $1 \leqslant i<j \leqslant t-1, B_{i}$ and B_{j} are not in the same component of H. If this is not true, say for $i=1$ and $j=2$. Then $H-V\left(B_{t}\right)$ has an $w_{1}-w_{2}$ path P^{\prime} with $w_{t} \notin V\left(P^{\prime}\right)$. By Propositions 2 and $7(\mathrm{~b}),\left[B_{1}, B_{2}, P^{\prime}, L\right] \supseteq C_{\geqslant k+1}$ and $\left[B_{1}, B_{2}, P^{\prime}, H_{1}\right] \supseteq C_{\geqslant k+1}$. By Proposition $6(\mathrm{~b}), r_{t} \leqslant k-4$ and $B_{t}^{\prime} \subseteq B_{t}^{*}$. By (19), $\xi\left(B_{t}\right)<-2$. As $e\left(B_{t}, L\right) \leqslant 3 r_{t}, e\left(B_{t}, H_{2}-V\left(B_{t}\right)\right) \leqslant 3 r_{t}+1$. By $(18), \xi\left(B_{t}\right) \geqslant r_{t}\left(k+1-\left(r_{t}-1\right)-3-3\right)-2 \geqslant-2$, a contradiction.

Therefore B_{i} is a component of H for each $i \in\{1,2, \ldots, t-1\}$ since $d\left(w_{t}, H-V\left(B_{t}\right)\right) \leqslant d\left(w_{i}, H-V\left(B_{i}\right)\right)$ for all B_{i}. Thus B_{t} is a component of H. As $\left[B_{i}, B_{j}, L\right] \supseteq P_{k+1}$ for all $1 \leqslant i<j \leqslant k$ and by (19), $\xi\left(B_{i}\right)<-2$ and so $r_{i} \geqslant k-3$ for all $i \in\{1,2, \ldots, t\}$. We claim that $\left[B_{i}, L\right] \nsupseteq C_{\geqslant k}$ for all $i \in\{1,2, \ldots, t\}$. If this is false, say w.l.o.g. that $\left[B_{t}, L\right] \supseteq C_{\geqslant k}$. Then $\left[B_{i}, H_{1}\right] \nsupseteq C_{\geqslant k}$ for all $i \in\{1,2, \ldots, t-1\}$. Let $i \in\{1,2, \ldots, t-1\}$. By Proposition 5(b), for all $i \in\{1,2, \ldots, t-1\},\left|B_{i}^{*}\right| \geqslant k-2$ if $r_{i}=k-1$ and $B_{i}^{*}=V\left(B_{i}\right)$ if $r_{i} \leqslant k-2$. It follows that $\left[B_{1}, L\right] \supseteq C_{\geqslant k}$ as $r_{1} \geqslant k-3$. Similarly, we must have that $\left[B_{t}, H_{1}\right] \nsupseteq C_{\geqslant k},\left|B_{t}^{*}\right| \geqslant k-2$ if $r_{t}=k-1$ and $B_{t}^{*}=V\left(B_{t}\right)$ if $r_{t} \leqslant k-2$. By Proposition 7(b), $\left[\tilde{L}-u-v, B_{j}\right] \supseteq C_{\geqslant k}$ and so $\left[u v, B_{i}\right] \nsupseteq C_{k}$ for all $u v \in E(L)$ and $\{i, j\} \subseteq\{1,2, \ldots, t\}$ with $i \neq j$. This implies that $r_{i}=k-3$ for all $i \in\{1,2, \ldots, t\}$. Thus $B_{i}^{*}=B_{i}$ and so $d\left(x_{1} x_{k-1}, B_{i}\right)=0$ by (17) for all $i \in\{1,2, \ldots, t\}$, i.e., $d\left(x_{1} x_{k-1}, H\right)=0$, a contradiction. Therefore $\left[B_{i}, L\right] \nsupseteq C_{\geqslant k}$ for all B_{i}. Let i be arbitrary in $\{1,2, \ldots, t\}$ and $u_{1} \cdots u_{r_{i}} u_{1}$ be an h-cycle of B_{i}. As H_{2} is 2 -connected, there are two independent edges $u_{j} v$ and $u_{l} v^{\prime}$ between B_{i} and L. As $\delta\left(H_{2}\right) \geqslant(k+3) / 2$, either $d\left(u_{j-1}, L\right) \geqslant 2$ or $d\left(u_{j-1}, B_{i}\right) \geqslant(k+1) / 2$. If the latter holds then $d\left(u_{j-1} u_{l-1}, B_{i}\right) \geqslant(k+1) / 2+(k-1) / 2=(k-1)+1$ and
by Lemma 3.3, B_{i} has a u_{j} - $u_{l} h$-path. In either situation, we see that $\left[B_{i}, L\right] \supseteq C \geqslant r_{i}+2$. Thus $r_{i}=k-3$ for all $i \in\{1,2, \ldots, t\}$. Let C be an h-cycle of B_{t}. As $\left[B_{t}, L\right] \nsupseteq C_{\geqslant k}, d\left(x x^{+}, L\right) \leqslant 4$ for all $x \in V(C)$. Thus $e\left(B_{t}, L\right) \leqslant 2 r_{t}$. By (18), $\xi\left(B_{t}\right)>0$, a contradiction.

Therefore $t=2$. Then either B_{1} and B_{2} are two components of H or H has a sequence D_{1}, \ldots, D_{m} of blocks with $\left|D_{m}\right|=2$ such that a $w_{1}-w_{2}$ path P^{\prime} passes through D_{1}, \ldots, D_{m} successively. We claim that there is no D_{i} with $\left|D_{i}\right| \geqslant 3$. If this is false, let i be the largest index with $\left|D_{i}\right| \geqslant 3$. Let c_{1} and c_{2} be the two cut-vertices of H that are contained in D_{i} with c_{2} behind c_{1} on P^{\prime}. By Lemma 3.5, each vertex of $D_{i}-c_{1}$ is connected to c_{1} by a path of order at least $(k+1) / 2$ in D_{i}. Consequently, $H-V\left(B_{2}\right) \supseteq P_{k+1}$. If $r_{2} \leqslant k-4$, then by (18), $\xi\left(B_{2}\right) \geqslant-2$, contradicting (19). Hence $r_{2} \geqslant k-3$. If $d\left(x, H_{1}\right)=0$ for all $x \in V\left(D_{i}\right)-\left\{c_{1}\right\}$ then $d\left(x, D_{i}\right) \geqslant k-2$ for all $x \in V\left(D_{i}\right)-\left\{c_{1}, c_{2}\right\}$ and $d\left(c_{2}, D_{i}\right) \geqslant k-3$. As $D_{i} \nsupseteq C_{\geqslant k}$, $\left|D_{i}\right| \leqslant k-1$ by Lemma 3.8. It follows that $\left|D_{i}\right|=k-1, d\left(D-c_{1}-c_{2}, L\right)=3(k-3)$ and $D_{i}+c_{1} c_{2} \cong K_{k-1}$. Then $\left[D_{i}, v\right] \supseteq C_{\geqslant k}$ for some $v \in V(L)$. By Proposition $7(\mathrm{~b}),\left[B_{2}, \tilde{L}-v\right] \supseteq C_{\geqslant k}$, a contradiction. Hence $d\left(D_{i}-c_{1}, H_{1}\right)>0$. As $d\left(B_{1}^{\prime}, H_{1}\right)>0$ by Proposition $7(\mathrm{~b})$, we see that $\left[H-V\left(B_{2}\right), H_{1}\right] \supseteq C_{\geqslant k}$. Thus $\left[B_{2}, L\right] \nsupseteq C_{\geqslant k}$. Then $\left[B_{2}, H_{1}\right] \supseteq C_{\geqslant k}$ for otherwise $r_{2} \leqslant k-4$ by Proposition 6(b). Hence $\left[H-V\left(B_{2}\right), L\right] \nsupseteq C_{\geqslant k}$. As $d\left(B_{1}^{\prime}, L\right)>0$, it follows that $d\left(D_{i}-c_{1}, L\right)=0$. As $\delta\left(H_{2}\right) \geqslant(k+3) / 2$, $d(x, D) \geqslant(k+3) / 2-1=(k+1) / 2$ for all $x \in V\left(D_{i}\right)-\left\{c_{1}\right\}$. As $D_{i} \nsupseteq C_{\geqslant k}$ and by Lemma 3.8, it follows that $\left|D_{i}\right| \leqslant k-1$ and so $\xi\left(D-c_{1}\right)>0$ by (18). By Proposition 2, $\left[B_{1}, B_{2}, L\right] \supseteq P_{k+1}$ and so $\xi\left(D-c_{1}\right)<-2$ by (19), a contradiction. Therefore the claim holds.

As $\delta(H) \geqslant(k-1) / 2$, it follows that either $m=1$ with $w_{1} w_{2} \in E$ or B_{1} and B_{2} are two components of H. We claim that $q \leqslant 7$. If this is not true, then $I(x y, H)=\emptyset$ for each $\{x, y\} \subseteq\left\{x_{1}, x_{k-1}, v_{3}, v_{6}\right\}$ with $x \neq y$ by the minimality of q. As $\delta\left(H_{2}\right) \geqslant(k+3) / 2, d\left(v_{i}, H\right) \geqslant(k+3) / 2-2$ for each $v_{i} \in V(L)$, we see that $2(k-1) \geqslant|H| \geqslant d\left(x_{1} x_{k-1}, H\right)+d\left(v_{3} v_{6}, H\right) \geqslant k+1+(k-1) \geqslant 2 k$, a contradiction. Hence $q \leqslant 7$. By Proposition $7(\mathrm{~b}), r_{1} \leqslant k-2$ and $r_{2} \leqslant k-2$. So by Lemma 3.7, for each $i \in\{1,2\}$ and $x \in B_{i}^{\prime}, B_{i}$ has a $w_{i}-x h$-path. We shall find $X \subseteq V\left(B_{2}\right)$ such that (19) is violated.

Let L^{\prime} be a longest $u-v$ subpath of L with $d\left(u, B_{1}^{\prime}\right)>0$ such that if B_{1} and B_{2} are two components of H then $d\left(v, B_{2}^{\prime}\right)>0$. Set $q^{\prime}=\left|L^{\prime}\right|$. Let $r_{2}=a+b$ with $a=\max \left\{0, k-r_{1}-q^{\prime}\right\}$. As $q \geqslant 2$ and H_{2} is 2 -connected, $q^{\prime} \geqslant 2$. Let $z_{1} \cdots z_{r_{2}} z_{1}$ be an h-cycle of B_{2} such that if $w_{1} w_{2} \in E$ then $z_{1}=w_{2}$ and if $w_{1} w_{2} \notin E$ then $z_{1} v \in E$. Clearly, $\left[L^{\prime}, B_{1}, z_{1} \cdots z_{a}\right]$ has an h-path P^{\prime} of order $r_{1}+q^{\prime}+a \geqslant k$. Let $X=\left\{z_{a+1}, \ldots, z_{r_{2}}\right\}$. By (19), $\xi(X) \leqslant-2$.

We now divide the remaining proof into two cases.
Case 1. $\quad r_{1} \geqslant k-3$ and $r_{2} \geqslant k-3$.
By Propositions 6-7, for each $i \in\{1,2\}$, either $\left[B_{i}, H_{1}\right] \supseteq C_{\geqslant k}$ and $\left[B_{i}, L\right] \nsupseteq C_{\geqslant k}$, or $\left[B_{i}, H_{1}\right] \nsupseteq C_{\geqslant k}$ and $\left[B_{i}, L\right] \supseteq C_{\geqslant k}$. First, assume that $\left[B_{1}, H_{1}\right] \nsupseteq C_{\geqslant k}$ and $\left[B_{1}, L\right] \supseteq C_{\geqslant k}$. Then $\left[B_{2}, H_{1}\right] \nsupseteq C_{\geqslant k}$. By Proposition 5(b), for each $i \in\{1,2\}, B_{i}^{\prime} \subseteq B_{i}^{*}$ as $r_{i} \leqslant k-2$. By (17), $d\left(x_{1} x_{k-1}, H\right) \leqslant 2$, a contradiction. Therefore $\left[B_{1}, H_{1}\right] \supseteq C_{\geqslant k}$ and $\left[B_{1}, L\right] \nsupseteq C_{\geqslant k}$. Similarly, $\left[B_{2}, H_{1}\right] \supseteq C_{\geqslant k}$ and $\left[B_{2}, L\right] \nsupseteq C \geqslant k$. Say w.l.o.g. $r_{1} \geqslant r_{2}$.

Let $\tau=k-2-r_{2}$. Then $\tau \in\{0,1\}$. Clearly, $1 \geqslant a$ and if $a=1$ then $q^{\prime}=2$ and $r_{1}=k-3$. Thus if $a=1$ then $r_{1}=r_{2}=k-3$ and so $\tau=1$. As $\left[B_{2}, L\right] \nsupseteq C_{\geqslant k}, d\left(z_{i} z_{i+1}, L\right) \leqslant 3+\tau$ for all $i \in\left\{1, \ldots, r_{2}-1\right\}$. Thus if b is even, then $d(X, L) \leqslant b(3+\tau) / 2$. If b is odd, then $d\left(z_{r_{2}}, L\right) \leqslant 3$ and $d(X, L) \leqslant(b-1)(3+\tau) / 2+d\left(w_{1}, X\right)+3 \leqslant b(3+\tau) / 2+d\left(w_{1}, X\right)+(3-\tau) / 2$. Obviously, $d\left(w_{1}, X\right)=0$ if $a>0$ and otherwise $d\left(w_{1}, X\right) \leqslant 1$. Clearly, $d(X, H-X) \leqslant b a+d\left(w_{1}, X\right)$. Then $d\left(X, H_{1}\right) \geqslant \sum_{z \in X}(k+1-$ $\left.\left(r_{2}-1\right)-d(z, L)\right)-d\left(w_{1}, X\right) \geqslant b\left(k+1-\left(r_{2}-1\right)\right)-b(3+\tau) / 2-d\left(w_{1}, X\right)-\theta$, where $\theta=(3-\tau) / 2$ if b is odd and otherwise $\theta=0$. Thus $-2 \geqslant \xi(X) \geqslant b\left(k-r_{2}-1-\tau-a\right)-2 d\left(w_{1}, X\right)-2 \theta=b(1-a)-2 d\left(w_{1}, X\right)-2 \theta$. As $r_{2} \geqslant k-3 \geqslant 6$, this implies that $a=1$. Thus $\tau=1$ and $-2 \geqslant \xi(X) \geqslant-2 \theta=-2$. It follows that $d\left(z_{r_{2}}, L\right)=3$. As $r_{1}=r_{2}$, this argument implies $d(y, L)=3$ for some $y \in B_{1}^{\prime}$. Thus $q^{\prime}=3$, a contradiction.
Case 2. Either $r_{1} \leqslant k-4$ or $r_{2} \leqslant k-4$.
For the proof, say $r_{1} \geqslant r_{2}$ and $r_{2} \leqslant k-4$. As $d\left(x_{1} x_{k-1}, H\right) \geqslant k+1, d\left(x_{1} x_{k-1}, B_{2}^{\prime}\right) \geqslant 2$. As $r_{1} \geqslant(k+1) / 2, a \leqslant k-(k+1) / 2-2$ and so $b=r_{2}-a \geqslant 3$. Let $\lambda=\max _{x \in X} d(x, L)$. Then $d\left(X, H_{1}\right) \geqslant \sum_{x \in X}\left(k+1-d\left(x, H_{2}\right)\right) \geqslant b\left(k+2-r_{2}-\lambda\right)-d\left(w_{1}, X\right)$ and $d\left(X, H_{2}-X\right)=\sum_{x \in X} d\left(x, H_{2}-X\right) \leqslant$
$b(a+\lambda)+d\left(w_{1}, X\right)$. Thus $\xi(X) \geqslant b\left(k+2-r_{2}-a-2 \lambda\right)-2 d\left(w_{1}, X\right)$.
First, assume $\lambda \leqslant 2$. Since $\xi(X) \leqslant-2, a>0$ and so $d\left(w_{1}, X\right)=0$. Then $\xi(X) \geqslant b\left(k-r_{2}-a-2\right)=$ $b\left(r_{1}-r_{2}+q^{\prime}-2\right) \geqslant 0$, a contradiction.

Therefore $\lambda=3$, i.e., $d\left(x_{0}, L\right)=3$ for some $x_{0} \in X$, and so $\xi(X) \geqslant b\left(k-r_{2}-a-4\right)-2 d\left(w_{1}, X\right)$. First, assume that $a=0$. By (17), $d(x, L) \leqslant 2$ and so $d\left(x, H_{1}\right) \geqslant k-r_{2}$ for each $x \in N\left(x_{1} x_{k-1}, B_{2}^{\prime}\right)$. It follows that $\xi(X) \geqslant b\left(k-r_{2}-4\right)-2 d\left(w_{1}, X\right)+2 d\left(x_{1} x_{k-1}, B_{2}^{\prime}\right)>0$, a contradiction. Hence $a>0$ and so $d\left(w_{1}, X\right)=0$.

Assume $r_{1}=r_{2}$. Similarly, $d\left(y_{0}, L\right)=3$ for some $y_{0} \in V\left(B_{1}\right)$ with $d\left(y_{0}, B_{2}\right)=0$. Thus $q^{\prime} \geqslant 3$. Say w.l.o.g. $d\left(x_{1} x_{k-1}, B_{2}\right) \geqslant d\left(x_{1} x_{k-1}, B_{1}\right)$. Let $S=N\left(x_{1} x_{k-1}, X\right)$. As $d\left(x_{1} x_{k-1}, H\right) \geqslant k+1$, $d\left(x_{1} x_{k-1}, B_{2}\right) \geqslant(k+1) / 2$ and so $|S| \geqslant(k+1) / 2-a$. As $b=r_{2}-a, 2|S|-b \geqslant k+1-r_{2}-a=q^{\prime}+1>0$. Thus $d\left(X, H_{2}-X\right)=d(X, H-X)+d(X, L) \leqslant b a+2|S|+3(b-|S|)$ and $d\left(X, H_{1}\right) \geqslant|S|\left(k-r_{2}\right)+(b-|S|)\left(k-r_{2}-1\right)$. Then $\xi(X) \geqslant b\left(k-r_{2}-a-3\right)+2|S|-b \geqslant b\left(q^{\prime}-3\right)+q^{\prime}+1>0$, a contradiction.

Therefore $r_{1}>r_{2}$. If $q^{\prime} \geqslant 3$ or $r_{1} \geqslant r_{2}+2$ then $\xi(X) \geqslant b\left(k+2-r_{2}-a-2 \lambda\right)=b\left(r_{1}-r_{2}+q^{\prime}-4\right) \geqslant 0$, a contradiction. Hence $q^{\prime}=2$ and $r_{1}=r_{2}+1$. Say $N\left(x_{0}, L\right)=\left\{v_{c}, v_{c+1}, v_{c+2}\right\}$. As $q^{\prime}=2$ and H_{2} is 2-connected, $N\left(B_{1}^{\prime}, L\right) \subseteq\left\{v_{c+1}\right\}$ and $w_{1} w_{2} \in E$. Let $r_{1}=d+l$ with $d=k-r_{2}-3$ and $u_{1} u_{2} \cdots u_{r_{1}}$ be an h-path of B_{1} with $u_{1}=w_{1}$. Set $Y=\left\{u_{d+1}, \ldots, u_{r_{1}}\right\}$. Then $\left[L, B_{2}, u_{1} \cdots u_{d}\right] \supseteq P_{k}$. Clearly, $\xi(Y) \geqslant l\left(k-r_{1}+1\right)-l(d+1)>0$, a contradiction.
Proposition 9. $\quad t=2$.
Proof. On the contrary, say $t \geqslant 3$. First, assume that H is disconnected. By Proposition 8, each component contains at least two end blocks. Thus if D_{1} and D_{2} are two components then $\left[D_{1}, L\right] \supseteq C \geqslant k+1$ by Proposition 2 and $\left[D_{2}, H_{1}\right] \supseteq C_{\geqslant k+1}$ by Proposition 2 and Proposition 7(b), a contradiction.

Hence H is connected. Let v_{a} and v_{b} be the first two vertices on L such that $d\left(v_{a}, B_{i}^{\prime}\right)>0$ and $d\left(v_{b}, B_{j}^{\prime}\right)>0$ for some $\{i, j\} \subseteq\{1,2, \ldots, t\}$ with $i \neq j$. Say $d\left(v_{a}, B_{1}^{\prime}\right)>0$ and $d\left(v_{b}, B_{2}^{\prime}\right)>0$. Then $\left[v_{a} \cdots v_{b}, H-B_{3}^{\prime}\right] \supseteq C_{\geqslant k+1}$ by Proposition 2. Clearly, $d\left(x, v_{a} \cdots v_{b}\right) \leqslant 1$ for all $x \in B_{3}^{\prime}$. Thus $d(x, \tilde{L}-$ $\left.\left\{v_{1}, \ldots, v_{b}\right\}\right) \geqslant k-\left(r_{3}-1\right)$ for all $x \in B_{3}^{\prime}$. As [$\left.B_{3}^{\prime}\right]$ has an h-path, $\left[B_{3}^{\prime}, \tilde{L}-\left\{v_{a}, \ldots, v_{b}\right\}\right] \supseteq C \geqslant k$ by Lemma 3.1(c), a contradiction.

7 Proof of Main Theorem

We now have that $t=2$, $w_{1}=w_{2}$ and $r_{i} \leqslant k-1(i=1,2)$. As $\delta(G) \geqslant k+1, d\left(x_{i}, H\right) \geqslant 2$ for $i \in\{1, k-1\}$. As $d\left(x_{1} x_{k-1}, H\right) \geqslant k+1$, we may assume w.l.o.g. that $d\left(x_{1}, B_{1}^{\prime}\right) \geqslant 1$ and $d\left(x_{k-1}, B_{2}^{\prime}\right) \geqslant 1$. As $\delta(H) \geqslant(k-1) / 2$, we see that the distance of any two vertices of H is at most 4 in H. Thus $q \leqslant 5$. By Proposition $7(\mathrm{~b}), r_{1} \leqslant k-2$ and $r_{2} \leqslant k-2$. As $\delta(H) \geqslant(k-1) / 2$ and by Lemma 3.7, there is a $w_{i}-x$ h-path in B_{i} for each $i \in\{1,2\}$ and $x \in B_{i}^{\prime}$. Set $\lambda=\max _{x \in B_{2}^{\prime}} d(x, L)$. The proof consists of the following six claims.

Claim a. For each $i \in\{1,2\},\left[B_{i}^{\prime}, L\right] \nsupseteq C \geqslant k$.
Proof. On the contrary, say w.l.o.g. that $\left[B_{1}^{\prime}, L\right] \supseteq C \geqslant k$. By Proposition 5(b), $B_{2}^{\prime} \subseteq B_{2}^{*}$. By (17), $d\left(x_{1} x_{k-1}, B_{2}^{*}\right)=0$. Thus $r_{1} \geqslant d\left(x_{1} x_{k-1}, H\right) \geqslant k+1$, a contradiction.
Claim b. Let $\{i, j\}=\{1,2\}$. If $\left[B_{i}, L\right] \supseteq P_{k}$ then $r_{j}=k-2$ if $\max _{x \in B_{j}^{\prime}} d(x, L) \leqslant 2$ and $r_{j} \geqslant k-4$ if $\max _{x \in B_{j}^{\prime}} d(x, L)=3$.
Proof. On the contrary, say w.l.o.g. that $\left[B_{1}, L\right] \supseteq P_{k}$ such that $r_{2} \leqslant k-3$ if $\lambda \leqslant 2$ and $r_{2} \leqslant k-5$ if $\lambda=3$. Clearly, $d\left(B_{2}^{\prime}, H_{2}-B_{2}^{\prime}\right) \leqslant\left(r_{2}-1\right)(\lambda+1), d\left(B_{2}^{\prime}, H_{1}\right) \geqslant\left(r_{2}-1\right)\left(k+1-\left(r_{2}-1\right)-\lambda\right)$. Then $\xi\left(B_{2}^{\prime}\right) \geqslant\left(r_{2}-1\right)\left(k+1-r_{2}-2 \lambda\right) \geqslant 0$, contradicting (19).
Claim c. For each $i \in\{1,2\}, r_{i} \leqslant k-3$.
Proof. On the contrary, say $r_{1}=k-2$. Let u and v be the two end vertices of an arbitrary h-path of $\left[B_{1}^{\prime}\right]$. As $\left[B_{1}^{\prime}, L\right] \nsupseteq C \geqslant k$ by Claim a, $d(u v, L) \leqslant 4$. Moreover, we see that if $d(u v, L)=4$ with $d(u, L)=1$ then $d\left(u, v_{1} v_{q}\right)=0$. By (5), (7), (11)-(13), $d\left(u v, B_{1}\right) \geqslant d\left(u v, H_{2}\right)-d(u v, L) \geqslant k+1$. Consequently, $d\left(u v, B_{1}^{\prime}\right) \geqslant k+1-2=\left|B_{1}^{\prime}\right|+2$. By Lemma 3.4, we see that $d\left(x y, B_{1}^{\prime}\right) \geqslant\left|B_{1}^{\prime}\right|+2$ for all $\{x, y\} \subseteq B_{1}^{\prime}$
with $x \neq y$. Let $u_{1} \cdots u_{k-3} u_{1}$ be an h-cycle of $\left[B_{1}^{\prime}\right]$ with $d\left(u_{1}, L\right)$ maximal. We break into two cases.
Case 1. Either $d\left(u_{1}, L\right)=3$ or $d\left(u_{i}, L\right) \leqslant 1$ for all $i \in\left\{2, \ldots, r_{1}-1\right\}$.
Set $B_{1}^{\prime \prime}=B_{1}^{\prime}-\left\{u_{1}\right\}$. Since $\left[B_{1}^{\prime}, L\right] \nsupseteq C_{\geqslant k}$ and $\left[B_{1}^{\prime}\right]$ is h-connected, we see that if $d\left(u_{1}, L\right)=3$ then $d(x, L) \leqslant 1$ for all $x \in B_{1}^{\prime \prime}$ by Lemma 3.1. In either situation, we have that $d\left(B_{1}^{\prime \prime}, H_{2}-B_{1}^{\prime \prime}\right) \leqslant 3(k-4)$ and $d\left(B_{1}^{\prime \prime}, H_{1}\right) \geqslant(k-4)(k+1-(k-3)-1)=3(k-4)$. Thus $\xi\left(B_{1}^{\prime \prime}\right) \geqslant 0$. By $(19),\left[B_{2}, L, u_{1}\right] \nsupseteq P_{k}$. Thus $r_{2} \leqslant k-3$. As $\left[B_{1}, L\right] \supseteq P_{k}$ and by Claim b, $\lambda=3$ and $r_{2} \geqslant k-4$. Moreover, we see that $d\left(u_{1}, L\right)=1$ and $d\left(u_{1}, v_{1} v_{q}\right)=0$ as $\left[B_{2}, L, u_{1}\right] \nsupseteq P_{k}$. Hence $d\left(v_{1} v_{q}, B_{1}^{\prime}\right)=0$ for otherwise we may choose $u \in N\left(v_{1} v_{q}, B_{1}^{\prime}\right)$ to replace u_{1} in the above argument and a contradiction follows. Thus $d\left(v_{1} v_{q}, B_{2}\right) \geqslant 2 \delta\left(H_{2}\right)-2 \geqslant k+1$ and so $\left[B_{2}, L\right]$ has an h-cycle. Consequently, $\left[B_{2}, L, u_{1}\right] \supseteq P_{k}$, a contradiction.
Case 2. For some $u_{m} \in B_{1}^{\prime}-\left\{u_{1}\right\}, d\left(u_{m}, L\right)=d\left(u_{1}, L\right)=2$.
Since $\left[B_{1}^{\prime}\right]$ is h-connected and $\left[B_{1}^{\prime}, L\right] \nsupseteq C_{\geqslant k}$ by Claim a, we see that $N\left(B_{1}^{\prime}, L\right)=\left\{v_{b}, v_{b+1}\right\}$ for some $1 \leqslant b \leqslant q-1$. Clearly, $d\left(u, H_{1}\right) \geqslant k+1-(k-3)-2=2$ for $u \in\left\{u_{1}, u_{m}\right\}$ and $d\left(u_{i}, H_{1}\right) \geqslant 1$ for all u_{i}. Thus $\left[B_{1}, H_{1}\right] \supseteq C_{\geqslant k}$ by Lemma 3.1. Say $Z=\left\{v_{b}, v_{b+1}\right\}$.

First, assume that $\left[B_{1}, Z\right] \supseteq C \geqslant k$. Let s and t be the two end vertices of an arbitrary h-path of $\left[B_{2}^{\prime}\right]$. Then $d(z, \tilde{L}-Z) \geqslant k+1-\left(r_{2}-1\right)-2=k-1-\left(r_{2}-1\right)$ for each $z \in\{s, t\}$. As $\left[B_{2}^{\prime}, \tilde{L}-Z\right] \nsupseteq C_{\geqslant k}$, it follows that $d(s, \tilde{L}-Z)=d(t, \tilde{L}-Z)=k-1-\left(r_{2}-1\right), N(s, \tilde{L}-Z)=N(t, \tilde{L}-Z), Z \subseteq I(s t, L)$, and $d\left(s t, B_{1}\right)=2\left(r_{2}-1\right)$. Moreover, the vertices of $N(s, \tilde{L}-Z)$ are consecutive on \tilde{L}. Thus s and t can be any two distinct vertices of B_{2}^{\prime} in this argument and so these equalities hold for all $\{s, t\} \subseteq B_{2}^{\prime}$ with $s \neq t$. Choose $s \in N\left(x_{k-1}, B_{2}^{\prime}\right)>0$. By the minimality of $q, v_{b+1}=v_{q}$. Then we see that $\left[x_{r_{2}} x_{r_{2}+1} \cdots x_{k-1}, B_{2}\right] \supseteq C_{\geqslant k}$. Since $d\left(x_{1}, B_{1}^{\prime}\right)>0$ and $\left[B_{1}^{\prime}\right]$ is h-connected, we see that $\left[x_{1}, L, B_{1}^{\prime}\right] \supseteq C_{\geqslant k}$, a contradiction.

Therefore $\left[B_{1}, Z\right] \nsupseteq C_{\geqslant k}$. If $N\left(w_{1}, B_{1}\right) \neq\left\{u_{1}, u_{m}\right\}$ or $\left|N\left(v_{b} v_{b+1}, B_{1}^{\prime}\right)\right| \neq\left\{u_{1}, u_{m}\right\}$, we can readily choose two pairs $\left(u_{i}, u_{j}\right)$ and $\left(u_{r}, u_{l}\right)$ of vertices of B_{1}^{\prime} such that $u_{i} \neq u_{j}, u_{r} \neq u_{l},\left|\left\{u_{i}, u_{j}, u_{r}, u_{l}\right\}\right| \geqslant 3$, $d\left(u_{i}, Z\right) \geqslant 1, d\left(u_{j}, Z\right)=2$ and $\left\{u_{r}, u_{l}\right\} \subseteq N\left(w_{1}\right)$. By Lemma 3.4, [B] $\left.B_{1}^{\prime}\right] u_{i} u_{j}+u_{r} u_{l}$ has an h-cycle passing through $u_{i} u_{j}$ and $u_{r} u_{l}$. Thus $\left[B_{1}, Z\right]$ is hamiltonian, a contradiction. Therefore $d\left(u_{i}, L\right)=0$ for all $u_{i} \in V\left(B_{1}^{\prime}\right)-\left\{u_{1}, u_{m}\right\}$ and $N\left(w_{1}, B_{1}\right)=\left\{u_{1}, u_{m}\right\}$. Say $X=B_{1}^{\prime}-\left\{u_{1}, u_{m}\right\}$. By (18), $\xi(X) \geqslant$ $|X|\left(k+1-\left(r_{1}-2\right)\right)-2|X|>0$. By (19), $\left[L, B_{2}, u_{1}, u_{m}\right] \nsupseteq P_{k}$. This implies $r_{2} \leqslant k-5$, contradicting Claim b as $\left[B_{1}, L\right] \supseteq P_{k}$.
Claim d. $\quad\left|r_{1}-r_{2}\right| \leqslant 1$.
Proof. On the contrary, say w.l.o.g. $r_{1} \geqslant r_{2}+2$. Then $r_{2} \leqslant k-5$. Let $P=y_{1} \cdots y_{r_{2}}$ be an h-path of B_{2} with $y_{1}=w_{1}$ and let P^{\prime} be a longest $u-v$ path on L with $d\left(v, B_{1}^{\prime}\right) \geqslant 1$. Say $q^{\prime}=\left|P^{\prime}\right|$. Then $q^{\prime} \geqslant 2$. Let $r_{2}-1=a+b$ with $a=\max \left\{0, k-r_{1}-q^{\prime}\right\}$ and $X=\left\{y_{r_{2}-b+1}, \ldots, y_{r_{2}}\right\}$. Then $\left[B_{1}, L^{\prime}, y_{1} \cdots y_{a+1}\right] \supseteq P_{k}$ and $\xi(X) \geqslant b\left(k+1-\left(r_{2}-1\right)-\lambda\right)-b(a+1+\lambda)=b\left(k+1-r_{2}-a-2 \lambda\right)$. By (19), $\xi(X) \leqslant-2$. Thus $a>0$ and so $a=k-r_{1}-q^{\prime}$. Hence $k+1-r_{2}-a-2 \lambda=r_{1}-r_{2}+1+q^{\prime}-2 \lambda$. It follows that $\lambda=3$, $q^{\prime}=2$ and $r_{1}=r_{2}+2$. As $q^{\prime}=2$, we obtain that $q=3$ and $N\left(B_{1}^{\prime}\right)=\left\{v_{2}\right\}$.

As $r_{2} \geqslant(k+1) / 2, b=r_{2}-1-a=q^{\prime}+r_{1}+r_{2}-1-k \geqslant 4$. Assume that $d(x, L)=3$ for at most two vertices $x \in X$. Then $\xi(X) \geqslant(b-2)\left(r_{1}-r_{2}+1+q^{\prime}-4\right)+2\left(r_{1}-r_{2}+1+q^{\prime}-6\right) \geqslant 0$, a contradiction. Therefore there exist two vertices z_{1} and z_{2} in X such that $d\left(z_{1} z_{2}, L\right)=6$ and $d\left(w_{1}, B_{2}^{\prime}-\left\{z_{1}, z_{2}\right\}\right) \geqslant 1$. Clearly, $\left[z_{1}, \tilde{L}-v_{2}\right] \supseteq C_{\geqslant k}$ and $\delta\left(\left[B_{2}^{\prime}-\left\{z_{1}\right\}\right]\right) \geqslant(k-1) / 2-2=(k-5) / 2$. As $\left|B_{2}^{\prime}\right|-1 \leqslant(k-5)-1$ and by Lemma 3.4, $\left[B_{2}^{\prime}-\left\{z_{1}\right\}\right]$ is h-connected and it follows that $\left[B_{1}, B_{2}-\left\{z_{1}\right\}, v_{2}\right] \supseteq C_{\geqslant k}$, a contradiction.

Let $v_{0}=x_{1}$ and $v_{q+1}=x_{k-1}$. Set $L^{*}=v_{0} L v_{q+1}$. By (5), (7), (11)-(13) and (17), for each $x \in$ $N\left(x_{1} x_{k-1}, H-w_{1}\right), d(x, H) \geqslant(k+1) / 2$. Thus $r_{1} \geqslant(k+3) / 2$ and $r_{2} \geqslant(k+3) / 2$.
Claim e. There exists v_{m} on L such that $N\left(B_{1}^{\prime}, L^{*}\right) \subseteq\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$ and $N\left(B_{2}^{\prime}, L^{*}\right) \subseteq\left\{v_{m}, \ldots, v_{q+1}\right\}$.
Proof. On the contrary, say that the claim is false. Since $d\left(v_{0}, B_{1}^{\prime}\right)>0, d\left(v_{q+1}, B_{2}^{\prime}\right)>0, d\left(B_{1}^{\prime}, L\right)>$ 0 and $d\left(B_{2}^{\prime}, L\right)>0$, we see that there exists $v_{c} \in V(L)$ such that either $d\left(L\left[v_{1}, v_{c}\right], B_{2}^{\prime}\right) \geqslant 1$ and $d\left(L^{*}\left[v_{c+1}, v_{q+1}\right], B_{1}^{\prime}\right) \geqslant 1$ or $d\left(L^{*}\left[v_{0}, v_{c-1}\right], B_{2}^{\prime}\right) \geqslant 1$ and $d\left(L\left[v_{c}, v_{q}\right], B_{1}^{\prime}\right) \geqslant 1$. Say that $d\left(L\left[v_{1}, v_{c}\right], B_{2}^{\prime}\right) \geqslant 1$ and $d\left(L^{*}\left[v_{c+1}, v_{q+1}\right], B_{1}^{\prime}\right) \geqslant 1$. Choose v_{c} with c maximal. Then $d\left(B_{1}^{\prime}, L^{*}\left(v_{c+1}, v_{q+1}\right]\right)=0$ and so $N\left(B_{1}^{\prime}, L^{*}\right) \subseteq V\left(L^{*}\left[v_{0}, v_{c+1}\right]\right)$ with $d\left(v_{c+1}, B_{1}^{\prime}\right)>0$. Note that if $d\left(x_{k-1}, B_{1}^{\prime}\right)>0$ then $v_{c+1}=v_{q+1}=x_{k-1}$.

Let $\left\{z_{1}, z_{2}\right\} \subseteq B_{1}^{\prime}$ with $\left\{z_{1} x_{1}, z_{2} v_{c+1}\right\} \subseteq E$. Since $d\left(x_{1} x_{k-1}, H\right) \geqslant k+1, i\left(x_{1} x_{k-1}, H\right)=0$ and
$r_{2} \leqslant k-3$, we get that $d\left(x_{1} x_{k-1}, B_{1}^{\prime}\right) \geqslant 4$. Thus we may choose z_{1} and z_{2} such that $z_{1} \neq z_{2}$ and $d\left(w_{1}, B_{1}^{\prime}-\left\{z_{1}, z_{2}\right\}\right) \geqslant 1$. Subject to this, we choose z_{1} and z_{2} with the distance between z_{1} and z_{2} minimized in $\left[B_{1}^{\prime}\right]$. If $z_{1} z_{2} \notin E$, then $i\left(z_{1} z_{2}, B_{1}\right) \geqslant 2 \delta(H)-\left(r_{1}-2\right) \geqslant(k-1)-(k-5)=4$ and we choose $z_{0} \in I\left(z_{1} z_{2}, B_{1}^{\prime}\right)$ such that $d\left(w_{1}, B_{1}^{\prime}-\left\{z_{1}, z_{2}, z_{0}\right\}\right) \geqslant 1$. For convenience, we define $z_{0}=z_{2}$ if $z_{1} z_{2} \in E$. Then $\left[H_{1}, L^{*}\left[v_{c+1}, v_{q+1}\right], z_{1} z_{2} z_{0}\right] \supseteq C_{\geqslant k}$ and so $F \nsupseteq C_{\geqslant k}$, where $F=\left[B_{1}-\left\{z_{1}, z_{2}, z_{0}\right\}, L\left[v_{1}, v_{c}\right], B_{2}\right]$. Let $B_{1}^{\prime \prime}=B_{1}-\left\{z_{1}, z_{2}, z_{0}\right\}$ and $M=u_{1} \cdots u_{t}$ an arbitrary longest path at $w_{1}=u_{1}$ in $B_{1}^{\prime \prime}$. By (14), we see that for each $x \in V\left(B_{1}^{\prime \prime}\right)-\left\{u_{1}\right\}, d\left(x, B_{1}^{\prime \prime}\right) \geqslant d\left(x, H_{2}\right)-d(x, L)-d\left(x, z_{1} z_{0} z_{2}\right) \geqslant(k-7) / 2$ and if equality holds then $d\left(x, H_{2}\right)=(k+5) / 2, d(x, L)=3$ and $d\left(x, z_{1} z_{0} z_{2}\right)=3$. Thus $t \geqslant(k-7) / 2+1=(k-5) / 2$.

First, assume that $u_{t} v_{i} \in E$ for some $v_{i} \in\left\{v_{1}, \ldots, v_{c}\right\}$. Let $v_{j} \in\left\{v_{1}, \ldots, v_{c}\right\}$ and $z \in B_{2}^{\prime}$ with $v_{j} z \in E$. Choose v_{i} and v_{j} with $|j-i|$ maximal. Let P^{\prime} be a $w_{1}-z h$-path of B_{2}. Then $\left[M, P^{\prime}, L\left[v_{1}, v_{c}\right]\right]$ has a cycle C with $|C| \geqslant r_{2}+t+|j-i|$. Since $k-1 \geqslant|C|, r_{2} \geqslant(k+3) / 2$ and $t \geqslant(k-5) / 2$, we obtain that $k-1 \geqslant|C| \geqslant(k-5) / 2+(k+3) / 2+|j-i|=k-1+|j-i|$. Thus $i=j, r_{2}=(k+3) / 2, t=(k-5) / 2$ and $d\left(u_{t}, B_{1}^{\prime \prime}\right)=(k-7) / 2$. Consequently, $d\left(u_{t}, L\right)=3$ and $d\left(u_{t}, L\left[v_{1}, v_{c}\right]\right) \geqslant 2$. Thus $|i-j| \geqslant 1$, a contradiction.

We conclude that $d\left(u_{t}, L\left[v_{1}, v_{c}\right]\right)=0$. Thus $N\left(u_{t}, L\right) \subseteq\left\{v_{c+1}\right\}$. As $r_{1} \leqslant k-3$ and by (5), (7), $(11)-(13)$, we see that $d\left(u_{t}, M\right) \geqslant\lceil(k+3) / 2\rceil-d\left(u_{t}, v_{c+1}\right)-d\left(u_{t}, z_{1} z_{2} z_{0}\right) \geqslant\lceil(k+1-2 s) / 2\rceil \geqslant\left(\left|B_{1}^{\prime \prime}\right|+1\right) / 2$ where $s=\left|\left\{z_{1}, z_{2}, z_{0}\right\}\right|$ and $\left|B_{1}^{\prime \prime}\right|=r_{1}-s$. Let M be optimal at w_{1} in $\left[B_{1}^{\prime \prime}\right]$ and set $r=\alpha\left(N, u_{t}\right)$, $D=\left[u_{t-r+1}, \ldots, u_{t}\right]$ and $D^{\prime}=V(D)-\left\{u_{t-r+1}\right\}$. By Lemma 3.7, for each $u_{i} \in D^{\prime}, d\left(u_{i}, D\right) \geqslant\left(\left|B_{1}^{\prime \prime}\right|+1\right) / 2$, $N\left(u_{i}, B_{1}^{\prime \prime}\right) \subseteq V(D)$ and $[M]$ has a $u_{1}-u_{i} h$-path. This argument implies that $N\left(D^{\prime}, L\right) \subseteq\left\{v_{c+1}\right\}$. Since $k-3 \geqslant r_{1}$ and $\delta(H) \geqslant(k-1) / 2, d\left(x, D^{\prime}\right) \geqslant 1$ for all $x \in V\left(B_{1}^{\prime}\right)$. Thus $B_{1}^{\prime \prime}-\left\{u_{1}\right\} \subseteq V(D)$ and $r \in\{t-1, t\}$.

By (5), (7), (11)-(13), D^{\prime} contains a vertex x with $d(x, H) \geqslant(k+4) / 2-1=(k+2) / 2$ and so $r \geqslant d(x, D)+1 \geqslant(k+2) / 2-d\left(x, z_{1} z_{0} z_{2}\right)+1 \geqslant(k-2) / 2$.

Suppose that $d\left(z_{1} z_{2} z_{0}, L\right) \geqslant 1$. Let L^{\prime} be a longest path starting at u_{t-r+1} in

$$
\left[u_{t-r+1} u_{t-r} \cdots u_{1}, B_{2}, L, z_{1} z_{2}, z_{0}\right]
$$

As $d\left(L\left[v_{1}, v_{c}\right], B_{2}^{\prime}\right)>0$, we see that $\left|L^{\prime}\right|=r_{2}+\sigma$ with $\sigma \geqslant 3$ and if $\sigma=3$ then $t=r, v_{c+1}=v_{q+1}=x_{k-1}$ and $N\left(B_{2}^{\prime} \cup\left\{z_{1}, z_{0}, z_{2}\right\}\right)=\left\{v_{l}\right\}$ for some $l \in\{1, \ldots, c\}$. Let $r-1=a+b$ with $a=\max \left\{0, k-r_{2}-\sigma\right\}$ and $Y=\left\{u_{t-b+1}, \ldots, u_{t}\right\}$. Then $\left[L^{\prime}, u_{t-r+2} \cdots u_{t-r+a+1}\right\} \supseteq P_{k}$. As $r \geqslant(k-2) / 2$ and $r_{2} \geqslant(k+3) / 2$, we see that $Y \neq \emptyset$.

Let $y \in Y$. Clearly, $d\left(y, B_{1} \cup L-Y\right) \leqslant a+1+d\left(y, v_{c+1} z_{1} z_{2} z_{0}\right)$ and $d\left(y, H_{1}\right) \geqslant k+1-(r-$ 1) $-d\left(y, v_{c+1} z_{1} z_{2} z_{0}\right)$. If $\left|\left\{z_{0}, z_{1}, z_{2}\right\}\right|=3$, then by the minimality of the distance between z_{1} and z_{2}, $d\left(y, z_{1} v_{c+1}\right) \leqslant 1$. Thus $\xi(Y) \geqslant \sum_{y \in Y}\left(k+1-r-a-2 d\left(y, v_{c+1} z_{1} z_{2} z_{0}\right)\right) \geqslant b(k+1-r-a-6)=b(k-r-a-5)$. By (19), $\xi(Y) \leqslant-2$. As $r \leqslant r_{1}-\left|\left\{z_{0}, z_{1}, z_{2}\right\}\right| \leqslant k-5$, we see that $a>0$ and so $a=k-r_{2}-\sigma$. Therefore $k-r-a-5=r_{2}+\sigma-r-5$. As $\left|r_{1}-r_{2}\right| \leqslant 1$ by Claim d, we obtain that $r_{2}+\sigma-r-5 \leqslant 0$ implies that $\sigma=3$ and $\left|\left\{z_{1}, z_{0}, z_{2}\right\}\right|=2$. Thus $v_{c+1}=v_{q+1}=x_{k-1}$. As $N\left(D^{\prime}, L^{*}\right) \subseteq\left\{v_{c+1}\right\}$, we obtain $d(Y, L)=0$. Thus $\xi(Y) \geqslant b(k-r-a-3)=b\left(r_{2}-r+\sigma-3\right) \geqslant 0$, a contradiction.

Therefore $d\left(z_{1} z_{0} z_{2}, L\right)=0$. Let $r_{1}-1=d+l$ with $d=k-r_{2}-2$ and $Z=\left\{u_{d+2}, \ldots, u_{t}\right\}$. Then $\left[L, B_{2}, u_{1} u_{2} \cdots u_{d+1}\right] \supseteq P_{k}$. As $r \in\{t-1, t\},\left\{u_{2}, \ldots, u_{t}\right\} \subseteq V(D)$. Set $Z^{\prime}=Z \cup\left\{z_{1}, z_{0}, z_{2}\right\}$. Since $N\left(D^{\prime}, L\right) \subseteq\left\{v_{c+1}\right\}$, we see that $d\left(Z^{\prime}, H_{2}-Z\right) \leqslant l(d+2)$ and $d\left(Z^{\prime}, H_{1}\right) \geqslant l\left(k+1-\left(r_{1}-1\right)-1\right)$. Thus $\xi\left(Z^{\prime}\right) \geqslant l\left(k-r_{1}-d-1\right) \geqslant 0$ as $r_{1} \leqslant r_{2}+1$, a contradiction.

By Claim e, for some $v_{m} \in V(L), N\left(B_{1}^{\prime}, L^{*}\right) \subseteq\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$ and $N\left(B_{2}^{\prime}, L^{*}\right) \subseteq\left\{v_{m}, \ldots, v_{q}, v_{q+1}\right\}$. In particular, $d\left(v_{1}, B_{1}^{\prime}\right)>0$ and $d\left(v_{q}, B_{2}^{\prime}\right)>0$. Let $\mu=\max _{x \in B_{1}^{\prime}} d(x, L)$. Recall $\lambda=\max _{x \in B_{2}^{\prime}} d(x, L)$. Thus $q \geqslant \mu+\lambda-1$.
Claim f. $\mu=3$ and $\lambda=3$.
Proof. On the contrary, say that it is false. Say w.l.o.g. that $r_{1} \geqslant r_{2}$. First, assume $\lambda \leqslant 2$. Let $u_{1} \cdots u_{r_{2}}$ be an h-path of B_{2} with $u_{1}=w_{1}$. Let $r_{2}-1=a+b$ with $a=\max \left\{0, k-r_{1}-q\right\}$ and $X=\left\{u_{r_{2}-b+1}, \ldots, u_{r_{2}}\right\}$. Then $\left[L, B_{1}, u_{1} \cdots u_{a+1}\right] \supseteq P_{k}, d\left(X, H_{2}-X\right) \leqslant b(a+1+\lambda)$ and $d\left(X, H_{1}\right) \geqslant b\left(k+1-\left(r_{2}-1\right)-\lambda\right)$. Thus $\xi(X) \geqslant b\left(k+1-r_{2}-a-2 \lambda\right)$. As $\xi(X) \leqslant-2$ by (19) and $r_{2} \leqslant k-3$, we see that $a>0$ and so
$a=k-r_{1}-q$. Thus $\xi(X) \geqslant b\left(r_{1}-r_{2}+q+1-2 \lambda\right)$. It follows that $r_{1}=r_{2}, q=2$ and $\lambda=2$. Exchanging the roles of B_{1} and B_{2} in the above argument, we see that $\mu \nless 2$. Thus $q \geqslant 3$, a contradiction.

Therefore $\lambda=3$ and so $\mu \leqslant 2$. By the above argument, we see that $r_{1} \notin r_{2}$. So $r_{1}=r_{2}+1$ by Claim d. Let $y_{1} \cdots y_{r_{1}}$ be an h-path of B_{1} with $y_{1}=w_{1}$. Let $r_{1}-1=c+l$ with $c=\max \left\{0, k-r_{2}-q\right\}$ and $Y=\left\{y_{r_{1}-l+1}, \ldots, y_{r_{1}}\right\}$. Then $\left[L, B_{2}, y_{1} \cdots y_{c+1}\right] \supseteq P_{k}$ and $-2 \geqslant \xi(Y) \geqslant l\left(k+1-r_{1}-c-2 \mu\right)$. Thus $c>0$ and so $c=k-r_{2}-q \leqslant k-r_{2}-(\mu+3-1)$. Then $\xi(Y) \geqslant l\left(r_{2}-r_{1}+3-\mu\right) \geqslant 0$, a contradiction.

By Claim f, $q \geqslant 5$. We claim that $r_{i} \geqslant k-4(i=1,2)$. If this is not true, say $r_{1} \geqslant r_{2}$ and $r_{2} \leqslant k-5$. Let $u_{1} \cdots u_{r_{2}}$ be an h-path with $u_{1}=w_{1}$ Let $r_{2}-1=a+b$ with $a=\max \left\{0, k-r_{1}-5\right\}$ and $X=\left\{u_{r_{2}-b+1}, \ldots, u_{r_{2}}\right\}$. Then $\left[L, B_{1}, u_{1} \cdots u_{a+1}\right] \supseteq P_{k}$ and $\xi(X) \geqslant b\left(k+1-\left(r_{2}-1\right)-\lambda\right)-b(a+1+\lambda)=$ $b\left(k-r_{2}-a-5\right) \geqslant 0$. By (19), $\xi(X) \leqslant-2$, a contradiction. Hence $r_{i} \geqslant k-4(i=1,2)$. Let r be maximal with $v_{r} z \in E$ for some $z \in B_{1}^{\prime}$. Clearly, $d\left(x, \tilde{L}-\left\{v_{0}, \ldots, v_{r}\right\}\right) \geqslant k+1-\left(r_{2}-1\right)-1=k-\left(r_{2}-1\right)$ for all $x \in B_{2}^{\prime}$. By Lemma 3.1(c), $\left[B_{1}^{\prime}, \tilde{L}-\left\{v_{0}, \ldots, v_{r}\right\}\right] \supseteq C_{\geqslant k}$. As $d\left(x_{1} x_{k-1}, B_{1}^{\prime}\right) \geqslant k+1-r_{2} \geqslant 4, d\left(x_{1}, B_{1}^{\prime}\right) \geqslant 4$. We can choose an h-cycle C of B_{1} and a vertex $y \in B_{1}^{\prime}$ such that $\left\{y x_{1}, z v_{r}\right\}$ and $w_{1} \notin\left\{y^{-}, z^{-}\right\}$. Since $\delta(H) \geqslant(k-1) / 2$ and by Lemma $3.3, B_{1}$ has a $y-z h$-path and so $\left[B_{1}, x_{1} v_{1} \cdots v_{r}\right] \supseteq C_{\geqslant k}$. This proves Main Theorem.

Acknowledgements This work was supported by National Security Agent of USA (Grant No. H98230-08-10098).

References

1 Berstel J, Perrin D. Theory of Codes. Orlando: Academic Press, 1985
2 Bollobá B. Extremal Graph Theory. London: Academic Press, 1978
3 Bondy J. Pancyclic graphs I. J Combin Theory Ser B, 1971, 11: 80-84
4 Bondy J, Chvátal V. A method in graph theory. Discrete Math, 1976, 15: 111-135
5 Corrádi K, Hajnal A. On the maximal number of independent circuits in a graph. Acta Math Acad Sci Hungar, 1963, 14: 423-439
6 Dirac G A. Some theorems on abstract graphs. Proc London Math Soc, 1952, 2: 69-81
7 Egawa Y, Glas R, Locke S C. Cycles and paths through specified vertices in k-connected graphs. J Combin Theory Ser B, 1991, 52: 20-29
8 El-Zahar M H. On circuits in graphs. Discrete Math, 1984, 50: 227-230
9 Erdős P, Gallai T. On maximal paths and circuits of graphs. Acta Math Acad Sci Hungar, 1959, 10: 337-356
10 Ore O. Note on Hamilton circuits. Amer Math Monthly, 1960, 67: 55
1 Reis C M, Shyr H J. Some properties of disjunctive languages on a free monoid. Inform Contr, 1978, 37: 334-344
2 Wang H. Independent cycles with limited size in a graph. Graphs Combin, 1994, 10: 271-281
13 Wang H. Two vertex-disjoint cycles in a graph. Graphs Combin, 1995, 11: 389-396

