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BIPACKING A BIPARTITE GRAPH WITH GIRTH AT
LEAST 12

HoNG WANG

ABSTRACT. Let G be a bipartite graph with (X,Y) as its bipartition.
Let B be a complete bipartite graph with a bipartition (Vi,V2) such
that X C Vi3 and Y C Va. A bi-packing of G in B is an injection o:
V(G) — V(B) such that o(X) C V1, o(Y) C Vo and E(G)NE(c(G)) = 0.
In this paper, we show that if G is a bipartite graph of order n with girth
at least 12, then there is a complete bipartite graph B of order n 4+ 1
such that there is a bi-packing of G in B. We conjecture that the same
conclusion holds if the girth of G is at least 8.

1. Introduction

For a graph G, we use V(G) and E(G) to denote the vertex set and edge set
of G, respectively. In this paper, we denote a bipartite graph G with a given
bipartition (X,Y) by G(X,Y), and for a bipartite graph, we always assume
that it has been given a bipartition. If H is a subgraph of G(X,Y"), then the
bipartition of H is given as (V(H) N X,V(H)NY). We use B,, to denote a
complete bipartite graph of order n. Let G(X,Y") and H(U, W) be two bipartite
graphs. Let B,(V1,V2) be such that U C V; and W C V,. A bipacking of G
and H in B, (V;1,Vs) is a bijection o: V(G) — V(B,,) such that o(X) C V7,
o(Y) C Vo and E(H) N E(c(G)) = 0, where o(G) is the image of G under o.
If additionally G = H, we say that there is a bipacking of G in B,,. Fouquet
and Wojda [4] showed that for any disconnected forest F' of order n, there is a
bipacking of F in a B,,. This result was also obtained by Sauer and Wang [7].
Two bipartite graphs G(X,Y) and H(U, W) are compatible if | X| = |U]| and
|Y| = |W]. In [8], we proved the following:

Theorem A ([8]). Let D and F be two compatible disconnected forests of
order n. Suppose that D and F can be partitioned into vertex-disjoint unions
of subforests D = D1 UDy and F' = Fy UFy such that D; and F; are compatible
fori=1,2. Then there is a bipacking of D and F in a B,.
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In [9], we investigated a bipacking of two compatible bipartite graphs G and
H of order n with e(G) + e(H) < 2n — 2, and we showed:

Theorem B ([9]). Let G and H be two compatible bipartite graphs of order n
with e(G) + e(H) < 2n — 2. Suppose that each of G and H does not contain a
cycle of length 4. Then there exists a complete bipartite graph B of order n+1
such that there is a bipacking of G and H in B unless one of G and H is the
union of vertex-disjoint cycles and the other is the union of two vertex-disjoint
stars.

In this paper, we investigate the bipacking of a bipartite graph G with girth
at least 12. This work is motivated by a conjecture in [3] and the result in [2].
R. J. Faudree, C. C. Rousseau, R. H. Schelp and S. Schuster conjectured in
[3] that if G is a graph of order n with girth at least 5 and maximum degree
at most n — 2, then there is an embedding of G in its complement. S. Brandt
proved in [2] that if the girth of G is at least 7, then the conclusion holds.
Gorlich, Poli$niak, Wozniak and Ziolo provided a simpler proof of this result
in [5], whose idea is adopted in our current work. For bipartite graphs, we
conjecture the following:

Conjecture C. If G is a bipartite graph of order n with girth at least 8, then
there is a bipacking of G in a complete bipartitite graph of order n + 1.

This conjecture holds for trees by Theorem B. Orchel characterized all the
trees of order n that do not have bipackings in complete bipartite graphs of
order n. There are three types of those trees and we refer readers to [6] for a
list of them. In this paper, we will prove the following result:

Theorem D. If G is a bipartite graph of order n with girth at least 12, then
there is a bipacking of G in a complete bipartitite graph of order n + 1.

To prove Theorem D, we will prove Theorem E which is stronger than
Theorem D. To state Theorem E, we define F;, to be a tree of order n with
n > 5 such that F,, has a path z1292324 of order 4 and every vertex in V(F,)—
{1,229, 3,24} is an endvertex adjacent to z4. We use 2K to denote the graph
of order 4 which consists of two independent edges. Let F be a set of graphs
such that a graph H belongs to F if and only if either H is isomorphic to one
of 2K5, Py, Ps and F, for some n > 5 or H has order 2 and each partite in
the given bipartition of H is non-empty. Note that Fy is P5. A bipacking o of
a bipartite graph G in a complete bipartite is called a fixed-point-free (FPF)
bipacking if o(z) # x for all z € V(G). For convenience, we denote the order
of a graph G by |G]. It is easy to check that each graph H in F has a bipacking
in a By 41 but does not have an FPF bipacking in a Bg|1-

Theorem E. If G is a bipartite graph of order n with girth at least 12, then
there is an FPF bipacking of G in a complete bipartitite graph of order n+ 1 if
and only if G does not belong to F.
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We discuss only finite simple graphs and use standard terminology and no-
tation from [1] unless indicated otherwise. Here we define some special termi-
nology and notation to be used in this paper. Let G be a graph. Let X be a
subset of V(G) or a subgraph of G. We define G[X] to be the subgraph induced
by the vertices belonging to X. If Y is a subset of V(G) or a subgraph of G
such that X and Y do not have any common vertex, then we define E(X,Y)
to be the set of edges between X and Y in G and let ¢(X,Y) = |E(X,Y)|. For
a vertex x of G, we define d(z, X) to be the number of neighbors of = in G that
are contained in X. Thus d(z,G) is the degree of = in G. For a subset Z of
V(G), let N(Z) = U,ezN(z). We use |G| to denote the order of G.

A feasible path of G is an induced path of order 4 in G such that each of its
two internal vertices has degree 2 in G. A feasible edge of G is an edge zy of
G such that dg(z) = dg(y) = 2.

Note that the girth of a graph without cycles is defined to be infinity oco.

2. Proof of Theorem E

On the contrary, we suppose that Theorem FE fails. Let G(X;p,X2) be a
bipartite graph with the smallest order such that the girth of G is at least 12
and G € F but G does not have an FPF bipacking in a B, 1, where n = |G|.
Let

ny = |X1| and Nog = |X2‘;

5 = min d(z) and dy = min d(x);

Ay = max d(z) and Ay = max d(z).
Clearly, n = ny + ng, 6(G) = min{d;,d2}, n1 > 2 and ny > 2. Our proof
consists of the following lemmas, which will lead to a contradiction.

Lemma 2.1. Let k > 2. If x1,x9,...,x are k distinct endvertices of G with
a common neighbor, then G — {x1,xa,...,x} does not have an FPF bipacking
i a By py1-

Proof. If G—{x1,x,...,x;} has an FPF bipacking ¢ in a B,,_p+1, then o can
be extended to an FPF bipacking of G in a Bj,4+1 such that o(z;) = z;4; for
all i € {1,...,k} where 241 = x1, a contradiction. O

Lemma 2.2. The following two statements hold:

(a) There exists no x € V(G) such that G — x has an FPF bipacking in a
B_1.
(b) There exists no z € V(G) such that G — z € F.

Proof. If G — x has an FPF bipacking o in a B,,_1 for some z € V(G), let w
be a new vertex not in G and we extend o with o(x) = w. Then o becomes an
FPF bipacking of G in a B,,11, a contradiction. Hence (a) holds.
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To see (b), we suppose that G — z € F for some z € V(G). If |G — z| = 2,
we readily see that G has an FPF bipacking in a B4. Hence n > 5. Then we
see that d(z) < 1 since G ¢ F (in particular, G % P5) and g(G) > 8. Let w be
a new vertex not in G. We define an injection o : V(G) — V(G) U {w} with
o(x) # x for all x € V(G) as follows.

First, assume that G — z = 2K5 or P;. Let z1x2 and z3z4 be two edges of
G — z with {z1,23} C X3 such that dg_.(z1) = dg—.(z4) = 1. Asdg(z) <1
and G € F, we may assume that Ng(z) C {2} or Ng(z) C {z3}. Say w.lLo.g.
that Ng(z) C {z3} and z3 and z are not in the same partite of G. Let

a(x17x2,x3,x4,z) = (x37w,x1,2,x4).

Next, assume that G — z & Ps. Say G — z = x129232405%¢. If N(2) C {x1}
or N(z) C {zs}, say wlo.g. N(z) C {zs} and z6 and z are not in the same
partite of G, let

U($1,$2,x3,$4,1}5,x6,2) = (LC37U},$5,£L'2,Z,.’E4,$1).
If N(z) € {x1,z6}, then N(z) = {x;} for some i € {2,3,4,5}. Say w.lLo.g.
N(z) = {x;} with i € {4,5}. Let
U(I17I2,$3,I4,LE5,I6,Z) = (zg,I6,$17w,Z,I2,I5) if i= 4;
U($1,$2,$3,$4,x5,$6,2) = ($3,x6,x172,w,$2,$4) lf 1= 5
Finally, assume that G — z = F,,_; with n — 1 > 5. Say
V(G - Z) = {$1,$2,$3,l‘4} U {al,ag, ce ,ak}

such that zyxex3zy is a path in G and Ng_.(z4) = {23,a1,0a2,...,ar}. Set
A={ai,as,...,ar} and agx11 = a;. Then zzy & F as G & F. If zz5 € E, then
k>2as G¢F. Thus if zzo € E, we see that G — A € F and so G — A has an
FPF bipacking in a Bg, contradicting Lemma 2.1. Hence zzo ¢ E. Similarly,
if ze3 € E, then k =1. If zx; € E, then k > 2as G ¥ Ps. If N(2) C A, we
may assume that N(z) C {ax}. Let

U(fl,I2,$3,$4,Z,a1,. . 'aak) = (alazva27wax27a3v s 7ak,$1;x3) if 2T € Ea
U($1,$2,$3,$4,a172) = (x3,w7a17z,x1,x2) if 2x3 € E7
U(x1,$2,$3,.’134,25,a1,. .. aak)) = (1‘3,27351,’11),.’1}2,0,2,. .. ;ak:-‘rl) if N(Z) g {a/k:}-

In each of the above situations, we see that ¢ is an FPF bipacking of G in
a By1, a contradiction. g

Lemma 2.3. Let {i,j} = {1,2}. Letxz € X;, Y = Ng(z) and H = G — x.
Let o be an FPF bipacking of H in a B,(Vy,V2) with X; — {z} C V; and
X; CV;. Then Vi —{x} € Nomy(Y) U Nu(o(Y)). Moreover, there exists a
subset W C X such that

[W|=|Ng(z)| and |Ng—o(W)| = 5(n; —1).

N | =
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Proof. For convenience, say ¢ = 1 and j = 2. Assume that there exists u €
Vi — {a} such that u & Ny (Y) U Ny (o(Y)). If 0! (u) does not exist, then
we obtain an FPF bipacking o’ of G in B,,11(V4 U {x}, V2) with o’(z) = u and
o' (w) = o(w) for all w € V(G) — {z}, a contradiction. Therefore o~ (u) exists.
Let v = 07! (u). Then we obtain an FPF bipacking ¢’ of G in B,,1(V1U{z}, V)
with ¢'(z) = u, o’(v) = z and ¢'(w) = o(w) for all w € V(G) — {z,v}, a
contradiction. Therefore Vi — {2} C Ny)(Y)U Ny (o(Y)). This implies that
ny — 1 < [Nomy(Y)| + [Nu(o(Y))]. Let A = {z € Xa|o(z) € Y}. Note
that since |X5| < |[Va| < | Xa| + 1, we see that |[Y| —1 < |A] < |Y]|. Then
Nomy(Y) = 0(Nu(A)) and so ny — 1 < [Ny(A)| + [Ng(o(Y))|. Let A C
A" C X5 with |A'| = |Y]. Then ny — 1 < |[Ng(A")| + |Ng(o(Y))|. Thus either
INg(A")] > (n1—1)/2 or [INg(c(Y))| > (n1—1)/2. This means that the lemma
holds with either W = A" or W = o(Y)). d

Corollary 2.4. 6(G) >0, ny <1+ 201A2 and ns < 14 265A,.

Proof. For each z € V(QG), we see that N(z) # 0 by Lemma 2.2 and Lemma
2.3. To see the inequality n; < 1+ 201As, we choose z € X; with d(z) = 0;.
By Lemma 2.3, (n; — 1)/2 < 01Aq, e, n; < 1+ 201As. Similarly, ny <
1+ 25A1. O

Corollary 2.5. If x is an endvertex of G and y is the neighbor of z, then
da(y) < 2.

Proof. Say x € X;. By Lemma 2.2, G —x ¢ F. Then G — z has an FPF
bipacking o in a B, (V1,V2) with X7 — {z} C V] and X3 C V5. By Lemma 2.3,
we see, with Y = {y} and H = G—=x, that Vi—{2} C Nyg—z)(y)UNg_z(a(y)).
Then Ng—.(y) C Nag—.(0(y)). As g(G) > 4, it follows that |[Ng_.(y)| < 1 and
so dg(y) < 2. O

Lemma 2.6. If P is a path of order t > 8 from x to y, then there is an FPF
bipacking 7 of P in a By such that 7(x)7(y) € E(P).

Proof. Say P = x1yy -+ - xyg if t = 2k and P = z1y; - - - xpypxps1 if t = 2k + 1.
Let x1;/2141 = 1 and yo = y|4/2)- Let 7 be defined as follows:

T(x;)=xi41 for i € {1,2,...,[t/2]} and 7(y;)=y,—1 for j € {1,2,...,[t/2]}.
It is easy to see that 7 satisfies the requirement. O

Corollary 2.7. Every bipartite graph H(Vy,Va) of order n > 8 with girth at
least 8, A(H) < 2 and ||V1]| — |Va|| <1 has an FPF bipacking in a By,.

With Corollary 2.7 and Lemma 2.2(a), we obtain:

Corollary 2.8. There exists no x € V(G) such that G — x is a linear forest of
order at least 8 with ||[V(G —z)NX1|— V(G —z)N X3 < 1.

Lemma 2.9. The graph G does not contain two vertex-disjoint feasible paths.
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Proof. On the contrary, say the lemma fails. Let P = zjzox3zy and Q =
Y1Y2Y3ya be two vertex-disjoint feasible paths with {x1,91} C X;. Let H =
G-V (PUQ). Assume for the moment that H ¢ F. Let o be an FPF bipacking
of Hina B,_7(V1, Va) with X1—{x1,23,y1,y3} C V1 and Xo—{x9, x4,y2,y4} C
V. We extend o to an FPF bipacking of G in By, 11(Vy U {1, 23,y1,93}, Vo U
{2, 24,Y2,y4}) by setting

o(x1, 22, T3, 4, Y1, Y2, Y3, Ya) = (Y3, &4, T1, Y2, L3, Ya, Y1, T2).

This contradicts the assumption on G.

Therefore H € F. Let w be a new vertex not in G. Since g(G) >
12, we see that if |[H| = 2, then |V(H) N X1| = |V(H) N X3| = 1 and
e({x1,24,91,ya}, H) + e(H) < 3 and if H is one of Ps, Py, Ps, Ps and Fy,
then e({x1,x4,y1,ya}, H) < 2. Moreover, with Corollary 2.7, we see that if H
is 2K, then e({x1,x4,y1,y4}, H) < 3. By Corollary 2.7 and Corollary 2.8, we
readily see that |H| # 2 and H # 2K5. We shall construct an FPF bipacking
oof Gina Byy1.

First, assume that H is one of Py, Ps and Ps. By Corollary 2.8, we see that
H contains two distinct vertices v; and vg such that dg(v1) > 3 and dg(ve) > 3
and each endvertex of H is still an endvertex of G. By Corollary 2.5 and as
g(G) > 8, it follows that H is a path ajagasasasag such that d(as, P) =1 and
d(as,Q) = 1. Say wlo.g. that a; € X1, aszy € F and aqy7 € E. Let 0 be a
bijection of V(G) such that

J(xhl'g,l'g, T4,Y1,Y2,Y3,Y4, 01,02, 03,04, A5, a’6)
= (a37y27 a5,T2,Ys3,04,T3,02,T1,Y4, y17a67a17334)-

It is easy to check that o is an FPF bipacking of GG in a Bi4, a contradiction.

Therefore H = F,, withn > 6. Let ajasasaq be the path of H with dg(a4) >
3. Let A be the set of endvertices of H that are adjacent to as. By Corollary
2.5, no vertex of A is an endendvertex of G. Thus e(4,PU Q) > |A4] > 2.
As ¢g(G) > 8, we see that |A] = 2 and G[V(P U Q) U A U {a4}] is a path
of order 11. By Lemma 2.6, G[V(P U Q) U AU {a4}] has an FPF bipacking
o in a By;. Then we readily extend o to an FPF of G in a Bis by setting
o(ay,as,a3) = (a3, w,ay), a contradiction. O

Lemma 2.10. Let {z1y1, T2y2, T3y3} be three independent edges in G such that
d(z;) =1 for all 1 <1i < 3 and either {x1,x2, 23} C X1 or {x1,22,23} C Xos.
Then G — {x1,z2, 23} does not have an FPF bipacking in a B, _s.

Proof. Say {x1,22,23} C X;. Let H = G — {21,229, 23}. On the contrary, say
H has an FPF bipacking o in B,_2(V1,Va) with X7 — {21, 22,25} C V; and
Xo C Vi, By Corollary 2.5, d(y;) <2 for all 1 <4 < 3. Since G does not have
an FPF bipacking in a B,,41, it is easy to see that |X1| > 5.

We first suppose that o({y1,vy2,y3}) = {v1,y2,y3}. Say w.l.o.g. that

o(y1,Y2,y3) = (Y2, Y3, Y1)
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Then we obtain an FPF bipacking of G in B,41(Vi U {21, 22,23}, V2) by ex-
tending o such that o(x1) = z3, o(x2) = z1 and o(x3) = o Similarly, if
{Yi,y;} # o({yi,y;}) for each {3, 5} C {1,2,3} with ¢ # j, then we can eas-
ily see that o can be extended to an FPF bipacking of G in a B,; with
o({x1,xa,23}) = {x1, 22, 23}. Therefore we may assume w.l.o.g. that o(y;) =
y2, o(y2) = y1 and o(ys) # ys. Assume for the moment that Vi has a
vertex z such that y12 ¢ E(H) U E(o(H)). If 07!(z) does not exist, let
7(21,29,73) = (v3,2,21) and 7(u) = o(u) for all u € V(H). If 671(2) = v
for some v € Vi, let 7(v,z1,22,23) = (x1,23,2,22) and 7(u) = o(u) for
all w € V(H) — {v}. It is easy to see that 7 is an FPF bipacking of G in
Bnr1(Vi U{x1, 29,23}, V2) in either case, a contradiction.

Therefore we may assume that Vi € Ny (y1) U No(g)y(y1). As du(y1) <1
and dg(gy(y1) = dr(y2) < 1, we obtain [Vi| < 2. As |X;| > 5, it follows that
Vil = 2, du(y1) = du(y2) = 1. Say Vi = {21,292} with y121 € E(H) and
Y122 € E(o(H)). It follows that o(z1) = 22, 0(22) = 21 and z1y2 € E(H).

If 200 (y3) € E(H), let 7(y1,y3, 1,22, 23) = (0(y3), Y2, T2, T3, x1) and 7(u) =
o(u) for all w € V(H) — {y1,ys, x1,x2,z3}. Then 7 is an FPF bipacking of G
in a Bp11, a contradiction. Therefore z20(ys) € E(H). Then ysz; ¢ E(H).
Let w be a new vertex not in G. We may choose an FPF bijection of X,
such that 7(y1,92,y3) = (y3,0(ys),y1), and then extend 7 to X; such that
7(21, 22, T1,22,23) = (x1,w,21,x3,T2). It is easy to see that 7 is an FPF
bipacking of G in B, 41 (X1 U{w}, X3). O

Lemma 2.11. There exist no three endvertices in G.

Proof. On the contrary, say that G has three endvertices 1,22 and x3. We
first show that no two of them are adjacent. If this is not the case, say x1x2 € F
with 1 € X;. Let G’ = G — {z1,22}. f G’ € F, it is easy to find that G
has an FPF bipacking in a B,, 1, a contradiction. Therefore G’ ¢ F and so G’
has an FPF bipacking 7 in a B,—1(V1, V) with X; — {z;} CV; for ¢ € {1,2}.
We may assume w.l.o.g. that V; = (X7 — {21}) U{w} with w &€ V(G). Then
Xo — {x2} = Va. Since |Vi| = | X1 — {z1}| + 1, there exists v € V5 such that
v & 7(X1—{z1}). fuv ¢ E for some u € X3, then we obtain an FPF bipacking
of G in a B,,11 by letting o(x1, 22, 77 (u)) = (v,u, x2) and o(z) = 7(2) for all
z € V(G) — {z1, 72,7 (u)}, a contradiction. Therefore Ng(v) = Va. As
g(G) > 6, each vertex of X; — {v} has degree at most 1. Then by Corollary
2.5, each vertex in X5 — {z2} has degree at most 2. Then we readily see that
G has an FPF bipacking of G in a B,,;1, a contradiction.

Therefore no two of x1,x2 and x3 are adjacent. By Corollary 2.4 and
Corollary 2.5, there are three vertices y1,y2 and ys of degree 2, such that
{z1y1, T2y2, x3y3} C E. We claim that y;, y2 and ys are distinct. If this is not
true, say y; = y2. By Lemma 2.1, we see that G —z1 — z2 € F. As y; is an
isolated vertex of G — x1 — x2, we see that G — x1 — x5 consists of two isolated
vertices and obviously, G has an FPF bipacking in a Bj, a contradiction. Hence
the claim holds.
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If G—{x1, 22,23} € F, then we readily see that either G—{x1, x2, 23} = 2K>
or G — {z1,x2,23} = F,,_3 by Corollary 2.5 and in this case, we also readily
see that G has an FPF bipacking of G in a B,;1, a contradiction. Thus
G — {x1,x9,23} ¢ F. Then by Lemma 2.10, we obtain {z1,z9, 23} Z X; for
i € {1,2}. Say wlo.g. {z1,22} C X7 and z3 € Xo. Say N(y;) = {x;, 2} for
i€ {1,2,3}.

Note that this argument says that neither of X; and X5 contains three
endvertices of G.

Let H = G — {z1,22,23,Y1,Y2,y3}. First, assume that H ¢ F. Then
H has an FPF bipacking 7 in a B,_5(Vi,V2). If {z1,22} # {7(#1),7(22)},
say T(z2) € {z1,22}, we extend 7 to an FPF bipacking of G in a B, 11 by
letting 7(z1,y1, %2, Y2, €3,Y3) = (22, T3,Ys, Y1, Y2, 1), a contradiction. There-
fore 7(z1,22) = (22,21). In this situation, we obtain an FPF bipacking of G
in a Byy1 by letting o(z1, 1,91, T2, Y2, 3,y3) = (1, Y3, Y2, 22, T3, Y1, T2) and
o(u) = 7(u) for all w € V(G) — {21, x1,y1, %2, Y2, 3, Y3}, a contradiction.

Therefore H € F. If |H| = 2, it is easy to see that G has an FPF bipacking
in a Bg. Assume that |H| = 4. Let ajas and agaq be the two independent edges
of H such that {a1,a3} C X; and if H & Py, then asaz € E. Since X; does
not contain three endvertices of G, a1 € {21, 22}. Say w.l.o.g. that a; = 2z;. If
agaz ¢ FE, then zo = az and so G is a linear forest. Consequently, G has an
FPF bipacking in a Byg by Corollary 2.8, a contradiction. Hence asas € E. If
a4 = z3, i.e., agy3 € F, then x3ysaqag is feasible and so x1yja1as is not feasible
by Lemma 2.9. Thus zo = a;. If z3 = a2 and so a4 is an endvertex of G and
by Corollary 2.5, we see that zo = a;. In any case, G — a; is a linear forest and
so G — a1 has an FPF bipacking ¢ in a By, contradicting Corollary 2.8.

Similar to the above argument, it is easy to see that if H = Py, then there
exists a labelling H = ajasazagasag such that {yia1,yaa1,ysas} C E. Then o
is an FPF bipacking of G in a By where

U(aly ag,as,a4,0as5,06,T1,Y1,T2,Y2,T3, yS)
= (xlv Y2, 05,23, 03,Y1, 01, 04,Y3, 02,46, .’L‘Q),
a contradiction.
Therefore H = F), with k = n —6 > 5. Since X; does not contain three
endvertices of G for each ¢ € {1,2} and each endvertex of G is adjacent to a
vertex of degree 2 in G, it is easy to see that H = Ps;. Furthermore, with

Corollary 2.8, we see that there is a labelling H = ajasaszaqas such that
{y1a2,y2a2,y3a1} C E. Then o is an FPF bipacking of G in a By where

U(ala a2,0a3,04, 05,21, y1a$27y27x33y3) = (ylawa ai,r2,0a3,02, 05,11, X3, Y2, (l4),

a contradiction. O

Corollary 2.12. The graph G is not a forest.
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Proof. By Corollary 2.4 and Lemma 2.11, we see that if G is a forest, then G is
a path. By Lemma 2.2, we conclude that n > 8. By Lemma 2.6 and Corollary
2.7, there is an FPF bipacking of G in a B,,;1, a contradiction. (I

Corollary 2.13. The minimum degree of G is at least 2.

Proof. On the contrary, let  be an endvertex of G. Say that z € X;. By
Lemma 2.3, there exists y € Xo such that d(y) > (ny — 1)/2. As G is not
a forest and ¢g(G) > 12, G has a cycle C of order at least 12 and so ny > 7
and ng > 6. Thus d(y) > 3. Let Y7 = N(y). By Corollary 2.5, zy ¢ FE and
d(z) > 2 for each z € Y;. Clearly, z ¢ V(C). If ny = 7, then d(y,C) > 3,
which implies G[V(C) U {y}] has a cycle of order less than 12, a contradiction.
Hence ny > 8 and so d(y) > 4. Let Yy = {y} and Y;4; = N(Y;) — Y;_; for
i > 1. Let a; be the number of endvertices of G contained in Y5 and as the
number of endvertices of G contained in Y3UY,. As x is an endvertex of G and
by Lemma 2.11, a; <1 and a1 + a2 < 2. As g(G) > 12, we see that |Y2| > |Y7|
and |Y3| > [Y2| — a1 and |Y5] > [Y3] — a2 > 2. Thus nq > [Y1| + [Y3| + [Y5] >
3|Y1| —2a1 —ag > 2[(n1—1)/2] + [(n1 —1)/2] —2a1 — as. Since 8 < nj, a1 <1
and a1 +ag < 2, we see that [(n; —1)/2] > 2a; +ag +1 and equality holds only
if 8 <ny; <9and a; = as = 1. Clearly, 2[(n; —1)/2] > n; — 1 and equality
holds only if n; is odd. It follows that 2[(n; —1)/2]+ [(n1 —1)/2] — 2a1 —ag >
n1+ [(n1 —1)/2] —2a1 —ag — 1 > ny. So equality holds through this equation.
This yields that a; = a2 = 1, n; = 9 and every vertex in Y; U Y5 U Y3 U Y, has
degree 2 if it is not one of the two endvertices. As |Y1| > 4, it follows that there
are two vertex-disjoint paths of order 4 from Y; to Yy in G[Y; UY5 U Y3 U Y],
which are two vertex-disjoint feasible paths. This is a contradiction by Lemma
2.9. O

Lemma 2.14. The minimum degree of G is at least 3.

Proof. On the contrary, say 6(G) = 2. By Lemma 2.3, for some {i,j} = {1, 2},
there exist two distinct vertices a and b in X; such that |N(a) U N(b)| >
(n; —1)/2. We may choose {i,j}, a and b with |N(a) U N(b)| maximal. Subject
to this condition, we choose a and b such that the distance d(a,b) from a to
b is minimal. Say w.l.o.g. that {a,b} C X5 and |[N(a) UN(d)| > (ny — 1)/2.
Say w.lo.g. d(a) < d(b). As 6(G) = 2 and g(G) > 12, each component of G
contains a cycle of order at least 12. By Corollary 2.7, we see that G has a
component which is not a cycle. Thus A(G) > 3. As g(G) > 8, we see that
|N(a) UN(b)| > 5. Hence d(b) > 3. We break into the following two cases.

Case 1. d(a,b) < 4.

Let ¢; € N(a) and ¢z € N(b) such that if d(a,b) = 2, then ¢; = ¢ and if
d(a,b) = 4, then N(c1)NN(c2) # 0. In the latter case, say N(c1)NN(c2) = {co}-
Let Yo = N(b) —{c2}, Y1 = N(Yp) —{b} and Y; 11 = N(Y;)—=Y;_1 fori = 1,2, 3.
Since ¢g(G) > 12 and 6(G) > 2, we see that N({a,b,c1,c2}),Y1,Y2, Y3 and Yy
are mutually disjoint and G[N({a,b,c1,¢c2}) UYL UY2 U Y3 UYy] is a tree. We
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use T to denote this tree G[N({a,b,c1,c2}) UY1 UY2UY5UYy). As g(G) > 12,
we see

(1) Yigal= > (d(z) — 1) forie{0,1,2,3}.
TEY;
Thus
(2) n1 > [N({a,b})] + [Ya| + [Ya| = (n1 —1)/2 + |Ya| + [Ya].
Consequently,
(3) (n1+1)/2 > V2| + [Yal.

As d(b) > 3, |Yp| > d(b) — 1 and so |Y;] > d(b) — 1 > 2 for i € {1,2,3,4}
by (1). Moreover, there are k vertex-disjoint paths Lj,...,L;_1 and Ly from
Yy to Yy, where k = |Yy|. Let w;v; with u; € Y5 be the second last edge on L;
(1 <i<k). By Lemma 2.9, at most one of these k edges is a feasible edge.
Say w.l.o.g. that w;v; is not feasible for i =1,...,k — 1.

First, assume that ugvy is feasible, then by Lemma 2.9, the first edge of L; is
not a feasible edge for each i € {1,2,...,k—1}. Consequently, |Ya| > |Yp|+(k—
1) and |Y4| > |Yo|+2(k—1) by (1). Thus |Ya|+|Ya| > 2|Yo|4+3(k—1). If ¢1 = ¢q,
then 2|Yy| > [N(a)UN(b)|—1 > (nq1—1)/2—1, and so |Ya| + |Y4| > (n1 +1)/2,
contradicting (3). Hence ¢; # co. Then 2|Yy| > d(a)+d(b) —2 > (n1 —1)/2—-2
and so

(ni+1)/2=Yo[+ Ya| = (n1 —1)/2=2+3(k—1) = (n1 +1)/2.

It follows that k = 2, i.e., |Yo| = 2 and d(b) = 3, |Ya| + |Va| = (n1 +1)/2,
[Ya] = 3, |Ya| = 4 and 2|Yy| = d(a) + d(b) — 2. Consequently, d(a) = 3,
|Ya|+|Ys| = 3+4 = 7 and ny = 13. This means that X; = N(a)UN (b)UY2UY}.
Hence d(cp) = 2. As ugvy is feasible, ¢oea is not feasible by Lemma 2.9. As
X7 — V(T) = 0, this implies that there exists z € X3 — {co,b} such that
zcg € E. As §(G) = 2 and g(G) > 12, this implies that vz € E for some
v € Xy, — V(T) =0, a contradiction.

Therefore uivy is not feasible and so |Yy| > |Yo| + k& > |Yo| + k. Thus
[Ya| + |Ya| > 2|Yo| + k. Since 2|Yy| > [N(a) UN(b)| —2 > (ny —1)/2 — 2 and
by (3), it follows that k& < 3 and so |Yy| < |Yp|+3. As k > 2, it follows that for
some i € {1,...,k}, the first edge of L; is feasible for otherwise |Yy| > |Yy| + 4
by (1). If d(a) = d(b), then by symmetry, there exists a feasible edge uv
with u € N(a) — N(a) N N(b) and v # a. As g(G) > 12, we see that G has
two vertex-disjoint feasible paths, a contradiction. Hence d(a) < d(b). Then
2|Yo| > [N(a) UN(D)| > (n1 —1)/2 if ¢1 = ¢2 and 2|Yy| > [N(a) UN(D)| — 1 >
(np —1)/2 = 11if ¢; # co. By (3), it follows that ¢; # ¢q, d(a) = |Yo| = k = 2,
|Ya| = |Yo| + 2 and X7 = N(a) U N(b) UY2 UY,. Thus the first edge of each
L; is feasible. By Lemma 2.9, cjcq is not feasible. Since X; — V(T') = ) and
g(G) > 12, this implies that there exists z € Xo —{a, ¢o} such that z¢; € E. As
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8(G) > 2 and g(G) > 12, it follows that vz € F for some v € X; — V(T) = 0,
a contradiction.

Case 2. d(a,b) > 6.

Let YO = N(a),Yi = N(Y()) - {a}7Y2 = N(Yl) - Yvo7 ZO = N(b),Zl ==
N(Zo) - {b}, Z2 = N(Zl) - ZO and J = Y2 N ZQ. As d(a,b) Z 6, Y1 N Z1 = (Z)
Let T1 = G[{CL} U YO UYl U 1/2] y Tg = G[{b} U Z() @] Zl U ZQ]. Since 5(G) > 2
and g(G) > 12, V(T1) N V(T,) = J, each of T and T5 is a tree and each of
E(J,Y1) and E(J, Z;) consists of |J| independent edges. Furthermore, for each
i € {0,1}, E(Y;,Y;y1) contains |Y;| independent edges, E(Z;, Z;+1) contains
|Z;| independent edges and there are |J| vertex-disjoint paths of order 5 from
Yy to Zy passing through J.

Let Ey be an edge independent set with Ey C E(Yp, Y1) and |Ep| = |Yo|. Let
Fy be an edge independent set with Fy C E(Zy, Z1) and |Fy| = |Zy|. For each
edge zy € EgUFyUE(J,Y1)UE(J, Z1) with y € Y1 U Z;, we define £(zy) to be
the subset of X7 —YyUZy such that u € {(xy) if and only if u € X7 —YyUZy and
either uy € E with u # z or wvx is a path of G for some v € X3 — {a,b}. Since
§(G) > 2 and ¢g(G) > 8, we see that {(e) # 0 for all e € Ey U Fy. Moreover, we
see

(4) Y2 = UeGng(e) and Z2 = UeeF0§(6)§
(5) Yol = > [é(e)| and [Z] = Y [€(e)]-
e€Ey eckFy

It follows from (4) and (5) that |Y2| > |Yp| and |Z2] > |Zy|. First, we
assume that YQ ﬂZg = @ Then ny Z D/o| + |Zo| + D/Q‘ + |Z2‘ Z Q(D/()‘ + |Z()D =
2|N({a,b})| > n1 — 1. By (4) and (5), we see that with at most one exception,
|€(e)] =1, i.e., e is a feasible edge, for all e € EyU Fy. Thus E(Yp, Y1) contains
a feasible edge e and E(Zy, Z;) contains a feasible edge f and so G has two
vertex-disjoint feasible paths, contradicting Lemma 2.9.

Therefore J # (. Let Jo = {x € J|d(z) > 3}, J1 = N(Jp) - Y1 U Z;
and Jy = N(Ji) — Jo. Since g(G) > 12, each of G[V(T1) U (UZ,J;)] and
G[V(Tz) U (U2, J;)] is a tree. Furthermore, we have

(6) = 3 (dx) ~2) and || = 3 (d(z) - 1).
z€Jo r€Jy

As 6(G) > 2, this implies that |Jo| > |Ji| > |Jo|. If Jo = J, then ny >
Yol + 1 Zo] + Y| + |Z] = |T] + 2| > 2(1Yo| + | Zo]) = m — 1. Thus [¢(e)] # 1
for at most one edge e € Fy U Fy. That is, with at most one exception, every
edge e € Ey U Fy is a feasible edge of G and consequently, G’ contains two
vertex-disjoint feasible paths, contradicting Lemma 2.9. Therefore Jy # J.

Let y be an arbitrary vertex in Y; U Z; with N(y) N (J — Jp) # 0. We claim
d(y) > 3. If this is not true, then d(y) = 2. Let ujusususus be a path where
up € Yo, ug € Y1, us € J — Jy, ug € Z; and us € Zy with y € {us,us}. Say
w.lo.g. that y = uy. Then ujusuzuy is feasible. By Lemma 2.9, each edge
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e€ E(Yo—{u1},Y1)UE(Zy —{us}), Z1) is not feasible, i.e., |{(e)| > 2. By (4)
and (5), we obtain that |Ya| > 2|Yy| — 1 and |Z2| > 2|Zy| — 1. With |Yp| > |J|
and |Zy| = d(b) > 3, it follows that

n1 > Yol + | Zo| + |Ya| + | Za| — [J] + | J2]
> 2(|Yo| + | Zo|) + |Yo| + | Zo| — |J| — 2+ | J2|
> (n1 = 1) + [Yo| = |J[ + 20| — 2 + |J2| > na.

This yields that |Yy| = |J|, d(b) = | Zo| = 3, Jo = 0 (i.e., Jo = 0), |Ya| = 2|Y,|—1
and |Z;| = 2|Zy|—1. Thus d(u;) =2foralli € {1,2,3,4,5}. Let ug € Z1 —{ua}
with usug € E. Then ugugusug is a feasible path. Let ug € Yy — {ug} with
upa € E. Then upaujusg is not a feasible path by Lemma 2.9. Thus d(a) # 2
and so d(a) =3 =d(b). Let v1 € J — {ug} and ve € Z1 — {us} with vivy € E.
By Lemma 2.9, we see that vjvy is not a feasible edge. As d(v;) = 2, this
implies d(ve) > 3. Clearly, |[N(a) U N(b)| < |N(a) U N(v2)|, but d(a,vs) =
4 < d(a,b), contradicting the minimality of d(a, b). Therefore the claim is true,
ie., d(y) > 3 forall y € Y1 UZ; with N(y) N (J —Jo) # 0. By (4) and (5),
this yields that |Ya| > |Yo| + |J — Jo| and |Z2| > |Zo| + |J — Jo|. Moreover,
as (@) > 2 and g(G) > 12, there exists a path xjzoz32425 of order 5 with
r1€J—Jy, 20 €Y, 23 €Yo, 23 € YgUJ, x4 € Xo—Y1UZ1UJ; and x5 € X;.
As g(G) > 12, we see that x5 € Yy U Zy U Yo U Z5 U J. Thus

(7) TLl2|Y0‘+|Zo|+‘}/2UZQ|+|J2|+1

(8) > 2(|Yol +|Zol) — [J] +2[J = Jo| + [J2] + 1

9) >ny —1+|J = Jo| +1>n1 +1,

a contradiction. O

We are now ready to complete the proof of the theorem. Choose z € X,
such that d(z) = A;. Let Ag = {z} and A; = N(z). For each i € {2,3,4,5},
let A; = N(A;—1) — A;_5. Since g(G) > 12, A;NA;=0forall0<i<j<5
and [A;| =2, ca,  (d(y) — 1) for each i € {2,3,4,5}. Thus if A; C X, then
|Al| Z |Ai_1|(52 — 1) and if Al g XQ, then |A1| Z |A¢_1|((51 — 1) for each
1 € {2,3,4,5} As A5 - XQ, we obtain ny > ‘A5| > |A1|(52 — 1)2(51 — 1)2 =
A1(52 - 1)2(51 — 1)2. Since 6 > 3, ((52 — 1)2 > 0y + 1 and ((51 — 1)2 > 4.
Consequently, ng > 4(d2+1)A1 > 1425374, contradicting Corollary 2.4. This
proves the theorem.
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