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BIPACKING A BIPARTITE GRAPH WITH GIRTH AT

LEAST 12

Hong Wang

Abstract. Let G be a bipartite graph with (X,Y ) as its bipartition.
Let B be a complete bipartite graph with a bipartition (V1, V2) such

that X ⊆ V1 and Y ⊆ V2. A bi-packing of G in B is an injection σ:

V (G)→ V (B) such that σ(X) ⊆ V1, σ(Y ) ⊆ V2 and E(G)∩E(σ(G)) = ∅.
In this paper, we show that if G is a bipartite graph of order n with girth

at least 12, then there is a complete bipartite graph B of order n + 1

such that there is a bi-packing of G in B. We conjecture that the same
conclusion holds if the girth of G is at least 8.

1. Introduction

For a graph G, we use V (G) and E(G) to denote the vertex set and edge set
of G, respectively. In this paper, we denote a bipartite graph G with a given
bipartition (X,Y ) by G(X,Y ), and for a bipartite graph, we always assume
that it has been given a bipartition. If H is a subgraph of G(X,Y ), then the
bipartition of H is given as (V (H) ∩ X,V (H) ∩ Y ). We use Bn to denote a
complete bipartite graph of order n. Let G(X,Y ) and H(U,W ) be two bipartite
graphs. Let Bn(V1, V2) be such that U ⊆ V1 and W ⊆ V2. A bipacking of G
and H in Bn(V1, V2) is a bijection σ: V (G) → V (Bn) such that σ(X) ⊆ V1,
σ(Y ) ⊆ V2 and E(H) ∩ E(σ(G)) = ∅, where σ(G) is the image of G under σ.
If additionally G = H, we say that there is a bipacking of G in Bn. Fouquet
and Wojda [4] showed that for any disconnected forest F of order n, there is a
bipacking of F in a Bn. This result was also obtained by Sauer and Wang [7].
Two bipartite graphs G(X,Y ) and H(U,W ) are compatible if |X| = |U | and
|Y | = |W |. In [8], we proved the following:

Theorem A ([8]). Let D and F be two compatible disconnected forests of
order n. Suppose that D and F can be partitioned into vertex-disjoint unions
of subforests D = D1∪D2 and F = F1∪F2 such that Di and Fi are compatible
for i = 1, 2. Then there is a bipacking of D and F in a Bn.
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In [9], we investigated a bipacking of two compatible bipartite graphs G and
H of order n with e(G) + e(H) ≤ 2n− 2, and we showed:

Theorem B ([9]). Let G and H be two compatible bipartite graphs of order n
with e(G) + e(H) ≤ 2n− 2. Suppose that each of G and H does not contain a
cycle of length 4. Then there exists a complete bipartite graph B of order n+ 1
such that there is a bipacking of G and H in B unless one of G and H is the
union of vertex-disjoint cycles and the other is the union of two vertex-disjoint
stars.

In this paper, we investigate the bipacking of a bipartite graph G with girth
at least 12. This work is motivated by a conjecture in [3] and the result in [2].
R. J. Faudree, C. C. Rousseau, R. H. Schelp and S. Schuster conjectured in
[3] that if G is a graph of order n with girth at least 5 and maximum degree
at most n− 2, then there is an embedding of G in its complement. S. Brandt
proved in [2] that if the girth of G is at least 7, then the conclusion holds.
Görlich, Polísniak, Woźniak and Ziolo provided a simpler proof of this result
in [5], whose idea is adopted in our current work. For bipartite graphs, we
conjecture the following:

Conjecture C. If G is a bipartite graph of order n with girth at least 8, then
there is a bipacking of G in a complete bipartitite graph of order n+ 1.

This conjecture holds for trees by Theorem B. Orchel characterized all the
trees of order n that do not have bipackings in complete bipartite graphs of
order n. There are three types of those trees and we refer readers to [6] for a
list of them. In this paper, we will prove the following result:

Theorem D. If G is a bipartite graph of order n with girth at least 12, then
there is a bipacking of G in a complete bipartitite graph of order n+ 1.

To prove Theorem D, we will prove Theorem E which is stronger than
Theorem D. To state Theorem E, we define Fn to be a tree of order n with
n ≥ 5 such that Fn has a path x1x2x3x4 of order 4 and every vertex in V (Fn)−
{x1, x2, x3, x4} is an endvertex adjacent to x4. We use 2K2 to denote the graph
of order 4 which consists of two independent edges. Let F be a set of graphs
such that a graph H belongs to F if and only if either H is isomorphic to one
of 2K2, P4, P6 and Fn for some n ≥ 5 or H has order 2 and each partite in
the given bipartition of H is non-empty. Note that F5 is P5. A bipacking σ of
a bipartite graph G in a complete bipartite is called a fixed-point-free (FPF)
bipacking if σ(x) 6= x for all x ∈ V (G). For convenience, we denote the order
of a graph G by |G|. It is easy to check that each graph H in F has a bipacking
in a B|H|+1 but does not have an FPF bipacking in a B|H|+1.

Theorem E. If G is a bipartite graph of order n with girth at least 12, then
there is an FPF bipacking of G in a complete bipartitite graph of order n+ 1 if
and only if G does not belong to F .
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We discuss only finite simple graphs and use standard terminology and no-
tation from [1] unless indicated otherwise. Here we define some special termi-
nology and notation to be used in this paper. Let G be a graph. Let X be a
subset of V (G) or a subgraph of G. We define G[X] to be the subgraph induced
by the vertices belonging to X. If Y is a subset of V (G) or a subgraph of G
such that X and Y do not have any common vertex, then we define E(X,Y )
to be the set of edges between X and Y in G and let e(X,Y ) = |E(X,Y )|. For
a vertex x of G, we define d(x,X) to be the number of neighbors of x in G that
are contained in X. Thus d(x,G) is the degree of x in G. For a subset Z of
V (G), let N(Z) = ∪z∈ZN(z). We use |G| to denote the order of G.

A feasible path of G is an induced path of order 4 in G such that each of its
two internal vertices has degree 2 in G. A feasible edge of G is an edge xy of
G such that dG(x) = dG(y) = 2.

Note that the girth of a graph without cycles is defined to be infinity ∞.

2. Proof of Theorem E

On the contrary, we suppose that Theorem E fails. Let G(X1, X2) be a
bipartite graph with the smallest order such that the girth of G is at least 12
and G 6∈ F but G does not have an FPF bipacking in a Bn+1, where n = |G|.
Let

n1 = |X1| and n2 = |X2|;
δ1 = min

x∈X1

d(x) and δ2 = min
x∈X2

d(x);

∆1 = max
x∈X1

d(x) and ∆2 = max
x∈X2

d(x).

Clearly, n = n1 + n2, δ(G) = min{δ1, δ2}, n1 ≥ 2 and n2 ≥ 2. Our proof
consists of the following lemmas, which will lead to a contradiction.

Lemma 2.1. Let k ≥ 2. If x1, x2, . . . , xk are k distinct endvertices of G with
a common neighbor, then G−{x1, x2, . . . , xk} does not have an FPF bipacking
in a Bn−k+1.

Proof. If G−{x1, x2, . . . , xk} has an FPF bipacking σ in a Bn−k+1, then σ can
be extended to an FPF bipacking of G in a Bn+1 such that σ(xi) = xi+1 for
all i ∈ {1, . . . , k} where xk+1 = x1, a contradiction. �

Lemma 2.2. The following two statements hold:

(a) There exists no x ∈ V (G) such that G− x has an FPF bipacking in a
Bn−1.

(b) There exists no z ∈ V (G) such that G− z ∈ F .

Proof. If G − x has an FPF bipacking σ in a Bn−1 for some x ∈ V (G), let w
be a new vertex not in G and we extend σ with σ(x) = w. Then σ becomes an
FPF bipacking of G in a Bn+1, a contradiction. Hence (a) holds.
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To see (b), we suppose that G − z ∈ F for some z ∈ V (G). If |G − z| = 2,
we readily see that G has an FPF bipacking in a B4. Hence n ≥ 5. Then we
see that d(z) ≤ 1 since G 6∈ F (in particular, G 6∼= P5) and g(G) ≥ 8. Let w be
a new vertex not in G. We define an injection σ : V (G) → V (G) ∪ {w} with
σ(x) 6= x for all x ∈ V (G) as follows.

First, assume that G − z ∼= 2K2 or P4. Let x1x2 and x3x4 be two edges of
G − z with {x1, x3} ⊆ X1 such that dG−z(x1) = dG−z(x4) = 1. As dG(z) ≤ 1
and G 6∈ F , we may assume that NG(z) ⊆ {x2} or NG(z) ⊆ {x3}. Say w.l.o.g.
that NG(z) ⊆ {x3} and x3 and z are not in the same partite of G. Let

σ(x1, x2, x3, x4, z) = (x3, w, x1, z, x4).

Next, assume that G− z ∼= P6. Say G− z = x1x2x3x4x5x6. If N(z) ⊆ {x1}
or N(z) ⊆ {x6}, say w.l.o.g. N(z) ⊆ {x6} and x6 and z are not in the same
partite of G, let

σ(x1, x2, x3, x4, x5, x6, z) = (x3, w, x5, x2, z, x4, x1).

If N(z) 6⊆ {x1, x6}, then N(z) = {xi} for some i ∈ {2, 3, 4, 5}. Say w.l.o.g.
N(z) = {xi} with i ∈ {4, 5}. Let

σ(x1, x2, x3, x4, x5, x6, z) = (x3, x6, x1, w, z, x2, x5) if i = 4;

σ(x1, x2, x3, x4, x5, x6, z) = (x3, x6, x1, z, w, x2, x4) if i = 5.

Finally, assume that G− z ∼= Fn−1 with n− 1 ≥ 5. Say

V (G− z) = {x1, x2, x3, x4} ∪ {a1, a2, . . . , ak}

such that x1x2x3x4 is a path in G and NG−z(x4) = {x3, a1, a2, . . . , ak}. Set
A = {a1, a2, . . . , ak} and ak+1 = a1. Then zx4 6∈ E as G 6∈ F . If zx2 ∈ E, then
k ≥ 2 as G 6∈ F . Thus if zx2 ∈ E, we see that G−A 6∈ F and so G−A has an
FPF bipacking in a B6, contradicting Lemma 2.1. Hence zx2 6∈ E. Similarly,
if zx3 ∈ E, then k = 1. If zx1 ∈ E, then k ≥ 2 as G 6∼= P6. If N(z) ⊆ A, we
may assume that N(z) ⊆ {ak}. Let

σ(x1, x2, x3, x4, z, a1, . . . , ak) = (a1, z, a2, w, x2, a3, . . . , ak, x1, x3) if zx1 ∈ E;

σ(x1, x2, x3, x4, a1, z) = (x3, w, a1, z, x1, x2) if zx3 ∈ E;

σ(x1, x2, x3, x4, z, a1, . . . , ak) = (x3, z, x1, w, x2, a2, . . . , ak+1) if N(z) ⊆ {ak}.

In each of the above situations, we see that σ is an FPF bipacking of G in
a Bn+1, a contradiction. �

Lemma 2.3. Let {i, j} = {1, 2}. Let x ∈ Xi, Y = NG(x) and H = G − x.
Let σ be an FPF bipacking of H in a Bn(V1, V2) with Xi − {x} ⊆ Vi and
Xj ⊆ Vj. Then Vi − {x} ⊆ Nσ(H)(Y ) ∪ NH(σ(Y )). Moreover, there exists a
subset W ⊆ Xj such that

|W | = |NG(x)| and |NG−x(W )| ≥ 1

2
(ni − 1).
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Proof. For convenience, say i = 1 and j = 2. Assume that there exists u ∈
V1 − {x} such that u 6∈ Nσ(H)(Y ) ∪NH(σ(Y )). If σ−1(u) does not exist, then
we obtain an FPF bipacking σ′ of G in Bn+1(V1 ∪ {x}, V2) with σ′(x) = u and
σ′(w) = σ(w) for all w ∈ V (G)−{x}, a contradiction. Therefore σ−1(u) exists.
Let v = σ−1(u). Then we obtain an FPF bipacking σ′ ofG in Bn+1(V1∪{x}, V2)
with σ′(x) = u, σ′(v) = x and σ′(w) = σ(w) for all w ∈ V (G) − {x, v}, a
contradiction. Therefore V1 − {x} ⊆ Nσ(H)(Y )∪NH(σ(Y )). This implies that
n1 − 1 ≤ |Nσ(H)(Y )| + |NH(σ(Y ))|. Let A = {z ∈ X2|σ(z) ∈ Y }. Note
that since |X2| ≤ |V2| ≤ |X2| + 1, we see that |Y | − 1 ≤ |A| ≤ |Y |. Then
Nσ(H)(Y ) = σ(NH(A)) and so n1 − 1 ≤ |NH(A)| + |NH(σ(Y ))|. Let A ⊆
A′ ⊆ X2 with |A′| = |Y |. Then n1 − 1 ≤ |NH(A′)|+ |NH(σ(Y ))|. Thus either
|NH(A′)| ≥ (n1−1)/2 or |NH(σ(Y ))| ≥ (n1−1)/2. This means that the lemma
holds with either W = A′ or W = σ(Y ). �

Corollary 2.4. δ(G) > 0, n1 ≤ 1 + 2δ1∆2 and n2 ≤ 1 + 2δ2∆1.

Proof. For each x ∈ V (G), we see that N(x) 6= ∅ by Lemma 2.2 and Lemma
2.3. To see the inequality n1 ≤ 1 + 2δ1∆2, we choose x ∈ X1 with d(x) = δ1.
By Lemma 2.3, (n1 − 1)/2 ≤ δ1∆2, i.e., n1 ≤ 1 + 2δ1∆2. Similarly, n2 ≤
1 + 2δ2∆1. �

Corollary 2.5. If x is an endvertex of G and y is the neighbor of x, then
dG(y) ≤ 2.

Proof. Say x ∈ X1. By Lemma 2.2, G − x 6∈ F . Then G − x has an FPF
bipacking σ in a Bn(V1, V2) with X1 −{x} ⊆ V1 and X2 ⊆ V2. By Lemma 2.3,
we see, with Y = {y} and H = G−x, that V1−{x} ⊆ Nσ(G−x)(y)∪NG−x(σ(y)).
Then NG−x(y) ⊆ NG−x(σ(y)). As g(G) > 4, it follows that |NG−x(y)| ≤ 1 and
so dG(y) ≤ 2. �

Lemma 2.6. If P is a path of order t ≥ 8 from x to y, then there is an FPF
bipacking τ of P in a Bt such that τ(x)τ(y) 6∈ E(P ).

Proof. Say P = x1y1 · · ·xkyk if t = 2k and P = x1y1 · · ·xkykxk+1 if t = 2k+1.
Let xdt/2e+1 = x1 and y0 = ybt/2c. Let τ be defined as follows:

τ(xi)=xi+1 for i ∈ {1, 2, . . . , dt/2e} and τ(yj)=yj−1 for j ∈ {1, 2, . . . , bt/2c}.

It is easy to see that τ satisfies the requirement. �

Corollary 2.7. Every bipartite graph H(V1, V2) of order n ≥ 8 with girth at
least 8, ∆(H) ≤ 2 and ||V1| − |V2|| ≤ 1 has an FPF bipacking in a Bn.

With Corollary 2.7 and Lemma 2.2(a), we obtain:

Corollary 2.8. There exists no x ∈ V (G) such that G−x is a linear forest of
order at least 8 with ||V (G− x) ∩X1| − |V (G− x) ∩X2|| ≤ 1.

Lemma 2.9. The graph G does not contain two vertex-disjoint feasible paths.
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Proof. On the contrary, say the lemma fails. Let P = x1x2x3x4 and Q =
y1y2y3y4 be two vertex-disjoint feasible paths with {x1, y1} ⊆ X1. Let H =
G−V (P ∪Q). Assume for the moment that H 6∈ F . Let σ be an FPF bipacking
ofH in a Bn−7(V1, V2) withX1−{x1, x3, y1, y3} ⊆ V1 andX2−{x2, x4, y2, y4} ⊆
V2. We extend σ to an FPF bipacking of G in Bn+1(V1 ∪ {x1, x3, y1, y3}, V2 ∪
{x2, x4, y2, y4}) by setting

σ(x1, x2, x3, x4, y1, y2, y3, y4) = (y3, x4, x1, y2, x3, y4, y1, x2).

This contradicts the assumption on G.
Therefore H ∈ F . Let w be a new vertex not in G. Since g(G) ≥

12, we see that if |H| = 2, then |V (H) ∩ X1| = |V (H) ∩ X2| = 1 and
e({x1, x4, y1, y4}, H) + e(H) ≤ 3 and if H is one of P2, P4, P5, P6 and Fn,
then e({x1, x4, y1, y4}, H) ≤ 2. Moreover, with Corollary 2.7, we see that if H
is 2K2, then e({x1, x4, y1, y4}, H) ≤ 3. By Corollary 2.7 and Corollary 2.8, we
readily see that |H| 6= 2 and H 6= 2K2. We shall construct an FPF bipacking
σ of G in a Bn+1.

First, assume that H is one of P4, P5 and P6. By Corollary 2.8, we see that
H contains two distinct vertices v1 and v2 such that dG(v1) ≥ 3 and dG(v2) ≥ 3
and each endvertex of H is still an endvertex of G. By Corollary 2.5 and as
g(G) ≥ 8, it follows that H is a path a1a2a3a4a5a6 such that d(a3, P ) = 1 and
d(a4, Q) = 1. Say w.l.o.g. that a1 ∈ X1, a3x4 ∈ E and a4y1 ∈ E. Let σ be a
bijection of V (G) such that

σ(x1, x2, x3, x4, y1, y2, y3, y4, a1, a2, a3, a4, a5, a6)

= (a3, y2, a5, x2, y3, a4, x3, a2, x1, y4, y1, a6, a1, x4).

It is easy to check that σ is an FPF bipacking of G in a B14, a contradiction.
Therefore H ∼= Fn with n ≥ 6. Let a1a2a3a4 be the path of H with dH(a4) ≥

3. Let A be the set of endvertices of H that are adjacent to a4. By Corollary
2.5, no vertex of A is an endendvertex of G. Thus e(A,P ∪ Q) ≥ |A| ≥ 2.
As g(G) ≥ 8, we see that |A| = 2 and G[V (P ∪ Q) ∪ A ∪ {a4}] is a path
of order 11. By Lemma 2.6, G[V (P ∪ Q) ∪ A ∪ {a4}] has an FPF bipacking
σ in a B11. Then we readily extend σ to an FPF of G in a B15 by setting
σ(a1, a2, a3) = (a3, w, a1), a contradiction. �

Lemma 2.10. Let {x1y1, x2y2, x3y3} be three independent edges in G such that
d(xi) = 1 for all 1 ≤ i ≤ 3 and either {x1, x2, x3} ⊆ X1 or {x1, x2, x3} ⊆ X2.
Then G− {x1, x2, x3} does not have an FPF bipacking in a Bn−2.

Proof. Say {x1, x2, x3} ⊆ X1. Let H = G− {x1, x2, x3}. On the contrary, say
H has an FPF bipacking σ in Bn−2(V1, V2) with X1 − {x1, x2, x3} ⊆ V1 and
X2 ⊆ V2. By Corollary 2.5, d(yi) ≤ 2 for all 1 ≤ i ≤ 3. Since G does not have
an FPF bipacking in a Bn+1, it is easy to see that |X1| ≥ 5.

We first suppose that σ({y1, y2, y3}) = {y1, y2, y3}. Say w.l.o.g. that

σ(y1, y2, y3) = (y2, y3, y1).
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Then we obtain an FPF bipacking of G in Bn+1(V1 ∪ {x1, x2, x3}, V2) by ex-
tending σ such that σ(x1) = x3, σ(x2) = x1 and σ(x3) = x2 Similarly, if
{yi, yj} 6= σ({yi, yj}) for each {i, j} ⊆ {1, 2, 3} with i 6= j, then we can eas-
ily see that σ can be extended to an FPF bipacking of G in a Bn+1 with
σ({x1, x2, x3}) = {x1, x2, x3}. Therefore we may assume w.l.o.g. that σ(y1) =
y2, σ(y2) = y1 and σ(y3) 6= y3. Assume for the moment that V1 has a
vertex z such that y1z 6∈ E(H) ∪ E(σ(H)). If σ−1(z) does not exist, let
τ(x1, x2, x3) = (x3, z, x1) and τ(u) = σ(u) for all u ∈ V (H). If σ−1(z) = v
for some v ∈ V1, let τ(v, x1, x2, x3) = (x1, x3, z, x2) and τ(u) = σ(u) for
all u ∈ V (H) − {v}. It is easy to see that τ is an FPF bipacking of G in
Bn+1(V1 ∪ {x1, x2, x3}, V2) in either case, a contradiction.

Therefore we may assume that V1 ⊆ NH(y1) ∪ Nσ(H)(y1). As dH(y1) ≤ 1
and dσ(H)(y1) = dH(y2) ≤ 1, we obtain |V1| ≤ 2. As |X1| ≥ 5, it follows that
|V1| = 2, dH(y1) = dH(y2) = 1. Say V1 = {z1, z2} with y1z1 ∈ E(H) and
y1z2 ∈ E(σ(H)). It follows that σ(z1) = z2, σ(z2) = z1 and z1y2 ∈ E(H).

If z2σ(y3) 6∈ E(H), let τ(y1, y3, x1, x2, x3) = (σ(y3), y2, x2, x3, x1) and τ(u) =
σ(u) for all u ∈ V (H) − {y1, y3, x1, x2, x3}. Then τ is an FPF bipacking of G
in a Bn+1, a contradiction. Therefore z2σ(y3) ∈ E(H). Then y3z1 6∈ E(H).
Let w be a new vertex not in G. We may choose an FPF bijection of X2

such that τ(y1, y2, y3) = (y3, σ(y3), y1), and then extend τ to X1 such that
τ(z1, z2, x1, x2, x3) = (x1, w, z1, x3, x2). It is easy to see that τ is an FPF
bipacking of G in Bn+1(X1 ∪ {w}, X2). �

Lemma 2.11. There exist no three endvertices in G.

Proof. On the contrary, say that G has three endvertices x1, x2 and x3. We
first show that no two of them are adjacent. If this is not the case, say x1x2 ∈ E
with x1 ∈ X1. Let G′ = G − {x1, x2}. If G′ ∈ F , it is easy to find that G
has an FPF bipacking in a Bn+1, a contradiction. Therefore G′ 6∈ F and so G′

has an FPF bipacking τ in a Bn−1(V1, V2) with Xi − {xi} ⊆ Vi for i ∈ {1, 2}.
We may assume w.l.o.g. that V1 = (X1 − {x1}) ∪ {w} with w 6∈ V (G). Then
X2 − {x2} = V2. Since |V1| = |X1 − {x1}| + 1, there exists v ∈ V1 such that
v 6∈ τ(X1−{x1}). If uv 6∈ E for some u ∈ X2, then we obtain an FPF bipacking
of G in a Bn+1 by letting σ(x1, x2, τ

−1(u)) = (v, u, x2) and σ(z) = τ(z) for all
z ∈ V (G) − {x1, x2, τ−1(u)}, a contradiction. Therefore NG(v) = V2. As
g(G) ≥ 6, each vertex of X1 − {v} has degree at most 1. Then by Corollary
2.5, each vertex in X2 − {x2} has degree at most 2. Then we readily see that
G has an FPF bipacking of G in a Bn+1, a contradiction.

Therefore no two of x1, x2 and x3 are adjacent. By Corollary 2.4 and
Corollary 2.5, there are three vertices y1, y2 and y3 of degree 2, such that
{x1y1, x2y2, x3y3} ⊆ E. We claim that y1, y2 and y3 are distinct. If this is not
true, say y1 = y2. By Lemma 2.1, we see that G − x1 − x2 ∈ F . As y1 is an
isolated vertex of G− x1 − x2, we see that G− x1 − x2 consists of two isolated
vertices and obviously, G has an FPF bipacking in a B5, a contradiction. Hence
the claim holds.
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If G−{x1, x2, x3} ∈ F , then we readily see that either G−{x1, x2, x3} ∼= 2K2

or G − {x1, x2, x3} ∼= Fn−3 by Corollary 2.5 and in this case, we also readily
see that G has an FPF bipacking of G in a Bn+1, a contradiction. Thus
G − {x1, x2, x3} 6∈ F . Then by Lemma 2.10, we obtain {x1, x2, x3} 6⊆ Xi for
i ∈ {1, 2}. Say w.l.o.g. {x1, x2} ⊆ X1 and x3 ∈ X2. Say N(yi) = {xi, zi} for
i ∈ {1, 2, 3}.

Note that this argument says that neither of X1 and X2 contains three
endvertices of G.

Let H = G − {x1, x2, x3, y1, y2, y3}. First, assume that H 6∈ F . Then
H has an FPF bipacking τ in a Bn−5(V1, V2). If {z1, z2} 6= {τ(z1), τ(z2)},
say τ(z2) 6∈ {z1, z2}, we extend τ to an FPF bipacking of G in a Bn+1 by
letting τ(x1, y1, x2, y2, x3, y3) = (x2, x3, y3, y1, y2, x1), a contradiction. There-
fore τ(z1, z2) = (z2, z1). In this situation, we obtain an FPF bipacking of G
in a Bn+1 by letting σ(z1, x1, y1, x2, y2, x3, y3) = (x1, y3, y2, z2, x3, y1, x2) and
σ(u) = τ(u) for all u ∈ V (G)− {z1, x1, y1, x2, y2, x3, y3}, a contradiction.

Therefore H ∈ F . If |H| = 2, it is easy to see that G has an FPF bipacking
in a B9. Assume that |H| = 4. Let a1a2 and a3a4 be the two independent edges
of H such that {a1, a3} ⊆ X1 and if H ∼= P4, then a2a3 ∈ E. Since X1 does
not contain three endvertices of G, a1 ∈ {z1, z2}. Say w.l.o.g. that a1 = z1. If
a2a3 6∈ E, then z2 = a3 and so G is a linear forest. Consequently, G has an
FPF bipacking in a B10 by Corollary 2.8, a contradiction. Hence a2a3 ∈ E. If
a4 = z3, i.e., a4y3 ∈ E, then x3y3a4a3 is feasible and so x1y1a1a2 is not feasible
by Lemma 2.9. Thus z2 = a1. If z3 = a2 and so a4 is an endvertex of G and
by Corollary 2.5, we see that z2 = a1. In any case, G−a1 is a linear forest and
so G− a1 has an FPF bipacking σ in a B9, contradicting Corollary 2.8.

Similar to the above argument, it is easy to see that if H ∼= P6, then there
exists a labelling H = a1a2a3a4a5a6 such that {y1a1, y2a1, y3a4} ⊆ E. Then σ
is an FPF bipacking of G in a B12 where

σ(a1, a2, a3, a4, a5, a6, x1, y1, x2, y2, x3, y3)

= (x1, y2, a5, x3, a3, y1, a1, a4, y3, a2, a6, x2),

a contradiction.
Therefore H ∼= Fk with k = n − 6 ≥ 5. Since Xi does not contain three

endvertices of G for each i ∈ {1, 2} and each endvertex of G is adjacent to a
vertex of degree 2 in G, it is easy to see that H ∼= P5. Furthermore, with
Corollary 2.8, we see that there is a labelling H = a1a2a3a4a5 such that
{y1a2, y2a2, y3a1} ⊆ E. Then σ is an FPF bipacking of G in a B12 where

σ(a1, a2, a3, a4, a5, x1, y1, x2, y2, x3, y3) = (y1, w, a1, x2, a3, a2, a5, x1, x3, y2, a4),

a contradiction. �

Corollary 2.12. The graph G is not a forest.
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Proof. By Corollary 2.4 and Lemma 2.11, we see that if G is a forest, then G is
a path. By Lemma 2.2, we conclude that n ≥ 8. By Lemma 2.6 and Corollary
2.7, there is an FPF bipacking of G in a Bn+1, a contradiction. �

Corollary 2.13. The minimum degree of G is at least 2.

Proof. On the contrary, let x be an endvertex of G. Say that x ∈ X1. By
Lemma 2.3, there exists y ∈ X2 such that d(y) ≥ (n1 − 1)/2. As G is not
a forest and g(G) ≥ 12, G has a cycle C of order at least 12 and so n1 ≥ 7
and n2 ≥ 6. Thus d(y) ≥ 3. Let Y1 = N(y). By Corollary 2.5, xy 6∈ E and
d(z) ≥ 2 for each z ∈ Y1. Clearly, x 6∈ V (C). If n1 = 7, then d(y, C) ≥ 3,
which implies G[V (C)∪ {y}] has a cycle of order less than 12, a contradiction.
Hence n1 ≥ 8 and so d(y) ≥ 4. Let Y0 = {y} and Yi+1 = N(Yi) − Yi−1 for
i ≥ 1. Let a1 be the number of endvertices of G contained in Y2 and a2 the
number of endvertices of G contained in Y3∪Y4. As x is an endvertex of G and
by Lemma 2.11, a1 ≤ 1 and a1 + a2 ≤ 2. As g(G) ≥ 12, we see that |Y2| ≥ |Y1|
and |Y3| ≥ |Y2| − a1 and |Y5| ≥ |Y3| − a2 ≥ 2. Thus n1 ≥ |Y1| + |Y3| + |Y5| ≥
3|Y1|−2a1−a2 ≥ 2d(n1−1)/2e+ d(n1−1)/2e−2a1−a2. Since 8 ≤ n1, a1 ≤ 1
and a1 +a2 ≤ 2, we see that d(n1−1)/2e ≥ 2a1 +a2 +1 and equality holds only
if 8 ≤ n1 ≤ 9 and a1 = a2 = 1. Clearly, 2d(n1 − 1)/2e ≥ n1 − 1 and equality
holds only if n1 is odd. It follows that 2d(n1−1)/2e+d(n1−1)/2e−2a1−a2 ≥
n1 + d(n1− 1)/2e− 2a1−a2− 1 ≥ n1. So equality holds through this equation.
This yields that a1 = a2 = 1, n1 = 9 and every vertex in Y1 ∪ Y2 ∪ Y3 ∪ Y4 has
degree 2 if it is not one of the two endvertices. As |Y1| ≥ 4, it follows that there
are two vertex-disjoint paths of order 4 from Y1 to Y4 in G[Y1 ∪ Y2 ∪ Y3 ∪ Y4],
which are two vertex-disjoint feasible paths. This is a contradiction by Lemma
2.9. �

Lemma 2.14. The minimum degree of G is at least 3.

Proof. On the contrary, say δ(G) = 2. By Lemma 2.3, for some {i, j} = {1, 2},
there exist two distinct vertices a and b in Xj such that |N(a) ∪ N(b)| ≥
(ni−1)/2. We may choose {i, j}, a and b with |N(a)∪N(b)| maximal. Subject
to this condition, we choose a and b such that the distance d(a, b) from a to
b is minimal. Say w.l.o.g. that {a, b} ⊆ X2 and |N(a) ∪ N(b)| ≥ (n1 − 1)/2.
Say w.l.o.g. d(a) ≤ d(b). As δ(G) = 2 and g(G) ≥ 12, each component of G
contains a cycle of order at least 12. By Corollary 2.7, we see that G has a
component which is not a cycle. Thus ∆(G) ≥ 3. As g(G) ≥ 8, we see that
|N(a) ∪N(b)| ≥ 5. Hence d(b) ≥ 3. We break into the following two cases.

Case 1. d(a, b) ≤ 4.
Let c1 ∈ N(a) and c2 ∈ N(b) such that if d(a, b) = 2, then c1 = c2 and if

d(a, b) = 4, thenN(c1)∩N(c2) 6= ∅. In the latter case, sayN(c1)∩N(c2) = {c0}.
Let Y0 = N(b)−{c2}, Y1 = N(Y0)−{b} and Yi+1 = N(Yi)−Yi−1 for i = 1, 2, 3.
Since g(G) ≥ 12 and δ(G) ≥ 2, we see that N({a, b, c1, c2}), Y1, Y2, Y3 and Y4
are mutually disjoint and G[N({a, b, c1, c2}) ∪ Y1 ∪ Y2 ∪ Y3 ∪ Y4] is a tree. We



34 H. WANG

use T to denote this tree G[N({a, b, c1, c2})∪Y1 ∪Y2 ∪Y3 ∪Y4]. As g(G) ≥ 12,
we see

|Yi+1| =
∑
x∈Yi

(d(x)− 1) for i ∈ {0, 1, 2, 3}.(1)

Thus

n1 ≥ |N({a, b})|+ |Y2|+ |Y4| ≥ (n1 − 1)/2 + |Y2|+ |Y4|.(2)

Consequently,

(n1 + 1)/2 ≥ |Y2|+ |Y4|.(3)

As d(b) ≥ 3, |Y0| ≥ d(b) − 1 and so |Yi| ≥ d(b) − 1 ≥ 2 for i ∈ {1, 2, 3, 4}
by (1). Moreover, there are k vertex-disjoint paths L1, . . . , Lk−1 and Lk from
Y0 to Y4, where k = |Y0|. Let uivi with ui ∈ Y2 be the second last edge on Li
(1 ≤ i ≤ k). By Lemma 2.9, at most one of these k edges is a feasible edge.
Say w.l.o.g. that uivi is not feasible for i = 1, . . . , k − 1.

First, assume that ukvk is feasible, then by Lemma 2.9, the first edge of Li is
not a feasible edge for each i ∈ {1, 2, . . . , k−1}. Consequently, |Y2| ≥ |Y0|+(k−
1) and |Y4| ≥ |Y0|+2(k−1) by (1). Thus |Y2|+|Y4| ≥ 2|Y0|+3(k−1). If c1 = c2,
then 2|Y0| ≥ |N(a)∪N(b)|−1 ≥ (n1−1)/2−1, and so |Y2|+ |Y4| > (n1 +1)/2,
contradicting (3). Hence c1 6= c2. Then 2|Y0| ≥ d(a)+d(b)−2 ≥ (n1−1)/2−2
and so

(n1 + 1)/2 ≥ |Y2|+ |Y4| ≥ (n1 − 1)/2− 2 + 3(k − 1) ≥ (n1 + 1)/2.

It follows that k = 2, i.e., |Y0| = 2 and d(b) = 3, |Y2| + |Y4| = (n1 + 1)/2,
|Y2| = 3, |Y4| = 4 and 2|Y0| = d(a) + d(b) − 2. Consequently, d(a) = 3,
|Y2|+|Y4| = 3+4 = 7 and n1 = 13. This means that X1 = N(a)∪N(b)∪Y2∪Y4.
Hence d(c0) = 2. As ukvk is feasible, c0c2 is not feasible by Lemma 2.9. As
X1 − V (T ) = ∅, this implies that there exists z ∈ X2 − {c0, b} such that
zc2 ∈ E. As δ(G) = 2 and g(G) ≥ 12, this implies that vz ∈ E for some
v ∈ X1 − V (T ) = ∅, a contradiction.

Therefore ukvk is not feasible and so |Y4| ≥ |Y2| + k ≥ |Y0| + k. Thus
|Y2| + |Y4| ≥ 2|Y0| + k. Since 2|Y0| ≥ |N(a) ∪N(b)| − 2 ≥ (n1 − 1)/2 − 2 and
by (3), it follows that k ≤ 3 and so |Y4| ≤ |Y0|+ 3. As k ≥ 2, it follows that for
some i ∈ {1, . . . , k}, the first edge of Li is feasible for otherwise |Y4| ≥ |Y0|+ 4
by (1). If d(a) = d(b), then by symmetry, there exists a feasible edge uv
with u ∈ N(a) − N(a) ∩ N(b) and v 6= a. As g(G) ≥ 12, we see that G has
two vertex-disjoint feasible paths, a contradiction. Hence d(a) < d(b). Then
2|Y0| ≥ |N(a) ∪N(b)| ≥ (n1 − 1)/2 if c1 = c2 and 2|Y0| ≥ |N(a) ∪N(b)| − 1 ≥
(n1 − 1)/2− 1 if c1 6= c2. By (3), it follows that c1 6= c2, d(a) = |Y0| = k = 2,
|Y4| = |Y0| + 2 and X1 = N(a) ∪ N(b) ∪ Y2 ∪ Y4. Thus the first edge of each
Li is feasible. By Lemma 2.9, c1c0 is not feasible. Since X1 − V (T ) = ∅ and
g(G) ≥ 12, this implies that there exists z ∈ X2−{a, c0} such that zc1 ∈ E. As
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δ(G) ≥ 2 and g(G) ≥ 12, it follows that vz ∈ E for some v ∈ X1 − V (T ) = ∅,
a contradiction.

Case 2. d(a, b) ≥ 6.
Let Y0 = N(a), Y1 = N(Y0) − {a}, Y2 = N(Y1) − Y0, Z0 = N(b), Z1 =

N(Z0)− {b}, Z2 = N(Z1)− Z0 and J = Y2 ∩ Z2. As d(a, b) ≥ 6, Y1 ∩ Z1 = ∅.
Let T1 = G[{a} ∪ Y0 ∪ Y1 ∪ Y2] , T2 = G[{b} ∪ Z0 ∪ Z1 ∪ Z2]. Since δ(G) ≥ 2
and g(G) ≥ 12, V (T1) ∩ V (T2) = J , each of T1 and T2 is a tree and each of
E(J, Y1) and E(J, Z1) consists of |J | independent edges. Furthermore, for each
i ∈ {0, 1}, E(Yi, Yi+1) contains |Yi| independent edges, E(Zi, Zi+1) contains
|Zi| independent edges and there are |J | vertex-disjoint paths of order 5 from
Y0 to Z0 passing through J .

Let E0 be an edge independent set with E0 ⊆ E(Y0, Y1) and |E0| = |Y0|. Let
F0 be an edge independent set with F0 ⊆ E(Z0, Z1) and |F0| = |Z0|. For each
edge xy ∈ E0∪F0∪E(J, Y1)∪E(J, Z1) with y ∈ Y1∪Z1, we define ξ(xy) to be
the subset of X1−Y0∪Z0 such that u ∈ ξ(xy) if and only if u ∈ X1−Y0∪Z0 and
either uy ∈ E with u 6= x or uvx is a path of G for some v ∈ X2−{a, b}. Since
δ(G) ≥ 2 and g(G) ≥ 8, we see that ξ(e) 6= ∅ for all e ∈ E0 ∪F0. Moreover, we
see

Y2 = ∪e∈E0ξ(e) and Z2 = ∪e∈F0ξ(e);(4)

|Y2| =
∑
e∈E0

|ξ(e)| and |Z2| =
∑
e∈F0

|ξ(e)|.(5)

It follows from (4) and (5) that |Y2| ≥ |Y0| and |Z2| ≥ |Z0|. First, we
assume that Y2 ∩Z2 = ∅. Then n1 ≥ |Y0|+ |Z0|+ |Y2|+ |Z2| ≥ 2(|Y0|+ |Z0|) =
2|N({a, b})| ≥ n1− 1. By (4) and (5), we see that with at most one exception,
|ξ(e)| = 1, i.e., e is a feasible edge, for all e ∈ E0 ∪F0. Thus E(Y0, Y1) contains
a feasible edge e and E(Z0, Z1) contains a feasible edge f and so G has two
vertex-disjoint feasible paths, contradicting Lemma 2.9.

Therefore J 6= ∅. Let J0 = {x ∈ J | d(x) ≥ 3}, J1 = N(J0) − Y1 ∪ Z1

and J2 = N(J1) − J0. Since g(G) ≥ 12, each of G[V (T1) ∪ (∪2i=1Ji)] and
G[V (T2) ∪ (∪2i=1Ji)] is a tree. Furthermore, we have

|J1| =
∑
x∈J0

(d(x)− 2) and |J2| =
∑
x∈J1

(d(x)− 1).(6)

As δ(G) ≥ 2, this implies that |J2| ≥ |J1| ≥ |J0|. If J0 = J , then n1 ≥
|Y0|+ |Z0|+ |Y2|+ |Z2| − |J |+ |J2| ≥ 2(|Y0|+ |Z0|) ≥ n1 − 1. Thus |ξ(e)| 6= 1
for at most one edge e ∈ E0 ∪ F0. That is, with at most one exception, every
edge e ∈ E0 ∪ F0 is a feasible edge of G and consequently, G contains two
vertex-disjoint feasible paths, contradicting Lemma 2.9. Therefore J0 6= J .

Let y be an arbitrary vertex in Y1 ∪Z1 with N(y)∩ (J − J0) 6= ∅. We claim
d(y) ≥ 3. If this is not true, then d(y) = 2. Let u1u2u3u4u5 be a path where
u1 ∈ Y0, u2 ∈ Y1, u3 ∈ J − J0, u4 ∈ Z1 and u5 ∈ Z0 with y ∈ {u2, u4}. Say
w.l.o.g. that y = u2. Then u1u2u3u4 is feasible. By Lemma 2.9, each edge
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e ∈ E(Y0−{u1}, Y1)∪E(Z0−{u5}), Z1) is not feasible, i.e., |ξ(e)| ≥ 2. By (4)
and (5), we obtain that |Y2| ≥ 2|Y0| − 1 and |Z2| ≥ 2|Z0| − 1. With |Y0| ≥ |J |
and |Z0| = d(b) ≥ 3, it follows that

n1 ≥ |Y0|+ |Z0|+ |Y2|+ |Z2| − |J |+ |J2|
≥ 2(|Y0|+ |Z0|) + |Y0|+ |Z0| − |J | − 2 + |J2|
≥ (n1 − 1) + |Y0| − |J |+ |Z0| − 2 + |J2| ≥ n1.

This yields that |Y0| = |J |, d(b) = |Z0| = 3, J2 = ∅ (i.e., J0 = ∅), |Y2| = 2|Y0|−1
and |Z2| = 2|Z0|−1. Thus d(ui) = 2 for all i ∈ {1, 2, 3, 4, 5}. Let u6 ∈ Z1−{u4}
with u5u6 ∈ E. Then u3u4u5u6 is a feasible path. Let u0 ∈ Y0 − {u2} with
u0a ∈ E. Then u0au1u2 is not a feasible path by Lemma 2.9. Thus d(a) 6= 2
and so d(a) = 3 = d(b). Let v1 ∈ J − {u3} and v2 ∈ Z1 − {u4} with v1v2 ∈ E.
By Lemma 2.9, we see that v1v2 is not a feasible edge. As d(v1) = 2, this
implies d(v2) ≥ 3. Clearly, |N(a) ∪ N(b)| ≤ |N(a) ∪ N(v2)|, but d(a, v2) =
4 < d(a, b), contradicting the minimality of d(a, b). Therefore the claim is true,
i.e., d(y) ≥ 3 for all y ∈ Y1 ∪ Z1 with N(y) ∩ (J − J0) 6= ∅. By (4) and (5),
this yields that |Y2| ≥ |Y0| + |J − J0| and |Z2| ≥ |Z0| + |J − J0|. Moreover,
as δ(G) ≥ 2 and g(G) ≥ 12, there exists a path x1x2x3x4x5 of order 5 with
x1 ∈ J−J0, x2 ∈ Y1, x3 ∈ Y2, x3 6∈ Y0∪J , x4 ∈ X2−Y1∪Z1∪J1 and x5 ∈ X1.
As g(G) ≥ 12, we see that x5 6∈ Y0 ∪ Z0 ∪ Y2 ∪ Z2 ∪ J2. Thus

n1 ≥ |Y0|+ |Z0|+ |Y2 ∪ Z2|+ |J2|+ 1(7)

≥ 2(|Y0|+ |Z0|)− |J |+ 2|J − J0|+ |J2|+ 1(8)

≥ n1 − 1 + |J − J0|+ 1 ≥ n1 + 1,(9)

a contradiction. �

We are now ready to complete the proof of the theorem. Choose x ∈ X1

such that d(x) = ∆1. Let A0 = {x} and A1 = N(x). For each i ∈ {2, 3, 4, 5},
let Ai = N(Ai−1) − Ai−2. Since g(G) ≥ 12, Ai ∩ Aj = ∅ for all 0 ≤ i < j ≤ 5
and |Ai| =

∑
y∈Ai−1

(d(y) − 1) for each i ∈ {2, 3, 4, 5}. Thus if Ai ⊆ X1, then

|Ai| ≥ |Ai−1|(δ2 − 1) and if Ai ⊆ X2, then |Ai| ≥ |Ai−1|(δ1 − 1) for each
i ∈ {2, 3, 4, 5}. As A5 ⊆ X2, we obtain n2 ≥ |A5| ≥ |A1|(δ2 − 1)2(δ1 − 1)2 =
∆1(δ2 − 1)2(δ1 − 1)2. Since δ ≥ 3, (δ2 − 1)2 ≥ δ2 + 1 and (δ1 − 1)2 ≥ 4.
Consequently, n2 ≥ 4(δ2 +1)∆1 > 1+2δ2∆1, contradicting Corollary 2.4. This
proves the theorem.
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