This article is published in Graphs and Combinatorics. The original publication is available at http://www.springerlink.com.

Proof of the Erdős-Faudree Conjecture on Quadrilaterals

Hong Wang
Department of Mathematics
The University of Idaho
Moscow, Idaho, USA 83844

In this paper, we prove Erdős-Faudree's conjecture: If G is a graph of order $4 k$ and the minimum degree of G is at least $2 k$ then G contains k disjoint cycles of length 4.

Key words: 4-cycles, disjoint cycles, cycle coverings

1 Introduction and Notation

Let G be a graph. A set of graphs are said to be disjoint if no two of them have any common vertex. Corrádi and Hajnal [2] investigated the maximum number of disjoint cycles in a graph. They proved that if G is a graph of order at least $3 k$ with minimum degree at least $2 k$, then G contains k disjoint cycles. In particular, when the order of G is exactly $3 k$, then G contains k disjoint triangles. Erdős and Faudree [4] conjectured that if G is a graph of order $4 k$ with minimum degree at least $2 k$, then G contains k disjoint cycles of length 4 . With respect to this conjecture, Randerath, Schiermeyer and Wang [6] proved that G contains $k-1$ cycles of length 4 and a subgraph of order 4 with at least four edges such that all of them are disjoint. In [7], we improved this result by showing the following result:
Theorem A Let G be a graph of order n with $4 k+1 \leq n \leq 4 k+4$, where k is a positive integer. Suppose that the minimum degree of G is at least $2 k+1$. Then G contains at least k disjoint cycles of length 4.

El-Zahar [3] conjectured that if G is a graph of order $n=n_{1}+n_{2}+\cdots+n_{k}$ with $n_{i} \geq$ $3(1 \leq i \leq k)$ and the minimum degree of G is at least $\left\lceil n_{1} / 2\right\rceil+\left\lceil n_{2} / 2\right\rceil+\cdots+\left\lceil n_{k} / 2\right\rceil$, then G contains k disjoint cycles of lengths $n_{1}, n_{2}, \ldots, n_{k}$, respectively. He proved this conjecture for $k=2$. When $n_{1}=n_{2}=\cdots=n_{k}=4$, El-Zahar's conjecture reduces to the above conjecture of Erdős and Faudree. Komlós, Sárközy and Szemerédi [5] showed that for any graph H of order r with chromatic number k, there exist constants
c and n_{0} such that if $n \geq n_{0}, r \mid n$ and G is a graph of order n with minimum degree at least $(1-1 / k) n+c$ then G contains n / r disjoint copies of H. In this paper, we prove the following theorem:
Theorem B If G is a graph of order $4 k$ and the minimum degree of G is at least $2 k$ then G contains k disjoint cycles of length 4 .

We shall use the terminology and notation from [1] except as indicated. Let G be a graph. Let $u \in V(G)$. The neighborhood of u in G is denoted by $N(u)$. Let H be a subgraph of G or a subset of $V(G)$ or a sequence of distinct vertices of G. We define $N(u, H)$ to be the set of neighbors of u contained in H, and let $e(u, H)=|N(u, H)|$. Clearly, $N(u, G)=N(u)$ and $e(u, G)$ is the degree of u in G. If X is a subgraph of G or a subset of $V(G)$ or a sequence of distinct vertices of G, we define $N(X, H)=\cup_{u} N(u, H)$ and $e(X, H)=\sum_{u} e(u, H)$ where u runs over all the vertices in X. Let x and y be two distinct vertices. We define $I(x y, H)$ to be $N(x, H) \cap N(y, H)$ and let $i(x y, H)=|I(x y, H)|$. Let each of $X_{1}, X_{2}, \ldots, X_{r}$ be a subgraph of G or a subset of $V(G)$. We use $\left[X_{1}, X_{2}, \ldots, X_{r}\right]$ to denote the subgraph of G induced by the set of all the vertices that belong to at least one of $X_{1}, X_{2}, \ldots, X_{r}$. We use C_{i} to denote a cycle of length i for all integers $i \geq 3$, and use P_{j} to denote a path of order j for all integers $j \geq 1$. For a cycle C of G, a chord of C is an edge of $G-E(C)$ which joins two vertices of C, and we use $\tau(C)$ to denote the number of chords of C in G. An n-cycle is a cycle of length n. Clearly, if C is a 4-cycle then $\tau(C) \in\{0,1,2\}$.

We use C_{4}^{+}to denote a graph of order 4 with five edges. Obviously, C_{4}^{+}can be obtained from K_{4} by deleting one edge from K_{4}. If F is a graph of order 4 and size 4 with a triangle, we may write F as a trail $x_{0} x_{1} x_{2} x_{3} x_{1}$.

If S is a set of subgraphs of G, we write $G \supseteq S$. For an integer $k \geq 1$ and a graph G^{\prime}, we use $k G^{\prime}$ to denote a set of k disjoint graphs isomorphic to G^{\prime}. If G_{1}, \ldots, G_{r} are r graphs and k_{1}, \ldots, k_{r} are r positive integers, we use $k_{1} G_{1} \uplus \cdots \uplus k_{r} G_{r}$ to denote a set of $k_{1}+\cdots+k_{r}$ disjoint graphs which consist of k_{1} copies of G_{1}, \ldots, k_{r-1} copies of G_{r-1} and k_{r} copies of G_{r}. For two graphs H_{1} and H_{2}, the union of H_{1} and H_{2} is still denoted by $H_{1} \cup H_{2}$ as usual, that is, $H_{1} \cup H_{2}=\left(V\left(H_{1}\right) \cup V\left(H_{2}\right), E\left(H_{1}\right) \cup E\left(H_{2}\right)\right)$. Let each of Y and Z be a subgraph of G, or a subset of $V(G)$, or a sequence of distinct vertices of G. If Y and Z do not have any common vertices, we define $E(Y, Z)$ to be the set of all the edges of G between Y and Z. Clearly, $e(Y, Z)=|E(Y, Z)|$. If $C=x_{1} x_{2} \ldots x_{r} x_{1}$ is a cycle, then the operations on the subscripts of the x_{i} 's will be taken by modulo r in $\{1,2, \ldots, r\}$. If C is a 4 -cycle and $u \in V(C)$, we use u^{*} to denote the unique vertex of C such that u and u^{*} are not consecutive on C. For two graphs G and H, we write $G \cap H=\emptyset$ if G and H are disjoint.

Let $\left\{H, Q_{1}, \ldots, Q_{t}\right\}$ be a set of $t+1$ disjoint subgraphs of G such that $Q_{i} \cong C_{4}$
for $i=1, \ldots, t$. We say that $\left\{H, Q_{1}, \ldots, Q_{t}\right\}$ is optimal if $\left[H, Q_{1}, \ldots, Q_{t}\right]$ does not contain $t+1$ disjoint subgraphs $H^{\prime}, Q_{1}^{\prime}, \ldots, Q_{t}^{\prime}$ such that $H^{\prime} \cong H, Q_{i}^{\prime} \cong C_{4}(1 \leq i \leq t)$ and $\sum_{i=1}^{t} \tau\left(Q_{i}^{\prime}\right)>\sum_{i=1}^{t} \tau\left(Q_{i}\right)$. Let Q be a 4 -cycle and H a subgraph of order 4 in G. We write $H \geq Q$ if H has a 4 -cycle Q^{\prime} such that $\tau\left(Q^{\prime}\right) \geq \tau(Q)$. Moreover, if $\tau\left(Q^{\prime}\right)>\tau(Q)$, we write $H>Q$.

Let Q be a 4 -cycle of G and $u \in V(Q)$. Let $x \in V(G)-V(Q)$. We write $x \rightarrow(Q, u)$ if $[Q-u+x] \supseteq C_{4}$. In this case, we say that u is replaceable by x in Q. Moreover, if $[Q-u+x] \geq Q$ then we write $x \Rightarrow(Q, u)$ and if $[Q-u+x]>Q$ then we write $x \xrightarrow{a}(Q, u)$. In addition, if it does not hold that $x \xrightarrow{a}(Q, u)$ then we write $x \xrightarrow{n a}(Q, u)$. Clearly, $x \Rightarrow(Q, u)$ when $x \xrightarrow{a}(Q, u)$. If $x \rightarrow(Q, u)$ for all $u \in V(Q)$ then we write $x \rightarrow Q$. Similarly, we define $x \Rightarrow Q$. Note that if $e(x, Q)=3$ then $x \rightarrow Q$ if and only if $d d^{*} \in E$ where $d \in V(Q)$ with $x d \notin E$.

Let P be a path of order at least 2 or a sequence of at least two distinct vertices in $G-V(Q+x)$. Let X be a subset of $V(G)-V(Q+x)$ with $|X| \geq 2$. We write $x \rightarrow(Q, u ; P)$ if $x \rightarrow(Q, u)$ and u is adjacent to the two end vertices of P. In this case, if P is a path of order 3 , then $[x, Q, P] \supseteq 2 C_{4}$. We write $x \rightarrow(Q, u ; X)$ if $x \rightarrow(Q, u ; y z)$ for some $\{y, z\} \subseteq X$ with $y \neq z$. We write $x \rightarrow(Q ; P)$ if $x \rightarrow(Q, u ; P)$ for some $u \in V(Q)$. Similarly, we define $x \rightarrow(Q ; X)$.

We use "w.l.o.g." for "without loss of generality" and "w.r.t." for "with respect to".

2 Sketch of the Proof of Theorem B

Let $G=(V, E)$ be a graph of order $4 k$ with minimum degree at least $2 k$. Suppose, for a contradiction, that $G \nsupseteq k C_{4}$. By the result of [6] mentioned in the introduction, there exists a sequence $\left(T, Q_{1}, \ldots, Q_{k-1}\right)$ of k disjoint subgraphs such that $T \cong C_{3}$ and $Q_{i} \cong C_{4}$ for $i=1, \ldots, k-1$. We call such a sequence $\left(T, Q_{1}, \ldots, Q_{k-1}\right)$ a chain of G. Among all the chains of G, we choose $\left(T, Q_{1}, \ldots, Q_{k-1}\right)$ such that

$$
\begin{equation*}
\sum_{i=1}^{k-1} \tau\left(Q_{i}\right) \text { is maximum. } \tag{1}
\end{equation*}
$$

Subject to (1), we further choose $\left(T, Q_{1}, \ldots, Q_{k-1}\right)$ such that

$$
\begin{equation*}
\left|\left\{Q_{i} \mid \tau\left(Q_{i}\right)=2,1 \leq i \leq k-1\right\}\right| \text { is maximum. } \tag{2}
\end{equation*}
$$

A chain satisfying (1) and (2) is called a feasible chain of G. If $\left(T, Q_{1}, \ldots, Q_{k-1}\right)$ is a feasible chain, we define the terminal point of $\left(T, Q_{1}, \ldots, Q_{k-1}\right)$ to be the unique vertex of G which does not belong to $V(T) \cup V\left(\cup_{i=1}^{k-1} Q_{i}\right)$. A strong feasible chain of G
is a sequence $\left(x y, T, Q_{1}, \ldots, Q_{k-1}\right)$ of subgraphs of G such that $\left(T, Q_{1}, \ldots, Q_{k-1}\right)$ is a feasible chain of $G, x y \in E, y \in V(T)$ and x is the terminal point of $\left(T, Q_{1}, \ldots, Q_{k-1}\right)$. The following Claims 2.1-2.7 will be proved in Section 4. Claims 2.1-2.4 are steps towards Claims 2.5-2.7. We derive Theorem B from Claims 2.5-2.7 in this section. Our first important step is the following Claim 2.1.
Claim 2.1. There exists a strong feasible chain in G.
By Claim 2.1, let $\sigma=\left(x_{0} x_{1}, T, Q_{1}, \ldots, Q_{k-1}\right)$ be any given strong feasible chain with $x_{1} \in V(T)$. Let $T=x_{1} x_{2} x_{3} x_{1}, F=x_{0} x_{1} x_{2} x_{3} x_{1}$ and $\mathcal{Q}=\left\{Q_{1}, \ldots, Q_{k-1}\right\}$.
Claim 2.2. For each $Q \in \mathcal{Q}$, if $e(F, Q) \geq 9$ then either $e\left(x_{0}, Q\right)=0$ or there exists a labelling $Q=a_{1} a_{2} a_{3} a_{4} a_{1}$ such that $N\left(x_{0}, Q\right)=\left\{a_{1}\right\}$, $e\left(x_{1}, Q\right)=4, N\left(x_{2}, Q\right)=$ $\left\{a_{1}, a_{4}\right\}, N\left(x_{3}, Q\right)=\left\{a_{1}, a_{2}\right\}, a_{1} a_{3} \in E$ and $a_{2} a_{4} \notin E$.
Claim 2.3. For each $Q \in \mathcal{Q}$, if $e\left(x_{0}, Q\right)=4$ and $e\left(x_{1}, Q\right) \geq 1$ then $e\left(x_{2}, Q\right) \leq 1$ and $e\left(x_{3}, Q\right) \leq 1$.
Claim 2.4. For each $Q \in \mathcal{Q}, e\left(x_{0} x_{2}, Q\right) \leq 6$ and $e\left(x_{0} x_{3}, Q\right) \leq 6$.
Claim 2.5. For each $Q \in \mathcal{Q}$, if $e\left(F-x_{1}, Q\right) \geq 7$ then either $e\left(x_{0}, Q\right)=0$ or $e\left(x_{0}, Q\right)=$ 1, $e\left(x_{2} x_{3}, Q\right)=6, N\left(x_{2}, Q\right)=N\left(x_{3}, Q\right)$.
Claim 2.6. For each $Q \in \mathcal{Q}$, if $e\left(x_{0}, Q\right)=4$ then $e\left(x_{2} x_{3}, Q\right)=0$.
Claim 2.7. For each $Q \in \mathcal{Q}$, if $e\left(x_{0}, Q\right)=3$ then $e\left(x_{2} x_{3}, Q\right) \leq 2$.
Proof of Theorem B. Clearly, $e\left(x_{0}, G-V(F)\right)+e\left(F-x_{1}, G-V(F)\right) \geq 8 k-6=$ $8(k-1)+2$. Thus $e\left(x_{0}, Q\right)+e\left(F-x_{1}, Q\right) \geq 9$ for some $Q \in \mathcal{Q}$. If $e\left(x_{0}, Q\right)=4$ then $e\left(x_{2} x_{3}, Q\right)=0$ by Claim 2.6 and so $e\left(x_{0}, Q\right)+e\left(F-x_{1}, Q\right)=8$, a contradiction. If $e\left(x_{0}, Q\right)=3$ then $e\left(x_{2} x_{3}, Q\right) \leq 2$ by Claim 2.7 and so $e\left(x_{0}, Q\right)+e\left(F-x_{1}, Q\right) \leq 8$, a contradiction. Hence $e\left(x_{0}, Q\right) \leq 2$. Thus $e\left(F-x_{1}, Q\right) \geq 7$. By Claim 2.5, either $e\left(x_{0}, Q\right)=0$ or $e\left(x_{0}, Q\right)=1$ with $e\left(x_{2} x_{3}, Q\right)=6$. Then $e\left(x_{0}, Q\right)+e\left(F-x_{1}, Q\right) \leq 8$, a contradiction.

3 Preliminary Lemmas

Let $G=(V, E)$ be a given graph in the following. Lemma 3.1 is an easy observation.
Lemma 3.1 Let T and Q be two disjoint subgraphs of G with $T \cong C_{3}$ and $Q \cong K_{4}$ such that $e(T, Q) \geq 11$. Let x_{1} and x_{2} be two distinct vertices of T. Set $G_{0}=[T, Q]$. Then the following statements hold:
(a) For each $x \in V(G)-V\left(G_{0}\right)$ with $e\left(x, G_{0}\right) \geq 2,\left[G_{0}, x\right] \supseteq 2 C_{4}$
(b) For each edge $u v \in E\left(G_{0}-\left\{x_{1}, x_{2}\right\}\right)$, there exists a triangle T^{\prime} in $G_{0}-\left\{x_{1}, x_{2}\right\}$ such that uv $\in E\left(T^{\prime}\right)$ and $G_{0}-V\left(T^{\prime}\right) \cong K_{4}$.
(c) There exists a labelling $V(Q)=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ such that $\left\{b_{1}, b_{2}, b_{3}\right\} \subseteq N\left(x_{1}, Q\right)$ and $\left\{x_{2}, x_{3}, b_{4}, b_{r}\right\} \cong K_{4}$ for $r=2,3$.
(d) Let $Z \subseteq V\left(G_{0}-\left\{x_{1}, x_{2}\right\}\right)$ with $|Z|=4$. If $e\left(x_{1} x_{2}, Q\right)=8$ then there exists a triangle T^{\prime} in $[Z]$ such that $G_{0}-V\left(T^{\prime}\right) \cong K_{4}$.

Lemma 3.2 Let T and Q be two disjoint subgraphs of G and $z \in V(G)-V(T \cup Q)$ such that $T \cong C_{3}, Q \cong C_{4}, e(T, Q) \geq 9$ and $[T, Q, z] \nsupseteq 2 C_{4}$. Suppose that $[T, Q, z] \nsupseteq$ C with $C \cong C_{3}$ and $[T, Q, z]-V(C)>Q$. Then $e(z, Q) \leq 1$.
Proof. Say $Q=d_{1} d_{2} d_{3} d_{4} d_{1}$. Suppose $e(z, Q) \geq 2$. As $[T, Q, z] \nsupseteq 2 C, z \nrightarrow(Q ; V(T))$. As $e(T, Q) \geq 9$, for each $i \in\{1,2\}, e\left(d_{r}, T\right) \geq 2$ for some $r \in\{i-1, i+1\}$ and so $e\left(z, d_{i} d_{i+2}\right) \leq 1$. Thus we may assume $e\left(z, d_{1} d_{2}\right)=2$. Then $\left[z, d_{1}, d_{2}\right] \supseteq C_{3}$. As $e\left(d_{3} d_{4}, T\right) \geq 3,\left[T, d_{3}, d_{4}\right] \supseteq C_{4}^{+}$. Thus $\tau(Q) \geq 1$. Say w.l.o.g. $d_{1} d_{3} \in E$. Then $e\left(d_{4}, T\right) \leq 1$ and $d_{2} d_{4} \notin E$ as $z \nrightarrow(Q ; V(T))$. It follows that $e\left(d_{3}, T\right)=3$ or $e\left(d_{2}, T\right)=3$. Then $[T, Q, z] \supseteq C_{3} \uplus K_{4}$ and so $\tau(Q)=2$, a contradiction.
Lemma 3.3 Let $F=x_{0} x_{1} x_{2} x_{3} x_{1}, Q$ a 4-cycle of $G-V(F)$ and $z \in V(G)-V(F \cup$ $Q)$ such that $z \nrightarrow\left(Q ; x_{2} x_{3}\right)$. Suppose that $[F, Q] \nsupseteq P \uplus Q^{\prime}$ with $P \supseteq 2 P_{2}$ and $\tau\left(Q^{\prime}\right)=\tau(Q)+2$. Furthermore, suppose that $e\left(x_{0} x_{2} x_{3} z, Q\right) \geq 9$ such that either $e\left(x_{0}, Q\right)=1$ and $e\left(x_{2} x_{3}, Q\right)=6$ with $N\left(x_{2}, Q\right)=N\left(x_{3}, Q\right)$ or $e\left(x_{0}, Q\right)=0$ with $e\left(x_{2} x_{3}, Q\right) \geq 7$. Then $e\left(x_{0} x_{2} x_{3} z, Q\right)=9$ and there exists a labelling $Q=d_{1} d_{2} d_{3} d_{4} d_{1}$ such that $e\left(x_{2} x_{3}, d_{2} d_{3} d_{4}\right)=6$ and $z d_{3} \in E$.
Proof. Say $Q=d_{1} d_{2} d_{3} d_{4} d_{1}$. If $e\left(x_{0}, Q\right)=1$, we may assume that $N\left(x_{2}, Q\right)=$ $N\left(x_{3}, Q\right)=\left\{d_{2}, d_{3}, d_{4}\right\}$. It is easy to see that $\left[x_{2}, x_{3}, Q\right] \supseteq P_{2} \uplus K_{4}$ regardless $e\left(x_{0}, Q\right)=0$ or $e\left(x_{0}, Q\right)=1$. Thus $[F, Q] \supseteq 2 P_{2} \uplus K_{4}$. Then $\tau(Q) \neq 0$ by our assumption. As $z \nrightarrow\left(Q ; x_{2} x_{3}\right)$, it follows that if $e\left(x_{0}, Q\right)=1$ then $d_{2} d_{4} \in E, d_{1} d_{3} \notin E$ and $N(z, Q)=\left\{d_{3}, d_{i}\right\}$ for some $i \in\{2,4\}$. Thus the lemma holds. So assume $e\left(x_{0}, Q\right)=0$. If $e(z, Q)=1$ then $e\left(x_{2} x_{3}, Q\right)=8$ and obviously the lemma holds. So assume $e(z, Q) \geq 2$. For each $i \in\{1,2\}, e\left(d_{r}, x_{2} x_{3}\right)=2$ for some $r \in\{i-1, i+1\}$ and so $e\left(z, d_{i} d_{i+2}\right) \leq 1$ since $z \nrightarrow\left(Q ; x_{2} x_{3}\right)$. Therefore $N(z, Q)=\left\{d_{i}, d_{i+1}\right\}$ for some $i \in\{1,2,3,4\}$. Say w.l.o.g. $N(z, Q)=\left\{d_{3}, d_{4}\right\}$. As $\tau(Q) \geq 1$, say w.l.o.g. $d_{2} d_{4} \in E$. Then $e\left(d_{1}, x_{2} x_{3}\right) \neq 2$ as $z \nrightarrow\left(Q, d_{1} ; x_{2} x_{3}\right)$. Thus $e\left(d_{1}, x_{2} x_{3}\right)=1, e\left(x_{2} x_{3}, d_{2} d_{3} d_{4}\right)=6$ and so the lemma holds.

Lemma 3.4 Let $F=x_{0} x_{1} x_{2} x_{3} x_{1}$ and Q be two disjoint subgraphs with $Q \cong C_{4}$. The following two statements hold:
(a) (Lemma 2.7, [7]) If $e(F, Q) \geq 11$ and $e\left(x_{0}, Q\right) \geq 1$ then $[F, Q] \supseteq 2 C_{4}$, or there exists a labelling $Q=a_{1} a_{2} a_{3} a_{4} a_{1}$ such that $N\left(x_{0}, Q\right)=\left\{a_{1}, a_{2}, a_{3}\right\}, e\left(x_{1}, Q\right)=4$ and $N\left(x_{2}, Q\right)=N\left(x_{3}, Q\right)=\left\{a_{1}, a_{3}\right\}$.
(b) If $e\left(x_{0}, Q\right) \geq 1, e\left(x_{1} x_{2} x_{3}, Q\right) \geq 9, \tau(Q) \geq 1$ and $x_{i} \rightarrow Q$ for some $i \in\{1,2,3\}$ then $[F, Q] \supseteq 2 C_{4}$.

Proof. We only need to show (b) here. Suppose that $[F, Q] \nsupseteq 2 C_{4}$. Say $Q=$ $d_{1} d_{2} d_{3} d_{4} d_{1}$ with $d_{1} d_{3} \in E$. First, assume that $e\left(x_{0}, d_{2} d_{4}\right) \geq 1$. W.l.o.g., say $x_{0} d_{4} \in E$. As $e\left(x_{2} x_{3}, Q\right) \geq 9-e\left(x_{1}, Q\right) \geq 5, e\left(x_{i}, d_{1} d_{2} d_{3}\right) \geq 2$ for some $i \in\{2,3\}$. Say w.l.o.g. $e\left(x_{2}, d_{1} d_{2} d_{3}\right) \geq 2$. As $[F, Q] \nsupseteq 2 C_{4}, x_{2} \nrightarrow\left(Q, d_{4} ; x_{0} x_{1} x_{3}\right)$ and so $d_{4} x_{3} \notin E$. If we also have $e\left(x_{3}, d_{1} d_{2} d_{3}\right) \geq 2$ then $d_{4} x_{2} \notin E$. Consequently, $6 \geq e\left(x_{2} x_{3}, Q\right) \geq 5$ and so $e\left(x_{1}, Q\right) \geq 3$. Thus $e\left(x_{1}, d_{1} d_{3}\right) \geq 1$. Say w.l.o.g. $x_{1} d_{1} \in E$. Then $\left[x_{0}, d_{4}, d_{1}, x_{1}\right] \supseteq C_{4}$ and $\left[x_{2}, x_{3}, d_{2}, d_{3}\right] \supseteq C_{4}$, a contradiction. Hence $e\left(x_{3}, d_{1} d_{2} d_{3}\right) \leq 1$. It follows that $e\left(x_{1} x_{2}, Q\right)=8$ and $e\left(x_{3}, Q\right)=1$. Then $\left[x_{0}, d_{4}, d_{r}, x_{1}\right] \supseteq C_{4}$ and $\left[x_{2}, x_{3}, d_{2}, d_{t}\right] \supseteq C_{4}$ where $\{r, t\}=\{1,3\}$ and $e\left(x_{3}, d_{2} d_{t}\right)=1$, a contradiction. Therefore $e\left(x_{0}, d_{1} d_{3}\right) \geq 1$. Similarly, if $d_{2} d_{4} \in E$ then $[F, Q] \supseteq 2 C_{4}$, a contradiction. Hence $d_{2} d_{4} \notin E$. Say w.l.o.g. $x_{0} d_{1} \in E$. Suppose that $e\left(x_{i}, d_{2} d_{4}\right)=2$ for some $i \in\{2,3\}$. W.l.o.g., say $e\left(x_{2}, d_{2} d_{4}\right)=2$. Then $x_{3} d_{1} \notin E$ as $x_{2} \nrightarrow\left(Q, d_{1} ; x_{0} x_{1} x_{3}\right)$. If $e\left(x_{1}, d_{2} d_{4}\right)=0$ then $e\left(x_{1}, d_{1} d_{3}\right)=2, e\left(x_{2}, Q\right)=4$ and $e\left(x_{3}, d_{2} d_{3} d_{4}\right)=3$. Consequently, $\left[x_{0}, d_{1}, d_{3}, x_{1}\right] \supseteq$ C_{4} and $\left[x_{2}, d_{2}, x_{3}, d_{4}\right] \supseteq C_{4}$, a contradiction. Hence $e\left(x_{1}, d_{2} d_{4}\right) \geq 1$. Say w.l.o.g. $x_{1} d_{4} \in E$. Then $\left[x_{0}, d_{1}, d_{4}, x_{1}\right] \supseteq C_{4}$ and so $\left[x_{2}, x_{3}, d_{2}, d_{3}\right] \nsupseteq C_{4}$. This implies that $e\left(x_{2} x_{3}, d_{2} d_{3}\right) \leq 2$. As $e\left(x_{1} x_{2} x_{3}, Q\right) \geq 9$, it follows that $e\left(x_{1}, Q\right)=4, x_{3} d_{4} \in E$ and $e\left(x_{2} x_{3}, d_{2} d_{3}\right)=2$. Then $\left[x_{0}, d_{1}, d_{2}, x_{1}\right] \supseteq C_{4}$ and so $\left[x_{2}, x_{3}, d_{3}, d_{4}\right] \nsupseteq C_{4}$. This yields $e\left(d_{3}, x_{2} x_{3}\right)=0$. It follows that $e\left(x_{3}, d_{2} d_{4}\right)=2$ as $e\left(x_{2} x_{3}, Q\right) \geq 5$. Thus $\left[x_{0}, d_{1}, d_{3}, x_{1}\right] \supseteq C_{4}$ and $\left[x_{2}, d_{2}, x_{3}, d_{4}\right] \supseteq C_{4}$, a contradiction. Therefore $e\left(x_{i}, d_{2} d_{4}\right) \leq 1$ for each $i \in\{2,3\}$. Hence $x_{i} \nrightarrow Q$ for $i \in\{2,3\}$. Thus $x_{1} \rightarrow Q$. This implies that $\left\{d_{2}, d_{4}\right\} \subseteq N\left(x_{1}\right)$. As $e\left(x_{2} x_{3}, Q\right) \geq 5$, say w.l.o.g. $e\left(x_{2}, d_{1} d_{2} d_{3}\right)=3$. As $\left[x_{0}, d_{1}, d_{i}, x_{1}\right] \supseteq C_{4}$ for each $i \in\{2,4\},\left[x_{2}, x_{3}, d_{3}, d_{i}\right] \nsupseteq C_{4}$ for each $i \in\{2,4\}$. This implies that $e\left(x_{3}, d_{2} d_{3} d_{4}\right)=0$ and so $e\left(x_{2} x_{3}, Q\right) \leq 4$, a contradiction.

Lemma 3.5 Let P be a path of order 4 and Q a 4-cycle of G such that $P \cap Q=\emptyset$ and $\{P, Q\}$ is optimal. If $e(P, Q) \geq 9$ and $[P, Q] \nsupseteq 2 C_{4}$ then either $[P, Q]$ contains two disjoint subgraphs T and C such that $T \cong C_{3}, C \cong C_{4}$ and $\tau(C) \geq \tau(Q)$, or $\tau(Q)=2$ and there exist two labellings $P=y_{1} y_{2} y_{3} y_{4}$ and $V(Q)=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ such that one of the following two statements (a) and (b) holds:
(a) $N\left(y_{1}, Q\right) \cup N\left(y_{3}, Q\right) \subseteq\left\{b_{1}, b_{2}, b_{3}\right\}, 3 \leq e\left(y_{2}, Q\right) \leq 4, e\left(y_{4}, Q\right)=0, e(P, Q) \leq$ 10;
(b) $N\left(y_{1}, Q\right) \cup N\left(y_{4}, Q\right) \subseteq\left\{b_{1}, b_{2}\right\}, N\left(y_{2}, Q\right) \cup N\left(y_{3}, Q\right) \subseteq\left\{b_{1}, b_{2}, b_{3}\right\}, e(P, Q) \leq 10$.

In addition, if (a) holds, then $y_{i} \rightarrow\left(Q ; y_{j} y_{l}\right)$ for each $\{i, j, l\}=\{1,2,3\}$. If (b) holds, then $e\left(y_{i}, Q\right)=3$ for some $i \in\{2,3\}$ and $y_{i} \rightarrow\left(Q ; y_{j} y_{l}\right)$ for each $\{j, l\} \subseteq$ $\{1,2,3,4\}-\{i\}$ with $j \neq l$. Furthermore, if any of (a) and (b) holds then $[P, Q] \supseteq$ $C_{3} \uplus C_{4}^{+}$.

Proof. Let $P=y_{1} y_{2} y_{3} y_{4}, Q=b_{1} b_{2} b_{3} b_{4} b_{1}$ and $H=[P, Q]$. For the proof, suppose that H does not contain the two described subgraphs T and C. We shall prove that one
of (a) and (b) holds. We divide the proof into the two cases: $\tau(Q) \leq 1$ or $\tau(Q)=2$. Case 1. $\tau(Q) \leq 1$.
In this case, $H \nsupseteq C_{3} \uplus C_{4}^{+}$and $H \nsupseteq P_{4} \uplus K_{4}$ by the assumption of the lemma. As $e\left(y_{1} y_{2}, Q\right)+e\left(y_{3} y_{4}, Q\right) \geq 9$, we may assume w.l.o.g. that $e\left(y_{1} y_{2}, Q\right) \geq 5$. Then $e\left(y_{1} y_{2}, b_{1} b_{2}\right) \geq 3$ or $e\left(y_{1} y_{2}, b_{3} b_{4}\right) \geq 3$. W.l.o.g., say the former holds. Then $\left[y_{1}, y_{2}, b_{1}, b_{2}\right] \supseteq$ C_{4}^{+}. As $H \nsupseteq C_{3} \uplus C_{4}^{+}$and $H \nsupseteq 2 C_{4}$, we see $e\left(y_{3} y_{4}, b_{3} b_{4}\right) \leq 1$. If we also have $e\left(y_{1} y_{2}, b_{3} b_{4}\right) \geq 3$, then $e\left(y_{3} y_{4}, b_{1} b_{2}\right) \leq 1$ and so $e\left(y_{1} y_{2}, Q\right) \geq 7$. Thus either $\left[y_{1}, y_{2}, b_{1}, b_{2}\right] \cong$ K_{4} or $\left[y_{1}, y_{2}, b_{3}, b_{4}\right] \cong K_{4}$. W.l.o.g., say the former holds. Then $e\left(y_{3} y_{4}, b_{3} b_{4}\right)=0$ as $H \nsupseteq P_{4} \uplus K_{4}$. Thus $e\left(y_{1} y_{2}, Q\right)=8, e\left(y_{3} y_{4}, b_{1} b_{2}\right)=1$ and so $H \supseteq P_{4} \uplus K_{4}$, a contradiction. Hence $e\left(y_{1} y_{2}, b_{3} b_{4}\right) \leq 2$. If $e\left(y_{3} y_{4}, b_{1} b_{2}\right) \geq 3$, then we also have that $e\left(y_{1} y_{2}, b_{3} b_{4}\right) \leq 1$ and so $e\left(b_{1} b_{2}, P\right) \geq 7$. Consequently, either $\left[b_{1}, b_{2}, y_{1}, y_{2}\right] \cong K_{4}$ or $\left[b_{1}, b_{2}, y_{3}, y_{4}\right] \cong K_{4}$. W.l.o.g., say the former holds. Then $e\left(y_{3} y_{4}, b_{3} b_{4}\right)=0$ as $H \nsupseteq P_{4} \uplus K_{4}$. Thus $e\left(b_{1} b_{2}, P\right)=8, e\left(y_{1} y_{2}, b_{3} b_{4}\right)=1$ and so $H \supseteq P_{4} \uplus K_{4}$, a contradiction. We conclude that $e\left(y_{3} y_{4}, b_{1} b_{2}\right) \leq 2$. As $e(P, Q) \geq 9$, it follows that $e\left(y_{1} y_{2}, b_{1} b_{2}\right)=4$ and $e\left(y_{3} y_{4}, b_{3} b_{4}\right)=1$. Thus $H \supseteq P_{4} \uplus K_{4}$, a contradiction.

Case 2. $\tau(Q)=2$.
W.l.o.g., say $e\left(y_{1}, Q\right) \geq e\left(y_{4}, Q\right)$. Then $e\left(y_{1}, Q\right) \geq 1$. Suppose that $e\left(y_{1}, Q\right)=4$. As $H \nsupseteq 2 C_{4}$ and $H \nsupseteq C_{3} \uplus K_{4}, e\left(b_{i}, P-y_{1}\right) \leq 1$ for each $b_{i} \in V(Q)$. Thus $e(P, Q) \leq 8$, a contradiction. Hence $e\left(y_{1}, Q\right) \leq 3$.

Suppose $e\left(y_{1} y_{4}, Q\right) \leq 2$. Then $e\left(y_{2} y_{3}, Q\right) \geq 7$. If $e\left(y_{4}, Q\right)=1$, then $e\left(y_{1}, Q\right)=1$ and it is easy to see that if $N\left(y_{1}, Q\right) \neq N\left(y_{4}, Q\right)$ then $H \supseteq 2 C_{4}$. Moreover, if $N\left(y_{1}, Q\right)=N\left(y_{4}, Q\right)$, say w.l.o.g. $e\left(b_{1}, y_{1} y_{4}\right)=2$, then $y_{i} b_{1} \in E$ and $e\left(y_{j}, b_{2} b_{3} b_{4}\right)=$ 3 for some $\{i, j\}=\{2,3\}$. Consequently, $H \supseteq C_{3} \uplus K_{4}$, a contradiction. Hence $e\left(y_{4}, Q\right)=0$. If $e\left(y_{1}, Q\right)=1$ then $e\left(y_{2} y_{3}, Q\right)=8$ and so $H \supseteq C_{3} \uplus K_{4}$, a contradiction. Hence we may assume that $e\left(y_{1}, b_{1} b_{2}\right)=2$. If $\left\{b_{3}, b_{4}\right\} \subseteq N\left(y_{3}\right)$ then it is easy to see that for some $i \in\{1,2\}, e\left(y_{3}, Q-b_{i}\right)=3, y_{2} b_{i} \in E$ and so $H \supseteq C_{3} \uplus K_{4}$, a contradiction. Hence $\left\{b_{3}, b_{4}\right\} \nsubseteq N\left(y_{3}\right)$. Say w.l.o.g. $y_{3} b_{4} \notin E$. Then $e\left(y_{2}, Q\right)=4$, $e\left(y_{3}, b_{1} b_{2} b_{3}\right)=3$ and so (a) holds. Therefore we may assume $e\left(y_{1} y_{4}, Q\right) \geq 3$ and so $e\left(y_{1}, Q\right) \geq 2$ in the following.

Suppose $e\left(y_{1}, Q\right)=2$. Say w.l.o.g. $e\left(y_{1}, b_{1} b_{2}\right)=2$. We claim $e\left(y_{4}, b_{3} b_{4}\right)=0$. If this is false, say w.l.o.g. $y_{4} b_{4} \in E$. Then $y_{2} b_{4} \notin E$ as $H \nsupseteq 2 C_{4}$. Then $e\left(y_{2} y_{3}, b_{1} b_{2} b_{3}\right) \geq$ $9-e\left(y_{1} y_{4}, Q\right)-e\left(y_{3}, b_{4}\right) \geq 9-4-1=4$. If $e\left(b_{3}, y_{2} y_{3}\right)=0$ then $e\left(y_{2} y_{3}, b_{1} b_{2}\right)=4$ and $y_{3} b_{4} \in E$. Consequently, $\left[y_{1}, y_{2}, b_{1}, b_{2}\right] \supseteq K_{4}$ and $\left[y_{3}, y_{4}, b_{4}\right] \supseteq C_{3}$, a contradiction. Hence $e\left(b_{3}, y_{2} y_{3}\right) \geq 1$. It follows that either $E\left(y_{2} y_{3}, b_{1} b_{3}\right)$ or $E\left(y_{2} y_{3}, b_{2} b_{3}\right)$ contains two independent edges. Then we readily see that $H \supseteq 2 C_{4}$, a contradiction. Hence $e\left(y_{4}, b_{3} b_{4}\right)=0$ and so $e\left(y_{4}, b_{1} b_{2}\right) \geq 1$. If $N\left(y_{2} y_{3}, Q\right) \subseteq\left\{b_{1}, b_{2}, b_{i}\right\}$ for some $i \in\{3,4\}$, then we may assume w.l.o.g. $i=3$ and so (b) holds. Therefore we may assume that $e\left(b_{i}, y_{2} y_{3}\right) \geq 1$ for $i \in\{3,4\}$. Since $E\left(y_{1} y_{4}, b_{1} b_{2}\right)$ contains two independent edges, $E\left(y_{2} y_{3}, b_{3} b_{4}\right)$ does not contain two independent edges for otherwise $H \supseteq 2 C_{4}$. Thus
$E\left(y_{2} y_{3}, b_{3} b_{4}\right)=\left\{y_{r} b_{3}, y_{r} b_{4}\right\}$ for some $r \in\{2,3\}$. Then $e\left(y_{4} y_{2} y_{3}, b_{1} b_{2}\right) \geq 5$. Thus $y_{2} b_{i} \in$ E and $e\left(b_{j}, y_{3} y_{4}\right)=2$ for some $\{i, j\}=\{1,2\}$. Then $\left[y_{1}, y_{2}, b_{i}\right] \supseteq C_{3}$ and $\left[y_{3}, y_{4}, b_{j}\right] \supseteq$ C_{3}. As $H \nsupseteq C_{3} \uplus K_{4}$, this implies that $\left[y_{3}, b_{j}, b_{3}, b_{4}\right] \nsupseteq K_{4}$ and $\left[y_{2}, b_{3}, b_{4}, b_{i}\right] \nsupseteq K_{4}$. This yields that $e\left(y_{3}, b_{3} b_{4}\right) \leq 1$ and $e\left(y_{2}, b_{3} b_{4}\right) \leq 1$, a contradiction. Finally, suppose $e\left(y_{1}, Q\right)=3$. Say $e\left(y_{1}, b_{1} b_{2} b_{3}\right)=3$. Then $e\left(b_{4}, y_{2} y_{3} y_{4}\right) \leq 1$ since $H \nsupseteq 2 C_{4}$ and $H \nsupseteq C_{3} \uplus K_{4}$. As $H \nsupseteq 2 C_{4}, i\left(y_{2} y_{4}, Q\right)=0$. We claim $e\left(y_{4}, Q\right)=0$. On the contrary, say $e\left(y_{4}, Q\right) \geq 1$. If $y_{4} b_{4} \in E$, then $e\left(b_{4}, y_{2} y_{3}\right)=0$. Moreover, $E\left(y_{2} y_{3}, b_{1} b_{2} b_{3}\right)$ does not contain two independent edges for otherwise $H \supseteq 2 C_{4}$. Thus $e\left(y_{2} y_{3}, b_{1} b_{2} b_{3}\right) \leq 3$ and it follows that $e\left(y_{4}, Q\right)=3$ and $e\left(y_{2} y_{3}, b_{1} b_{2} b_{3}\right)=3$. Then either $y_{1} \rightarrow\left(Q ; y_{2} y_{3} y_{4}\right)$ or $y_{4} \rightarrow\left(Q ; y_{1} y_{2} y_{3}\right)$, a contradiction. Hence $y_{4} b_{4} \notin E$. Say w.l.o.g. $y_{4} b_{3} \in E$. Then $y_{2} b_{3} \notin E$ as $i\left(y_{2} y_{4}, Q\right)=0$. If $y_{3} b_{4} \in E$ then $y_{2} b_{4} \notin E$ as $e\left(b_{4}, y_{2} y_{3} y_{4}\right) \leq 1$. Moreover, since $\left[y_{3}, y_{4}, b_{3}, b_{4}\right] \supseteq C_{4}, e\left(y_{2}, b_{1} b_{2}\right)=0$ as $H \nsupseteq 2 C_{4}$. Thus $e\left(y_{2}, Q\right)=0$ and so $e\left(y_{3} y_{4}, Q\right) \geq 6$. It follows that $y_{4} \rightarrow\left(Q ; y_{1} y_{2} y_{3}\right)$, a contradiction. Hence $y_{3} b_{4} \notin E$. As $i\left(y_{2} y_{4}, Q\right)=0, e\left(y_{2} y_{4}, Q\right) \leq 4$. It follows that $e\left(y_{3}, Q-b_{4}\right) \geq 2$ and so $e\left(y_{3}, b_{1} b_{2}\right) \geq 1$. W.l.o.g., say $y_{3} b_{1} \in E$. Then $\left[y_{3}, y_{4}, b_{3}, b_{1}\right] \supseteq C_{4}$ and so $y_{2} b_{4} \notin E$ as $H \nsupseteq 2 C_{4}$. Thus $e\left(y_{2} y_{4}, Q\right)=e\left(y_{2} y_{4}, Q-b_{4}\right) \leq 3$ as $i\left(y_{2} y_{4}, Q\right)=0$. Consequently, $e\left(y_{3}, b_{1} b_{2} b_{3}\right)=3$ and $e\left(y_{2} y_{4}, b_{1} b_{2} b_{3}\right)=3$. As $y_{4} \nrightarrow\left(Q ; y_{1} y_{2} y_{3}\right)$, we see that $e\left(y_{4}, b_{1} b_{2}\right)=0$. Consequently, $e\left(y_{2}, b_{1} b_{2}\right)=2$. Then $\left[y_{3}, y_{4}, b_{3}\right] \cong C_{3}$ and $\left[y_{1}, y_{2}, b_{1}, b_{2}\right] \cong K_{4}$, a contradiction. Hence $e\left(y_{4}, Q\right)=0$. If $y_{3} b_{4} \notin E$ then (a) holds. If $y_{3} b_{4} \in E$ then $y_{2} b_{4} \notin E$. Since $e\left(y_{2}, b_{1} b_{2} b_{3}\right)+e\left(y_{3}, Q\right) \geq 6, y_{3} \Rightarrow\left(Q, b_{i}\right)$ and $b_{i} y_{2} \in E$ for some $i \in\{1,2,3\}$. Thus $H \supseteq C_{3} \uplus K_{4}$, a contradiction.

Lemma 3.6 Let P^{\prime} and $P^{\prime \prime}$ be two paths of order 2 and Q a 4-cycle of G such that they are disjoint and $\left\{P^{\prime} \cup P^{\prime \prime}, Q\right\}$ is optimal. If $e\left(P^{\prime} \cup P^{\prime \prime}, Q\right) \geq 9$ and $\left[P^{\prime}, P^{\prime \prime}, Q\right] \nsupseteq 2 C_{4}$ then either $\left[P^{\prime}, P^{\prime \prime}, Q\right] \supseteq C_{3} \uplus C_{4}^{+}$or $\left[P^{\prime}, P^{\prime \prime}, Q\right] \supseteq P_{4} \uplus K_{4}$.

Proof. Let $P^{\prime}=x_{1} x_{2}, P^{\prime \prime}=x_{3} x_{4}, Q=a_{1} a_{2} a_{3} a_{4} a_{1}$ and $H=\left[P^{\prime}, P^{\prime \prime}, Q\right]$. On the contrary, suppose that $H \nsupseteq P_{4} \uplus K_{4}$ and $H \nsupseteq C_{3} \uplus C_{4}^{+}$. As $e\left(P^{\prime} \cup P^{\prime \prime}, Q\right) \geq 9$, say w.l.o.g. $e\left(x_{1} x_{2}, Q\right) \geq 5$. As $e\left(x_{1} x_{2}, Q\right)=e\left(x_{1} x_{2}, a_{1} a_{2}\right)+e\left(x_{1} x_{2}, a_{3} a_{4}\right)$, say w.l.o.g. $e\left(x_{1} x_{2}, a_{1} a_{2}\right) \geq 3$. Then $\left[x_{1}, x_{2}, a_{1}, a_{2}\right] \supseteq C_{4}^{+}$and so $\left[x_{3}, x_{4}, a_{3}, a_{4}\right] \nsupseteq C_{i}$ for $i=3,4$. Thus $e\left(x_{3} x_{4}, a_{3} a_{4}\right) \leq 1$. If we also have $e\left(x_{1} x_{2}, a_{3} a_{4}\right) \geq 3$, then $e\left(x_{3} x_{4}, a_{1} a_{2}\right) \leq 1$ and so $e\left(x_{1} x_{2}, Q\right) \geq 7$. W.l.o.g., say $e\left(x_{1} x_{2}, a_{1} a_{2}\right)=4$. Then $e\left(x_{3} x_{4}, a_{3} a_{4}\right)=0$ as $H \nsupseteq$ $P_{4} \uplus K_{4}$. Thus $e\left(x_{1} x_{2}, Q\right)=8, e\left(x_{3} x_{4}, a_{1} a_{2}\right)=1$ and so $H \supseteq P_{4} \uplus K_{4}$, a contradiction. Hence $e\left(x_{1} x_{2}, a_{3} a_{4}\right) \leq 2$. Similarly, if $e\left(x_{3} x_{4}, a_{1} a_{2}\right) \geq 3$, then $e\left(x_{1} x_{2}, a_{3} a_{4}\right) \leq 1$ and so $e\left(a_{1} a_{2}, P^{\prime} \cup P^{\prime \prime}\right) \geq 7$. Consequently, $e\left(a_{1} a_{2}, x_{1} x_{2}\right)=4$ or $e\left(a_{1} a_{2}, x_{3} x_{4}\right)=4$. W.l.o.g., say $e\left(a_{1} a_{2}, x_{1} x_{2}\right)=4$. Then $e\left(a_{3} a_{4}, x_{3} x_{4}\right)=0$ as $H \nsupseteq P_{4} \uplus K_{4}$. Thus $e\left(a_{1} a_{2}, P^{\prime} \cup P^{\prime \prime}\right)=8, e\left(x_{1} x_{2}, a_{3} a_{4}\right)=1$ and so $H \supseteq P_{4} \uplus K_{4}$, a contradiction. Hence $e\left(x_{3} x_{4}, a_{1} a_{2}\right) \leq 2$. As $e\left(P^{\prime} \cup P^{\prime \prime}, Q\right) \geq 9$, it follows that $e\left(x_{1} x_{2}, a_{1} a_{2}\right)=4$ and $e\left(x_{3} x_{4}, a_{3} a_{4}\right)=1$. Thus $H \supseteq P_{4} \uplus K_{4}$, a contradiction.

4 Proofs of Claims 2.1-2.7

Our proof will go along a series of lemmas.
Lemma 4.1 Let $\left(T, Q_{1}, \ldots, Q_{k-1}\right)$ be a feasible chain of G and x the terminal point of $\left(T, Q_{1}, \ldots, Q_{k-1}\right)$. Then the following two statements hold:
(a) For each Q_{i}, if $e\left(x, Q_{i}\right) \geq 3$ then $x \rightarrow Q_{i}$. Furthermore, for each $u \in V\left(Q_{i}\right)$, if $e\left(x, Q_{i}-u\right)=3$ then $u u^{*} \in E$ and if $e\left(x, Q_{i}\right)=4$ then $\tau\left(Q_{i}\right)=2$.
(b) For each Q_{i}, if $e\left(T, Q_{i}\right) \geq 10$ then $\tau\left(Q_{i}\right) \geq 1$ and for some $\{y, z\} \subseteq V(T)$ with $y \neq z, y \rightarrow Q_{i}$ and $z \rightarrow Q_{i}$. Moreover, if $\tau\left(Q_{i}\right)=1$ then there exists $a \in V\left(Q_{i}\right)$ such that aa* $\in E$ and $N\left(y, Q_{i}\right)=\left\{a, a^{*}\right\}$ for some $y \in V(T)$. Furthermore, if $e\left(T, Q_{i}\right) \geq 11$ then $\tau\left(Q_{i}\right)=2$ and $y \rightarrow Q_{i}$ for all $y \in V(T)$.

Proof. To see (a), let $u \in V\left(Q_{i}\right)$ be such that $e\left(x, Q_{i}-u\right)=3$. By (1), $x \xrightarrow{n a}\left(Q_{i}, u\right)$. This implies $u u^{*} \in E$. Thus $x \rightarrow Q_{i}$ and (a) follows.

To see (b), say $Q_{i}=a_{1} a_{2} a_{3} a_{4} a_{1}$ and $T=x_{1} x_{2} x_{3} x_{1}$. If $\tau\left(Q_{i}\right)=2$ then $x_{r} \rightarrow Q_{i}$ for each $x_{r} \in V(T)$ with $e\left(x_{r}, Q_{i}\right) \geq 3$ and so the lemma holds. So assume $\tau\left(Q_{i}\right) \leq 1$. As $e\left(T, Q_{i}\right) \geq 10, e\left(x_{j}, Q_{i}\right)=4$ for some $x_{j} \in V(T)$. Say w.l.o.g. $e\left(x_{1}, Q_{i}\right)=4$. By (1), $x_{1} \xrightarrow{n a}\left(Q_{i}, u\right)$ and so $u u^{*} \in E$ for all $u \in I\left(x_{2} x_{3}, Q_{i}\right)$. As $i\left(x_{2} x_{3}, Q_{i}\right) \geq 2$, say w.l.o.g. with $a_{1} \in I\left(x_{2} x_{3}, Q_{i}\right)$. Then $a_{1} a_{3} \in E$. As $\tau\left(Q_{i}\right)=1$, it follows that $I\left(x_{2} x_{3}, Q_{i}\right)=\left\{a_{1}, a_{3}\right\}$. By (1), $x_{2} \xrightarrow{n a}\left(Q_{i} ; x_{1} x_{3}\right)$ and $x_{3} \xrightarrow{n a}\left(Q_{i} ; x_{1} x_{2}\right)$. This implies that $e\left(x_{2} x_{3}, Q_{i}\right)=6$ with $N\left(x_{r}, Q_{i}\right)=\left\{a_{1}, a_{3}\right\}$ for some $r \in\{2,3\}$.

Lemma 4.2 There exists no sequence $\left(P, Q_{1}^{\prime}, Q_{2}^{\prime}, \ldots, Q_{k-1}^{\prime}\right)$ of k disjoint subgraphs of G with $P \supseteq 2 P_{2}$ and $Q_{i}^{\prime} \cong C_{4}(1 \leq i \leq k-1)$ such that $\sum_{i=1}^{k-1} \tau\left(Q_{i}^{\prime}\right) \geq \sum_{i=1}^{k-1} \tau\left(Q_{i}\right)+2$.

Proof. On the contrary, suppose that there exists a sequence $\left(P, Q_{1}^{\prime}, Q_{2}^{\prime}, \ldots, Q_{k-1}^{\prime}\right)$ as described in the lemma such that $\sum_{i=1}^{k-1} \tau\left(Q_{i}^{\prime}\right) \geq \sum_{i=1}^{k-1} \tau\left(Q_{i}\right)+2$. Subject to this, we choose $\left(P, Q_{1}^{\prime}, Q_{2}^{\prime}, \ldots, Q_{k-1}^{\prime}\right)$ such that $\sum_{i=1}^{k-1} \tau\left(Q_{i}^{\prime}\right)$ is maximal. As $G \nsupseteq k C_{4},[P] \nsupseteq C_{4}$. By (1), $[P] \nsupseteq C_{3}$ and so $e([P]) \leq 3$. Thus $e\left(P, \cup_{i=1}^{k-1} Q_{i}^{\prime}\right) \geq 8 k-6=8(k-1)+2$. This implies that $e\left(P, Q_{i}^{\prime}\right) \geq 9$ for some $1 \leq i \leq k-1$. Say $i=1$. By (1), $\left[P \cup Q_{1}^{\prime}\right] \nsupseteq C_{3} \uplus C_{4}^{+}$. By Lemma 3.6, $\left[P, Q_{1}^{\prime}\right] \supseteq P^{\prime} \uplus Q^{\prime \prime}$ such that $P^{\prime} \cong P_{4}$ and $Q^{\prime \prime} \cong K_{4}$. As $P^{\prime} \supseteq 2 P_{2}$ and by the maximality of $\left(P, Q_{1}^{\prime}, Q_{2}^{\prime}, \ldots, Q_{k-1}^{\prime}\right), \tau\left(Q_{1}^{\prime}\right)=2$. Replacing P and Q_{1}^{\prime} by P^{\prime} and $Q^{\prime \prime}$, we see that either $e\left(P^{\prime}, Q^{\prime \prime}\right) \geq 9$ or $e\left(P^{\prime}, Q_{j}^{\prime}\right) \geq 9$ for some $j \in\{2,3, \ldots, k-1\}$. By Lemma 3.5, $\left[P^{\prime}, Q^{\prime \prime}\right] \supseteq C_{3} \uplus C_{4}^{+}$or $\left[P^{\prime}, Q_{j}^{\prime}\right] \supseteq C_{3} \uplus C_{4}^{+}$, contradicting (1).
Proof of Claim 2.1. On the contrary, suppose that there exists no strong feasible chain in G. Among all the feasible chains of G, we choose $\left(T, Q_{1}, \ldots, Q_{k-1}\right)$ such that if u denotes its terminal point then $e\left(u, Q_{1}\right)$ is maximal. As $e(u, G) \geq 2 k, e\left(u, Q_{1}\right) \geq 3$. If $e\left(u, Q_{1}\right)=4$, let v and w be two distinct vertices of Q_{1}. If $e\left(u, Q_{1}\right)=3$, then
$e\left(u, Q_{i}\right) \leq 3$ for all $i \in\{1, \ldots, k-1\}$. In this situation, $e\left(u, Q_{i}\right)=3$ for some $i \in\{2, \ldots, k-1\}$ as $e(u, G) \geq 2 k$, and then we may assume w.l.o.g. that $e\left(u, Q_{2}\right)=3$. Then let $v \in V\left(Q_{1}\right)$ and $w \in V\left(Q_{2}\right)$ be such that $e\left(u, Q_{1}-v\right)=3$ and $e\left(u, Q_{2}-w\right)=3$. In any case, we define $S=\{u, v, w\}$. By Lemma 4.1, If $e\left(u, Q_{1}\right)=4$ then $\tau\left(Q_{1}\right)=2$ and if $e\left(u, Q_{1}\right)=3$ and $e\left(u, Q_{2}\right)=3$ then $v v^{*} \in E, w w^{*} \in E, u \Rightarrow\left(Q_{1}, v\right)$ and $u \Rightarrow\left(Q_{2}, w\right)$. Say $T=x_{1} x_{2} x_{3} x_{1}$ and $R=\left\{x_{1}, x_{2}, x_{3}\right\} \cup S$. Let $G^{\prime}=\left[u, T, Q_{1}\right]$ if $e\left(u, Q_{1}\right)=4$ and otherwise $G^{\prime}=\left[u, T, Q_{1}, Q_{2}\right]$. We shall estimate $e\left(R, G^{\prime}\right)$. If $e\left(u, Q_{1}\right)=4$, then $u \Rightarrow Q_{1}$ and so $e(y, T)=0$ for all $y \in V\left(Q_{1}\right)$ for otherwise the claim holds. Thus $e\left(R, G^{\prime}\right)=18$. If $e\left(u, Q_{1}\right)=3$ and $e\left(u, Q_{2}\right)=3$, then $e(v, T)=0$ and $e(w, T)=0$ for similar reasons. As $u \rightarrow Q_{1}$ and $u \rightarrow Q_{2}$, we see that $[T+y] \nsupseteq C_{4}$ and so $e(y, T) \leq 1$ for all $y \in V\left(Q_{1} \cup Q_{2}\right)-\{v, w\}$. Furthermore, by the maximality of $e\left(u, Q_{1}\right)$, we see that if $e\left(u, Q_{1}\right)=3$ then $e\left(v, Q_{2}\right) \leq 3$ and $e\left(w, Q_{1}\right) \leq 3$. It follows that if $e\left(u, Q_{1}\right)=3$ then $e\left(T, G^{\prime}\right) \leq 12, e\left(S, G^{\prime}\right) \leq 18$ and so $e\left(R, G^{\prime}\right) \leq 30$. Therefore, if $e\left(u, Q_{1}\right)=4$ then $e\left(R, G-V\left(G^{\prime}\right)\right) \geq 12 k-18=12(k-2)+6$ and if $e\left(u, Q_{1}\right)=3$ then $e\left(R, G-V\left(G^{\prime}\right)\right) \geq 12 k-30=12(k-3)+6$. In any case, there exists Q_{r} in $G-V\left(G^{\prime}\right)$ such that $e\left(R, Q_{r}\right) \geq 13$. Let $u^{\prime} \in S$ be such that $e\left(u^{\prime}, Q_{r}\right) \geq e\left(z, Q_{r}\right)$ for all $z \in S$. Evidently, we may assume w.l.o.g. $u=u^{\prime}$. As $e\left(R, Q_{r}\right) \geq 13, e\left(u, Q_{r}\right) \geq 1$ and $e\left(T, Q_{r}\right) \geq 1$. Let $Q_{r}=c_{1} c_{2} c_{3} c_{4} c_{1}$. If $e\left(u, Q_{r}\right)=4$ then $e\left(c_{i}, T\right)=0$ for all $c_{i} \in V\left(Q_{r}\right)$ for otherwise the claim holds, a contradiction. Hence $e\left(u, Q_{r}\right) \leq 3$.

First, suppose $e\left(u, Q_{r}\right)=3$. Then $e\left(S, Q_{r}\right) \leq 9$ and so $e\left(T, Q_{r}\right) \geq 4$. By Lemma $4.1(a), u \rightarrow Q_{r}$ and so $e\left(c_{i}, T\right) \leq 1$ for all $c_{i} \in V(T)$ since $\left[u, Q_{r}, T\right] \nsupseteq 2 C_{4}$. Thus $e\left(c_{i}, T\right)=1$ for all $c_{i} \in V(T)$. Say w.l.o.g. $e\left(u, c_{1} c_{2} c_{3}\right)=3$. Then $u \Rightarrow\left(Q_{r}, c_{4}\right)$ and $e\left(c_{4}, T\right)=1$. Thus the claim holds, a contradiction.

Next, suppose $e\left(u, Q_{r}\right)=2$. Then $e\left(S, Q_{r}\right) \leq 6$ and so $e\left(T, Q_{r}\right) \geq 7$. Assume for the moment that $e\left(u, c_{i} c_{i}^{*}\right)=2$ for some $c_{i} \in V\left(Q_{r}\right)$. Say w.l.o.g. $e\left(u, c_{1} c_{3}\right)=2$. As $\left[u, Q_{r}, T\right] \nsupseteq 2 C_{4}, u \nrightarrow\left(Q_{r}, c_{j} ; V(T)\right)$ and so $e\left(c_{j}, T\right) \leq 1$ for $j \in\{2,4\}$. As $e\left(T, Q_{r}\right) \geq 7$, either $e\left(c_{1} c_{2}, T\right)=4$ or $e\left(c_{3} c_{4}, T\right)=4$. W.l.o.g., say $e\left(c_{1}, T\right)=3$ and $e\left(c_{2}, T\right)=1$. Then $u \nRightarrow\left(Q_{r}, c_{2}\right)$ for otherwise the claim holds. This implies $c_{2} c_{4} \in E$. Thus $\left[c_{2}, c_{3}, c_{4}\right] \cong C_{3}, e\left(u, c_{2} c_{3} c_{4}\right)=1$ and $\left[c_{1}, T\right] \cong K_{4}$, i.e., the claim holds, a contradiction. This argument shows that $\tau\left(Q_{r}\right) \leq 1$ for otherwise we may choose a 4 -cycle from $\left[Q_{r}\right]$ such that u is adjacent to two non consecutive vertices of this 4 -cycle and repeat the above argument to obtain a contradiction. W.l.o.g., say $e\left(u, c_{1} c_{2}\right)=2$. Assume for the moment that $e\left(c_{i}, T\right) \geq 2$ for some $i \in\{3,4\}$. Say w.l.o.g. $e\left(c_{4}, T\right) \geq 2$. Then $\left[c_{4}, T\right] \geq Q_{r},\left[u, c_{1}, c_{2}\right] \cong C_{3}$ and $e\left(c_{3}, u c_{1} c_{2}\right)=1$. Therefore the claim holds, a contradiction. Hence $e\left(c_{3}, T\right) \leq 1$ and $e\left(c_{4}, T\right) \leq 1$. Thus $e\left(c_{1} c_{2}, T\right) \geq 5$. Let $j \in\{1,2\}$ be such that $e\left(c_{j}, T\right)=3$. Then $\left[c_{j}, T\right] \cong K_{4}$ and $\left[u, Q_{r}-c_{j}\right] \supseteq 2 P_{2}$. By Lemma 4.2, $\tau\left(Q_{r}\right) \neq 0$. W.l.o.g., say $c_{1} c_{3} \in E$. Then $u \Rightarrow\left(Q_{r}, c_{4}\right)$. Since the claim does not hold, $e\left(c_{4}, T\right)=0$. It follows that $\left(c_{1} c_{2}, T\right)=6$ and $e\left(c_{3}, T\right)=1$. Thus $\left[c_{2}, T\right]>Q_{r}$ and $\left[c_{1}, c_{3}, c_{4}\right] \cong C_{3}$, contradicting (1).

Finally, $e\left(u, Q_{r}\right)=1$. Then $e\left(S, Q_{r}\right) \leq 3$ and so $e\left(T, Q_{r}\right) \geq 10$. By Lemma $4.1(b), \tau\left(Q_{r}\right) \geq 1$. Moreover, if $\tau\left(Q_{r}\right)=1$, we may assume that $c_{1} c_{3} \in E$ and $N\left(x_{i}, Q_{r}\right)=\left\{c_{1}, c_{3}\right\}$ for some $x_{i} \in V(T)$. W.l.o.g., say $e\left(u, c_{1} c_{2} c_{3}\right)=1$. Then $T+c_{4} \supseteq C_{4}^{+}$and so the claim holds, a contradiction. Hence $\tau\left(Q_{r}\right)=2$. W.l.o.g., say $u c_{1} \in E$. Then $e\left(u, c_{1} c_{i} c_{j}\right)=1,\left[c_{1}, c_{i}, c_{j}\right] \cong C_{3}$ and so $T+c_{t} \nsupseteq K_{4}$ for each permutation (i, j, t) of $\{2,3,4\}$. This implies that $e\left(c_{i}, T\right) \leq 2$ for $i \in\{2,3,4\}$ and so $e\left(T, Q_{r}\right) \leq 9$, a contradiction. This proves Claim 2.1.

By Claim 2.1, we choose a strong feasible chain $\sigma=\left(x_{0} x_{1}, T, Q_{1}, \ldots, Q_{k-1}\right)$ with $x_{1} \in V(T)$. Let $T=x_{1} x_{2} x_{3} x_{1}, F=x_{0} x_{1} x_{2} x_{3} x_{1}$ and $\mathcal{Q}=\left\{Q_{1}, \ldots, Q_{k-1}\right\}$. Set $G_{i}=$ $\left[F, \cup_{r=1}^{i} Q_{r}\right]$ and $H_{i}=G-V\left(G_{i}\right)$ for each $i \in\{1, \ldots, k-1\}$. Clearly, $G_{i} \nsupseteq(i+1) C_{4}$ for each $i \in\{1, \ldots, k-1\}$. A terminal point of G is a terminal point of some feasible chain of G. Let \mathcal{T} be the set of all the terminal points of G. The following Lemma 4.3 and Lemma 4.4 are the initial elimination process for the proofs of Claims 2.2-2.5.

Lemma 4.3 Let $Q \in \mathcal{Q}$. If $e(F, Q) \geq 9, e\left(x_{0}, Q\right)>0$ and $[F, Q] \nsupseteq 2 C_{4}$, then there exist a labelling $F=z_{0} z_{1} z_{2} z_{3} z_{1}$ and a 4-cycle $a_{1} a_{2} a_{3} a_{4} a_{1}$ in $[Q]$ such that one of the following statements (3) to (8) holds:

$$
\begin{align*}
& N\left(z_{0}, Q\right)=\left\{a_{1}\right\}, N\left(z_{2}, Q\right)=\left\{a_{1}, a_{4}\right\}, N\left(z_{3}, Q\right)=\left\{a_{1}, a_{2}\right\}, e\left(z_{1}, Q\right)=4, a_{1} a_{3} \in E, a_{2} a_{4} \notin E(3) \tag{3}\\
& N\left(z_{0} z_{2} z_{3}, Q\right) \subseteq\left\{a_{1}, a_{3}\right\}, 3 \leq e\left(z_{1}, Q\right) \leq 4, a_{1} a_{3} \in E ; \tag{4}\\
& N\left(z_{0} z_{1}, Q\right) \subseteq\left\{a_{1}, a_{3}\right\}, N\left(z_{2}, Q\right) \subseteq\left\{a_{1}, a_{4}, a_{3}\right\}, N\left(z_{3}, Q\right) \subseteq\left\{a_{1}, a_{2}, a_{3}\right\}, a_{1} a_{3} \in E, a_{2} a_{4} \notin E ; \tag{5}\\
& N\left(z_{0}, Q\right) \subseteq\left\{a_{1}, a_{2}\right\}, N\left(z_{2}, Q\right) \subseteq\left\{a_{1}, a_{2}, a_{3}\right\}, N\left(z_{3}, Q\right) \subseteq\left\{a_{1}\right\}, a_{1} a_{3} \in E, a_{2} a_{4} \notin E ; \tag{6}\\
& N\left(z_{0}, Q\right)=\left\{a_{1}\right\}, N\left(z_{1}, Q\right)=N\left(z_{2}, Q\right)=\left\{a_{1}, a_{2}, a_{3}\right\}, N\left(z_{3}, Q\right)=\left\{a_{1}, a_{3}\right\}, a_{1} a_{3} \in E, a_{2} a_{4} \notin(\mathbb{Z F}) \\
& N\left(z_{0}, Q\right)=\left\{a_{1}\right\}, e\left(z_{1} z_{2}, Q\right)=8, e\left(z_{3}, Q\right)=0, a_{1} a_{3} \in E . \tag{8}
\end{align*}
$$

In addition, if (3) or (8) holds then $[T, Q, v] \supseteq 2 C_{4}$ for each $v \in V(G)-V(F \cup Q)$ with $e(v, Q) \geq 2$.

Proof. The last statement is obvious since $v \rightarrow(Q, a)$ for some $a \in V(Q)$ with $e(a, T) \geq 2$. We proceed to prove one of (3) to (8) to be true. Let $H=[F, Q]$, $F=z_{0} z_{1} z_{2} z_{3} z_{1}$ and $Q=a_{1} a_{2} a_{3} a_{4} a_{1}$. As $H \nsupseteq 2 C_{4}, z_{0} \nrightarrow(Q ; V(T))$. As $e(F, Q) \geq 9$, $e(u, T) \geq 2$ for some $u \in V(Q)$. Then $z_{0} \nrightarrow Q$ and so $e\left(z_{0}, Q\right) \leq 2$ by Lemma 4.1(a). We now divide the proof into the following two cases.

Case 1. $e\left(z_{0}, Q\right)=2$.
In this case, $e(T, Q) \geq 7$. First, suppose that $e\left(z_{0}, a_{1} a_{3}\right)=2$ or $e\left(z_{0}, a_{2} a_{4}\right)=2$. W.l.o.g., say the former holds. Then $z_{0} \rightarrow\left(Q, a_{i}\right)$ for $i \in\{2,4\}$. As $H \nsupseteq 2 C_{4}$, $e\left(a_{2}, T\right) \leq 1$ and $e\left(a_{4}, T\right) \leq 1$. Thus $e\left(a_{1} a_{3}, T\right) \geq 5$. W.l.o.g., say $e\left(a_{1}, T\right)=3$ and $e\left(a_{3}, T\right) \geq 2$. As $H \nsupseteq 2 C_{4}, z_{2} \nrightarrow\left(Q ; z_{0} z_{1} z_{3}\right)$ and so $e\left(z_{2}, a_{2} a_{4}\right) \leq 1$. Similarly, $e\left(z_{3}, a_{2} a_{4}\right) \leq 1$. Assume that $e\left(z_{2}, Q\right)=3$ or $e\left(z_{3}, Q\right)=3$. W.l.o.g., say
$e\left(z_{2}, a_{1} a_{4} a_{3}\right)=3$. Then $e\left(a_{4}, z_{1} z_{3}\right)=0$. As $z_{2} \nrightarrow\left(Q ; z_{0} z_{1} z_{3}\right), a_{2} a_{4} \notin E$. As $\left[z_{0}, z_{1}, z_{3}, a_{1}\right] \cong C_{4}^{+}$and $\left[a_{3}, a_{4}, z_{2}\right] \cong C_{3}, H \supseteq C_{3} \uplus C_{4}^{+}$and so $a_{1} a_{3} \in E$ by (1). If $z_{1} a_{2} \notin E$, then (5) holds. If $z_{1} a_{2} \in E$, then $H \supseteq 2 C_{4}=\left\{z_{1} a_{2} a_{3} z_{0} z_{1}, z_{2} a_{4} a_{1} z_{3} z_{2}\right\}$, a contradiction. Next, assume that $e\left(z_{2}, Q\right) \leq 2$ and $e\left(z_{3}, Q\right) \leq 2$. We claim $e\left(z_{2} z_{3}, a_{2} a_{4}\right)=0$. If this is false, say w.l.o.g. $z_{2} a_{4} \in E$. Then $e\left(a_{4}, z_{1} z_{3}\right)=0$. As $e(T, Q) \geq 7, e\left(z_{1} z_{3}, a_{1} a_{2} a_{3}\right) \geq 5$. It follows that $e\left(a_{1} a_{3}, z_{1} z_{3}\right)=4$ and $e\left(a_{2}, z_{1} z_{3}\right)=1$. As $e\left(z_{3}, Q\right)<3, a_{2} z_{1} \in E$. Thus $H \supseteq 2 C_{4}=\left\{z_{1} a_{2} a_{3} z_{0} z_{1}, z_{2} a_{4} a_{1} z_{3} z_{2}\right\}$, a contradiction. Hence $e\left(z_{2} z_{3}, a_{2} a_{4}\right)=0$. It remains to show that $a_{1} a_{3} \in E$ and so (4) holds. Clearly, if $a_{2} a_{4} \in E$, then $\left[a_{2}, a_{3}, a_{4}\right] \cong C_{3}, H \supseteq C_{3} \uplus K_{4}$ and so $a_{1} a_{3} \in E$ by (1). On the contrary, say $a_{1} a_{3} \notin E$. Then $a_{2} a_{4} \notin E$ and so $\tau(Q)=0$. If $e\left(z_{1}, a_{2} a_{4}\right)=2$, then $z_{1} \xrightarrow{a}\left(Q, a_{3}\right)$. By (1), $\left[z_{2}, z_{3}, a_{3}\right] \nsupseteq C_{3}$ and so $e\left(a_{3}, z_{2} z_{3}\right) \leq 1$. As $e(T, Q) \geq 7$, it follows that $e\left(z_{1}, Q\right)=4$. Thus $z_{1} \xrightarrow{a}\left(Q, a_{1}\right)$ and $\left[a_{1}, z_{2}, z_{3}\right] \supseteq C_{3}$, contradicting (1). If $e\left(z_{1}, a_{2} a_{4}\right) \leq 1$, say $z_{1} a_{2} \notin E$. Then $e\left(z_{1}, a_{1} a_{4} a_{3}\right)=3$ and $e\left(z_{2} z_{3}, a_{1} a_{3}\right)=4$. Consequently, $\left[z_{0}, z_{1}, a_{4}, a_{1}\right] \supseteq C_{4}^{+}$and $\left[z_{2}, z_{3}, a_{3}\right] \supseteq C_{3}$, contradicting (1).

Next, suppose $e\left(z_{0}, a_{i} a_{i+1}\right)=2$ for some $a_{i} \in V(Q)$. Say w.l.o.g. $e\left(z_{0}, a_{1} a_{2}\right)=2$. We may assume that $\tau(Q) \leq 1$ for otherwise we choose a 4 -cycle Q^{\prime} from $[Q]$ such that a_{1} and a_{2} are not consecutive on Q^{\prime} and repeat the above argument. Thus $H \nsupseteq C_{3} \uplus K_{4}$ by (1). As $\left[z_{0}, a_{1}, a_{2}\right] \cong C_{3}$ and $H \nsupseteq C_{3} \uplus K_{4}$, we see that $e\left(a_{4}, T\right) \leq 2$ and $e\left(a_{3}, T\right) \leq 2$. If $e\left(a_{3}, T\right)=2$ or $e\left(a_{4}, T\right)=2$, then $H \supseteq C_{3} \uplus C_{4}^{+}$and so $\tau(Q) \geq 1$ by (1). If $e\left(a_{3}, T\right) \leq 1$ and $e\left(a_{4}, T\right) \leq 1$, then $e\left(a_{1}, T\right)=3$ or $e\left(a_{2}, T\right)=3$ and so $H \supseteq 2 P_{2} \uplus K_{4}$. Then by Lemma 4.2, $\tau(Q) \neq 0$. We conclude that $\tau(Q)=1$. W.l.o.g., say $a_{1} a_{3} \in E$. Then $\left[a_{1}, a_{4}, a_{3}\right] \cong C_{3}$ and $z_{0} \rightarrow\left(Q, a_{4}\right)$. Thus $e\left(a_{2}, T\right) \leq 2$ and $e\left(a_{4}, T\right) \leq 1$ as $H \nsupseteq C_{3} \uplus K_{4}$ and $H \nsupseteq 2 C_{4}$. We shall prove that (6) holds. We claim $e\left(a_{4}, z_{2} z_{3}\right)=0$. If false, say $a_{4} z_{2} \in E$. Then $e\left(a_{4}, z_{1} z_{3}\right)=0$. If $z_{3} a_{3} \in E$ then $\left[z_{3}, a_{3}, a_{4}, z_{2}\right] \supseteq C_{4}$ and so $e\left(z_{1}, a_{1} a_{2}\right)=0$ as $H \nsupseteq 2 C_{4}$. Similarly, if $z_{3} a_{1} \in E$ then $z_{1} a_{3} \notin E$. This implies that $e\left(z_{1} z_{3}, a_{1} a_{2} a_{3}\right) \leq 4$ and if $e\left(z_{1} z_{3}, a_{1} a_{2} a_{3}\right)=4$ then $e\left(a_{2}, z_{1} z_{3}\right)=2$. As $e\left(z_{2}, Q\right) \geq$ $7-e\left(z_{1} z_{3}, Q\right) \geq 3$, we see that $e\left(z_{2}, Q-a_{2}\right) \geq 2$ and so $z_{2} \rightarrow\left(Q, a_{2}\right)$. As $H \nsupseteq 2 C_{4}$, $z_{2} \nrightarrow\left(Q, a_{2} ; z_{0} z_{1} z_{3}\right)$. Thus $a_{2} z_{3} \notin E$. We conclude that $e\left(z_{1} z_{3}, a_{1} a_{2} a_{3}\right) \leq 3$. It follows that $e\left(z_{2}, Q\right)=4$ and $e\left(z_{1} z_{3}, a_{1} a_{2} a_{3}\right)=3$. As $z_{2} \xrightarrow{a}\left(Q, a_{2}\right),\left[z_{0}, z_{1}, a_{2}\right] \nsupseteq C_{3}$ by (1) and so $a_{2} z_{1} \notin E$. Thus $e\left(a_{2}, z_{1} z_{3}\right)=0$. As $H \nsupseteq 2 C_{4}, z_{2} \nrightarrow\left(Q, a_{1} ; z_{0} z_{1} z_{3}\right)$ and so $a_{1} z_{3} \notin E$. Thus $e\left(a_{3}, z_{1} z_{3}\right)=2$ as $e\left(z_{1} z_{3}, a_{1} a_{2} a_{3}\right)=3$, and so $e\left(a_{3}, T\right)=3$, a contradiction. Hence $e\left(a_{4}, z_{2} z_{3}\right)=0$. Next, we claim $e\left(a_{3}, z_{2} z_{3}\right) \leq 1$. If false, say $e\left(a_{3}, z_{2} z_{3}\right)=2$. Then $z_{1} a_{3} \notin E$ as $e\left(a_{3}, T\right) \leq 2$. As $\left[a_{3}, z_{2}, z_{3}\right] \cong C_{3}$ and $H \nsupseteq C_{3} \uplus K_{4}, e\left(z_{1}, a_{1} a_{2}\right) \leq 1$. Thus $e\left(z_{1}, Q\right) \leq 2$ and so $e\left(z_{2} z_{3}, a_{1} a_{2}\right) \geq 7-2-2=3$. Then $\left\{a_{1} z_{i}, a_{2} z_{j}\right\} \subseteq E$ for some $\{i, j\}=\{2,3\}$. Thus $z_{i} \rightarrow\left(Q, a_{2} ; z_{0} z_{1} z_{j}\right)$, i.e., $H \supseteq 2 C_{4}$, a contradiction. Hence $e\left(a_{3}, z_{2} z_{3}\right) \leq 1$. As $e\left(z_{2} z_{3}, Q\right) \geq 9-e\left(z_{0} z_{1}, Q\right) \geq 3$, we may assume w.l.o.g. that $e\left(z_{2}, Q\right) \geq 2$. If $N\left(z_{3}, Q\right) \subseteq\left\{a_{1}\right\}$ then (6) holds. So suppose $e\left(z_{3}, a_{2} a_{3}\right) \geq 1$. First, assume $z_{3} a_{2} \in E$. Then $e\left(z_{2}, a_{1} a_{3}\right) \leq 1$ as $z_{2} \nrightarrow\left(Q, a_{2} ; z_{0} z_{1} z_{3}\right)$. Thus $e\left(z_{2}, a_{1} a_{3}\right)=1$ and $z_{2} a_{2} \in E$. Then $z_{1} a_{2} \notin E$ as $e\left(a_{2}, T\right) \leq 2$. As $z_{3} \nrightarrow\left(Q, a_{2} ; z_{0} z_{1} z_{2}\right), e\left(z_{3}, a_{1} a_{3}\right) \leq 1$.

It follows that $e\left(z_{1}, a_{1} a_{4} a_{3}\right) \geq 7-2-2=3$. Thus $z_{1} \xrightarrow{a}\left(Q, a_{2}\right)$ and $\left[a_{2}, z_{2}, z_{3}\right] \cong C_{3}$, contradicting (1). Hence $z_{3} a_{2} \notin E$. Finally, assume $z_{3} a_{3} \in E$. Then $z_{2} a_{3} \notin E$ as $e\left(a_{3}, z_{2} z_{3}\right) \leq 1$. Hence $e\left(z_{2}, a_{1} a_{2}\right)=2$. Then $z_{3} a_{1} \notin E$ as $z_{3} \nrightarrow\left(Q, a_{2} ; z_{0} z_{1} z_{2}\right)$. Thus $e\left(z_{2} z_{3}, Q\right)=3$ and so $e\left(z_{1}, Q\right)=4$. Then $H \supseteq 2 C_{4}=\left\{z_{0} z_{1} a_{4} a_{1} z_{0}, z_{2} a_{2} a_{3} z_{3} z_{2}\right\}$, a contradiction.

Case 2. $e\left(z_{0}, Q\right)=1$.
Then $e(T, Q) \geq 8$. Say $z_{0} a_{1} \in E$. If $e\left(z_{3}, Q\right)=0$ or $e\left(z_{2}, Q\right)=0$, we assume $e\left(z_{3}, Q\right)=0$. Then $e\left(z_{1} z_{2}, Q\right)=8$ and $\left[z_{0}, a_{1}, z_{1}\right] \cong C_{3}$. By $(1), z_{2} \xrightarrow{n a}\left(Q, a_{1}\right)$ and so $a_{1} a_{3} \in E$. Thus (8) holds. Hence we may assume $e\left(z_{3}, Q\right) \geq 1$ and $e\left(z_{2}, Q\right) \geq 1$. Suppose $e\left(z_{3}, Q\right)=1$ or $e\left(z_{2}, Q\right)=1$. Say the former holds. If $z_{3} a_{1} \in E$, then $e\left(z_{2}, a_{2} a_{4}\right) \leq 1$ as $z_{2} \nrightarrow\left(Q, a_{1} ; z_{0} z_{1} z_{3}\right)$. Thus $e\left(z_{1}, Q\right)=4$ and $e\left(z_{2}, Q\right)=3$. W.l.o.g., say $e\left(z_{2}, a_{1} a_{2} a_{3}\right)=3$. Then $a_{2} a_{4} \notin E$ as $z_{2} \nrightarrow\left(Q, a_{1} ; z_{0} z_{1} z_{3}\right)$. As $\left[a_{1}, z_{2}, z_{3}\right] \cong C_{3}$ and by (1), $z_{1} \xrightarrow{n a}\left(Q, a_{1}\right)$ and so $a_{1} a_{3} \in E$. Thus (6) holds. If $z_{3} a_{3} \in E$, then it is easy to see that $E\left(z_{1} z_{2}, a_{2} a_{4}\right)$ does not contain two independent edges for otherwise $H \supseteq 2 C_{4}$. Consequently, $e\left(z_{1} z_{2}, a_{2} a_{4}\right) \leq 2$ and so $e(T, Q) \leq 7$, a contradiction. Hence $e\left(z_{3}, a_{2} a_{4}\right)=1$. Say w.l.o.g. $z_{3} a_{2} \in E$. As above, if $\tau(Q)=2$ then $E\left(z_{1} z_{2}, a_{3} a_{4}\right)$ does not contain two independent edges since $H \nsupseteq 2 C_{4}$ and so $e(T, Q) \leq 7$, a contradiction. Hence $\tau(Q) \leq 1$. If $z_{2} a_{3} \in E$ then $z_{1} a_{4} \notin E$ as $H \nsupseteq 2 C_{4}$. Consequently, $e\left(z_{2}, Q\right)=$ 4 and $e\left(z_{1}, a_{1} a_{2} a_{3}\right)=3$. Clearly, $\left[z_{1}, z_{0}, a_{1}\right] \cong C_{3}$ and $\left[z_{1}, z_{3}, a_{2}\right] \cong C_{3}$. By (1), $z_{2} \xrightarrow{n a}\left(Q, a_{1}\right)$ and $z_{2} \xrightarrow{n a}\left(Q, a_{2}\right)$, which implies that $\tau(Q)=2$, a contradiction. Hence $z_{2} a_{3} \notin E$. It follows that $e\left(z_{2}, a_{2} a_{1} a_{4}\right)=3$ and $e\left(z_{1}, Q\right)=4$. Then $\left[a_{2}, z_{2}, z_{3}\right] \supseteq C_{3}$. By $(1) z_{1} \xrightarrow{n a}\left(Q, a_{2}\right)$ and so $a_{2} a_{4} \in E$. By exchanging the subscripts of a_{1} with a_{2} and a_{3} with a_{4}, we see that (6) holds. Therefore we may assume below that $e\left(z_{i}, Q\right) \geq 2$ for $i \in\{2,3\}$.

First, suppose that either $e\left(z_{3}, Q\right)=2$ or $e\left(z_{2}, Q\right)=2$. Say the former holds. Then $e\left(z_{1} z_{2}, Q\right) \geq 6$. Assume for the moment $e\left(z_{3}, a_{2} a_{4}\right)=2$. Then $z_{2} a_{1} \notin E$ as $z_{3} \nrightarrow\left(Q, a_{1} ; z_{0} z_{1} z_{2}\right)$. Thus $e\left(z_{2}, Q\right) \leq 3$ and so $e\left(z_{1}, Q\right) \geq 3$. Hence $e\left(z_{1}, a_{2} a_{4}\right) \geq 1$. W.l.o.g., say $z_{1} a_{2} \in E$. Then $\left[z_{0}, z_{1}, a_{2}, a_{1}\right] \supseteq C_{4}$. Thus $z_{2} a_{3} \notin E$ as $H \nsupseteq 2 C_{4}$. It follows that $e\left(z_{1}, Q\right)=4$ and $e\left(z_{2}, a_{2} a_{4}\right)=2$. Clearly, $\left[a_{2}, z_{2}, z_{3}\right] \cong C_{3}$. By (1), $z_{1} \xrightarrow{n a}\left(Q, a_{2}\right)$ and so $a_{2} a_{4} \in E$. Then $\left[z_{0}, z_{1}, a_{1}\right] \cong C_{3}$ and $\left[a_{2}, a_{4}, z_{2}, z_{3}\right] \cong K_{4}$. By $(1), \tau(Q)=2$. Then $\left[z_{0}, z_{1}, a_{3}, a_{1}\right] \supseteq C_{4}$ and so $H \supseteq 2 C_{4}$, a contradiction. Hence $e\left(z_{3}, a_{2} a_{4}\right) \neq 2$. Next, assume $e\left(z_{3}, a_{1} a_{3}\right)=2$. As $z_{2} \nrightarrow\left(Q, a_{1} ; z_{0} z_{1} z_{3}\right)$, $e\left(z_{2}, a_{2} a_{4}\right) \leq 1$. Hence $e\left(z_{2}, Q\right) \leq 3$ and so $e\left(z_{1}, Q\right) \geq 3$. If $e\left(z_{2}, Q\right)=3$, we may assume $e\left(z_{2}, a_{1} a_{2} a_{3}\right)=3$. Then $\left[a_{2}, a_{3}, z_{2}, z_{3}\right] \supseteq C_{4}$ and so $z_{1} a_{4} \notin E$ as $H \nsupseteq 2 C_{4}$. Consequently, $e\left(z_{1}, a_{1} a_{2} a_{3}\right)=3$. As $z_{2} \nrightarrow\left(Q, a_{1} ; z_{0} z_{1} z_{3}\right), a_{2} a_{4} \notin E$. Clearly, $\left[z_{0}, z_{1}, a_{2}, a_{1}\right] \cong C_{4}^{+}$and $\left[a_{3}, z_{2}, z_{3}\right] \cong C_{3}$. By (1), $\tau(Q)=1$, i.e., $a_{1} a_{3} \in E$, and so (7) holds. Hence we may assume $e\left(z_{2}, Q\right) \leq 2$. It follows that $e\left(z_{2}, Q\right)=2$ and $e\left(z_{1}, Q\right)=4$. As $H \nsupseteq 2 C_{4}$, we readily see $e\left(z_{2}, a_{2} a_{4}\right)=0$. Thus $e\left(z_{2}, a_{1} a_{3}\right)=2$. As $\left[a_{1}, z_{2}, z_{3}\right] \cong C_{3}, z_{1} \xrightarrow{n a}\left(Q, a_{1}\right)$ by (1). Thus $a_{1} a_{3} \in E$ and so (4) holds. Next,
assume that $e\left(z_{3}, a_{4} a_{3}\right)=2$ or $e\left(z_{3}, a_{2} a_{3}\right)=2$. Say the former holds. If $z_{1} a_{2} \in E$ then $\left[z_{0}, z_{1}, a_{2}, a_{1}\right] \supseteq C_{4}$ and so $e\left(z_{2}, a_{3} a_{4}\right)=0$ as $H \nsupseteq 2 C_{4}$. Consequently, $e\left(z_{1}, Q\right)=4$, $e\left(z_{2}, a_{1} a_{2}\right)=2$ and clearly, $H \supseteq 2 C_{4}$, a contradiction. Hence $z_{1} a_{2} \notin E$. Thus $e\left(z_{1}, Q\right) \leq 3$ and so $e\left(z_{2}, Q\right) \geq 3$. If $z_{2} a_{2} \notin E$ then $e\left(z_{1} z_{2}, a_{1} a_{4} a_{3}\right)=6$. If $z_{2} a_{2} \in E$, then $z_{1} a_{4} \notin E$ because $\left[z_{2}, a_{2}, a_{3}, z_{3}\right] \supseteq C_{4}$ and $H \nsupseteq 2 C_{4}$. Consequently, $e\left(z_{2}, Q\right)=4$ and $e\left(z_{1}, a_{1} a_{3}\right)=2$. In either situation, $\left[a_{1}, z_{0}, z_{1}\right] \cong C_{3}$ and $\left[z_{2}, z_{3}, a_{3}, a_{4}\right] \cong K_{4}$. By (1), $\tau(Q)=2$ and so $z_{3} \rightarrow\left(Q, a_{1} ; z_{0} z_{1} z_{2}\right)$, a contradiction. Finally, assume that $e\left(z_{3}, a_{1} a_{2}\right)=2$ or $e\left(z_{3}, a_{1} a_{4}\right)=2$. Say the former holds. As $z_{2} \nrightarrow\left(Q, a_{1} ; z_{0} z_{1} z_{3}\right), e\left(z_{2}, a_{2} a_{4}\right) \leq 1$. Thus $e\left(z_{2}, Q\right) \leq 3$ and so $e\left(z_{1}, Q\right) \geq 3$. We claim that $z_{2} a_{3} \notin E$. If false, then $\left[z_{3}, z_{2}, a_{3}, a_{2}\right] \supseteq C_{4}$ and so $z_{1} a_{4} \notin E$ as $H \nsupseteq 2 C_{4}$. Thus $e\left(z_{1}, a_{1} a_{2} a_{3}\right)=3, e\left(z_{2}, a_{1} a_{3}\right)=2$ and $e\left(z_{2}, a_{2} a_{4}\right)=1$. As $z_{2} \nrightarrow\left(Q, a_{1} ; z_{0} z_{1} z_{3}\right)$, $a_{2} a_{4} \notin E$. As $\left[a_{2}, z_{1}, z_{3}\right] \cong C_{3}, z_{2} \xrightarrow{n a}\left(Q, a_{2}\right)$ by (1) and this implies that $z_{2} a_{4} \notin E$. Thus $z_{2} a_{2} \in E$ and so $e\left(a_{2}, T\right)=3$, i.e., $\tau\left(a_{2} z_{1} z_{2} z_{3} a_{2}\right)=2>\tau(Q)$. By (1), $\left[a_{1}, a_{4}, a_{3}\right] \nsupseteq C_{3}$ and so $a_{1} a_{3} \notin E$. Thus $\tau(Q)=0$. But, as $\left[z_{0}, a_{1}, a_{4}, a_{3}\right] \supseteq 2 P_{2}$, we obtain a contradiction with Lemma 4.2. Hence $z_{2} a_{3} \notin E$. Thus $z_{2} a_{1} \in E, e\left(z_{2}, a_{2} a_{4}\right)=1$ and $e\left(z_{1}, Q\right)=4$. If $z_{2} a_{2} \in E$, then $\left[a_{1}, a_{2}, z_{2}, z_{3}\right] \cong K_{4},\left[z_{1}, a_{3}, a_{4}\right] \cong C_{3}$ and so $\tau(Q)=2$ by (1). Consequently, (4) holds by exchanging the subscripts of a_{2} with a_{3}. Hence assume $z_{2} a_{2} \notin E$ and $z_{2} a_{4} \in E$. As $\left[a_{1}, z_{2}, z_{3}\right] \cong C_{3}, z_{1} \xrightarrow{n a}\left(Q, a_{1}\right)$ by (1) and so $a_{1} a_{3} \in E$. Then $a_{2} a_{4} \notin E$ for otherwise $H \supseteq 2 C_{4}=\left\{z_{2} z_{3} a_{2} a_{4} z_{2}, z_{0} z_{1} a_{3} a_{1} z_{0}\right\}$. Then (3) holds.

Finally, suppose that $e\left(z_{2}, Q\right) \geq 3$ and $e\left(z_{3}, Q\right) \geq 3$. First, assume that either $e\left(z_{2}, a_{2} a_{4}\right)=2$ or $e\left(z_{3}, a_{2} a_{4}\right)=2$. Say the former holds. Then $z_{3} a_{1} \notin E$ as $z_{2} \nrightarrow$ $\left(Q, a_{1} ; z_{0} z_{1} z_{3}\right)$. Thus $e\left(z_{3}, a_{2} a_{3} a_{4}\right)=3$. Then $z_{2} a_{1} \notin E$ as $z_{3} \nrightarrow\left(Q, a_{1} ; z_{0} z_{1} z_{2}\right)$ and so $e\left(z_{2}, a_{2} a_{3} a_{4}\right)=3$. Thus $e\left(z_{1}, a_{2} a_{4}\right)=0$ as $H \nsupseteq 2 C_{4}$. Hence $e\left(z_{1}, a_{1} a_{3}\right)=2$. Obviously, $H \supseteq C_{3} \uplus K_{4}$. Thus $\tau(Q)=2$ by (1) and so $H \supseteq 2 C_{4}$, a contradiction. Hence $e\left(z_{2}, a_{2} a_{4}\right) \leq 1$ and $e\left(z_{3}, a_{2} a_{4}\right) \leq 1$. Thus $e\left(z_{2}, Q\right)=e\left(z_{3}, Q\right)=3$ and $e\left(z_{1}, Q\right) \geq 2$. W.l.o.g., say $e\left(z_{2}, a_{1} a_{4} a_{3}\right)=3$. If $z_{3} a_{4} \in E$ then $e\left(z_{3}, a_{1} a_{4} a_{3}\right)=3$. Thus $z_{1} a_{2} \notin E$ and $a_{2} a_{4} \notin E$ as $H \nsupseteq 2 C_{4}$. Since $\tau(Q) \leq 1$ and $\left[z_{2}, z_{3}, a_{3}, a_{4}\right] \supseteq K_{4},\left[a_{1}, z_{0}, z_{1}\right] \nsupseteq C_{3}$ by (1) and so $z_{1} a_{1} \notin E$. Thus $e\left(z_{1}, a_{3} a_{4}\right)=2$. As $\left[a_{2}, a_{1}, z_{0}, z_{1}\right] \supseteq 2 P_{2}$ and by Lemma $4.2, \tau(Q) \neq 0$ and so $a_{1} a_{3} \in E$. Thus $\left[a_{1}, a_{2}, a_{3}\right] \cong C_{3},\left[T, a_{4}\right] \cong K_{4}$ and so $\tau(Q)=2$ by (1), a contradiction. Therefore $z_{3} a_{4} \notin E$ and so $e\left(z_{3}, a_{1} a_{2} a_{3}\right)=3$. Then we see that $e\left(z_{1}, a_{2} a_{4}\right)=0$ and $a_{2} a_{4} \notin E$ as $H \nsupseteq 2 C_{4}$. Thus $e\left(z_{1}, a_{1} a_{3}\right)=2$. Since $\left[z_{0}, z_{1}, z_{3}, a_{1}\right] \cong C_{4}^{+}$and $\left[a_{3}, a_{4}, z_{2}\right] \cong C_{3}$, we obtain $\tau(Q)=1$ by (1) and so $a_{1} a_{3} \in E$. Thus (5) holds.

Lemma 4.4 Let $Q \in \mathcal{Q}$. If $e\left(F-x_{1}, Q\right) \geq 7$ with $e\left(x_{0}, Q\right) \geq 1$ then there exist two labellings $F=z_{0} z_{1} z_{2} z_{3} z_{1}$ and $Q=u_{1} u_{2} u_{3} u_{4} u_{1}$ such that one of the following statements (9) to (14) holds:

$$
\begin{equation*}
e\left(z_{0}, Q\right)=1, N\left(z_{2}, Q\right)=N\left(z_{3}, Q\right)=\left\{u_{2}, u_{3}, u_{4}\right\} \tag{9}
\end{equation*}
$$

$$
\begin{align*}
& e\left(z_{0}, Q\right)=4,\left\{u_{2}, u_{3}, u_{4}\right\} \subseteq N\left(z_{2}, Q\right), e\left(z_{3}, Q\right)=0, \tau(Q)=2 \tag{10}\\
& N\left(z_{0}, Q\right)=\left\{u_{1}, u_{2}, u_{3}\right\}, e\left(z_{2}, Q\right)=4, e\left(z_{3}, Q\right)=0, u_{2} u_{4} \in E \tag{11}\\
& N\left(z_{0}, Q\right)=N\left(z_{2}, Q\right)=\left\{u_{1}, u_{2}, u_{3}\right\}, N\left(z_{3}, Q\right)=\left\{u_{4}\right\}, u_{2} u_{4} \in E \tag{12}\\
& N\left(z_{0}, Q\right)=\left\{u_{1}\right\}, N\left(z_{2}, Q\right)=\left\{u_{1}, u_{4}, u_{3}\right\}, N\left(z_{3}, Q\right)=\left\{u_{1}, u_{2}, u_{3}\right\}, u_{2} u_{4} \notin E(113) \tag{13}\\
& N\left(z_{0}, Q\right)=\left\{u_{1}, u_{3}\right\}, N\left(z_{2}, Q\right)=\left\{u_{1}, u_{4}, u_{3}\right\}, N\left(z_{3}, Q\right)=\left\{u_{1}, u_{3}\right\}, u_{2} u_{4} \notin E(.14) \tag{.14}
\end{align*}
$$

Moreover, if one of (10) to (12) holds, then $z_{2} \rightarrow Q$ and $v \rightarrow\left(Q ; z_{0} z_{1} z_{2}\right)$ for each $v \in V(G)-V(F \cup Q)$ with $e(v, Q) \geq 2$.

Proof. The last statement is an easy observation. We claim that there exist two labellings $F=z_{0} z_{1} z_{2} z_{3} z_{1}$ and $Q=u_{1} u_{2} u_{3} u_{4} u_{1}$ such that either one of (9) to (14) holds or one of (15) to (20) holds:

$$
\begin{align*}
& N\left(z_{0}, Q\right)=\left\{u_{1}\right\}, e\left(z_{2}, Q\right)=4, N\left(z_{3}, Q\right)=\left\{u_{2}, u_{3}\right\}, u_{1} u_{3} \in E, u_{2} u_{4} \notin E \tag{15}\\
& N\left(z_{0}, Q\right)=\left\{u_{1}, u_{3}\right\}, N\left(z_{2}, Q\right)=\left\{u_{1}, u_{4}, u_{3}\right\}, N\left(z_{3}, Q\right)=\left\{u_{1}, u_{2}, u_{3}\right\}, u_{2} u_{4} \notin E \tag{16}\\
& N\left(z_{0}, Q\right)=\left\{u_{1}, u_{3}\right\}, N\left(z_{2}, Q\right)=\left\{u_{1}, u_{4}, u_{3}\right\}, N\left(z_{3}, Q\right)=\left\{u_{1}, u_{2}\right\}, u_{2} u_{4} \notin E \tag{17}\\
& N\left(z_{0}, Q\right)=\left\{u_{1}, u_{2}\right\}, e\left(z_{2}, Q\right)=4, N\left(z_{3}, Q\right)=\left\{u_{3}\right\}, u_{1} u_{3} \in E, u_{2} u_{4} \notin E \tag{18}\\
& N\left(z_{0}, Q\right)=\left\{u_{1}, u_{2}\right\}, N\left(z_{2}, Q\right)=\left\{u_{1}, u_{2}, u_{3}\right\}, N\left(z_{3}, Q\right)=\left\{u_{1}, u_{4}\right\}, \tau(Q)=0 ; \tag{19}\\
& N\left(z_{0}, Q\right)=\left\{u_{1}, u_{2}\right\}, N\left(z_{2}, Q\right)=\left\{u_{1}, u_{4}, u_{3}\right\}, N\left(z_{3}, Q\right)=\left\{u_{1}, u_{3}\right\}, u_{1} u_{3} \in E, u_{2} u_{4} \notin \tag{2AB}
\end{align*}
$$

To see these, say w.l.o.g. $Q=Q_{1}=u_{1} u_{2} u_{3} u_{4} u_{1}$. Say $F=z_{0} z_{1} z_{2} z_{3} z_{1}$. Suppose $e\left(z_{0}, Q_{1}\right) \geq 3$. Say $e\left(z_{0}, u_{1} u_{2} u_{3}\right)=3$. By Lemma $4.1(a), u_{2} u_{4} \in E$ and $z_{0} \rightarrow Q_{1}$. As $G_{1} \nsupseteq 2 C_{4}, e\left(u_{i}, z_{2} z_{3}\right) \leq 1$ for each $u_{i} \in V\left(Q_{1}\right)$. If $e\left(z_{0}, Q_{1}\right)=4$ then $\tau\left(Q_{1}\right)=2$ and consequently, $e\left(z_{2}, Q_{1}\right)=0$ or $e\left(z_{3}, Q_{1}\right)=0$ as $G_{1} \nsupseteq 2 C_{4}$. Say w.l.o.g. $e\left(z_{3}, Q_{1}\right)=0$ and so (10) holds. If $e\left(z_{0}, Q_{1}\right)=3$ then $e\left(u_{i}, z_{2} z_{3}\right)=1$ for all $u_{i} \in V\left(Q_{1}\right)$. If $e\left(z_{3}, Q_{1}\right)=0$ or $e\left(z_{2}, Q_{1}\right)=0$, say w.l.o.g. $e\left(z_{3}, Q_{1}\right)=0$, then (11) holds. Hence we may assume w.l.o.g. that $z_{3} u_{4} \in E$ and $e\left(z_{2}, u_{1} u_{2} u_{3}\right) \geq 1$. Then $z_{3} u_{2} \notin E$ as $z_{3} \nrightarrow\left(Q_{1} ; z_{0} z_{1} z_{2}\right)$. Hence $z_{2} u_{2} \in E$. For the same reason, $e\left(z_{3}, u_{1} u_{3}\right)=0$ and so $e\left(z_{2}, u_{1} u_{3}\right)=2$. Thus (12) holds. Next, suppose $e\left(z_{0}, Q_{1}\right)=1$. Then $e\left(z_{2} z_{3}, Q_{1}\right) \geq 6$. Say $z_{0} u_{1} \in E$. Assume $e\left(z_{i}, u_{2} u_{4}\right)=2$ for some $i \in\{2,3\}$. Say w.l.o.g. $e\left(z_{2}, u_{2} u_{4}\right)=2$. Then $z_{3} u_{1} \notin E$ as $z_{2} \nrightarrow\left(Q_{1}, u_{1} ; z_{0} z_{1} z_{3}\right)$. Similarly, if $e\left(z_{3}, u_{2} u_{4}\right)=2$ then $z_{2} u_{1} \notin E$, and consequently, $e\left(z_{2} z_{3}, u_{2} u_{3} u_{4}\right)=6$. Thus (9) holds. If $e\left(z_{3}, u_{2} u_{4}\right) \leq 1$ then $e\left(z_{3}, Q_{1}\right)=2, e\left(z_{2}, Q_{1}\right)=4$ and we may assume w.l.o.g. that $e\left(z_{3}, u_{2} u_{3}\right)=2$. Then $u_{2} u_{4} \notin E$ as $z_{3} \nrightarrow\left(Q_{1}, u_{1} ; z_{0} z_{1} z_{2}\right)$. Clearly, $\left[z_{2}, z_{3}, u_{2}, u_{3}\right] \supseteq K_{4}$ and so $G_{1} \supseteq P_{4} \uplus K_{4}$. By Lemma 4.2, $\tau\left(Q_{1}\right) \neq 0$ and so $u_{1} u_{3} \in E$. Thus (15) holds. If $e\left(z_{i}, u_{2} u_{4}\right) \leq 1$ for $i \in\{2,3\}$ then (13) holds or $N\left(z_{2}, Q_{1}\right)=N\left(z_{3}, Q_{1}\right)$. If the latter holds then (9) holds (if necessary, exchanging the subscripts of some u_{i} 's).

Therefore we may assume $e\left(z_{0}, Q_{1}\right)=2$. Then $e\left(z_{2} z_{3}, Q_{1}\right) \geq 5$. First, suppose $N\left(z_{0}, Q_{1}\right)=\left\{u_{i}, u_{i+2}\right\}$ for some $i \in\{1,2\}$. Say w.l.o.g. $e\left(z_{0}, u_{1} u_{3}\right)=2$.

Then $e\left(u_{2}, z_{2} z_{3}\right) \leq 1$ and $e\left(u_{4}, z_{2} z_{3}\right) \leq 1$ as $G_{1} \nsupseteq 2 C_{4}$. Then $e\left(z_{i}, u_{1} u_{3}\right)=2$ and $e\left(z_{i}, u_{2} u_{4}\right)=1$ for some $i \in\{2,3\}$. W.l.o.g., say $e\left(z_{2}, u_{1} u_{4} u_{3}\right)=3$. As $e\left(z_{3}, u_{1} u_{3}\right) \geq 1$ and $z_{2} \nrightarrow\left(Q_{1} ; z_{0} z_{1} z_{3}\right), u_{2} u_{4} \notin E$. Hence one of (14), (16) and (17) holds. Next, suppose $N\left(z_{0}, Q_{1}\right)=\left\{u_{i}, u_{i+1}\right\}$ for some $i \in\{1,2,3,4\}$. W.l.o.g., say $e\left(z_{0}, u_{1} u_{2}\right)=2$ and $e\left(z_{2}, Q_{1}\right) \geq e\left(z_{3}, Q_{1}\right)$. If $e\left(z_{2}, Q_{1}\right)=4$, then $e\left(z_{3}, u_{1} u_{2}\right)=0$ as $G_{1} \nsupseteq 2 C_{4}$. Then $e\left(z_{3}, u_{3} u_{4}\right) \geq 1$ and so $G_{1} \supseteq C_{3} \uplus C_{4}^{+}$. Thus $\tau\left(Q_{1}\right) \geq 1$ by (1). Say w.l.o.g. $u_{1} u_{3} \in E$. Then $z_{3} u_{4} \notin E$ and $u_{2} u_{4} \notin E$ as $z_{0} \nrightarrow\left(Q_{1} ; z_{2} z_{1} z_{3}\right)$. Thus $z_{3} u_{3} \in E$ and so (18) holds. Hence we may assume $e\left(z_{2}, Q_{1}\right)=3$. Then $\left\{u_{1}, u_{2}\right\} \subseteq N\left(z_{2}\right)$ or $\left\{u_{3}, u_{4}\right\} \subseteq N\left(z_{2}\right)$. First, assume the former holds. As $e\left(z_{2}, u_{3} u_{4}\right)=1$, say w.l.o.g. $z_{2} u_{3} \in E$. Then $z_{3} u_{2} \notin E$ and $e\left(z_{3}, u_{1} u_{3}\right) \leq 1$ as $G_{1} \nsupseteq 2 C_{4}$. Thus $z_{3} u_{4} \in E$ and $e\left(z_{3}, u_{1} u_{3}\right)=1$. If $z_{3} u_{3} \in E$ then $\left[z_{2}, z_{3}, u_{3}, u_{4}\right] \supseteq C_{4}^{+}$and so $G_{1} \supseteq C_{3} \uplus C_{4}^{+}$. Thus $\tau\left(Q_{1}\right) \geq 1$ by (1) and consequently, $z_{3} \rightarrow\left(Q_{1} ; z_{0} z_{1} z_{2}\right)$, a contradiction. Hence $z_{3} u_{3} \notin E$ and so $z_{3} u_{1} \in E$. Then $\tau\left(Q_{1}\right)=0$ as $G_{1} \nsupseteq 2 C_{4}$ and so (19) holds. Therefore we may assume $\left\{u_{3}, u_{4}\right\} \subseteq N\left(z_{2}\right)$. As $e\left(z_{2}, Q_{1}\right)=3$, say w.l.o.g. $e\left(z_{2}, u_{1} u_{4} u_{3}\right)=3$. Then $z_{3} u_{2} \notin E$ as $z_{2} \nrightarrow\left(Q_{1}, u_{2} ; z_{0} z_{1} z_{3}\right)$. Thus $e\left(z_{3}, u_{1} u_{3}\right) \geq 1$. Then $u_{2} u_{4} \notin E$ for otherwise either $z_{0} \rightarrow\left(Q_{1} ; z_{2} z_{1} z_{3}\right)$ or $z_{2} \rightarrow\left(Q_{1} ; z_{0} z_{1} z_{3}\right)$. If $z_{3} u_{4} \in E$ then $G_{1} \supseteq C_{3} \uplus C_{4}^{+}$and so $\tau\left(Q_{1}\right) \geq 1$ by (1). Consequently, $u_{1} u_{3} \in E$ and so $z_{0} \rightarrow\left(Q, u_{4} ; z_{2} z_{1} z_{3}\right)$, a contradiction. Hence $z_{3} u_{4} \notin E$ and so $e\left(z_{3}, u_{1} u_{3}\right)=2$. Again, $G_{1} \supseteq C_{3} \uplus C_{4}^{+}$and so $u_{1} u_{3} \in E$. Thus (20) holds.

To prove the lemma, we shall eliminate each of (15) to (20). We do so by contradiction. First, suppose that (18) or (20) holds. Let $P=u_{2} z_{0} z_{1} z_{3}$. As $G_{1} \nsupseteq 2 C_{4}$, $e\left(z_{1}, u_{1} u_{2}\right)=0$. Thus $e\left(P, G_{1}\right) \leq 15$ and so $e\left(P, H_{1}\right) \geq 8 k-15=8(k-2)+1$. Say w.l.o.g. $e\left(P, Q_{2}\right) \geq 9$. As $\left[z_{2}, u_{1}, u_{3}, u_{4}\right] \cong K_{4}>Q_{1}$ and by (1), $\left[P, Q_{2}\right] \nsupseteq C$ with $C \cong C_{3}$ and $\left[V\left(P \cup Q_{2}\right)-V(C)\right] \geq Q_{2}$. Then we apply Lemma 3.5 to P and Q_{2} and see that either $z_{0} \rightarrow\left(Q_{2} ; z_{1} z_{2} z_{3}\right)$ or $z_{1} \rightarrow\left(Q_{2} ; z_{0} u_{1} u_{2}\right)$. Consequently, $G_{2} \supseteq 3 C_{4}$, a contradiction.

Next, suppose that either (16) or (17) holds. Let $L=z_{0} z_{1} z_{3} u_{2}$. As $G_{1} \nsupseteq 2 C_{4}$, $e\left(z_{1}, u_{2} u_{4}\right)=0$. Thus $e\left(L+u_{4}, G_{1}\right) \leq 19$ and so $e\left(L+u_{4}, H_{1}\right) \geq 10(k-2)+1$. Say w.l.o.g. $e\left(L+u_{4}, Q_{2}\right) \geq 11$. Clearly, $\left[Q_{1}-u_{2}+z_{2}\right]>Q_{1}$. Then $\left[L, Q_{2}\right] \nsupseteq C$ with $C \cong C_{3}$ and $\left[V\left(L \cup Q_{2}\right)-V(C)\right] \geq Q_{2}$. If $e\left(L, Q_{2}\right) \geq 9$ then by Lemma $3.5, \tau\left(Q_{2}\right)=2$ and there exist two labellings $L=y_{1} y_{2} y_{3} y_{4}$ and $Q_{2}=b_{1} b_{2} b_{3} b_{4} b_{1}$ such that one of (a) and (b) in Lemma 3.5 holds w.r.t. L and Q_{2}. Moreover, if (a) holds then $z_{0} \rightarrow\left(Q_{2} ; z_{1} z_{2} z_{3}\right)$ or $u_{2} \rightarrow\left(Q_{2} ; z_{1} z_{2} z_{3}\right)$, and consequently, $G_{2} \supseteq 3 C_{4}$, a contradiction. Hence (b) holds. Then $e\left(z_{1}, Q_{2}\right) \neq 3$ for otherwise $z_{1} \rightarrow\left(Q_{2} ; z_{0} u_{3} u_{2}\right)$ and so $G_{2} \supseteq 3 C_{4}$. Thus $e\left(L, Q_{2}\right)=9$ with $e\left(z_{3}, b_{1} b_{2} b_{3}\right)=3$ and $e\left(z_{1}, Q_{2}\right)=2$. Thus $e\left(u_{4}, Q_{2}\right) \geq 11-9=2$. Then either $z_{3} \rightarrow\left(Q_{2} ; z_{1} z_{2} u_{4}\right)$ or $u_{4} \rightarrow\left(Q_{2} ; z_{1} z_{2} z_{3}\right)$, and so $G_{2} \supseteq 3 C_{4}$, a contradiction. Hence $e\left(L, Q_{2}\right) \leq 8$ and so $e\left(u_{4}, Q_{2}\right) \geq 3$. As $x_{0} \Rightarrow$ $\left(Q_{1}, u_{4}\right), u_{4} \in \mathcal{T}$. By Lemma $4.1(a), u_{4} \rightarrow Q_{2}$. As $G_{2} \nsupseteq 3 C_{4}$, we see that $u_{4} \nrightarrow\left(Q_{2} ; P\right)$ for each $P \in\left\{z_{0} z_{1} z_{3}, z_{0} u_{3} u_{2}, z_{3} z_{2} z_{1}, z_{3} u_{1} u_{2}, z_{1} z_{3} u_{2}\right\}$. This means that $u_{4} \nrightarrow\left(Q_{2} ; v w\right)$
for each $\{v, w\} \subseteq V(L)$ with $v \neq w$ and $\{v, w\} \neq\left\{z_{0}, z_{1}\right\}$. Thus $N\left(b_{i}, L\right)=\left\{z_{0}, z_{1}\right\}$ for each $b_{i} \in V\left(Q_{2}\right)$ with $e\left(b_{i}, L\right) \geq 2$. As $e\left(L, Q_{2}\right) \geq 11-e\left(u_{4}, Q_{2}\right) \geq 7$, it follows that $\left|I\left(z_{0} z_{1}, Q_{2}\right) \cap N\left(u_{4}\right)\right| \geq 3$. Thus $z_{1} \rightarrow\left(Q_{2} ; z_{0} u_{1} u_{4}\right)$ and so $G_{2} \supseteq 3 C_{4}$, a contradiction.

Next, suppose that (19) holds. Let $L_{1}=u_{4} z_{3} z_{1} z_{0}$ and $L_{2}=u_{3} u_{2} z_{0} z_{1}$. As $G_{1} \nsupseteq$ $2 C_{4}, e\left(z_{1}, u_{1} u_{2} u_{3}\right)=0$. Thus $e\left(L_{1}, G_{1}\right) \leq 15, e\left(L_{2}, G_{1}\right) \leq 15$ and so $e\left(L_{1}, H_{1}\right)+$ $e\left(L_{2}, H_{1}\right) \geq 16(k-2)+2$. Say $e\left(L_{1}, Q_{2}\right)+e\left(L_{2}, Q_{2}\right) \geq 17$. Clearly, $G_{1}-V\left(L_{i}\right) \cong C_{4}^{+}$ for $i=1,2$. By (1) and Lemma 3.5, $e\left(L_{i}, Q_{2}\right) \leq 10$ for $i=1,2$. Then for some $s \in\{1,2\}, e\left(L_{s}, Q_{2}\right)=9+r$ with $r \in\{0,1\}$. By Lemma 3.5, $\tau\left(Q_{2}\right)=2$ and there exist two labellings $L_{s}=y_{1} y_{2} y_{3} y_{4}$ and $Q_{2}=b_{1} b_{2} b_{3} b_{4} b_{1}$ such that one of (a) and (b) in Lemma 3.5 holds w.r.t. L_{s} and Q_{2}. First, assume $L_{s}=L_{1}$. Then $e\left(u_{2} u_{3}, Q_{2}\right) \geq$ $17-9-r-e\left(z_{0} z_{1}, Q_{2}\right)=8-r-e\left(z_{0} z_{1}, Q_{2}\right)$. As $G_{2} \nsupseteq 3 C_{4},\left[u_{2}, z_{0}, z_{1}, z_{3}, Q_{2}\right] \nsupseteq$ $2 C_{4}$ and $\left[u_{3}, u_{4}, z_{3}, z_{1}, Q_{2}\right] \nsupseteq 2 C_{4}$. This implies that $u_{2} \nrightarrow\left(Q_{2} ; z_{0} z_{3}\right)$ and $u_{3} \nrightarrow$ $\left(Q_{2} ; u_{4} z_{1}\right)$. If (b) holds, this further implies that $e\left(u_{2}, Q_{2}\right) \leq 2$ with $e\left(u_{2}, b_{3} b_{4}\right) \leq 1$ and $e\left(u_{3}, Q_{2}\right) \leq 2$ with $e\left(u_{3}, b_{3} b_{4}\right) \leq 1$. Assume $e\left(u_{2}, b_{1} b_{2}\right) \neq 0$. Say w.l.o.g. $u_{2} b_{1} \in E$. As $e\left(b_{1}, z_{1} u_{4}\right) \geq 1$, we see that $e\left(z_{3}, b_{2} b_{3}\right) \leq 1$ for otherwise $z_{3} \rightarrow\left(Q_{2}, b_{1} ; u_{2} z_{0} z_{1}\right)$ or $z_{3} \rightarrow\left(Q_{2}, b_{1} ; u_{2} u_{3} u_{4}\right)$ and so $G_{2} \supseteq 3 C_{4}$. It follows that $e\left(L_{1}, Q_{2}\right)=9$ with $e\left(z_{1}, Q_{2}\right)=$ 3 and $e\left(z_{0}, Q_{2}\right)=2$. Thus $z_{1} \rightarrow\left(Q_{2}, b_{1} ; u_{2} u_{1} z_{0}\right)$ and so $G_{2} \supseteq 3 C_{4}$, a contradiction. Hence $e\left(u_{2}, b_{1} b_{2}\right)=0$. Next, assume $e\left(u_{3}, b_{1} b_{2}\right) \neq 0$. Say $u_{3} b_{1} \in E$. As $G_{2} \nsupseteq 3 C_{4}$, $z_{1} \nrightarrow\left(Q_{2}, b_{1} ; u_{3} u_{2} z_{0}\right)$. This implies that $z_{0} b_{1} \notin E$ or $e\left(z_{1}, Q_{2}\right) \leq 2$. It follows that $e\left(L_{1}, Q_{2}\right)=9$ with $e\left(z_{3}, b_{1} b_{2} b_{3}\right)=3, e\left(u_{4}, b_{1} b_{2}\right)=2$ and $e\left(z_{0} z_{1}, Q_{2}\right)=4$. Thus $e\left(u_{2} u_{3}, Q_{2}\right) \geq 4$. Hence $e\left(u_{3}, Q_{2}\right) \geq 3$ and so $u_{3} \rightarrow\left(Q_{2} ; u_{4} z_{3} z_{1}\right)$. Thus $G_{2} \supseteq 3 C_{4}$, a contradiction. Therefore $e\left(u_{3}, b_{1} b_{2}\right)=0$ and so $e\left(u_{2} u_{3}, Q_{2}\right) \leq 2$. It follows that $e\left(L_{1}, Q_{2}\right)=10, e\left(u_{2}, b_{3} b_{4}\right)=1$ and $e\left(u_{3}, b_{3} b_{4}\right)=1$. If $u_{2} b_{4} \in E$, then $\left[u_{2}, z_{0}, b_{1}, b_{4}\right] \supseteq$ $C_{4},\left[z_{1}, z_{3}, b_{2}, b_{3}\right] \supseteq C_{4}$ and $\left[z_{2}, u_{1}, u_{4}, u_{3}\right] \supseteq C_{4}$, a contradiction. Hence $u_{2} b_{3} \in E$. Then $z_{3} \rightarrow\left(Q_{2}, b_{3} ; u_{2} z_{0} z_{1}\right)$ and so $G_{2} \supseteq 3 C_{4}$, a contradiction. Hence (a) holds. If $y_{1}=z_{0}$, then $z_{0} \rightarrow\left(Q_{2} ; z_{1} z_{2} z_{3}\right)$ and so $\left[F, Q_{2}\right] \supseteq 2 C_{4}$, a contradiction. Hence $y_{1}=u_{4}$. As $G_{2} \nsupseteq 2 C_{4}, z_{3} \nrightarrow\left(Q_{2} ; u_{2} u_{3} u_{4}\right)$ and $z_{3} \nrightarrow\left(Q_{2} ; u_{2} z_{0} z_{1}\right)$. Thus $i\left(u_{2} u_{4}, Q_{2}\right)=0$ and $i\left(u_{2} z_{1}, Q_{2}\right)=0$. Hence $e\left(u_{2}, Q_{2}\right) \leq 1$. As $e\left(u_{2} u_{3}, Q_{2}\right) \geq 8-r-e\left(z_{1}, Q_{2}\right) \geq 4$, $e\left(u_{3}, Q_{2}\right) \geq 3$. Thus $u_{3} \rightarrow\left(Q_{2} ; z_{1} z_{3} u_{4}\right)$ and so $G_{2} \supseteq 3 C_{4}$, a contradiction. Therefore $L_{s}=L_{2}$ and $e\left(z_{3} u_{4}, Q_{2}\right) \geq 8-r-e\left(z_{0} z_{1}, Q_{2}\right)$. If (a) holds, then $y_{1} \neq z_{1}$ for otherwise $z_{1} \rightarrow\left(Q_{2} ; z_{0} u_{2} u_{3}\right)$ by Lemma 3.5 and so $G_{2} \supseteq 3 C_{4}$. Thus $y_{1}=u_{3}$ and so $e\left(z_{1}, Q_{2}\right)=0$. Consequently, $e\left(z_{3} u_{4}, Q_{2}\right) \geq 4$ and if the equality holds then $e\left(L_{2}, Q_{2}\right)=10$. As $G_{2} \nsupseteq 3 C_{4}, u_{2} \nrightarrow\left(Q_{2} ; z_{0} z_{1} z_{3}\right)$ and so $i\left(z_{0} z_{3}, Q_{2}\right)=0$. Hence $e\left(z_{3}, Q_{2}\right) \leq 2$ and so $e\left(u_{4}, Q_{2}\right) \geq 2$. Then $i\left(u_{2} u_{4}, Q_{2}\right) \neq 0$. As $G \nsupseteq 3 C_{4}, z_{0} \nrightarrow\left(Q_{2} ; u_{2} u_{3} u_{4}\right)$. This implies $e\left(z_{0}, Q_{2}\right) \leq 2$. Thus $e\left(L_{2}, Q_{2}\right)=9$ and so $e\left(u_{4}, Q_{2}\right) \geq 3$. Thus $u_{4} \rightarrow\left(Q_{2} ; z_{0} u_{2} u_{3}\right)$ and so $G_{2} \supseteq 3 C_{4}$, a contradiction. Hence (b) holds. Then $\left[z_{0}, u_{2}, b_{3}, b_{i}\right] \supseteq C_{4}$ for each $i \in\{1,2\}$ and $e\left(b_{i}, L_{2}\right)=4$ for some $i \in\{1,2\}$. Say w.l.o.g. $e\left(b_{1}, L_{2}\right)=4$. As $\left[z_{0}, u_{2}, b_{3}, b_{2}\right] \supseteq C_{4}$ and $G_{2} \nsupseteq 3 C_{4}$, we see that $\left[z_{3}, z_{1}, b_{1}, b_{4}\right] \nsupseteq C_{4}$ and $\left[u_{4}, u_{3}, b_{1}, b_{4}\right] \nsupseteq$ C_{4}. Hence $e\left(b_{4}, z_{3} u_{4}\right)=0$. Suppose that $e\left(u_{2}, Q_{2}\right)=3$, ie., $e\left(u_{2}, b_{1} b_{2} b_{3}\right)=3$. As $G_{2} \nsupseteq$
$3 C_{4}, u_{2} \nrightarrow\left(Q_{2} ; u_{3} u_{4} z_{3}\right)$ and $u_{2} \nrightarrow\left(Q_{2} ; z_{0} z_{1} z_{3}\right)$. As $\left\{b_{1}, b_{2}\right\}=N\left(z_{0} u_{3}, Q_{2}\right)$, it follows that $N\left(z_{3}, Q_{2}\right) \subseteq\left\{b_{3}\right\}$ and if the equality holds then $z_{0} b_{3} \notin E$ and $e\left(z_{0}, b_{1} b_{2}\right)=2$. Hence $e\left(u_{4}, Q_{2}\right) \geq 8-r-e\left(z_{0} z_{1}, Q_{2}\right)-e\left(z_{3}, Q_{2}\right) \geq 2$ and if the last equality holds then $e\left(L_{2}, Q_{2}\right)=10$ with $e\left(z_{0}, b_{1} b_{2} b_{3}\right)=3$ and $e\left(z_{3}, Q_{2}\right)=0$. Thus either $e\left(u_{4}, Q_{2}\right) \geq 3$ and $u_{4} \rightarrow\left(Q_{2} ; z_{0} u_{2} u_{3}\right)$ or $e\left(z_{0}, Q_{2}\right) \geq 3$ and $z_{0} \rightarrow\left(Q_{2} ; u_{2} u_{3} u_{4}\right)$ and so $G_{2} \supseteq 3 C_{4}$, a contradiction. Hence $e\left(u_{2}, Q_{2}\right) \neq 3$. Thus $e\left(z_{0}, Q_{2}\right)=3$ and $e\left(z_{1} u_{3}, b_{1} b_{2}\right)=4$. As $z_{0} \nrightarrow\left(Q_{2} ; z_{1} z_{3} u_{4}\right)$ and $z_{0} \nrightarrow\left(Q_{2} ; z_{1} z_{2} z_{3}\right)$, we see that $e\left(z_{3} u_{4}, b_{1} b_{2}\right)=0$. With $e\left(b_{4}, z_{3} u_{4}\right)=0$, we obtain $2 \geq e\left(z_{3} u_{4}, Q_{2}\right) \geq 8-e\left(z_{0} z_{1}, Q_{2}\right) \geq 3$, a contradiction.

Finally, suppose that (15) holds. Let $L_{3}=u_{4} u_{1} z_{0} z_{1}$ and $L_{4}=u_{2} z_{3} z_{1} z_{0}$. Clearly, $G_{1}-V\left(L_{3}\right) \cong G_{1}-V\left(L_{4}\right) \cong K_{4}>Q_{1}$. As $G_{1} \nsupseteq 2 C_{4}, e\left(z_{1}, u_{2} u_{4}\right)=0$. Thus $e\left(L_{3}, G_{1}\right) \leq 16$ and $e\left(L_{4}, G_{1}\right) \leq 15$. Then $e\left(L_{3}, H_{1}\right)+e\left(L_{4}, H_{1}\right) \geq 16(k-2)+1$. Say $e\left(L_{3}, Q_{2}\right)+e\left(L_{4}, Q_{2}\right) \geq 17$. Let $s \in\{3,4\}$ be such that $e\left(L_{s}, Q_{2}\right) \geq 9$. By Lemma $3.5, \tau\left(Q_{2}\right)=2$ and there exist two labellings $L_{s}=y_{1} y_{2} y_{3} y_{4}$ and $Q_{2}=b_{1} b_{2} b_{3} b_{4} b_{1}$ such that one of (a) and (b) in Lemma 3.5 holds w.r.t. L_{s} and Q_{2}. Thus $e\left(L_{s}, Q_{2}\right)=9+r$ with $r \in\{0,1\}$. First, assume $L_{s}=L_{4}$. Then $e\left(u_{1} u_{4}, Q_{2}\right) \geq 8-r-e\left(z_{0} z_{1}, Q_{2}\right)$. If (b) holds then $e\left(z_{1}, Q_{2}\right) \neq 3$ for otherwise $z_{1} \rightarrow\left(Q_{2} ; z_{0} u_{1} u_{2}\right)$ and so $G_{2} \supseteq 3 C_{4}$. Thus $e\left(L_{4}, Q_{2}\right)=9$ with $e\left(z_{3}, b_{1} b_{2} b_{3}\right)=3$ and $e\left(z_{1} u_{2} z_{0}, b_{1} b_{2}\right)=6$. Hence $e\left(u_{1} u_{4}, Q_{2}\right) \geq 4$. As $G_{2} \nsupseteq 3 C_{4}, z_{3} \nrightarrow\left(Q_{2} ; u_{2} u_{3} u_{4}\right)$ and $u_{2} \nrightarrow\left(Q_{2} ; z_{3} u_{3} u_{4}\right)$. This implies $e\left(u_{4}, b_{1} b_{2} b_{3}\right)=0$ and so $e\left(u_{4}, Q_{2}\right) \leq 1$. Thus $e\left(u_{1}, Q_{2}\right) \geq 3$ and so $G_{2} \supseteq 3 C_{4}$ since $u_{1} \rightarrow\left(Q_{2} ; z_{0} z_{1} z_{3}\right)$, a contradiction. Hence (a) holds. As $\left[F, Q_{2}\right] \nsupseteq 2 C_{4}, z_{0} \nrightarrow\left(Q_{2} ; z_{1} z_{2} z_{3}\right)$. Then $y_{1} \neq$ z_{0}. Thus $y_{1}=u_{2}$ and so $e\left(u_{1} u_{4}, Q_{2}\right) \geq 4$. As $G_{2} \nsupseteq 3 C_{4}, z_{3} \nrightarrow\left(Q_{2} ; u_{2} u_{3} u_{4}\right)$ and $z_{3} \nrightarrow\left(Q_{2} ; u_{1} z_{0} z_{1}\right)$. This implies that $i\left(u_{2} u_{4}, Q_{2}\right)=0$ and $i\left(u_{1} z_{1}, Q_{2}\right)=0$. Hence $e\left(u_{1}, Q_{2}\right) \leq 2$. Moreover, as $G_{2} \nsupseteq 3 C_{4}, u_{2} \nrightarrow\left(Q_{2} ; u_{4} u_{3} z_{3}\right)$ and so $i\left(u_{4} z_{3}, Q_{2}\right)=0$. This implies that $e\left(u_{4}, Q_{2}\right) \leq 1$ and if equality holds then $e\left(L_{4}, Q_{2}\right)=9$ with $e\left(z_{3}, Q_{2}\right)=3$. It follows that $e\left(u_{1} u_{4}, Q_{2}\right) \leq 3$, a contradiction.

Note that if using Q_{i} in place of Q_{2} in the above argument, then for each Q_{i} in H_{1} with $e\left(L_{4}, Q_{i}\right) \geq 9$, we see that $e\left(u_{4}, Q_{i}\right) \leq 1$ and if $e\left(u_{4}, Q_{i}\right)=1$ then $e\left(L_{4}, Q_{i}\right)=9$.

Next, assume $e\left(L_{3}, Q_{2}\right)=9+r$. Then $e\left(u_{2} z_{3}, Q_{2}\right) \geq 8-r-e\left(z_{0} z_{1}, Q_{2}\right)$. First, assume (b) holds w.r.t. L_{3} and Q_{2}. As $G_{2} \nsupseteq 3 C_{4}, z_{0} \nrightarrow\left(Q_{2} ; z_{1} z_{2} u_{4}\right)$. Then $e\left(z_{0}, Q_{2}\right) \neq$ 3. Thus $e\left(L_{3}, Q_{2}\right)=9$ with $e\left(u_{1}, b_{1} b_{2} b_{3}\right)=3$ and $e\left(z_{0} u_{4} z_{1}, b_{1} b_{2}\right)=6$ by Lemma 3.5. Hence $e\left(u_{2} z_{3}, Q_{2}\right) \geq 4$. As $G_{2} \nsupseteq 3 C_{4}, u_{1} \nrightarrow\left(Q_{2} ; z_{0} z_{1} z_{3}\right)$ and $z_{3} \nrightarrow\left(Q_{2} ; z_{1} z_{0} u_{1}\right)$. This implies $e\left(z_{3}, Q_{2}\right) \leq 1$ and so $e\left(u_{2}, Q_{2}\right) \geq 3$. Thus $u_{2} \rightarrow\left(Q_{2} ; z_{1} z_{0} u_{1}\right)$ and so $G_{2} \supseteq 3 C_{4}$, a contradiction. Hence (a) holds. As $G_{2} \nsupseteq 3 C_{4}, z_{0} \nrightarrow\left(Q_{2} ; u_{1} u_{3} u_{4}\right)$ and so $y_{1} \neq u_{4}$. Thus $y_{1}=z_{1}$ and so $e\left(u_{4}, Q_{2}\right)=0$. As $z_{0} \nrightarrow\left(Q_{2} ; z_{1} z_{2} z_{3}\right)$ and $u_{1} \nrightarrow\left(Q_{2} ; z_{0} z_{1} z_{3}\right)$, we see that $N\left(z_{3}, Q_{2}\right) \subseteq\left\{b_{4}\right\}$ and if the equality holds then $N\left(z_{1} z_{0} u_{1}, Q_{2}\right)=\left\{b_{1}, b_{2}, b_{3}\right\}$. However, if $z_{3} b_{4} \in E$ then $\left[z_{0}, z_{1}, z_{3}, u_{1}, Q_{2}\right] \supseteq 2 C_{4}$, a contradiction. Hence $e\left(z_{3}, Q_{2}\right)=0$. As $G_{2} \nsupseteq 3 C_{4}, z_{0} \nrightarrow\left(Q_{2} ; z_{1} z_{3} u_{2}\right)$ and $z_{1} \nrightarrow$ $\left(Q_{2} ; z_{0} u_{1} u_{2}\right)$. It follows that $N\left(u_{2}, Q_{2}\right) \subseteq\left\{b_{4}\right\}$. As $G_{2} \nsupseteq 3 C_{4},\left[z_{1}, z_{0}, u_{1}, u_{2}, Q_{2}\right] \nsupseteq 2 C_{4}$ and so $u_{2} b_{4} \notin E$. Thus $e\left(u_{2}, Q_{2}\right)=0$. If follows that $r=1$, i.e., $e\left(z_{0}, Q_{p}\right)=4$ and
$e\left(z_{1} u_{1}, b_{1} b_{2} b_{3}\right)=6$. Let $R=L_{4}+u_{4}+b_{1}$. Clearly, $e\left(L_{4}, G_{2}\right) \leq 22, e\left(u_{4}, G_{2}\right)=3$ and $e\left(b_{1}, G_{2}\right) \leq 8$. Thus $e\left(R, H_{2}\right) \geq 12(k-3)+3$. Say $e\left(R, Q_{3}\right) \geq 13$. If $e\left(L_{4}, Q_{3}\right) \geq 9$, then $\tau\left(Q_{3}\right)=2$ and one of (a) and (b) in Lemma 3.5 holds w.r.t. L_{4} and Q_{3}. As noted above, $e\left(u_{4}, Q_{3}\right) \leq 1$ and if the equality holds then $e\left(L_{4}, Q_{3}\right)=9$. Thus $e\left(b_{1}, Q_{3}\right) \geq 3$. Consequently, either $b_{1} \rightarrow\left(Q_{3} ; z_{0} z_{1} z_{3}\right)$ or $b_{1} \rightarrow\left(Q_{3} ; z_{1} z_{3} u_{2}\right)$. In the former, $G_{3} \supseteq 4 C_{4}$ since $u_{1} \rightarrow\left(Q_{2}, b_{1}\right)$ and $z_{2} \rightarrow\left(Q_{1}, u_{1}\right)$, and in the latter, $G_{3} \supseteq 4 C_{4}$ since $z_{0} \rightarrow\left(Q_{2}, b_{1}\right)$ and $z_{2} \rightarrow\left(Q_{1}, u_{2}\right)$, a contradiction. Hence $e\left(L_{4}, Q_{3}\right) \leq 8$ and so $e\left(u_{4} b_{1}, Q_{3}\right) \geq 5$. Let $T^{\prime}=z_{0} u_{1} b_{1} z_{0}, Q_{1}^{\prime}=z_{1} b_{2} b_{4} b_{3} z_{1}$ and $Q_{2}^{\prime}=z_{2} z_{3} u_{2} u_{3} z_{2}$. Clearly, $\tau\left(Q_{1}^{\prime}\right)=1, \tau\left(Q_{2}^{\prime}\right)=2$ and so $\left(T^{\prime}, Q_{1}^{\prime}, Q_{2}^{\prime}, Q_{3}, \ldots, Q_{k-1}\right)$ is a feasible chain. Thus $u_{4} \in \mathcal{T}$. As $z_{0} \Rightarrow\left(Q_{2}, b_{1}\right), b_{1} \in \mathcal{T}$. As $e\left(R, Q_{3}\right) \geq 13, e(w, R) \geq 4$ for some $w \in V\left(Q_{3}\right)$. Let $\mathcal{S}_{1}=\left\{z_{0} z_{1} z_{3}, z_{0} u_{1} u_{2}, z_{0} u_{1} u_{4}, z_{1} z_{2} z_{3}, z_{1} z_{2} u_{4}, z_{1} z_{3} u_{2}, u_{2} u_{1} u_{4}\right\}$ and $\mathcal{S}_{2}=\left\{z_{0} z_{1} z_{3}, z_{0} u_{1} u_{2}, z_{0} b_{1} z_{1}, z_{0} u_{1} b_{1}, z_{1} z_{0} b_{1}, z_{3} u_{3} u_{2}, z_{3} z_{1} b_{1}\right\}$. It is easy to check that $G_{2}-V\left(P+b_{1}\right) \supseteq 2 C_{4}$ for each $P \in \mathcal{S}_{1}$ and $G_{2}-V\left(P+u_{4}\right) \supseteq 2 C_{4}$ for each $P \in \mathcal{S}_{2}$. If $e\left(b_{1}, Q_{3}\right) \geq 3$ then $b_{1} \rightarrow Q_{3}$ by Lemma 4.1(a). As $e\left(w, R-b_{1}\right) \geq 3, b_{1} \rightarrow\left(Q_{3}, w ; P\right)$ for some $P \in \mathcal{S}_{1}$ and so $G_{3} \supseteq 4 C_{4}$, a contradiction. Hence $e\left(b_{1}, Q_{3}\right) \leq 2$ and so $e\left(u_{4}, Q_{3}\right) \geq 3$. Then $u_{4} \rightarrow\left(Q_{3}, w ; P\right)$ for some $P \in \mathcal{S}_{2}$ and so $G_{3} \supseteq 4 C_{4}$, a contradiction.

Lemma 4.5 The statement (14) does not hold.
Proof. On the contrary, say (14) holds. W.l.o.g., say $Q=Q_{1}=c_{1} c_{2} c_{3} c_{4} c_{1}$ with $N\left(x_{0}, Q_{1}\right)=N\left(x_{3}, Q_{1}\right)=\left\{c_{1}, c_{3}\right\}$ and $N\left(x_{2}, Q_{1}\right)=\left\{c_{1}, c_{4}, c_{2}\right\}$. Subject to this condition, we may assume that σ and Q_{1} is chosen such that $e\left(x_{1}, Q_{1}\right)$ is maximal. As $G_{1} \nsupseteq 2 C_{4}, e\left(x_{1}, c_{2} c_{4}\right)=0$ and so $N\left(x_{1}, Q_{1}\right) \subseteq\left\{c_{1}, c_{3}\right\}$. Let $R=V(F) \cup\left\{c_{2}, c_{4}\right\}$. Clearly, $e\left(x_{0} c_{2}, G_{1}\right)+e\left(R, G_{1}\right) \leq 27$ and so $e\left(x_{0} c_{2}, H_{1}\right)+e\left(R, H_{1}\right) \geq 16 k-27=$ $16(k-2)+5$. Say $e\left(x_{0} c_{2}, Q_{2}\right)+e\left(R, Q_{2}\right) \geq 17$. Clearly, $G_{1}-\left\{x_{0}, c_{1}, c_{2}, c_{4}\right\} \supseteq C_{4}$. As $G_{2} \nsupseteq 3 C_{4}$, this implies that $x \nrightarrow\left(Q_{2} ; y c_{1} z\right)$, i.e., $x \nrightarrow\left(Q_{2} ; y z\right)$, for each permutation (x, y, z) of $\left\{x_{0}, c_{2}, c_{4}\right\}$. We have $\left\{c_{2}, c_{4}\right\} \subseteq \mathcal{T}$ since $x_{0} \Rightarrow\left(Q_{2}, c_{r}\right)$ for each $r \in\{2,4\}$. Set $F^{\prime}=c_{4} x_{2} x_{1} x_{3} x_{2}$.

Suppose that $e\left(u, Q_{2}\right) \geq 3$ for some $u \in\left\{x_{0}, c_{2}, c_{4}\right\}$. Then $u \rightarrow Q_{2}$ by Lemma $4.1(a)$. Thus $e(d, T) \leq 1$ for each $d \in V\left(Q_{2}\right)$ and so $e\left(T, Q_{2}\right) \leq 4$. Hence $2 e\left(x_{0} c_{2}, Q_{2}\right) \geq$ $17-e\left(F^{\prime}, Q_{2}\right) \geq 17-8=9$. This implies that $e\left(x_{0} c_{2}, Q_{2}\right) \geq 5$. Assume for the moment that $e\left(x_{0} c_{2}, Q_{2}\right) \geq 7$. By Lemma 4.1(a), we see that $\tau\left(Q_{2}\right)=2$. Since $x_{0} \nrightarrow\left(Q_{2} ; c_{2} c_{4}\right)$ and $c_{2} \nrightarrow\left(Q_{2} ; x_{0} c_{4}\right)$, it follows that $e\left(c_{4}, Q_{2}\right)=0$. Thus $e\left(T, Q_{2}\right) \geq 17-2 e\left(x_{0} c_{2}, Q_{2}\right)$. This implies that $N\left(x_{0}, Q_{2}\right) \cap N\left(T, Q_{2}\right) \neq \emptyset$. For each $x_{j} \in V(T)$ with $i\left(x_{0} x_{j}, Q_{2}\right) \neq 0$, if $j \neq 1$ then $c_{2} \rightarrow\left(Q_{2} ; x_{0} x_{1} x_{j}\right)$ and $x_{i} \rightarrow\left(Q_{1}, c_{2}\right)$ where $\{i, j\}=\{2,3\}$, i.e., $G_{2} \supseteq 3 C_{4}$, a contradiction. Hence $N\left(x_{0}, Q_{2}\right) \cap N\left(x_{2} x_{3}, Q_{2}\right)=\emptyset$. If $e\left(x_{0} c_{2}, Q_{2}\right)=7$ then $e\left(T, Q_{2}\right) \geq 3$ and so $i\left(x_{0} x_{1}, Q_{2}\right) \geq 2$. Consequently, $x_{1} \rightarrow\left(Q_{2} ; x_{0} c_{1} c_{2}\right)$. Thus $G_{2} \supseteq 3 C_{4}$ as $\left[x_{2}, x_{3}, c_{3}, c_{4}\right] \supseteq C_{4}$, a contradiction. Hence $e\left(x_{0} c_{2}, Q_{2}\right)=8$. Then
$e\left(x_{2} x_{3}, Q_{2}\right)=0$. Let $d \in V\left(Q_{2}\right)$ be such that $e\left(d, x_{0} x_{1}\right)=2$. Then $\left[x_{0}, d, x_{1}\right] \cong C_{3}$, $c_{2} \Rightarrow\left(Q_{2}, d\right)$ and $\tau\left(x_{2} c_{1} c_{4} c_{3} x_{2}\right)=\tau\left(Q_{1}\right)+1$, contradicting (1). Next, assume that $e\left(x_{0} c_{2}, Q_{2}\right)=6$. Then $e\left(F^{\prime}, Q_{2}\right) \geq 17-12=5$. As $e\left(T, Q_{2}\right) \leq 4, e\left(c_{4}, Q_{2}\right) \geq 1$. If $e\left(c_{2}, Q_{2}\right)<3$ then $e\left(x_{0}, Q_{2}\right)=4$ and $e\left(c_{2}, Q_{2}\right)=2$. Moreover, $\tau\left(Q_{2}\right)=2$ by Lemma 4.1(a). Consequently, $x_{0} \rightarrow\left(Q_{2} ; c_{2} c_{4}\right)$ or $c_{2} \rightarrow\left(Q_{2} ; x_{0} c_{4}\right)$, a contradiction. Hence $e\left(c_{2}, Q_{2}\right) \geq 3$ and so $c_{2} \rightarrow Q_{2}$. As $e\left(F^{\prime}, Q_{2}\right) \geq 5$ there exists $d \in V\left(Q_{2}\right)$ such that $e\left(d, F^{\prime}\right) \geq 2$. As $e(d, T) \leq 1$, we have $e\left(d, c_{4} x_{i}\right)=2$ for some $x_{i} \in V(T)$. If $x_{i}=x_{1}$ then $c_{2} \rightarrow\left(Q_{2} ; x_{1} x_{2} c_{4}\right)$ and $\left[x_{0}, x_{3}, c_{1}, c_{3}\right] \supseteq C_{4}$, a contradiction. If $x_{i} \neq x_{1}$, let $\{i, j\}=\{2,3\}$. Then $c_{2} \rightarrow\left(Q_{2} ; x_{i} c_{1} c_{4}\right)$ and $\left[x_{0}, x_{1}, x_{j}, c_{3}\right] \supseteq C_{4}$, a contradiction. We conclude that $e\left(x_{0} c_{2}, Q_{2}\right)=5$. Thus $e\left(F^{\prime}, Q_{2}\right) \geq 17-10=7$. As $e\left(T, Q_{2}\right) \leq 4$, $e\left(c_{4}, Q_{2}\right) \geq 3$. Hence $c_{4} \rightarrow Q_{2}$ by Lemma 4.1(a). As $i\left(x_{0} c_{2}, Q_{2}\right) \geq 1, c_{4} \rightarrow\left(Q_{2} ; x_{0} c_{2}\right)$, a contradiction.

Therefore $e\left(u, Q_{2}\right) \leq 2$ for all $u \in\left\{x_{0}, c_{2}, c_{4}\right\}$. Then $e\left(F, Q_{2}\right) \geq 17-e\left(x_{0} c_{4}, Q_{2}\right)-$ $2 e\left(c_{2}, Q_{2}\right) \geq 17-8=9$ and $e\left(F^{\prime}, Q_{2}\right) \geq 17-2 e\left(x_{0} c_{2}, Q_{2}\right) \geq 9$. If $e\left(x_{0}, Q_{2}\right)=0$ then $e\left(T, Q_{2}\right) \geq 9$. Furthermore, applying Lemma 3.2 to F, Q_{2} and each $z \in\left\{c_{2}, c_{4}\right\}$, we would have $e\left(c_{r}, Q_{2}\right) \leq 1$ for each $r \in\{2,4\}$ and consequently, $e\left(x_{0} c_{2}, Q_{2}\right)+e\left(R, Q_{2}\right) \leq$ $12+2 e\left(c_{2}, Q_{2}\right)+e\left(c_{4}, Q_{2}\right) \leq 15$, a contradiction. Hence $e\left(x_{0}, Q_{2}\right) \geq 1$. Similarly, $e\left(c_{4}, Q_{2}\right) \geq 1$. By Lemma 4.3, there exist two labellings $F=z_{0} z_{1} z_{2} z_{3} z_{1}$ and $Q_{2}=$ $a_{1} a_{2} a_{3} a_{4} a_{1}$ such that one of (3) to (8) holds w.r.t. F and Q_{2} where $z_{0}=x_{0}, z_{1}=x_{1}$ and $\left\{z_{2}, z_{3}\right\}=\left\{x_{2}, x_{3}\right\}$. Since $e\left(F, Q_{2}\right)+e\left(z_{0}, Q_{2}\right) \geq 17-2 e\left(c_{2}, Q_{2}\right)-e\left(c_{4}, Q_{2}\right) \geq 11$, it follows that $e\left(z_{0}, Q_{2}\right)=2$. Since $e\left(F, Q_{2}\right)+e\left(z_{0}, Q_{2}\right) \leq 12$ and $e\left(c_{4}, Q_{2}\right) \leq 2$, it follows that $2 e\left(c_{2}, Q_{2}\right) \geq 3$ and so $e\left(c_{2}, Q_{2}\right)=2$. We also see that if $e\left(F, Q_{2}\right)=9$ then $e\left(c_{4}, Q_{2}\right)=2$ since $e\left(c_{4}, Q_{2}\right) \geq 17-e\left(F, Q_{2}\right)-e\left(z_{0}, Q_{2}\right)-2 e\left(c_{2}, Q_{2}\right)$.

As $e\left(z_{0}, Q_{2}\right)=2$, each of (3), (7) and (8) does not hold w.r.t. F and Q_{2}. Thus one of (4) to (6) holds w.r.t. F and Q_{2}. Then $e\left(a_{1}, T\right) \geq 2$. Hence for each $r \in\{2,4\}$, $c_{r} \nrightarrow\left(Q_{2}, a_{1}\right)$ and so $e\left(c_{r}, a_{2} a_{4}\right) \leq 1$. We also note that if (5) holds w.r.t. F and Q_{2} then $e\left(z_{i}, Q_{2}\right)=3$ for exactly one $z_{i} \in\left\{z_{2}, z_{3}\right\}$. This is because (14) holds w.r.t. F and Q_{2} by Lemma 4.4. Hence if (5) holds w.r.t. F and Q_{2} then there exists exactly one vertex $z_{i} \in V(T)$ such that $e\left(z_{i}, Q_{2}\right)=3$ and we may assume that $e\left(z_{2}, a_{1} a_{4} a_{3}\right)=3$ and $N\left(z_{3}, Q_{2}\right)=\left\{a_{1}, a_{3}\right\}$. Assume for the moment that (6) holds w.r.t. F and Q_{2}. Then $c_{2} a_{2} \notin E$ for otherwise $\left[c_{2}, a_{2}, z_{0}, c_{1}\right] \supseteq C_{4}, z_{1} \rightarrow\left(Q_{2}, a_{2}\right)$ and $\left[x_{2}, x_{3}, c_{3}, c_{4}\right] \supseteq C_{4}$, i.e., $G_{2} \supseteq 3 C_{4}$. Thus $e\left(c_{2}, a_{1} a_{4} a_{3}\right)=2$ and so $c_{2} \rightarrow\left(Q_{2}, a_{2}\right)$. Then $e\left(a_{2}, T\right) \leq 1$. It follows that $e\left(F, Q_{2}\right)=9$ with $e\left(a_{2}, z_{1} z_{2}\right)=1, e\left(a_{1}, T\right)=3$, $e\left(a_{3}, z_{1} z_{2}\right)=2$ and $z_{1} a_{4} \in E$. If $c_{2} a_{1} \notin E$ then $\left[c_{2}, a_{3}, a_{4}\right] \cong C_{3},\left[T+a_{1}\right] \supseteq K_{4}>Q_{2}$ and $x_{0} \Rightarrow\left(Q_{1}, c_{2}\right)$, contradicting (1). Hence $c_{2} a_{1} \in E$. Then $\left[c_{2}, a_{1}, z_{0}, c_{1}\right] \supseteq C_{4}$ and $\left[x_{2}, x_{3}, c_{3}, c_{4}\right] \supseteq C_{4}$. Hence $z_{1} \nrightarrow\left(Q_{2}, a_{1}\right)$ as $G_{2} \nsupseteq 3 C_{4}$. This implies $z_{1} a_{2} \notin E$ and so $a_{2} z_{2} \in E$. As $e\left(F, Q_{2}\right)=9, e\left(c_{4}, Q_{2}\right)=2$. Since there are exactly two distinct vertices z_{i} from T with $e\left(z_{i}, Q_{2}\right)=3$, it follows, by Lemma 4.3, that (6) holds w.r.t. F^{\prime} and Q_{2}. In particular, there exist two labellings $F^{\prime}=z_{0}^{\prime} z_{1}^{\prime} z_{2}^{\prime} z_{3}^{\prime} z_{1}^{\prime}$ and $Q_{2}=a_{1}^{\prime} a_{2}^{\prime} a_{3}^{\prime} a_{4}^{\prime} a_{1}^{\prime}$
such that $a_{1}^{\prime} a_{3}^{\prime} \in E, a_{2}^{\prime} a_{4}^{\prime} \notin E, e\left(z_{0}^{\prime}, a_{1}^{\prime} a_{2}^{\prime}\right)=2$ and $N\left(z_{2}^{\prime}, Q_{2}\right)=\left\{a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right\}$. Clearly, $z_{2}^{\prime}=z_{1}, z_{1}^{\prime}=z_{2}$ and $\left\{a_{1}^{\prime}, a_{3}^{\prime}\right\}=\left\{a_{1}, a_{3}\right\}$. As $e\left(z_{1}, a_{1} a_{4} a_{3}\right)=3$, it follows that $a_{2}^{\prime}=a_{4}$. Thus $\left[c_{4}, a_{4}, z_{1}, x_{2}\right] \supseteq C_{4}, z_{0} \rightarrow\left(Q_{2}, a_{4}\right)$ and $x_{3} \rightarrow\left(Q_{1}, c_{4}\right)$, i.e., $G_{2} \supseteq 3 C_{4}$, a contradiction. Therefore only one of (4) and (5) holds w.r.t. F and Q_{2}. When (4) holds w.r.t. F and Q_{2}, either $e\left(a_{1}, F\right)=4$ or $e\left(a_{3}, F\right)=4$. In this case, we may assume that $e\left(a_{1}, F\right)=4$. We claim that for each $r \in\{2,4\}$ if $e\left(c_{r}, Q_{2}\right)=2$ then $c_{r} a_{1} \in E$ regardless which of (4) and (5) holds w.r.t. F and Q_{2}. To observe this, we see that if $c_{r} a_{1} \notin E$ then $\left[c_{r}, a_{2}, a_{3}, a_{4}\right] \supseteq C_{3}$ as $e\left(c_{r}, a_{2} a_{4}\right) \leq 1$. Moreover, if (4) holds then $a_{2} a_{4} \notin E$ for otherwise $c_{r} \rightarrow\left(Q_{2}, a_{1} ; V(T)\right)$. Thus in any case, we have that $\left[T+a_{1}\right] \supseteq K_{4}>Q_{2}$ and $x_{0} \Rightarrow\left(Q_{1}, c_{r}\right)$, contradicting (1). Hence the claim holds. If (4) holds w.r.t. F and Q_{2} then $\left[c_{2}, a_{1}, z_{0}, c_{1}\right] \supseteq C_{4}$ and $\left[x_{2}, x_{3}, c_{3}, c_{4}\right] \supseteq C_{4}$. Thus $z_{1} \nrightarrow\left(Q_{2}, a_{1}\right)$ as $G_{2} \nsupseteq 3 C_{4}$. This implies that $a_{2} a_{4} \notin E$ and $e\left(z_{1}, a_{2} a_{4}\right)=1$. W.l.o.g., say $e\left(z_{1}, a_{1} a_{4} a_{3}\right)=3$. Then $e\left(F, Q_{2}\right)=9$ and $e\left(a_{3}, F\right)=4$. Thus $e\left(c_{4}, Q_{2}\right)=2$. If (5) holds w.r.t. F and Q_{2} then $e\left(c_{4}, Q_{2}\right)=2$ as $e\left(F, Q_{2}\right)=9$. Thus the above argument implies that if (4) or (5) holds w.r.t. F and Q_{2} then $e\left(c_{2} c_{4}, a_{1} a_{3}\right)=4$ since a_{1} and a_{3} are in the symmetric position. In any case, let $V(T)=\left\{x_{r}, x_{s}, x_{t}\right\}$ be such that $e\left(x_{r}, a_{1} a_{4} a_{3}\right)=3$ where $x_{r} \in\left\{z_{1}, z_{2}\right\}$. Then $N\left(y, Q_{2}\right)=\left\{a_{1}, a_{3}\right\}$ for all $y \in R-\left\{x_{r}\right\}$. If $x_{r}=z_{1}$ then (5) and (14) hold w.r.t F^{\prime} and Q_{2} and if $x_{r}=z_{2}$ then (5) and (14) hold w.r.t. F and Q_{2}. By the assumption on σ and Q_{1}, we shall have $e\left(x_{1}, c_{1} c_{3}\right)=2$.

Let $S=\left\{x_{0}, c_{2}, c_{4}, a_{2}\right\}$. Then $e\left(S, G_{2}\right) \leq 18$ and so $e\left(S, H_{2}\right) \geq 8 k-18=8(k-$ $3)+6$. Say $e\left(S, Q_{3}\right) \geq 9$. As in the beginning, $x \nrightarrow\left(Q_{3} ; y c_{1} z\right)$, i.e., $x \nrightarrow\left(Q_{3} ; y z\right)$, for each permutation (x, y, z) of $\left\{x_{0}, c_{2}, c_{4}\right\}$ for otherwise $\left[G_{1}, Q_{3}\right] \supseteq 3 C_{4}$. As $G_{3} \nsupseteq 4 C_{4}$, $x \nrightarrow\left(Q_{3} ; y a_{1} z\right)$, i.e., $x \nrightarrow\left(Q_{3} ; y z\right)$, for each $a_{2} \in\{x, y, z\} \subseteq S$ with $|\{x, y, z\}|=3$. We conclude that $x \nrightarrow\left(Q_{3} ; S-\{x\}\right)$ for all $x \in S$. As $x_{0} \Rightarrow\left(Q_{2}, a_{2}\right)$, we have $a_{2} \in \mathcal{T}$. Thus $S \subseteq \mathcal{T}$. As $e\left(S, Q_{3}\right) \geq 9$ and by Lemma 4.1(a), $x \rightarrow\left(Q_{3} ; S-\{x\}\right)$ for each $x \in S$ with $e\left(x, Q_{3}\right) \geq 3$, a contradiction.

Lemma 4.6 The statement (13) does not hold.
Proof. On the contrary, say (13) holds. W.l.o.g., say $Q=Q_{1}=a_{1} a_{2} a_{3} a_{4} a_{1}$, $N\left(x_{0}, Q_{1}\right)=\left\{a_{1}\right\}, N\left(x_{2}, Q_{1}\right)=\left\{a_{1}, a_{4}, a_{3}\right\}, N\left(x_{3}, Q_{1}\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $a_{2} a_{4} \notin E$. As $G_{1} \nsupseteq 2 C_{4}, e\left(x_{1}, a_{2} a_{4}\right)=0$. Let $L_{1}=x_{0} x_{1} x_{2} a_{4}$ and $L_{2}=x_{0} x_{1} x_{3} a_{2}$. Then $e\left(L_{1}, G_{1}\right) \leq 15$ and $e\left(L_{2}, G_{1}\right) \leq 15$. Thus $e\left(L_{1}, H_{1}\right)+e\left(L_{2}, H_{1}\right) \geq 16(k-2)+2$. Say $e\left(L_{1}, Q_{2}\right)+e\left(L_{2}, Q_{2}\right) \geq 17$. W.l.o.g., say $e\left(L_{2}, Q_{2}\right) \geq 9$. Clearly, $G_{1}-V\left(L_{2}\right)>Q_{1}$. By Lemma 3.5, there exist two labellings $L_{2}=y_{1} y_{2} y_{3} y_{4}$ and $Q_{2}=b_{1} b_{2} b_{3} b_{4} b_{1}$ with $\tau\left(Q_{2}\right)=2$ such that one of (a) and (b) in Lemma 3.5 holds w.r.t. L_{2} and Q_{2}. We claim that $e\left(x_{0} a_{4}, Q_{2}\right)=0, e\left(x_{2} x_{3}, Q_{2}\right)=8$ and $e\left(x_{1} a_{2}, b_{1} b_{2} b_{3}\right)=6$. To see this, let $e\left(L_{2}, Q_{2}\right)=9+r$ where $r \in\{0,1\}$. Then $e\left(x_{2} a_{4}, Q_{2}\right) \geq 17-9-r-e\left(x_{0} x_{1}, Q_{2}\right)=$ $8-r-e\left(x_{0} x_{1}, Q_{2}\right)$. Assume that (b) holds. Then $e\left(x_{1}, Q_{2}\right) \neq 3$ for otherwise
$x_{1} \rightarrow\left(Q_{2} ; x_{0} a_{1} a_{2}\right)$ and $\left[x_{2}, x_{3}, a_{3}, a_{4}\right] \supseteq C_{4}$, i.e., $G_{2} \supseteq 3 C_{4}$. Thus $e\left(x_{3}, Q_{2}\right)=3$, $e\left(L_{2}, Q_{2}\right)=9$ and $e\left(x_{2} a_{4}, Q_{2}\right) \geq 4$. As $G_{2} \nsupseteq 3 C_{4}, x_{3} \nrightarrow\left(Q_{2} ; a_{2} a_{3} a_{4}\right)$. Thus $i\left(a_{2} a_{4}, Q_{2}\right)=0$, i.e., $e\left(a_{4}, b_{1} b_{2}\right)=0$. If $e\left(a_{4}, b_{3} b_{4}\right)=2$ then $a_{4} \rightarrow\left(Q_{2}, b_{1} ; x_{0} x_{1} x_{3}\right)$ and so $G_{2} \supseteq 3 C_{4}$, a contradiction. Hence $e\left(a_{4}, Q_{2}\right) \leq 1$ and so $e\left(x_{2}, Q_{2}\right) \geq 3$. Thus $x_{3} \rightarrow\left(Q_{2} ; x_{0} x_{1} x_{2}\right)$, i.e., $\left[F, Q_{2}\right] \supseteq 2 C_{4}$, a contradiction. Hence (a) holds. Then $y_{1} \neq x_{0}$ for otherwise $x_{0} \rightarrow\left(Q_{2} ; x_{1} x_{2} x_{3}\right)$ and so $\left[F, Q_{2}\right] \supseteq 2 C_{4}$. Thus $y_{1}=a_{2}$ and $e\left(x_{0}, Q_{2}\right)=0$. Hence $e\left(x_{2} a_{4}, Q_{2}\right) \geq 8-r-e\left(x_{1}, Q_{2}\right) \geq 4$ and if the last equality holds then $r=1$, i.e., $e\left(L_{2}, Q_{2}\right)=10$. As $x_{3} \nrightarrow\left(Q_{2} ; a_{2} a_{3} a_{4}\right), i\left(a_{2} a_{4}, Q_{2}\right)=0$. Thus if $e\left(a_{4}, Q_{2}\right) \geq 2$ then $a_{4} \rightarrow\left(Q_{2} ; a_{2} a_{3} x_{3}\right)$ and so $G_{2} \supseteq 3 C_{4}$, a contradiction. Hence $e\left(a_{4}, Q_{2}\right) \leq 1$. As $G_{2} \nsupseteq 3 C_{4}, a_{2} \nrightarrow\left(Q_{2} ; a_{4} a_{3} x_{2}\right)$. Thus $i\left(x_{2} a_{4}, Q_{2}\right)=0$ and so $e\left(x_{2} a_{4}, Q_{2}\right) \leq 4$. It follows that $e\left(x_{2} a_{4}, Q_{2}\right)=4$ and $e\left(L_{2}, Q_{2}\right)=10$ (i.e., $e\left(x_{1} a_{2}, b_{1} b_{2} b_{3}\right)=6$ and $\left.e\left(x_{3}, Q_{2}\right)=4\right)$. As $G_{2} \nsupseteq 3 C_{4}, a_{2} \nrightarrow\left(Q_{2} ; a_{4} a_{3} x_{3}\right)$. Thus $e\left(a_{4}, Q_{2}\right)=0$ and so $e\left(x_{2}, Q_{2}\right)=4$.

Let $R=\left\{x_{0}, b_{2}, b_{3}, a_{2}, a_{4}\right\}$. Then $e\left(R, G_{2}\right) \leq 29$ and so $e\left(x_{0}, H_{2}\right)+e\left(R, H_{2}\right) \geq$ $12 k-31=12(k-3)+5$. Say $e\left(x_{0}, Q_{3}\right)+e\left(R, Q_{3}\right) \geq 13$. Note that $\left[x_{0}, x_{1}, x_{i}, a_{1}\right] \supseteq C_{4}$ for $i \in\{2,3\}$ and $\left[a_{2}, a_{3}, x_{3}, b_{i}\right] \supseteq C_{4}$ for $i \in\{1,2,3\}$. Set $F_{1}=x_{0} x_{1} b_{2} b_{3} x_{1}$, $Q_{2}^{\prime}=x_{2} x_{3} b_{1} b_{4} x_{2}$ and $\sigma_{1}=\left(x_{0} x_{1}, x_{1} b_{2} b_{3} x_{1}, Q_{1}, Q_{2}^{\prime}, Q_{3}, \ldots, Q_{k-1}\right)$. Then σ_{1} is a strong feasible chain. Let $\mathcal{S}_{1}=\left\{b_{2} x_{1} b_{3}, b_{2} x_{3} a_{2}, b_{2} x_{2} a_{4}, b_{3} x_{3} a_{2}, b_{3} x_{2} a_{4}, a_{2} a_{3} a_{4}\right\}, \mathcal{S}_{2}=$ $\left\{x_{0} a_{1} a_{2}, x_{0} x_{1} b_{2}, x_{0} x_{1} b_{3}, b_{2} b_{4} b_{3}\right\}$ and $\mathcal{S}_{3}=\left\{x_{0} a_{1} a_{4}, x_{0} x_{1} b_{2}, x_{0} x_{1} b_{3}\right\}$. Each $P \in \mathcal{S}_{1} \cup \mathcal{S}_{2} \cup$ \mathcal{S}_{3} has its two endvertices in R. It is easy to check that $G_{2}-V\left(P+x_{0}\right) \supseteq 2 C_{4}$ for each $P \in \mathcal{S}_{1}, G_{2}-V\left(P+a_{4}\right) \supseteq 2 C_{4}$ for each $P \in \mathcal{S}_{2}$ and $G_{2}-V\left(P+a_{2}\right) \supseteq 2 C_{4}$ for each $P \in \mathcal{S}_{3}$. Thus $x_{0} \nrightarrow\left(Q_{3} ; P\right)$ for each $P \in \mathcal{S}_{1}, a_{4} \nrightarrow\left(Q_{3} ; P\right)$ for each $P \in \mathcal{S}_{2}$ and $a_{2} \nrightarrow\left(Q_{3} ; P\right)$ for each $P \in \mathcal{S}_{3}$. If $e\left(x_{0}, Q_{3}\right) \geq 3$ then $x_{0} \rightarrow Q_{3}$. As $e\left(Q_{3}, R-\left\{x_{0}\right\}\right) \geq 13-2 e\left(x_{0}, Q_{3}\right) \geq 5, e\left(u, R-\left\{x_{0}\right\}\right) \geq 2$ for some $u \in V\left(Q_{3}\right)$ and so $x_{0} \rightarrow\left(Q_{3}, u ; P\right)$ for some $P \in \mathcal{S}_{1}$, a contradiction. Hence $e\left(x_{0}, Q_{3}\right) \leq 2$ and so $e\left(R, Q_{3}\right) \geq 11$. If $e\left(a_{2} a_{4}, Q_{3}\right) \leq 4$ then $e\left(F_{1}-x_{1}, Q_{3}\right) \geq 7$. By Lemmas 4.4-4.5, we see that either $e\left(x_{0}, Q_{3}\right)=0$ or one of (9) and (13) holds w.r.t. F_{1} and Q_{3}. Thus $e\left(x_{0}, Q_{3}\right)+e\left(F_{1}-x_{1}, Q_{3}\right) \leq 8$. Consequently, $e\left(x_{0}, Q_{3}\right)+e\left(R, Q_{3}\right) \leq$ $8+e\left(a_{2} a_{4}, Q_{3}\right) \leq 12$, a contradiction. Therefore $e\left(a_{2} a_{4}, Q_{3}\right) \geq 5$. Let $\{r, t\}=\{2,4\}$ be such that $e\left(a_{r}, Q_{3}\right) \geq 3$. Let $\{p, q\}=\{2,3\}$ be such that $e\left(x_{p}, a_{1} a_{r} a_{3}\right)=3$ and $e\left(x_{q}, a_{1} a_{t} a_{3}\right)=3$.

We claim that $a_{r} \rightarrow Q_{3}$. On the contrary, suppose that $a_{r} \nrightarrow Q_{3}$. Then $e\left(a_{r}, Q_{3}\right)=$ 3. Let $Q_{3}=u_{1} u_{2} u_{3} u_{4} u_{1}$ be such that $e\left(a_{r}, u_{1} u_{2} u_{3}\right)=3$. Then $u_{2} u_{4} \notin E$. If $a_{1} a_{3} \notin E$, we would have $\tau\left(x_{0} a_{1} x_{p} x_{1} x_{0}\right) \geq \tau\left(Q_{1}\right)=0$. Then $\left(a_{r} a_{3}, x_{q} a_{t} a_{3} x_{q}, x_{0} a_{1} x_{p} x_{1} x_{0}, Q_{2}, \ldots, Q_{k-1}\right)$ is a strong feasible chain and so $a_{r} \rightarrow Q_{3}$ by Lemma 4.1(a), a contradiction. Hence $a_{1} a_{3} \in E$. We shall show that $e\left(u_{4}, R-\left\{a_{r}\right\}\right)=0$. If $e\left(u_{4}, F_{1}-x_{1}\right) \geq 1$, then for some $i \in\{2,3\}$, say w.l.o.g. $i=2$, such that $\left[x_{0}, x_{1}, b_{2}, u_{4}\right] \supseteq P_{4}$. Moreover, $x_{p} \Rightarrow\left(Q_{2}, b_{2}\right), \tau\left(x_{q} a_{1} a_{t} a_{3} x_{q}\right)=\tau\left(Q_{1}\right)+1$ and $\tau\left(a_{r} u_{1} u_{2} u_{3} a_{r}\right)=\tau\left(Q_{3}\right)+1$. This contradicts Lemma 4.2. If $u_{4} a_{t} \in E$, then $\left[x_{0} x_{1}, u_{4} a_{t}\right] \supseteq 2 P_{2}, \tau\left(x_{2} a_{1} a_{3} x_{3} x_{2}\right)=\tau\left(Q_{1}\right)+1$ and
$\tau\left(a_{r} u_{1} u_{2} u_{3} a_{r}\right)=\tau\left(Q_{3}\right)+1$, contradicting Lemma 4.2. Therefore $e\left(u_{4}, R-\left\{a_{r}\right\}\right)=0$. Since $a_{4} \nrightarrow\left(Q_{3}, u_{2} ; P\right)$ for each $P \in \mathcal{S}_{2}$ and $a_{2} \nrightarrow\left(Q_{3}, u_{2} ; P\right)$ for each $P \in \mathcal{S}_{3}$, we see that $u_{2} \notin I\left(x_{0} b_{i}, Q_{3}\right)$ for each $i \in\{2,3\}$. If $I\left(x_{0} b_{i}, Q_{3}\right) \neq \emptyset$ for some $i \in\{2,3\}$, then $I\left(x_{0} b_{i},\left\{u_{1}, u_{3}\right\}\right) \neq \emptyset$. W.l.o.g., say $e\left(u_{1}, x_{0} b_{2}\right)=2$. Then $\left[a_{r}, u_{2}, u_{3}\right] \cong C_{3}$, $\left[u_{1}, x_{0}, x_{1}, b_{2}\right] \supseteq C_{4},\left[x_{q}, a_{1}, a_{t}, a_{3}\right] \cong K_{4}$ and $\left[x_{p}, b_{1}, b_{3}, b_{4}\right] \cong K_{4}$. This violates (2) on σ. Therefore $I\left(x_{0} b_{i},\left\{u_{1}, u_{3}\right\}\right)=\emptyset$ for each $i \in\{2,3\}$. We conclude that $i\left(x_{0} b_{i}, Q_{3}\right)=0$ for each $i \in\{2,3\}$. It follows that $e\left(b_{2} b_{3}, Q_{3}\right) \leq 2\left(3-e\left(x_{0}, Q_{3}\right)\right)$. This yields that $e\left(b_{2} b_{3}, Q_{3}\right)+2 e\left(x_{0}, Q_{3}\right) \leq 6$. Consequently, $e\left(a_{r} a_{t}, Q_{3}\right) \geq 13-6=7$. Hence $e\left(a_{t}, Q_{3}\right)=4$, a contradiction as $a_{t} u_{4} \notin E$. Therefore $a_{r} \rightarrow Q_{3}$.

First, assume that $a_{r}=a_{4}$. As $a_{4} \nrightarrow\left(Q_{3} ; P\right)$ for each $P \in \mathcal{S}_{2}$, we have $i\left(x_{0} y, Q_{3}\right)=$ 0 for each $y \in\left\{a_{2}, b_{2}, b_{3}\right\}$ and $i\left(b_{2} b_{3}, Q_{3}\right)=0$. Thus $e\left(x_{0}, Q_{3}\right)+e\left(b_{2} b_{3}, Q_{3}\right) \leq 4$ and $e\left(x_{0}, Q_{3}\right)+e\left(a_{2}, Q_{3}\right) \leq 4$. It follows that $e\left(x_{0}, Q_{3}\right)+e\left(R, Q_{3}\right) \leq 4+4+e\left(a_{4}, Q_{3}\right) \leq$ 12 , a contradiction. Therefore we may assume that $a_{r}=a_{2}$ and $e\left(a_{4}, Q_{3}\right) \leq 2$. As $a_{2} \nrightarrow\left(Q_{3} ; P\right)$ for each $P \in \mathcal{S}_{3}, i\left(x_{0} b_{i}, Q_{3}\right)=0$ for each $i \in\{2,3\}$. Then $e\left(b_{2} b_{3}, Q_{3}\right) \leq 2\left(4-e\left(x_{0}, Q_{3}\right)\right)$. Thus $e\left(b_{2} b_{3}, Q_{3}\right)+2 e\left(x_{0}, Q_{3}\right) \leq 8$. On the other hand, $e\left(b_{2} b_{3}, Q_{3}\right)+2 e\left(x_{0}, Q_{3}\right) \geq 13-e\left(a_{2} a_{4}, Q_{3}\right) \geq 13-6=7$. As $e\left(a_{2} a_{4}, Q_{3}\right) \geq 5$, $i\left(a_{2} a_{4}, Q_{3}\right) \geq 1$. If $e\left(x_{0}, Q_{3}\right)=0$ then $e\left(b_{2} b_{3}, Q_{3}\right) \geq 7$ and so $e\left(b_{i}, Q_{3}\right)=4$ for some $i \in\{2,3\}$. Consequently, $b_{i} \rightarrow\left(Q_{3} ; a_{2} a_{3} a_{4}\right),\left[x_{0}, x_{1}, x_{2}, a_{1}\right] \supseteq C_{4}$ and $x_{3} \rightarrow\left(Q_{2}, b_{i}\right)$, i.e., $G_{3} \supseteq 4 C_{4}$, a contradiction. If $e\left(x_{0}, Q_{3}\right)=1$, say $d \in V\left(Q_{3}\right)$ with $x_{0} d \in E$. Then $e\left(b_{2} b_{3}, Q_{3}-d\right) \geq 5$. W.l.o.g., say $e\left(b_{2}, Q_{3}-d\right)=3$. If $d a_{2} \in E$ then $b_{2} \rightarrow\left(Q_{3} ; x_{0} a_{1} a_{2}\right),\left[x_{2}, x_{3}, a_{3}, a_{4}\right] \supseteq C_{4}$ and $x_{1} \rightarrow\left(Q_{2}, b_{2}\right)$, i.e., $G_{3} \supseteq 4 C_{4}$, a contradiction. Hence $a_{2} d \notin E$. Thus $d d^{*} \in E$ as $a_{2} \rightarrow Q_{3}$. Therefore $b_{2} \rightarrow Q_{3}$. Thus $b_{2} \rightarrow\left(Q_{3} ; a_{2} a_{3} a_{4}\right)$ and it follows, as above, that $G_{3} \supseteq 4 C_{4}$, a contradiction. Finally, we have $e\left(x_{0}, Q_{3}\right)=2$. Then $e\left(b_{2} b_{3}, Q_{3}\right) \geq 3$. Say $Q_{3}=d_{1} d_{2} d_{3} d_{4} d_{1}$ with $x_{0} d_{1} \in E$. If $x_{0} d_{3} \in E$ then $e\left(b_{2} b_{3}, d_{2} d_{4}\right) \geq 3$ and so $x_{0} \rightarrow\left(Q_{3} ; b_{2} b_{3}\right)$, a contradiction. Therefore $e\left(x_{0}, d_{2} d_{4}\right)=1$. W.l.o.g., say $x_{0} d_{2} \in E$. Then $e\left(b_{2} b_{3}, d_{3} d_{4}\right) \geq 3$. If $e\left(a_{2}, d_{1} d_{2}\right)=2$ then $\left[x_{0}, d_{1}, a_{2}, d_{2}\right] \supseteq C_{4},\left[b_{2}, b_{3}, d_{3}, d_{4}\right] \supseteq C_{4}, x_{2} \rightarrow\left(Q_{1}, a_{2}\right)$ and $\left[x_{1}, x_{3}, b_{1}, b_{4}\right] \supseteq C_{4}$, i.e., $G_{3} \supseteq 4 C_{4}$, a contradiction. Hence $e\left(a_{2}, d_{1} d_{2}\right) \leq 1$ and so $e\left(a_{2}, Q_{3}\right)=3$. It follows that $e\left(b_{2} b_{3}, d_{3} d_{4}\right)=4$. As $a_{2} \rightarrow Q_{3}, \tau\left(Q_{3}\right) \geq 1$. Thus $x_{0} \rightarrow\left(Q_{3} ; b_{2} b_{3}\right)$ again, a contradiction.

Lemma 4.7 In Lemma 4.3, none of (4), (5) and (7) holds.
Proof. If (5) holds then $e\left(F-z_{1}, Q\right) \geq 7$ with $1 \leq e\left(z_{0}, Q\right) \leq 2$ and none of (9) to (12) holds w.r.t. F and Q. By Lemmas 4.4-4.6, this is impossible. Hence (5) does not hold.

Suppose that (4) holds. W.l.o.g., say $Q=Q_{1}=c_{1} c_{2} c_{3} c_{4} c_{1}$ with $c_{1} c_{3} \in E$, $N\left(x_{i}, Q_{1}\right) \subseteq\left\{c_{1}, c_{3}\right\}$ for each $i \in\{0,2,3\}$ and $e\left(F, Q_{1}\right) \geq 9$. As $9 \leq e\left(F, Q_{1}\right) \leq 10$, at most one of the ten possible edges between F and Q_{1} may miss from G_{1}. Let
$R=\left\{x_{0}, x_{2}, x_{3}, c_{2}, c_{4}\right\}$. Clearly, $e\left(R, G_{1}\right) \leq 19$. We claim
For each $\{u, v, w\} \subseteq R$ with $u \in\left\{x_{0}, c_{2}, c_{4}\right\}$ and $|\{u, v, w\}|=3$, $G_{1}-\{u, v, w, z\} \supseteq C_{4}$ for some $z \in I\left(v w, G_{1}-\{u, v, w\}\right)$.

To see this, let $u=x_{0}$ first. If $\{v, w\}=\left\{x_{2}, x_{3}\right\}$ then obviously, we can take $z=$ x_{1}. If $\{v, w\}=\left\{c_{2}, c_{4}\right\}$ then take $z=c_{1}$ since $T+c_{3} \supseteq C_{4}$. Therefore we may assume w.l.o.g. that $v=x_{2}$ and $w=c_{2}$ in order to see (21). As $e\left(x_{2} x_{3}, c_{1} c_{3}\right) \geq 3$, $\left\{x_{2} c_{i}, x_{3} c_{j}\right\} \subseteq E$ for some $\{i, j\}=\{1,3\}$. Say w.l.o.g. $\left\{x_{2} c_{1}, x_{3} c_{3}\right\} \subseteq E$. If $x_{1} c_{4} \in E$ then $\left[x_{3}, c_{3}, c_{4}, x_{1}\right] \supseteq C_{4}$ and we take $z=c_{1}$. If $x_{1} c_{4} \notin E$ then $e\left(x_{1}, c_{1} c_{2} c_{3}\right)=3$ and $e\left(x_{2} x_{3}, c_{1} c_{3}\right)=4$. Then $\left[x_{3}, c_{1}, c_{4}, c_{3}\right] \supseteq C_{4}$ and we take $z=x_{1}$. Next, let $u \in\left\{c_{2}, c_{4}\right\}$. Say w.l.o.g. $u=c_{2}$. First, assume $\{v, w\}=\left\{x_{2}, x_{3}\right\}$. If $e\left(x_{0}, c_{1} c_{3}\right)=2$, take $z=x_{1}$. If $e\left(x_{0}, c_{1} c_{3}\right) \neq 2$ then $e\left(x_{0}, c_{1} c_{3}\right)=1, e\left(x_{1}, Q_{2}\right)=4$ and $e\left(x_{2} x_{3}, c_{1} c_{3}\right)=4$. Say w.l.o.g. $x_{0} c_{1} \in E$. Then $\left[x_{0}, c_{1}, c_{4}, x_{1}\right] \supseteq C_{4}$ and we take $z=c_{3}$. Next, assume that $v=x_{0}$ and $w \in\left\{x_{2}, x_{3}\right\}$. W.l.o.g., say $w=x_{2}$. If $e\left(x_{3}, c_{1} c_{3}\right)=2$, take $z=x_{1}$. If $e\left(x_{3}, c_{1} c_{3}\right)=1$ then $e\left(x_{0} x_{2}, c_{1} c_{3}\right)=4$ and $e\left(x_{1}, Q_{1}\right)=4$. Say w.l.o.g. $x_{3} c_{3} \in E$. Then $\left[x_{1}, x_{3}, c_{3}, c_{4}\right] \supseteq C_{4}$ and we take $z=c_{1}$. If $\{v, w\}=\left\{x_{0}, c_{4}\right\}$ then we have either $x_{0} c_{1} \in E$ and $e\left(c_{3}, T\right)=3$ or $x_{0} c_{3} \in E$ and $e\left(c_{1}, T\right)=3$. Then we take $z=c_{1}$ or $z=c_{3}$ accordingly. Finally, let $\{v, w\}=\left\{c_{4}, x_{i}\right\}$ for some $i \in\{2,3\}$. Say w.l.o.g. $\{v, w\}=\left\{c_{4}, x_{2}\right\}$. We have either $c_{1} x_{2} \in E$ and $e\left(c_{3}, x_{0} x_{1} x_{3}\right)=3$ or $c_{3} x_{2} \in E$ and $e\left(c_{1}, x_{0} x_{1} x_{3}\right)=3$. Then we take $z=c_{1}$ or $z=c_{3}$ accordingly.

We have $e\left(x_{0}, H_{1}\right)+e\left(R, H_{1}\right) \geq 12 k-3-19=12(k-2)+2$. Say $e\left(x_{0}, Q_{2}\right)+$ $e\left(R, Q_{2}\right) \geq 13$. As $G_{2} \nsupseteq 3 C_{4}$ and by $(21), u \nrightarrow\left(Q_{2} ; R-\{u\}\right)$ for each $u \in\left\{x_{0}, c_{2}, c_{4}\right\}$. If $e\left(x_{0}, Q_{2}\right) \geq 3$ then $x_{0} \rightarrow Q_{2}$ and $e\left(R-\left\{x_{0}\right\}, Q_{2}\right) \geq 13-2 e\left(x_{0}, Q_{2}\right) \geq 5$. Thus $x_{0} \rightarrow\left(Q_{2} ; R-\left\{x_{0}\right\}\right)$, a contradiction. Hence $e\left(x_{0}, Q_{2}\right) \leq 2$. Then $e\left(R, Q_{2}\right) \geq 11$.

Suppose $c_{2} c_{4} \notin E$. We claim $\left\{c_{2}, c_{4}\right\} \subseteq \mathcal{T}$. This is obvious if $e\left(x_{0}, Q_{1}\right)=2$ for we have $x_{0} \Rightarrow\left(Q_{1}, c_{i}\right)$ for $i \in\{2,4\}$ in this situation. If $e\left(x_{0}, c_{1} c_{3}\right)=1$, then $e\left(x_{1}, Q_{1}\right)=$ 4 and $e\left(x_{2} x_{3}, c_{1} c_{3}\right)=4$. Say w.l.o.g. $x_{0} c_{1} \in E$. Then for each $\{i, j\}=\{2,4\}$, $\tau\left(x_{0} x_{1} c_{i} c_{1} x_{0}\right)=\tau\left(Q_{1}\right)$ and so $\left(c_{j} c_{3}, x_{2} x_{3} c_{3} x_{2}, x_{0} x_{1} c_{i} c_{1} x_{0}, Q_{2}, \ldots, Q_{k-1}\right)$ is a strong feasible chain. Thus $\left\{c_{2}, c_{4}\right\} \subseteq \mathcal{T}$. If $e\left(c_{i}, Q_{2}\right) \geq 3$ for some $i \in\{2,4\}$ then $c_{i} \rightarrow Q_{2}$ by Lemma 4.1(a). Consequently, $c_{i} \rightarrow\left(Q_{2} ; R-\left\{c_{i}\right\}\right)$ as $e\left(R, Q_{2}\right) \geq 11$, a contradiction. Hence $e\left(c_{i}, Q_{2}\right) \leq 2$ for $i \in\{2,4\}$. Thus $e\left(F-x_{1}, Q_{2}\right) \geq 13-e\left(x_{0} c_{2} c_{4}, Q_{2}\right) \geq 7$. As $e\left(x_{0}, Q_{2}\right) \leq 2$ and by Lemmas 4.4-4.6, either $e\left(x_{0}, Q_{2}\right)=0$ or $e\left(x_{0}, Q_{2}\right)=1$ with $e\left(F-x_{1}, Q_{2}\right)=7$. It follows that $e\left(x_{0}, Q_{2}\right)+e\left(R, Q_{2}\right) \leq 12$, a contradiction.

Therefore $c_{2} c_{4} \in E$. Clearly, either $x_{0} c_{1} \in E$ and $e\left(c_{3}, T\right)=3$ or $x_{0} c_{3} \in E$ and $e\left(c_{1}, T\right)=3$. W.l.o.g., say the former holds. Let $F_{1}=x_{0} c_{1} c_{2} c_{4} c_{1}$ and $Q_{1}^{\prime}=$ $x_{1} x_{2} c_{3} x_{3} x_{1}$. Then $\sigma_{1}=\left(x_{0} c_{1}, c_{1} c_{2} c_{4} c_{1}, Q_{1}^{\prime}, Q_{2}, \ldots, Q_{k-1}\right)$ is a strong feasible chain. Furthermore, $e\left(F_{1}, Q_{1}^{\prime}\right) \geq 9$ and (4) holds w.r.t. F_{1} and Q_{1}^{\prime}. As $e\left(F-x_{1}, Q_{2}\right)+e\left(F_{1}-\right.$ $\left.c_{1}, Q_{2}\right)=e\left(x_{0}, Q_{2}\right)+e\left(R, Q_{2}\right) \geq 13$, we may assume w.l.o.g. that $e\left(F-x_{1}, Q_{2}\right) \geq 7$.

By Lemmas 4.4-4.6, either $e\left(x_{0}, Q_{2}\right)=0$ with $e\left(x_{2} x_{3}, Q_{2}\right) \geq 7$ or $e\left(x_{0}, Q_{2}\right)=1$ with $e\left(x_{2} x_{3}, Q_{2}-d\right)=6$ and $e\left(d, x_{2} x_{3}\right)=0$ for some $d \in V\left(Q_{2}\right)$. Thus $e\left(c_{i}, Q_{2}\right) \geq 3$ for some $i \in\{2,4\}$ since $e\left(x_{0}, Q_{2}\right)+e\left(R, Q_{2}\right) \geq 13$. It follows that $c_{i} \rightarrow\left(Q_{2} ; x_{2} x_{3}\right)$, a contradiction.

Finally, suppose that (7) holds. Say $Q=Q_{1}=a_{1} a_{2} a_{3} a_{4} a_{1}, N\left(x_{0}, Q_{1}\right)=\left\{a_{1}\right\}$, $N\left(x_{1}, Q_{1}\right)=N\left(x_{2}, Q_{1}\right)=\left\{a_{1}, a_{2}, a_{3}\right\}, N\left(x_{3}, Q_{1}\right)=\left\{a_{1}, a_{3}\right\}, a_{1} a_{3} \in E$ and $a_{2} a_{4} \notin E$. Let $F_{2}=a_{4} a_{3} a_{2} x_{2} a_{3}$ and $Q_{1}^{\prime}=x_{0} x_{1} x_{3} a_{1} x_{0}$. Then $\sigma_{2}=\left(a_{4} a_{3}, a_{3} a_{2} x_{2} a_{3}, Q_{1}^{\prime}, Q_{2}, \ldots, Q_{k-1}\right)$ is a strong feasible chain and $a_{4} \in \mathcal{T}$. Set $R_{1}=\left\{x_{0}, a_{4}, a_{2}, x_{2}\right\}, R^{\prime}=R_{1}-\left\{x_{0}\right\}$ and $R^{\prime \prime}=R_{1}-\left\{a_{4}\right\}$. Then $e\left(R_{1}, G_{1}\right)=13$ and so $e\left(R_{1}, H_{1}\right) \geq 8(k-2)+3$. Say $e\left(R_{1}, Q_{2}\right) \geq$ 9. It is easy to see that $G_{1}-V\left(P+x_{0}\right) \supseteq C_{4}$ for each $P \in\left\{a_{4} a_{3} x_{2}, a_{4} a_{3} a_{2}, a_{2} x_{1} x_{2}\right\}$ and $G_{1}-V\left(P+a_{4}\right) \supseteq C_{4}$ for each $P \in\left\{x_{0} a_{1} a_{2}, x_{0} x_{1} x_{2}, a_{2} a_{3} x_{2}\right\}$. As $G_{2} \nsupseteq 3 C_{4}$, this implies that $x_{0} \nrightarrow\left(Q_{2} ; R^{\prime}\right)$ and $a_{4} \nrightarrow\left(Q_{2} ; R^{\prime \prime}\right)$. As $e\left(R_{1}, Q_{2}\right) \geq 9$, this implies that $x_{0} \nrightarrow Q_{2}$ and $a_{4} \nrightarrow Q_{2}$. By Lemma 4.1(a), e($\left.x_{0}, Q_{2}\right) \leq 2$ and $e\left(a_{4}, Q_{2}\right) \leq 2$. Thus $e\left(F_{2}-a_{3}, Q_{2}\right)=e\left(R^{\prime}, Q_{2}\right) \geq 7$. By Lemmas 4.4-4.6, $e\left(a_{4}, Q_{2}\right)=0$ or (9) holds w.r.t. F_{2} and Q_{2}. By Lemma 4.2, $\left[F_{2}, Q_{2}\right] \nsupseteq P \uplus Q$ such that $P \supseteq 2 P_{2}, Q \cong C_{4}$ and $\tau(Q)=\tau\left(Q_{2}\right)+2$. Applying Lemma 3.3 to F_{2}, Q_{2} and $z=x_{0}$, we have a labelling $Q_{2}=d_{1} d_{2} d_{3} d_{4} d_{1}$ such that $e\left(a_{2} x_{2}, d_{2} d_{3} d_{4}\right)=6$ and $x_{0} d_{3} \in E$. Consequently, $a_{2} \rightarrow\left(Q_{2}, d_{3} ; x_{0} x_{1} x_{2}\right)$ and $x_{3} \rightarrow\left(Q_{1}, a_{2}\right)$, i.e., $G_{2} \supseteq 3 C_{4}$, a contradiction.

Lemma 4.8 In Lemma 4.3, (6) does not hold.
Proof. On the contrary, suppose that (6) holds. Say w.l.o.g. $Q=Q_{1}=c_{1} c_{2} c_{3} c_{4} c_{1}$ such that $e\left(F, Q_{1}\right) \geq 9, N\left(x_{0}, Q_{1}\right) \subseteq\left\{c_{1}, c_{2}\right\}, N\left(x_{2}, Q_{1}\right) \subseteq\left\{c_{1}, c_{2}, c_{3}\right\}, N\left(x_{3}, Q_{1}\right) \subseteq$ $\left\{c_{1}\right\}, c_{1} c_{3} \in E$ and $c_{2} c_{4} \notin E$. If $e\left(x_{2}, c_{2} c_{3}\right)=2$ and $e\left(c_{1}, x_{0} x_{1} x_{3}\right)=3$, let $F^{\prime}=$ $c_{4} c_{3} x_{2} c_{2} c_{3}$ and $Q^{\prime}=c_{1} x_{0} x_{1} x_{3} c_{1}$. Then $\left(c_{4} c_{3}, c_{3} x_{2} c_{2} c_{3}, Q^{\prime}, Q_{2}, \ldots, Q_{k-1}\right)$ is a strong feasible chain of G. Moreover, $N\left(c_{4}, Q^{\prime}\right) \subseteq\left\{c_{1}, x_{1}\right\}, N\left(x_{2}, Q^{\prime}\right) \subseteq\left\{c_{1}, x_{3}, x_{1}\right\}, N\left(c_{2}, Q^{\prime}\right) \subseteq$ $\left\{c_{1}, x_{0}, x_{1}\right\}, N\left(c_{3}, Q^{\prime}\right) \subseteq\left\{c_{1}, x_{1}\right\}$ and $e\left(F^{\prime}, Q^{\prime}\right) \geq 9$. Thus (5) holds w.r.t. F^{\prime} and Q^{\prime}, contradicting Lemma 4.7. Therefore either $e\left(x_{2}, c_{2} c_{3}\right)=1$ or $e\left(c_{1}, x_{0} x_{1} x_{3}\right)=2$. Thus one of (22) to (26) holds:

$$
\begin{align*}
& N\left(x_{0}, Q\right)=\left\{c_{1}, c_{2}\right\}, N\left(x_{1}, Q\right)=\left\{c_{2}, c_{3}, c_{4}\right\}, N\left(x_{2}, Q\right)=\left\{c_{1}, c_{2}, c_{3}\right\}, x_{3} c_{1} \in E, c_{1} c_{3} \in \tag{222;}\\
& N\left(x_{0}, Q\right)=\left\{c_{1}, c_{2}\right\}, e\left(x_{1}, Q\right)=4, N\left(x_{2}, Q\right)=\left\{c_{1}, c_{2}, c_{3}\right\}, x_{3} c_{1} \notin E, c_{1} c_{3} \in E \tag{23}\\
& N\left(x_{0}, Q\right)=\left\{c_{1}, c_{2}\right\}, e\left(x_{1}, Q\right)=4, N\left(x_{2}, Q\right)=\left\{c_{1}, c_{3}\right\}, x_{3} c_{1} \in E, c_{1} c_{3} \in E \tag{24}\\
& N\left(x_{0}, Q\right)=\left\{c_{1}, c_{2}\right\}, e\left(x_{1}, Q\right)=4, N\left(x_{2}, Q\right)=\left\{c_{1}, c_{2}\right\}, x_{3} c_{1} \in E, c_{1} c_{3} \in E \tag{25}\\
& N\left(x_{0}, Q\right)=\left\{c_{2}\right\}, e\left(x_{1}, Q\right)=4, N\left(x_{2}, Q\right)=\left\{c_{1}, c_{2}, c_{3}\right\}, x_{3} c_{1} \in E, c_{1} c_{3} \in E . \tag{26}
\end{align*}
$$

If (25) holds, let $F^{\prime}=x_{3} x_{1} c_{3} c_{4} x_{1}$ and $Q_{1}^{\prime}=c_{1} x_{2} c_{2} x_{0} c_{1}$. Then (24) holds w.r.t. F^{\prime} and Q_{1}^{\prime} (by relabelling the vertices accordingly). If (26) holds, let $F^{\prime \prime}=x_{3} x_{1} c_{2} x_{0} x_{1}$ and $Q_{1}^{\prime \prime}=c_{1} x_{2} c_{3} c_{4} c_{1}$. Then (23) holds w.r.t. $F^{\prime \prime}$ and $Q_{1}^{\prime \prime}$ (by relabelling the vertices
accordingly). Therefore we only need to eliminate each of (22), (23) and (24) in order to prove that (6) does not hold.

Suppose that one of (22), (23) and (24) holds. Let $T_{1}=c_{1} x_{0} c_{2} c_{1}, F_{1}=T_{1}+$ $c_{4} c_{1}, Q_{1}^{\prime}=c_{3} x_{1} x_{3} x_{2} c_{3}, T_{2}=x_{1} c_{2} x_{0} x_{1}, F_{2}=T_{2}+x_{3} x_{1}$ and $Q_{1}^{\prime \prime}=x_{2} c_{1} c_{4} c_{3} x_{2}$. Then $\tau\left(Q_{1}^{\prime}\right)=\tau\left(Q_{1}^{\prime \prime}\right)=1$. Thus both $\sigma_{1}=\left(c_{4} c_{1}, T_{1}, Q_{1}^{\prime}, Q_{2}, \ldots, Q_{k-1}\right)$ and $\sigma_{2}=$ $\left(x_{3} x_{1}, T_{2}, Q_{1}^{\prime \prime}, Q_{2}, \ldots, Q_{k-1}\right)$ are strong feasible chains and so $\left\{c_{4}, x_{3}\right\} \subseteq \mathcal{T}$. First, assume that (22) or (23) holds. Let $R=\left\{c_{4}, x_{0}, c_{2}, x_{3}\right\}, R^{\prime}=R-\left\{x_{3}\right\}$ and $R^{\prime \prime}=R-\left\{c_{4}\right\}$. Then $e\left(R, G_{1}\right) \leq 14$ and so $e\left(R, H_{1}\right) \geq 8(k-2)+2$. Say $e\left(R, Q_{2}\right) \geq 9$. It is easy to see that $G_{1}-V\left(P+x_{3}\right) \supseteq C_{4}$ for each $P \in\left\{x_{0} x_{1} c_{4}, x_{0} c_{1} c_{2}, c_{2} c_{3} c_{4}\right\}$ and $G_{1}-V\left(P+c_{4}\right) \supseteq C_{4}$ for each $P \in\left\{x_{0} x_{1} x_{3}, x_{0} c_{1} c_{2}, c_{2} x_{2} x_{3}\right\}$. As $G_{2} \nsupseteq 3 C_{4}$, this implies that $x_{3} \nrightarrow\left(Q_{2} ; R^{\prime}\right)$ and $c_{4} \nrightarrow\left(Q_{2} ; R^{\prime \prime}\right)$. As $e\left(R, Q_{2}\right) \geq 9$, this further implies that $x_{3} \nrightarrow Q_{2}$ and $c_{4} \nrightarrow Q_{2}$. By Lemma 4.1(a), e($\left.x_{3}, Q_{2}\right) \leq 2$ and $e\left(c_{4}, Q_{2}\right) \leq 2$. Since $e\left(F_{1}-c_{1}, Q_{2}\right)=e\left(R^{\prime}, Q_{2}\right) \geq 7$, we see, by Lemmas 4.4-4.6, that either $e\left(c_{4}, Q_{2}\right)=0$ or there exists $d \in V\left(Q_{2}\right)$ such that $e\left(c_{4}, Q_{2}\right)=1 N\left(x_{0}, Q_{2}\right)=N\left(c_{2}, Q_{2}\right)=V\left(Q_{2}\right)-\{d\}$. By Lemma 4.2, $\left[F_{1}, Q_{2}\right] \nsupseteq P \uplus Q$ with $P \cong 2 P_{2}, Q \cong C_{4}$ and $\tau(Q)=\tau\left(Q_{2}\right)+2$. As $x_{3} \nrightarrow\left(Q_{2} ; x_{0} c_{2}\right)$, we may apply Lemma 3.3 to F_{1}, Q_{2} and $z=x_{3}$. Thus there exists a labelling $Q_{2}=d_{1} d_{2} d_{3} d_{4} d_{1}$ such that $e\left(x_{0} c_{2}, d_{2} d_{3} d_{4}\right)=6$ and $x_{3} d_{3} \in E$. Then $c_{2} \rightarrow\left(Q_{2}, d_{3} ; x_{0} x_{1} x_{3}\right)$ and $x_{2} \rightarrow\left(Q_{2}, c_{2}\right)$, i.e., $G_{2} \supseteq 3 C_{4}$, a contradiction.

Therefore (24) holds. Then $e\left(F-x_{1}, G_{1}\right)+e\left(F_{1}-c_{1}, G_{1}\right)=20$ and so $e(F-$ $\left.x_{1}, H_{1}\right)+e\left(F_{1}-c_{1}, H_{1}\right) \geq 12 k-20 \geq 12(k-2)+4$. Say $e\left(F-x_{1}, Q_{2}\right)+e\left(F_{1}-c_{1}, Q_{2}\right) \geq$ 13. Let $R_{1}=\left\{x_{0}, x_{2}, x_{3}, c_{2}, c_{4}\right\}$. It is easy to check that $G_{1}-V\left(P+x_{0}\right) \supseteq C_{4}$ for each $P \in\left\{x_{3} x_{1} x_{2}, x_{3} x_{1} c_{4}, x_{3} x_{1} c_{2}, x_{2} c_{3} c_{4}, x_{2} c_{3} c_{2}, c_{4} c_{3} c_{2}\right\}$. As $G_{2} \nsupseteq 3 C_{4}$, this implies that $x_{0} \nrightarrow\left(Q_{2} ; R_{1}-\left\{x_{0}\right\}\right)$. As $e\left(R_{1}, Q_{2}\right)=e\left(F-x_{1}, Q_{2}\right)+e\left(F_{1}-c_{1}, Q_{2}\right)-e\left(x_{0}, Q_{2}\right) \geq 9$, this further implies that $x_{0} \nrightarrow Q_{2}$. By Lemma 4.1 $(a), e\left(x_{0}, Q_{2}\right) \leq 2$. Assume for the moment that $e\left(F-x_{1}, Q_{2}\right) \geq 7$. As $e\left(x_{0}, Q_{2}\right) \leq 2$, we see, by Lemmas 4.4-4.6, that either $e\left(x_{0}, Q_{2}\right)=0$ with $e\left(x_{2} x_{3}, Q_{2}\right) \geq 7$ or $e\left(x_{0}, Q_{2}\right)=1$ with $e\left(x_{2}, Q_{2}\right)=$ $e\left(x_{3}, Q_{2}\right)=3$. Then $e\left(x_{0}, Q_{2}\right)+e\left(F-x_{1}, Q_{2}\right) \leq 8$ and so $e\left(c_{2} c_{4}, Q_{2}\right) \geq 13-8=5$. As $x_{3} \in \mathcal{T}$ and $e\left(x_{3}, Q_{2}\right) \geq 3$, we obtain $x_{3} \rightarrow\left(Q_{2} ; c_{2} c_{4}\right)$, i.e., $x_{3} \rightarrow\left(Q_{2} ; c_{2} c_{3} c_{4}\right)$. As $\left[x_{0}, x_{1}, x_{2}, c_{1}\right] \supseteq C_{4}$, it follows that $G_{2} \supseteq 3 C_{4}$, a contradiction. Therefore $e(F-$ $\left.x_{1}, Q_{2}\right) \leq 6$ and so $e\left(F_{1}-c_{1}, Q_{2}\right) \geq 7$. By Lemmas 4.4-4.6, we have that either $e\left(c_{4}, Q_{2}\right)=0$ or one of (9) to (12) holds w.r.t. F_{1} and Q_{2}. As $e\left(x_{0}, Q_{2}\right) \leq 2$, we conclude that $e\left(x_{0}, Q_{2}\right) \leq 1$ and one of (10) to (12) holds w.r.t. F_{1} and Q_{2}. Thus $e\left(x_{0}, Q_{2}\right)+e\left(F_{1}-c_{1}, Q_{2}\right) \leq 8$ and so $e\left(x_{2} x_{3}, Q_{2}\right) \geq 13-8=5$. Then $e\left(x_{i}, Q_{2}\right) \geq 3$ for some $i \in\{2,3\}$. Thus $x_{i} \rightarrow\left(Q_{2} ; c_{4} c_{2}\right)$, i.e., $x_{i} \rightarrow\left(Q_{2} ; c_{4} c_{3} c_{2}\right)$. Say $\{i, j\}=\{2,3\}$. Then $\left[c_{1}, x_{0}, x_{1}, x_{j}\right] \supseteq C_{4}$ and so $G_{2} \supseteq 3 C_{4}$, a contradiction.

Lemma 4.9 Set $G_{0}=\left[F, Q_{2}\right]$ and let z_{1} and z_{2} be two distinct vertices in $G_{0}-x_{1}$ such that if $z_{1} \notin V(T)$ then $x_{i} \rightarrow\left(Q_{2}, z_{1}\right)$ and $e\left(z_{1}, T-x_{i}\right) \geq 1$ for some $x_{i} \in V(T)$. In addition, suppose that $G_{0}+x \supseteq 2 C_{4}$ for each $x \in V(G)-V\left(G_{0}\right)$ with $e\left(x, G_{0}\right) \geq 2$.

Then for any $i \in\{1,3, \ldots, k-1\}$, there exists no labelling $Q_{i}=d_{1} d_{2} d_{3} d_{4} d_{1}$ such that the following hold:
(a) $x_{0} d_{1} \in E, d_{2} d_{4} \notin E, e\left(z_{1}, d_{1} d_{2} d_{3}\right)=3, e\left(z_{2}, d_{1} d_{3}\right)=2 ;$
(b) If $e\left(x_{0}, d_{1} d_{3}\right)=1$ then $Q_{i} \neq Q_{1}, e\left(d_{2} d_{4}, Q_{1}\right) \leq 4$ and for some $y \in V\left(Q_{1}\right)$, $x_{0} \Rightarrow\left(Q_{1}, y\right), e\left(y, d_{1} d_{3}\right)=2$.

Proof. Suppose that there exists Q_{i} as described. Say w.l.o.g. $Q_{i}=Q_{3}=d_{1} d_{2} d_{3} d_{4} d_{1}$. Let $L=\left[F, Q_{2}, Q_{3}\right]$ if $e\left(x_{0}, d_{1} d_{3}\right)=2$ and otherwise $L=\left[F, Q_{1}, Q_{2}, Q_{3}\right]$. Say $|V(L)|=$ $4 p$. We claim $e\left(F+d_{2}+d_{4}, L\right) \leq 12 p-2$. If $e\left(x_{0}, Q_{3}\right) \geq 3$ then $x_{0} \rightarrow\left(Q_{3}, d_{3}\right)$ by Lemma 4.1 (a) and so $\left[F, Q_{2}, Q_{3}\right] \supseteq 3 C_{4}$ since $G_{0}+d_{3} \supseteq C_{4}$, a contradiction. Hence $e\left(x_{0}, Q_{3}\right) \leq 2$. Obviously, $e(F, F)=8$. As $\left[F, Q_{2}\right] \nsupseteq 2 C_{4}, e\left(F, Q_{2}\right) \leq 12$ by Lemma 4.3. As $\left[F, Q_{3}\right] \nsupseteq 2 C_{4}$, if $e\left(F, Q_{3}\right) \geq 9$ then $e\left(F, Q_{3}\right)=9, e\left(x_{0}, Q_{3}\right)=1$ and one of (3) and (8) holds w.r.t. F and Q_{3} by Lemmas 4.3 and 4.7-4.8. Then by our assumption, $e\left(y, Q_{3}\right) \geq 2$. Thus $\left[T, Q_{3}, y\right] \supseteq 2 C_{4}$ and so $\left[F, Q_{1}, Q_{3}\right] \supseteq 3 C_{4}$, a contradiction. Hence $e\left(F, Q_{3}\right) \leq 8$. If $e\left(x_{0}, d_{1} d_{3}\right)=1$ then $e\left(x_{0}, Q_{1}\right) \geq 2$ as $x_{0} \Rightarrow\left(Q_{1}, y\right)$. In this situation, as $\left[F, Q_{1}\right] \nsupseteq 2 C_{4}$, we obtain $e\left(F, Q_{1}\right) \leq 8$ by Lemmas 4.3 and 4.7-4.8. For each $t \in\{2,4\}$, since $x_{0} \Rightarrow\left(Q_{3}, d_{t}\right)$ or $x_{0} \Rightarrow\left(Q_{1}, y\right)$ and $y \Rightarrow\left(Q_{3}, d_{t}\right)$, we have $d_{t} \in \mathcal{T}$. Moreover, $G_{0}+d_{t} \nsupseteq 2 C_{4}$ and so $e\left(d_{t}, G_{0}\right) \leq 1$. If $e\left(x_{0}, d_{1} d_{3}\right)=2$ then $e\left(d_{2} d_{4}, L\right) \leq 6$ and so $e(F, L)+e\left(d_{2} d_{4}, L\right) \leq 8+12+8+6=12 p-2$ as claimed. Hence assume that $e\left(x_{0}, d_{1} d_{3}\right)=1$. Then $e\left(y, d_{1} d_{3}\right)=2$. If $e\left(F, Q_{2}\right)+e\left(d_{2} d_{4}, F \cup Q_{2}\right) \leq 14$ then $e(F, L)+e\left(d_{2} d_{4}, L\right) \leq 14+e\left(F, F \cup Q_{1} \cup Q_{3}\right)+e\left(d_{2} d_{4}, Q_{1} \cup Q_{3}\right) \leq 14+24+8=12 p-2$ as claimed. Therefore we may assume that $e\left(F, Q_{2}\right)+e\left(d_{2} d_{4}, F \cup Q_{2}\right) \geq 15$. As $e\left(F, Q_{2}\right) \leq 12$ and $e\left(d_{i}, G_{0}\right) \leq 1$ for $i \in\{2,4\}$, we see that $x_{0} d_{r} \in E$ and $e\left(d_{r}, G_{0}\right)=1$ for some $r \in\{2,4\}$. Let $\{r, t\}=\{2,4\}$. As $e\left(x_{0}, Q_{3}\right) \leq 2, x_{0} d_{t} \notin E$. It follows that $e\left(F, Q_{2}\right)=12$ and $e\left(d_{t}, G_{0}\right)=1$. Then $e\left(x_{0}, Q_{2}\right)=0$ and $e\left(T, Q_{2}\right)=12$ by Lemmas 4.3. By Lemma $4.1(b), \tau\left(Q_{2}\right)=2$. If $e\left(d_{r}, G_{0}-x_{1}\right)=1$ then $\left[G_{0}+x_{0}+d_{r}\right]-z_{i} \supseteq 2 C_{4}$ where $i \in\{1,2\}$ with $d_{r} z_{i} \notin E$. Consequently, $z_{i} \rightarrow\left(Q_{3}, d_{r}\right)$ and so $\left[F, Q_{2}, Q_{3}\right] \supseteq$ $3 C_{4}$, a contradiction. Hence $d_{r} x_{1} \in E$. Thus $d_{r}=d_{4}$. Then $\left[x_{0}, d_{1}, d_{4}, x_{1}\right] \supseteq C_{4}$, $\left[d_{2}, d_{3}, z_{1}, z_{2}\right] \supseteq C_{4}$ and $G_{0}-\left\{x_{1}, z_{1}, z_{2}\right\} \supseteq C_{4}$, a contradiction. Therefore the claim holds. Then $e\left(F+d_{2}+d_{4}, G-V(L)\right)=12 k-12 p+2=12(k-p)+2$. Thus there exists Q_{r} in $G-V(L)$ such that $e\left(F+d_{2}+d_{4}, Q_{r}\right) \geq 13$.

First, assume that $e\left(F, Q_{r}\right) \leq 8$. Then $e\left(d_{2} d_{4}, Q_{r}\right) \geq 5$. Since $\left\{d_{2}, d_{4}\right\} \subseteq \mathcal{T}$, we have $d_{t} \rightarrow Q_{r}$ for some $t \in\{2,4\}$ by Lemma 4.1(a). Then $T+v \nsupseteq C_{4}$ and so $e(v, T) \leq 1$ for all $v \in V\left(Q_{r}\right)$ since $x_{0} \rightarrow\left(Q_{3}, d_{t}\right)$ or $x_{0} \rightarrow\left(Q_{1}, y\right)$ and $y \rightarrow\left(Q_{3}, d_{t}\right)$. This yields $e\left(x_{0} d_{2} d_{4}, Q_{r}\right) \geq 9$. Then $d_{t} \rightarrow\left(Q_{r} ; x_{0} d_{1} d_{s}\right)$ where $\left\{d_{s}, d_{t}\right\}=\left\{d_{2}, d_{4}\right\}$. As $G_{0}+d_{3} \supseteq 2 C_{4}$, we obtain $\left[F, Q_{2}, Q_{3}, Q_{r}\right] \supseteq 4 C_{4}$, a contradiction.

Therefore $e\left(F, Q_{r}\right) \geq 9$. Then by Lemmas 4.3 and 4.7-4.8, either $e\left(x_{0}, Q_{r}\right)=0$ or one of (3) and (8) holds w.r.t. F and Q_{r}. If (3) or (8) holds w.r.t. F and Q_{r}, then $e\left(F, Q_{r}\right)=9$ and $\left[T, Q_{r}, d_{t}\right] \supseteq 2 C_{4}$ where $d_{t} \in\left\{d_{2}, d_{4}\right\}$ with $e\left(d_{t}, Q_{r}\right) \geq 2$.

Consequently, $\left[F, Q_{3}, Q_{r}\right] \supseteq 3 C_{4}$ or $\left[F, Q_{1}, Q_{3}, Q_{r}\right] \supseteq 4 C_{4}$, a contradiction. Hence $e\left(x_{0}, Q_{r}\right)=0$ and so $e\left(T, Q_{r}\right) \geq 9$. Then by Lemma 3.2, $e\left(d_{t}, Q_{r}\right) \leq 1$ for each $t \in$ $\{2,4\}$. Thus $e\left(T, Q_{r}\right) \geq 11$ and so $\tau\left(Q_{r}\right)=2$ by Lemma $4.1(b)$. By our assumption, there are two distinct vertices x_{a} and x_{b} in T such that $z_{1} x_{a} \in E, z_{1} \notin\left\{x_{a}, x_{b}\right\}$ and if $z_{1} \notin V(T)$ then $x_{b} \rightarrow\left(Q_{2}, z_{1}\right)$. Let $\{a, b, c\}=\{1,2,3\}$. If $e\left(d_{2}, Q_{r}\right)=0$ then $e\left(T, Q_{r}\right)=12$ and $e\left(d_{4}, Q_{r}\right)=1$. If $d_{2} w \in E$ for some $w \in V\left(Q_{r}\right)$, we claim that $x_{a} w \notin E$. To see this, assume $x_{a} w \in E$. Then $\left[z_{1}, x_{a}, w, d_{2}\right] \supseteq C_{4}$. If $z_{1} \in V(T)$, then $x_{b} \rightarrow\left(Q_{r}, w\right)$ and so $\left[T, Q_{r}, d_{2}\right] \supseteq 2 C_{4}$. If $z_{1} \notin V(T)$ then $x_{b} \rightarrow\left(Q_{2}, z_{1}\right)$, $x_{c} \rightarrow\left(Q_{r}, w\right)$ and so $\left[T, Q_{2}, Q_{r}, d_{2}\right] \supseteq 3 C_{4}$. It follows that $\left[F, Q_{2}, Q_{3}, Q_{r}\right] \supseteq 4 C_{4}$ or $\left[F, Q_{1}, Q_{2}, Q_{3}, Q_{r}\right] \supseteq 5 C_{4}$, a contradiction. Hence $x_{a} w \notin E$. In any case, we conclude that $e\left(F+d_{2}+d_{4}, Q_{r}\right)=13, e\left(T, Q_{r}\right) \geq 11$ and $e\left(d_{4}, Q_{r}\right)=1$. Thus $e\left(F+d_{2}+d_{4}, G-V\left(L \cup Q_{r}\right)\right) \geq 12(k-p)+2-13=12(k-p-1)+1$. Then $e\left(F+d_{2}+d_{4}, Q_{t}\right) \geq 13$ for some Q_{t} in $G-V\left(L \cup Q_{r}\right)$. By the above argument, we shall have that $e\left(T, Q_{t}\right) \geq 11, e\left(d_{4}, Q_{t}\right)=1$ and $\tau\left(Q_{t}\right)=2$. Let $w \in V\left(Q_{r}\right)$ and $v \in V\left(Q_{t}\right)$ be such that $\{v, w\} \subseteq N\left(d_{4}\right)$. As $e\left(T, Q_{r}\right) \geq 11$ and $e\left(T, Q_{t}\right) \geq$ 11, there exists $u \in V(T)$ such that $e(u, v w)=2$. Let $V(T)=\{u, x, z\}$. Then $\left[u, v, d_{4}, w\right] \supseteq C_{4}, x \rightarrow\left(Q_{r}, w\right)$ and $z \rightarrow\left(Q_{t}, v\right)$, i.e., $\left[T, Q_{r}, Q_{t}, d_{4}\right] \supseteq 3 C_{4}$. It follows that $\left[F, Q_{3}, Q_{r}, Q_{t}\right] \supseteq 4 C_{4}$ or $\left[F, Q_{1}, Q_{3}, Q_{r}, Q_{t}\right] \supseteq 5 C_{4}$, a contradiction.

In the above proof, the condition that $G_{0}+x \supseteq 2 C_{4}$ for all $x \in V(G)-V\left(G_{0}\right)$ with $e\left(x, G_{0}\right) \geq 2$ is used for the estimation of $e\left(F, Q_{2}\right)+e\left(d_{2} d_{4}, F \cup Q_{2}\right)$ and so is the condition of z_{2}. Moreover, if $e\left(x_{0}, d_{1} d_{3}\right)=2$ then the condition of z_{2} is used only for $G_{0}+d_{3} \supseteq 2 C_{4}$. Observing this, we have the following corollary.

Corollary 4.9.1 Set $G_{0}=\left[F, Q_{2}\right]$ and let z_{1} be a vertex in $G_{0}-x_{1}$ such that if $z_{1} \notin V(T)$ then $x_{i} \rightarrow\left(Q_{2}, z_{1}\right)$ and $e\left(z_{1}, T-x_{i}\right) \geq 1$ for some $x_{i} \in V(T)$. Let $i \in\{1,3, \ldots, k-1\}$. Then the following two statements hold:
(a) If $G_{0}+x \supseteq 2 C_{4}$ for each $x \in V(G)-V\left(G_{0}\right)$ with $e\left(x, G_{0}\right) \geq 2$ then there exists no labelling $Q_{i}=d_{1} d_{2} d_{3} d_{4} d_{1}$ such that $e\left(x_{0}, d_{1} d_{3}\right)=2, d_{2} d_{4} \notin E$, $e\left(z_{1}, d_{1} d_{2} d_{3}\right)=3$ and $e\left(d_{3}, G_{0}\right) \geq 2$.
(b) If there exists a labelling $Q_{i}=d_{1} d_{2} d_{3} d_{4} d_{1}$ such that $e\left(x_{0}, d_{1} d_{3}\right)=2, d_{2} d_{4} \notin E$, $e\left(z_{1}, d_{1} d_{2} d_{3}\right)=3$, and $G_{0}+d_{3} \supseteq 2 C_{4}$, then $e\left(F+d_{2}+d_{4}, F \cup Q_{2} \cup Q_{i}\right) \geq 35$.

Proof. The statement (a) is evident. To see (b), suppose that $e\left(F+d_{2}+d_{4}, F \cup\right.$ $\left.Q_{2} \cup Q_{i}\right) \leq 34$. Then $e\left(F+d_{2}+d_{4}, G-V\left(F \cup Q_{2} \cup Q_{i}\right)\right) \geq 12 k-34=12(k-3)+2$. Then a contradiction follows word by word from the last two paragraphs in the proof of Lemma 4.9.
Proof of Claim 2.2. By Lemmas 4.3 and 4.7-4.8, it remains to show that (8) does not hold. On the contrary, say w.l.o.g. $Q=Q_{1}=a_{1} a_{2} a_{3} a_{4} a_{1}, N\left(x_{0}, Q_{1}\right)=\left\{a_{1}\right\}$, $e\left(x_{1} x_{2}, Q_{1}\right)=8, a_{1} a_{3} \in E$ and $e\left(x_{3}, Q_{1}\right)=0$. Let $R=\left\{x_{0}, x_{3}, a_{2}, a_{4}\right\}$. Then
$e\left(R, G_{1}\right) \leq 14$ and so $e\left(R, H_{1}\right) \geq 8(k-2)+2$. Say $e\left(R, Q_{2}\right) \geq 9$. Let $F^{\prime}=x_{3} x_{1} a_{1} x_{0} x_{1}$. Clearly, G_{1} has an automorphism α such that $\alpha(F)=F^{\prime}$ and $\alpha\left(a_{i}\right)=a_{i}(i=2,3,4)$. Thus $x_{3} \in \mathcal{T}$. It is easy to see that for each $\{x, y, z\} \subseteq R$ with $|\{x, y, z\}|=3$, there exists $v \in\left\{a_{1}, a_{3}, x_{1}, x_{2}\right\}$ such that $e(v, y z)=2$ and $G_{1}-\{x, y, v, z\} \supseteq C_{4}$. As $G_{2} \nsupseteq 3 C_{4}$, this implies that $x \nrightarrow\left(Q_{2} ; R-\{x\}\right)$ for each $x \in R$. As $e\left(R, Q_{2}\right) \geq 9$, it follows that $x \nrightarrow Q_{2}$ and so $e\left(x, Q_{2}\right) \leq 3$ for all $x \in R$. Furthermore, $e\left(x_{0}, Q_{2}\right) \leq 2$ and $e\left(x_{3}, Q_{2}\right) \leq 2$ by Lemma $4.1(a)$. Thus $e\left(a_{2} a_{4}, Q_{2}\right) \geq 5$. W.l.o.g., say $e\left(a_{2}, d_{1} d_{2} d_{3}\right)=3$ with $Q_{2}=d_{1} d_{2} d_{3} d_{4} d_{1}$. Then $d_{2} d_{4} \notin E$ as $a_{2} \nrightarrow Q_{2}$. Moreover, $e\left(d_{2}, R-\left\{a_{2}\right\}\right) \leq 1$ and $e\left(d_{4}, R-\left\{a_{2}\right\}\right) \leq 1$. Thus $e\left(d_{1} d_{3}, R-\left\{a_{2}\right\}\right) \geq 4$ and so $i\left(d_{1} d_{3}, R-\left\{a_{2}\right\}\right) \geq 1$. Assume for the moment that $x \notin I\left(d_{1} d_{3}, R-\left\{a_{2}\right\}\right)$ for each $x \in\left\{x_{0}, x_{3}\right\}$. Then $e\left(a_{4}, d_{1} d_{3}\right)=2$ and $e\left(d_{1} d_{3}, x_{0} x_{3}\right)=2$. Thus $e\left(d_{2}, x_{0} x_{3}\right)=0$ as $a_{4} \nrightarrow\left(Q_{2} ; R-\left\{a_{4}\right\}\right)$. As $e\left(R, Q_{2}\right) \geq 9$, $e\left(x_{0} x_{3}, Q_{2}-d_{2}\right) \geq 3$. W.l.o.g., say $e\left(x_{0}, Q_{2}\right)=2$. Then $e\left(x_{0}, d_{t} d_{4}\right)=2$ for some $t \in$ $\{1,3\}$. Then $e\left(d_{4}, x_{3} a_{4}\right)=0$ as $a_{2} \nrightarrow\left(Q_{2} ; R-\left\{a_{2}\right\}\right)$. It follows that $e\left(x_{3}, d_{1} d_{3}\right)=1$ and $e\left(a_{4}, d_{1} d_{2} d_{3}\right)=3$. Thus $\left[x_{0}, d_{t}, d_{4}\right] \supseteq C_{3}, \tau\left(a_{2} d_{2} a_{4} d_{3} a_{2}\right)=\tau\left(Q_{1}\right)$ and $\left[x_{1}, a_{1}, a_{3}, x_{2}\right] \cong$ $K_{4}>Q_{2}$, contradicting (1). Therefore $e\left(x_{i}, d_{1} d_{3}\right)=2$ for some $i \in\{0,3\}$. Say w.l.o.g. $e\left(x_{0}, d_{1} d_{3}\right)=2$. Then for each $i \in\{2,4\},\left[T, Q_{1}, d_{i}\right] \nsupseteq 2 C_{4}$ and so $e\left(d_{i}, Q_{1}\right) \leq 1$ and $e\left(d_{i}, T\right) \leq 1$. Thus $e\left(d_{2} d_{4}, G_{2}\right) \leq 8$. As $x_{0} \nrightarrow\left(Q_{2} ; a_{2} a_{4}\right), a_{4} d_{2} \notin E$. As $e\left(a_{4}, Q_{2}\right) \geq 2$, $e\left(a_{4}, d_{1} d_{3}\right) \geq 1$. Say w.l.o.g. $a_{4} d_{3} \in E$. Then $\left[T, Q_{1}, d_{3}\right] \supseteq 2 C_{4}$. By Corollary 4.9.1(b), $e\left(F+d_{2}+d_{4}, G_{2}\right) \geq 35$. As $\left[F, Q_{2}\right] \nsupseteq 2 C_{4}$ and $e\left(x_{0}, Q_{2}\right)=2$, we have $e\left(F, Q_{2}\right) \leq 8$ by Lemmas 4.3 and 4.7-4.8. Thus $e\left(F, G_{2}\right) \leq 25$ and $e\left(F+d_{2}+d_{4}, G_{2}\right) \leq 25+8=33$, a contradiction.

Lemma 4.10 Suppose that $Q_{1}=c_{1} c_{2} c_{3} c_{4} c_{1}$ and $e\left(x_{0} x_{2}, Q_{1}\right) \geq 7$ with $e\left(x_{0}, c_{1} c_{2} c_{3}\right)=$ 3 and $x_{2} c_{4} \in E$. Set $G_{0}=\left[T, Q_{2}\right]$ and let $z_{1} \in V\left(G_{0}\right)-\left\{x_{1}, x_{2}\right\}$. Furthermore, suppose that if $z_{1} \neq x_{3}$ then $x_{1} z_{1} \in E, x_{3} \rightarrow\left(Q_{2}, z_{1}\right)$ and $G_{0}+x \supseteq 2 C_{4}$ for each $x \in V(G)-V\left(G_{0}\right)$ with $e\left(x, G_{0}\right) \geq 2$. Then there exists no Q_{r} in H_{1} such that $e\left(x_{0} z_{1}, Q_{r}\right)=8$ and $e\left(c_{4}, Q_{r}\right)=1$.

Proof. On the contrary, suppose that there exists Q_{r} as described. Let $Q_{1}^{\prime}=$ $x_{0} c_{1} c_{2} c_{3} x_{0}$ and $F^{\prime}=c_{4} x_{2} x_{1} x_{3} x_{2}$. Then $\sigma^{\prime}=\left(c_{4} x_{2}, x_{2} x_{1} x_{3} x_{2}, Q_{1}^{\prime}, Q_{2}, \ldots, Q_{k-1}\right)$ is a strong feasible chain. Let $L=\left[G_{1}, Q_{r}\right]$ if $z_{1}=x_{3}$ and otherwise $L=\left[G_{2}, Q_{r}\right]$. Let $|V(L)|=4 p$. Say $Q_{r}=d_{1} d_{2} d_{3} d_{4} d_{1}$ with $c_{4} d_{1} \in E$. By Lemma $4.1(a), c_{2} c_{4} \in E$ and if $e\left(x_{0}, Q_{1}\right)=4$ then $\tau\left(Q_{1}\right)=2$. Thus $x_{2} \rightarrow Q_{1}$. We estimate $e\left(F^{\prime}+d_{2}+d_{4}, L\right)$. As $x_{0} \rightarrow Q_{r}$, we see that for each $i \in\{2,4\}$, if $z_{1}=x_{3}$ then $e\left(d_{i}, T\right)=1$ and if $z_{1} \neq x_{3}$ then $e\left(d_{i}, G_{0}\right)=1$ and $e\left(d_{i}, T\right)=0$. As $x_{3} \rightarrow Q_{r}$ or $x_{3} \rightarrow\left(Q_{2}, z_{1}\right)$ and $z_{1} \rightarrow Q_{r}$, we see that $d_{i} \nrightarrow\left(Q_{1} ; x_{0} x_{1} x_{2}\right)$ and so $e\left(d_{i}, Q_{1}\right) \leq 1$ for $i \in\{2,4\}$. Thus $e\left(d_{2} d_{4}, L\right) \leq 12$. Clearly, $e\left(F^{\prime}, F^{\prime}\right)=8$. As $G_{1} \nsupseteq 2 C_{4}, e\left(F^{\prime}, Q_{1}^{\prime}\right) \leq 8$. If $z_{1} \neq x_{3}$ then $e\left(F^{\prime}, Q_{2}\right) \leq 12$ as $\left[F^{\prime}, Q_{2}\right] \nsupseteq 2 C_{4}$. It follows that if $z_{1}=x_{3}$ then $e\left(F^{\prime}+d_{2}+d_{4}, L\right) \leq 8+8+12+e\left(F^{\prime}, Q_{r}\right)=28+5=12 p-3$ and otherwise
$e\left(F^{\prime}+d_{2}+d_{4}, L\right) \leq 8+8+12+12+e\left(F^{\prime}, Q_{r}\right)=40+1=12 p-7$. Thus $e\left(F^{\prime}+d_{2}+\right.$ $\left.d_{4}, G-V(L)\right)>12(k-p)$. Hence $e\left(F^{\prime}+d_{2}+d_{4}, Q_{t}\right) \geq 13$ for some Q_{t} in $G-V(L)$.

First, assume that $e\left(F^{\prime}, Q_{t}\right) \geq 9$. By Claim 2.2, we see that if $e\left(c_{4}, Q_{t}\right) \neq 0$ then $e\left(F^{\prime}, Q_{t}\right)=9$ and $\left[T, Q_{t}, d_{i}\right] \supseteq 2 C_{4}$ where $d_{i} \in\left\{d_{2}, d_{4}\right\}$ with $e\left(d_{i}, Q_{t}\right) \geq 2$. Consequently, $\left[F, Q_{r}, Q_{t}\right] \supseteq 3 C_{4}$ as $x_{0} \rightarrow\left(Q_{r}, d_{i}\right)$, a contradiction. Hence $e\left(c_{4}, Q_{t}\right)=0$ and so $e\left(T, Q_{t}\right) \geq 9$. As $x_{0} \Rightarrow Q_{r}$ and by Lemma 3.2, $e\left(d_{i}, Q_{t}\right) \leq 1$ for $i \in\{2,4\}$. Thus $e\left(T, Q_{t}\right) \geq 11$ and so $\tau\left(Q_{t}\right)=2$ by Lemma 4.1(b). If $i\left(d_{2} d_{4}, Q_{t}\right)=1$ then $x_{2} \rightarrow\left(Q_{t} ; d_{2} d_{3} d_{4}\right)$ and $\left[d_{1}, x_{0}, x_{1}, z_{1}\right] \supseteq C_{4}$. If $i\left(d_{2} d_{4}, Q_{t}\right)=0$ then $i\left(x_{1} d_{j}, Q_{t}\right)=1$ for some $j \in\{2,4\}$ and we have that $x_{2} \rightarrow\left(Q_{t} ; x_{1} z_{1} d_{j}\right)$ and $x_{0} \rightarrow\left(Q_{r}, d_{j}\right)$. Since $x_{3} \rightarrow\left(Q_{2}, z_{1}\right)$ if $z_{1} \neq x_{3}$, we obtain that $\left[L, Q_{t}\right]-V\left(Q_{1}\right) \supseteq p C_{4}$ in either case, a contradiction. Hence $e\left(F^{\prime}, Q_{t}\right) \leq 8$ and so $e\left(d_{2} d_{4}, Q_{t}\right) \geq 5$. W.l.o.g., say $e\left(d_{2}, Q_{t}\right) \geq 3$. As $x_{0} \Rightarrow\left(Q_{t}, d_{2}\right), d_{2} \in \mathcal{T}$ and so $d_{2} \rightarrow Q_{t}$. Thus $e(u, T) \leq 1$ for all $u \in V\left(Q_{t}\right)$. Then $e\left(d_{2} d_{4} c_{4}, Q_{t}\right) \geq 9$. This yields $d_{2} \rightarrow\left(Q_{t} ; d_{4} d_{1} c_{4}\right)$. It follows that $\left[L, Q_{t}\right] \supseteq(p+1) C_{4}$ since $x_{2} \rightarrow\left(Q_{1}, c_{4}\right)$ and $\left[x_{0}, x_{1}, z_{1}, d_{3}\right] \supseteq C_{4}$ and if $z_{1} \neq x_{3}$ then $x_{3} \rightarrow\left(Q_{2}, z_{1}\right)$, a contradiction.

Lemma 4.11 Let $\left(u_{0} u_{1}, u_{1} u_{2} u_{3} u_{1}, J_{1}, \ldots, J_{k-1}\right)$ be a strong feasible chain. Set $G_{0}=$ $\left[V\left(J_{1}\right) \cup\left\{u_{1}, u_{2}, u_{3}\right\}\right]$. Suppose that J_{1} has two distinct vertices z_{1} and z_{2} such that the following three conditions hold:
$\left(1^{0}\right)\left\{z_{1}, z_{2}\right\} \subseteq N\left(u_{1}\right), e\left(u_{3}, J_{1}\right)=4, e\left(u_{1} u_{2}, J_{1}\right) \leq 6 ;$
$\left(2^{0}\right) G_{0}+x \supseteq 2 C_{4}$ for any $x \in V(G)-V\left(G_{0}\right)$ with $e\left(x, G_{0}\right) \geq 2$;
$\left(3^{0}\right) G_{0}-\left\{z_{1}, z_{2}, u_{1}\right\} \supseteq C_{4}$.
Then for each $J_{i}(i \geq 2)$, there exists no labelling $J_{i}=d_{1} d_{2} d_{3} d_{4} d_{1}$ such that $N\left(u_{0}, J_{i}\right)=$ $\left\{d_{1}, d_{4}\right\}, d_{2} d_{4} \notin E, d_{1} d_{3} \in E, N\left(z_{1}, J_{i}\right) \supseteq\left\{d_{1}, d_{2}, d_{3}\right\}$, and $e\left(z_{2}, d_{2} d_{3}\right) \geq 1$.

Proof. On the contrary, suppose that there exists J_{i} as described. Let $F^{\prime}=$ $u_{0} u_{1} u_{2} u_{3} u_{1}, P=d_{4} u_{0} u_{1} u_{2}$ and $L=\left[F^{\prime}, J_{1}, J_{i}\right]$. We estimate $e(P, L)$. As $u_{0} \rightarrow\left(J_{i}, d_{2}\right)$, $G_{0}+d_{2} \nsupseteq 2 C_{4}$. Thus $e\left(d_{2}, G_{0}-z_{1}\right)=0$ by $\left(2^{0}\right)$ and so $e\left(d_{2}, u_{1} u_{2}\right)=0$. Clearly, $z_{1} \xrightarrow{a}\left(J_{i}, d_{4}\right)$. So by Lemma 4.2, $u_{3} \xrightarrow{n a}\left(J_{1}, z_{1}\right)$. This implies that $z_{1} z_{2} \in E$. Thus $\left[z_{1}, z_{2}, d_{2}, d_{3}\right] \supseteq C_{4}$ and by $\left(3^{0}\right)$, we have $\left[u_{0}, u_{1}, d_{1}, d_{4}\right] \nsupseteq C_{4}$. Thus $e\left(u_{1}, d_{1} d_{4}\right)=0$. As $u_{3} \rightarrow\left(J_{1}, z_{1}\right), z_{1} \nrightarrow\left(J_{i}, d_{4} ; u_{0} u_{1} u_{2}\right)$ and so $u_{2} d_{4} \notin E$. By $\left(1^{0}\right)$, it follows that $e\left(u_{1} u_{2}, L\right) \leq 12+e\left(u_{2}, d_{1} d_{3}\right)$. By $\left(3^{0}\right), z_{1} \nrightarrow\left(J_{i}, d_{4} ; u_{0} u_{1} z_{2}\right)$. Thus $d_{4} z_{2} \notin E$. As $\left[F^{\prime}, J_{i}\right] \nsupseteq 2 C_{4}, u_{2} \nrightarrow\left(J_{i}, d_{4} ; u_{0} u_{1} u_{3}\right)$. Thus if $e\left(u_{2}, d_{1} d_{3}\right)=2$ then $d_{4} u_{3} \notin E$. It follows that $e\left(u_{2}, d_{1} d_{3}\right)+e\left(d_{4}, G_{0}-\left\{u_{1}, u_{2}, z_{2}\right\}\right) \leq 5$. Consequently, $e(P, L) \leq$ $12+5+e\left(u_{0}, L\right)+e\left(d_{4}, J_{i}+u_{0}\right)=23$. Then $e(P, G-V(L)) \geq 8 k-23=8(k-3)+1$ and so $e\left(P, J_{r}\right) \geq 9$ for some J_{r} in $G-V(L)$. We have that $u_{3} \Rightarrow\left(J_{1}, z_{1}\right)$ and $\tau\left(z_{1} d_{1} d_{2} d_{3} z_{1}\right)=\tau\left(J_{i}\right)+1$. By (1), $\left[P, J_{r}\right] \nsupseteq C \uplus Q$ such that $C \cong C_{3}$ and $Q>$ J_{r}. By Lemma 3.5, either $u_{1} \rightarrow\left(J_{r} ; u_{0} d_{4}\right)$ or $u_{0} \rightarrow\left(J_{r} ; u_{1} u_{2}\right)$. In the former, $\left[u_{1}, u_{0}, d_{1}, d_{4}, J_{r}\right] \supseteq 2 C_{4}$. Consequently, $\left[L, J_{r}\right] \supseteq 4 C_{4}$ since $\left[z_{1}, z_{2}, d_{2}, d_{3}\right] \supseteq C_{4}$ and
$G_{0}-\left\{z_{1}, z_{2}, u_{1}\right\} \supseteq C_{4}$, a contradiction. In the latter, $\left[F^{\prime}, J_{r}\right] \supseteq 2 C_{4}$, a contradiction.
Proof of Claim 2.3 and Claim 2.4. We prove them by contradiction. Say $Q=$ $Q_{1}=c_{1} c_{2} c_{3} c_{4} c_{1}$. To prove Claim 2.3, we assume that $e\left(x_{0}, Q_{1}\right)=4, x_{1} c_{2} \in E$ and $e\left(x_{2}, Q_{1}\right) \geq 2$. By Lemma 4.1(a), $\tau\left(Q_{1}\right)=2$. Thus we may assume $e\left(x_{2}, c_{3} c_{4}\right)=2$. To prove Claim 2.4, we may assume $e\left(x_{0} x_{2}, Q_{1}\right) \geq 7$. Moreover, if $e\left(x_{0}, Q_{1}\right)=4$ then $e\left(x_{2}, c_{2} c_{3} c_{4}\right)=3$ and if $e\left(x_{0}, Q_{1}\right)=3$ then $e\left(x_{0}, c_{1} c_{2} c_{3}\right)=3$. In any case, if $e\left(x_{0}, Q_{1}\right)=$ 4 then $\tau\left(Q_{1}\right)=2$ and $V\left(Q_{1}\right) \subseteq \mathcal{T}$ and if $e\left(x_{0}, Q_{1}\right)=3$ then $c_{2} c_{4} \in E$ and $c_{4} \in \mathcal{T}$. Note that $x_{2} \rightarrow Q_{1}$ if $e\left(x_{0} x_{2}, Q_{1}\right) \geq 7$. As $G_{1} \nsupseteq 2 C_{4}, e\left(x_{3}, Q_{1}\right)=0$ and $i\left(x_{1} x_{2}, Q_{1}\right)=0$. Let $T^{\prime}=x_{2} x_{3} x_{1} x_{2}, F^{\prime}=T^{\prime}+c_{4} x_{2}$ and $Q_{1}^{\prime}=x_{0} c_{1} c_{2} c_{3} x_{0}$. Then $\tau\left(Q_{1}^{\prime}\right)=\tau\left(Q_{1}\right)$ and so $\sigma^{\prime}=\left(c_{4} x_{2}, T^{\prime}, Q_{1}^{\prime}, Q_{2}, \ldots, Q_{k-1}\right)$ is a strong feasible chain. It is easy to check that $e\left(F^{\prime}-x_{2}, G_{1}\right)+e\left(F-x_{1}, G_{1}\right) \leq 23$ and so $e\left(F^{\prime}-x_{2}, H_{1}\right)+e\left(F-x_{1}, H_{1}\right) \geq 12(k-2)+1$. Say w.l.o.g. $r_{0}=e\left(F^{\prime}-x_{2}, Q_{2}\right)+e\left(F-x_{1}, Q_{2}\right) \geq 13$.
$\operatorname{Subclaim}(a)$. It holds that $e\left(x_{0} c_{4}, Q_{2}\right)=0$ and so $e\left(x_{3}, Q_{2}\right)+e\left(T, Q_{2}\right) \geq 13$.
Proof. On the contrary, suppose that $e\left(x_{0} c_{4}, Q_{2}\right) \geq 1$. Assume that $e\left(x_{3}, Q_{2}\right) \leq 2$. Then $e\left(F+c_{4}, Q_{2}\right) \geq 13-e\left(x_{3}, Q_{2}\right) \geq 11$. Suppose that $e\left(v, Q_{2}\right) \geq 3$ for some $v \in$ $\left\{x_{0}, c_{4}\right\}$. Then $v \rightarrow Q_{2}$ by Lemma $4.1(a)$. Thus $e(d, T) \leq 1$ for all $d \in V\left(Q_{2}\right)$. Then $e\left(x_{0} c_{4}, Q_{2}\right) \geq 7$. By Lemma 4.1(a), $\tau\left(Q_{2}\right)=2$. Clearly, $e\left(x_{1} x_{2}, Q_{2}\right) \leq 4-e\left(x_{3}, Q_{2}\right)$. Then $e\left(x_{0} x_{3}, Q_{2}\right) \geq 13-e\left(x_{3}, Q_{2}\right)-\left(4-e\left(x_{3}, Q_{2}\right)\right)-e\left(c_{4}, Q_{2}\right) \geq 9-e\left(c_{4}, Q_{2}\right) \geq 5$. Hence $i\left(x_{0} x_{3}, Q_{2}\right) \geq 1$ and so $c_{4} \rightarrow\left(Q_{2} ; x_{0} x_{1} x_{3}\right)$. Then $x_{2} \rightarrow\left(Q_{1}, c_{4}\right)$ for otherwise $G_{2} \supseteq 3 C_{4}$. By our assumption on Q_{1}, we shall have that $e\left(x_{0}, Q_{1}\right)=4, x_{1} c_{2} \in$ E and $e\left(x_{2}, c_{3} c_{4}\right)=2$. Then $e\left(x_{3}, Q_{2}\right)<2$ for otherwise $x_{3} \rightarrow\left(Q_{2} ; x_{0} c_{1} c_{4}\right)$ and $\left[x_{1}, x_{2}, c_{2}, c_{3}\right] \supseteq C_{4}$, i.e., $G_{2} \supseteq 3 C_{4}$. As $r_{0} \geq 13$, it follows that $e\left(x_{3}, Q_{2}\right)=1$, $e\left(x_{0} c_{4}, Q_{2}\right)=8$ and $e\left(x_{1} x_{2}, Q_{2}\right)=3$. If $e\left(x_{2}, Q_{2}\right) \geq 2$ then $x_{2} \rightarrow\left(Q_{2} ; x_{0} x_{1} x_{3}\right)$ and if $e\left(x_{1}, Q_{2}\right) \geq 2$ then $x_{1} \rightarrow\left(Q_{2} ; c_{4} x_{2} x_{3}\right)$, i.e., $\left[F, Q_{2}\right] \supseteq 2 C_{4}$ or $\left[F^{\prime}, Q_{2}\right] \supseteq 2 C_{4}$, a contradiction. Therefore $e\left(v, Q_{2}\right) \leq 2$ for $v \in\left\{x_{0}, c_{4}\right\}$. Then $e\left(F, Q_{2}\right) \geq 9$. By Claim 2.2 , we see that $e\left(x_{0}, Q_{2}\right)=0$ for otherwise $e\left(c_{4}, Q_{2}\right)=2$ and $\left[T, Q_{2}, c_{4}\right] \supseteq 2 C_{4}$. Hence $e\left(F^{\prime}, Q_{2}\right) \geq 11$. As $e\left(x_{0} c_{4}, Q_{2}\right) \geq 1,\left[F^{\prime}, Q_{2}\right] \supseteq 2 C_{4}$ by Claim 2.2, a contradiction.

Therefore $e\left(x_{3}, Q_{2}\right) \geq 3$. If $e\left(F, Q_{2}\right) \geq 9$, then by Claim 2.2, $e\left(x_{0}, Q_{2}\right)=0$ for otherwise $e\left(x_{3}, Q_{2}\right)=2$. Thus $e\left(c_{4}, Q_{2}\right) \geq 1$ as $e\left(x_{0} c_{4}, Q_{2}\right) \geq 1$. Then $e\left(F^{\prime}, Q_{2}\right) \geq$ 10 and so $\left[F^{\prime}, Q_{2}\right] \supseteq 2 C_{4}$ by Claim 2.2, a contradiction. Therefore $e\left(F, Q_{2}\right) \leq 8$. Similarly, $e\left(F^{\prime}, Q_{2}\right) \leq 8$. It follows that $e\left(x_{0} x_{3}, Q_{2}\right) \geq 13-e\left(F^{\prime}, Q_{2}\right) \geq 5$ and $e\left(x_{3} c_{4}, Q_{2}\right) \geq 13-e\left(F, Q_{2}\right) \geq 5$. In particular, we obtain $i\left(x_{0} x_{3}, Q_{2}\right) \geq 1$ and $i\left(x_{3} c_{4}, Q_{2}\right) \geq 1$. As $r_{0} \geq 13, e\left(F^{\prime}-x_{2}, Q_{2}\right) \geq 7$ or $e\left(F-x_{1}, Q_{2}\right) \geq 7$. First, assume that $e\left(F^{\prime}-x_{2}, Q_{2}\right) \geq 7$. Then by Lemmas 4.4-4.6, one of (9) to (12) holds w.r.t. F^{\prime} and Q_{2}. As $e\left(x_{3} c_{4}, Q_{2}\right) \geq 5$, (9) does not hold w.r.t. F^{\prime} and Q_{2}. Thus $e\left(v, Q_{2}\right) \geq 3$ and $v \rightarrow Q_{2}$ for each $v \in\left\{c_{4}, x_{3}\right\}$. Since $i\left(x_{0} x_{3}, Q_{2}\right) \geq 1, c_{4} \rightarrow\left(Q_{2} ; x_{0} x_{1} x_{3}\right)$. As $G_{2} \nsupseteq 3 C_{4}$, $x_{2} \nrightarrow\left(Q_{1}, c_{4}\right)$. By our assumption on Q_{1}, we have that $e\left(x_{0}, Q_{1}\right)=4, x_{1} c_{2} \in E$ and
$e\left(x_{2}, c_{3} c_{4}\right)=2$. As $e\left(x_{0} c_{4}, Q_{2}\right) \geq 13-e\left(x_{3}, Q_{2}\right)-e\left(T, Q_{2}\right) \geq 13-4-4=5$, we have that $i\left(x_{0} c_{4}, Q_{2}\right) \geq 1$. Then $x_{3} \rightarrow\left(Q_{2} ; x_{0} c_{1} c_{4}\right)$ and $\left[x_{1}, x_{2}, c_{3}, c_{2}\right] \supseteq C_{4}$, i.e., $G_{2} \supseteq 3 C_{4}$, a contradiction. Hence $e\left(F-x_{1}, Q_{2}\right) \geq 7$. By Lemmas 4.4-4.6, one of (9) to (12) holds w.r.t. to F and Q_{2}. As $e\left(x_{0} x_{3}, Q_{2}\right) \geq 5$, (9) does not hold w.r.t. F and Q_{2}. Thus $e\left(v, Q_{2}\right) \geq 3$ and $v \rightarrow Q_{2}$ for each $v \in\left\{x_{0}, x_{3}\right\}$. Again, $e\left(x_{0} c_{4}, Q_{2}\right) \geq 13-e\left(x_{3}, Q_{2}\right)-e\left(T, Q_{2}\right) \geq 5$. Then $x_{1} c_{2} \notin E$ for otherwise $G_{2} \supseteq 3 C_{4}$ as above. Thus $e\left(x_{2}, Q_{1}\right) \geq 3$ and so $x_{2} \rightarrow\left(Q_{1}, c_{4}\right)$. Then $e\left(c_{4}, Q_{2}\right)<2$ for otherwise $c_{4} \rightarrow\left(Q_{2} ; x_{0} x_{1} x_{3}\right)$ and so $G_{2} \supseteq 3 C_{4}$. As $r_{0} \geq 13$, it follows that $e\left(x_{3}, Q_{2}\right)=4$, $e\left(c_{4}, Q_{2}\right)=1$ and $e\left(x_{0}, Q_{2}\right)=4$. This contradicts Lemma 4.10 with $z_{1}=x_{3}$.
Subclaim (b). Suppose that Claim 2.3 holds. Then there exists Q_{p} in H_{1} such that either $e\left(x_{0} c_{4}, Q_{p}\right)=0, e\left(x_{1} x_{3}, Q_{p}\right)=7+q$ and $e\left(T, Q_{p}\right) \geq 10-q$ for some $q \in\{0,1\}$, or one of the following statements holds:
$\left(1^{0}\right) e\left(c_{4} x_{1}, Q_{p}\right)=7+t$ and $e\left(x_{0}, Q_{p}\right) \geq 3-2 t, e\left(x_{2} x_{3}, Q_{p}\right)=0 ;$
$\left(2^{0}\right) e\left(c_{4}, Q_{p}\right)=4, e\left(x_{0}, Q_{p}\right) \geq 3, e\left(x_{1}, Q_{p}\right) \geq 3$, and $e\left(x_{2} x_{3}, Q_{p}\right)=0$;
$\left(3^{0}\right) e\left(x_{0}, Q_{p}\right)=4, e\left(c_{4}, Q_{p}\right)=3, e\left(x_{1}, Q_{p}\right) \geq 3$ with $e\left(x_{1} x_{2}, Q_{p}\right)=4$, and $e\left(x_{3}, Q_{p}\right)=0$.

Proof. By the assumed Claim 2.3, $e\left(x_{1}, Q_{1}\right)=0$. Then $e\left(F^{\prime}-x_{2}, G_{1}\right)+e(F+$ $\left.c_{4}, G_{1}\right) \leq 31$ and so $e\left(F^{\prime}-x_{2}, H_{1}\right)+e\left(F+c_{4}, H_{1}\right) \geq 16(k-2)+1$. Thus there exists Q_{p} in H_{1} such that $r_{1}=e\left(F^{\prime}-x_{2}, Q_{p}\right)+e\left(F+c_{4}, Q_{p}\right) \geq 17$. Let $G^{\prime}=\left[G_{1}, Q_{p}\right]$. If $e\left(c_{4} x_{0}, Q_{p}\right)=0$ then $r_{1}=2 e\left(x_{1} x_{3}, Q_{p}\right)+e\left(x_{2}, Q_{p}\right) \geq 17$. Thus $e\left(x_{1} x_{3}, Q_{p}\right)=7+q$ and $e\left(T, Q_{p}\right) \geq 17-7-q=10-q$ for some $q \in\{0,1\}$ and so the lemma holds. We now assume $e\left(x_{0} c_{4}, Q_{p}\right) \geq 1$. First, suppose $e\left(F^{\prime}-x_{2}, Q_{p}\right) \geq 7$. By Lemmas 4.4-4.6, there exist two labellings $F^{\prime}=z_{0} z_{1} z_{2} z_{3} z_{1}$ and $Q_{p}=u_{1} u_{2} u_{3} u_{4} u_{1}$ such that either $e\left(c_{4}, Q_{p}\right)=$ 0 or one of (9) to (12) holds w.r.t. F^{\prime} and Q_{p}. Then $e\left(x_{i}, Q_{p}\right) \neq 2$ for $i \in\{1,3\}$. If $e\left(c_{4}, Q_{p}\right) \leq 1$ then $e\left(x_{1} x_{3}, Q_{p}\right)+2 e\left(c_{4}, Q_{p}\right) \leq 8$ and so $e\left(F, Q_{p}\right) \geq 17-8=9$. By Claim 2.2, $e\left(x_{0}, Q_{p}\right)=0$ for otherwise $e\left(x_{3}, Q_{p}\right)=2$. Thus $e\left(T, Q_{p}\right) \geq 9$ and $e\left(c_{4}, Q_{p}\right) \geq 1$. By Claim 2.2, $\left[F^{\prime}, Q_{p}\right] \supseteq 2 C_{4}$, a contradiction. Hence $e\left(c_{4}, Q_{p}\right) \geq 3$ and so $c_{4} \rightarrow Q_{p}$. Thus $e\left(u_{i}, T\right) \leq 1$ for all $u_{i} \in V\left(Q_{p}\right)$ and so $e\left(F^{\prime}, Q_{p}\right) \leq 8$. If $z_{2}=x_{3}$ then $e\left(x_{3}, Q_{p}\right) \geq 3$. As $G^{\prime} \nsupseteq 3 C_{4}, c_{4} \nrightarrow\left(Q_{p} ; x_{0} x_{1} x_{3}\right)$ and so $i\left(x_{0} x_{3}, Q_{p}\right)=0$. Thus $e\left(x_{0}, Q_{p}\right)+e\left(F^{\prime}-x_{2}\right) \leq 8$ and so $e\left(F^{\prime}, Q_{p}\right) \geq 17-8=9$, a contradiction. Hence $z_{2}=x_{1}$. If $e\left(x_{2}, Q_{p}\right)=1$ then $e\left(x_{1}, Q_{p}\right)=3$ and $e\left(c_{4}, Q_{p}\right)=4$, contradicting the assumed Claim 2.3 (w.r.t. F^{\prime} and Q_{p}). Hence $e\left(x_{2}, Q_{p}\right)=0$. If $e\left(x_{3}, Q_{p}\right)=1$ then (12) holds w.r.t. F^{\prime} and Q_{2} such that $x_{3} u_{4} \in E$ and $e\left(c_{4} x_{1}, u_{1} u_{2} u_{3}\right)=6$. Thus $e\left(x_{0}, u_{1} u_{2} u_{3}\right) \geq 17-2 e\left(F^{\prime}, Q_{p}\right)=3$. Then $\left[x_{3}, u_{4}, u_{3}, x_{1}\right] \supseteq C_{4},\left[x_{0}, u_{1}, c_{4}, u_{2}\right] \supseteq C_{4}$ and $x_{2} \rightarrow\left(Q_{1}, c_{4}\right)$, i.e., $G^{\prime} \supseteq 3 C_{4}$, a contradiction. Hence $e\left(x_{3}, Q_{p}\right)=0$. Say $e\left(c_{4} x_{1}, Q_{p}\right)=7+t$ with $t \in\{0,1\}$. Then $e\left(x_{0}, Q_{p}\right) \geq 17-2(7+t)=3-2 t$, i.e., $\left(1^{0}\right)$ holds.

Next, suppose $e\left(F^{\prime}-x_{2}, Q_{p}\right) \leq 6$. Then $e\left(F+c_{4}, Q_{p}\right) \geq 11$. If $e\left(F, Q_{p}\right) \geq 9$ then by Claim 2.2, e($\left.x_{0}, Q_{p}\right)=0$ for otherwise $e\left(c_{4}, Q_{p}\right) \geq 2$ and so $\left[T, Q_{p}, c_{4}\right] \supseteq 2 C_{4}$. But then $e\left(F^{\prime}, Q_{p}\right) \geq 11$ and so $e\left(c_{4}, Q_{p}\right)=0$ by Claim 2.2. Thus $e\left(c_{4} x_{0}, Q_{p}\right)=$ 0 , a contradiction. Hence $e\left(F, Q_{p}\right) \leq 8$ and so $e\left(c_{4}, Q_{p}\right) \geq 3$. By Lemma 4.1(a), $c_{4} \rightarrow Q_{p}$. Then $e(v, T) \leq 1$ for all $v \in V\left(Q_{p}\right)$. Hence $e\left(x_{0} c_{4}, Q_{p}\right) \geq 7$ and $4 \geq$ $e\left(T, Q_{p}\right) \geq 3$. As $e\left(w, Q_{p}\right)=4$ for some $w \in\left\{c_{4}, x_{0}\right\}, \tau\left(Q_{p}\right)=2$ by Lemma 4.1(a). As $G^{\prime} \nsupseteq 3 C_{4}, c_{4} \nrightarrow\left(Q_{p} ; x_{0} x_{1} x_{3}\right)$ and so $i\left(x_{0} x_{3}, Q_{p}\right)=0$. If $e\left(x_{3}, Q_{p}\right) \geq 1$ then $e\left(x_{0}, Q_{p}\right)=3, e\left(x_{3}, Q_{p}\right)=1, e\left(c_{4}, Q_{p}\right)=4$ and $e\left(x_{1} x_{2}, Q_{p}\right)=3$. Then $e\left(x_{1}, Q_{p}\right)=0$ for otherwise $\left[x_{1}, x_{3}, u, v\right] \supseteq C_{4}$ for an edge $u v$ of $\left[Q_{p}\right]$ and so $\left[x_{1}, x_{3}, x_{0}, c_{4}, Q_{p}\right] \supseteq 2 C_{4}$, a contradiction. Thus $e\left(x_{2}, Q_{p}\right)=3$, and consequently, $r_{1}=16$, a contradiction. Hence $e\left(x_{3}, Q_{p}\right)=0$. As $r_{1} \geq 17,2 e\left(x_{1}, Q_{p}\right)+e\left(x_{2}, Q_{p}\right) \geq 17-e\left(x_{0}, Q_{p}\right)-2 e\left(c_{4}, Q_{p}\right)$. This implies that $e\left(x_{1}, Q_{p}\right) \geq 1$. First, assume $e\left(x_{0} c_{4}, Q_{p}\right)=8$. By the assumed Claim 2.3, $e\left(x_{2}, Q_{p}\right) \leq 1$. If $e\left(x_{2}, Q_{p}\right)=1$, we apply the assumed Claim 2.3 to F^{\prime} and Q_{p} and see that $e\left(x_{1}, Q_{p}\right)=1$. Thus $r_{1}=15$, a contradiction. Hence $e\left(x_{2}, Q_{p}\right)=0$. Then $2 e\left(x_{1}, Q_{p}\right) \geq 5$. Thus $e\left(x_{1}, Q_{p}\right) \geq 3$ and so $\left(2^{0}\right)$ holds. Next, assume $e\left(x_{0}, Q_{p}\right)=3$ and $e\left(c_{4}, Q_{3}\right)=4$. Then $2 e\left(x_{1}, Q_{p}\right)+e\left(x_{2}, Q_{p}\right) \geq 6$. As $i\left(x_{1} x_{2}, Q_{p}\right)=0, e\left(x_{1} x_{2}, Q_{p}\right) \leq 4$ and so $e\left(x_{1}, Q_{2}\right) \geq 2$. Applying the assumed Claim 2.3 to F^{\prime} and Q_{p}, we obtain $e\left(x_{2}, Q_{p}\right)=0$. Thus $e\left(x_{1}, Q_{p}\right) \geq 3$ and so $\left(2^{0}\right)$ holds. Finally, assume $e\left(x_{0}, Q_{p}\right)=4$ and $e\left(c_{4}, Q_{p}\right)=3$. Then $2 e\left(x_{1}, Q_{p}\right)+e\left(x_{2}, Q_{p}\right) \geq 7$. Thus $e\left(x_{1}, Q_{p}\right) \geq 3$. In addition, if $e\left(x_{1}, Q_{p}\right)=3$ then $e\left(x_{2}, Q_{p}\right)=1$. Thus (3^{0}) holds. This proves Subclaim (b).

By Subclaim (a), e(x, $\left.x_{2}\right)+e\left(T, Q_{2}\right) \geq 13$. This yields that $e\left(x_{1} x_{3}, Q_{2}\right) \geq 7$ or $e\left(x_{2} x_{3}, Q_{2}\right) \geq 7$. Accordingly, we divide our proof into two cases. Case I will be readily reduced to Case II by choosing an appropriate strong feasible chain.
Case I. $e\left(x_{2} x_{3}, Q_{2}\right) \geq 7$.
To reduce this case to Case II, we assume that we will arrive a contradiction in Case II. Thus $e\left(x_{1} x_{3}, Q_{2}\right) \leq 6$. If $e\left(x_{1}, Q_{1}\right) \geq 1$, then by the assumption on $Q_{1}, e\left(x_{0}, Q_{1}\right)=4, e\left(x_{2}, c_{3} c_{4}\right)=2, x_{1} c_{2} \in E$. Then $e\left(x_{1}, Q_{1}^{\prime}\right) \geq 2, e\left(x_{2}, Q_{1}^{\prime}\right) \geq 1$, $e\left(c_{4}, Q_{1}^{\prime}\right)=4$. With F, Q_{1} and σ replaced by $F^{\prime}, Q_{1}^{\prime}$ and σ^{\prime}, this goes to Case II (if necessary, exchanging the subscripts of x_{1} and x_{2}). Suppose that $e\left(x_{1}, Q_{1}\right)=0$. Then $e\left(x_{0} x_{2}, Q_{1}\right) \geq 7$. If there exists Q_{p} in H_{1} such that $e\left(x_{1} x_{3}, Q_{p}\right)=7+q$ and $e\left(T, Q_{p}\right) \geq 10-q$ for some $q \in\{0,1\}$, then $e\left(x_{3}, Q_{p}\right)+e\left(T, Q_{p}\right) \geq 17-e\left(x_{1}, Q_{p}\right) \geq 13$. Thus we may replace Q_{2} by Q_{p} and go to Case II. If there exists no such Q_{p} in H_{1}, then by Subclaim (b), there exists Q_{p} in H_{1} such that Q_{p} satisfies one of $\left(1^{0}\right)-\left(3^{0}\right)$. If $e\left(c_{4} x_{1}, Q_{p}\right) \geq 7$, then replacing F, Q_{1} and Q_{p} by F^{\prime}, Q_{p} and Q_{1}^{\prime}, we go to Case II. If $e\left(c_{4} x_{1}, Q_{p}\right) \leq 6$, then $\left(3^{0}\right)$ holds with $e\left(x_{0}, Q_{p}\right)=4, e\left(c_{4}, Q_{p}\right)=3, e\left(x_{1}, Q_{p}\right)=3$ and $e\left(x_{2}, Q_{p}\right)=1$. By Lemma 4.1(a), $\tau\left(Q_{p}\right)=2$. Let $c \in N\left(x_{2}, Q_{p}\right)$ and $F^{\prime \prime}=T+x_{2} c$. Let Q_{p}^{\prime} be a 4-cycle in $\left[Q_{p}-c+x_{0}\right]$. Then $\tau\left(Q_{p}^{\prime}\right)=2, e\left(c, Q_{p}^{\prime}\right)=4$ and $e\left(x_{1}, Q_{p}^{\prime}\right)=4$.

Replacing F, Q_{1} and Q_{p} by $F^{\prime \prime}, Q_{p}^{\prime}$ and Q_{1}, we go to Case II.
Case II. $e\left(x_{1} x_{3}, Q_{2}\right) \geq 7$.
We may assume that $e\left(T, Q_{2}\right) \geq e\left(T, Q_{i}\right)$ for all Q_{i} in H_{1} with $e\left(x_{1} x_{3}, Q_{i}\right) \geq 7$ and $e\left(x_{3}, Q_{i}\right)+e\left(T, Q_{i}\right) \geq 13$. Clearly, if $e\left(x_{1} x_{3}, Q_{2}\right)=8$ then $e\left(x_{2}, Q_{2}\right) \geq 1$. If $e\left(x_{3}, Q_{2}\right)=$ 3 then $e\left(x_{2}, Q_{2}\right) \geq 3$. If $e\left(x_{1}, Q_{2}\right)=3$ then $e\left(x_{2}, Q_{2}\right) \geq 2$. Let $G_{0}=\left[T, Q_{2}\right]$. By (1), $G_{0} \nsupseteq C \cong C_{3}$ such that $G_{0}-V(C)>Q_{2}$. If $\{i, j\}=\{1,3\}$ with $e\left(x_{i}, Q_{2}\right)=4$ and $u \in I\left(x_{2} x_{j}, Q_{2}\right)$, then $\left[x_{2}, x_{j}, u\right] \cong C_{3}$ and so $x_{i} \xrightarrow{n a}\left(Q_{2}, u\right)$. This implies that $u u^{*} \in E$. Hence $\tau\left(Q_{2}\right) \geq 1$. We claim there exists a labelling $V\left(Q_{2}\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ such that $a_{1} a_{2} a_{3} a_{4} a_{1}$ is a 4 -cycle in $\left[Q_{2}\right]$ and one of (27) to (34) holds:

$$
\begin{align*}
& e\left(x_{1} x_{3}, Q_{2}\right)=8, x_{2} a_{1} \in E, N\left(x_{2}, Q_{2}\right) \subseteq\left\{a_{1}, a_{3}\right\}, a_{1} a_{3} \in E, a_{2} a_{4} \notin E ; \tag{27}\\
& e\left(x_{1} x_{3}, Q_{2}\right)=8, x_{2} a_{1} \in E, \tau\left(Q_{2}\right)=2 ; \tag{28}\\
& e\left(x_{3}, Q_{2}\right)=4, N\left(x_{1}, Q_{2}\right)=\left\{a_{2}, a_{3}, a_{4}\right\}, N\left(x_{2}, Q_{2}\right)=\left\{a_{1}, a_{3}\right\}, a_{1} a_{3} \in E, a_{2} a_{4} \notin(\mathcal{F 9} ;) \\
& e\left(x_{3}, Q_{2}\right)=4, N\left(x_{1}, Q_{2}\right)=\left\{a_{1}, a_{4}, a_{3}\right\}, N\left(x_{2}, Q_{2}\right)=\left\{a_{1}, a_{3}\right\}, a_{1} a_{3} \in E, a_{2} a_{4} \notin(\mathcal{F O ;} ; \\
& e\left(x_{3}, Q_{2}\right)=4, N\left(x_{1}, Q_{2}\right)=\left\{a_{1}, a_{4}, a_{3}\right\},\left\{a_{1}, a_{4}\right\} \subseteq N\left(x_{2}, Q_{2}\right), \tau\left(Q_{2}\right)=2 ; \tag{31}\\
& e\left(x_{3}, Q_{2}\right)=4, N\left(x_{1}, Q_{2}\right)=\left\{a_{2}, a_{3}, a_{4}\right\},\left\{a_{1}, a_{4}\right\} \subseteq N\left(x_{2}, Q_{2}\right), \tau\left(Q_{2}\right)=2 ; \tag{32}\\
& e\left(x_{1}, Q_{2}\right)=4, N\left(x_{3}, Q_{2}\right)=N\left(x_{2}, Q_{2}\right)=\left\{a_{1}, a_{2}, a_{3}\right\}, \tau\left(Q_{2}\right)=2 ; \tag{33}\\
& e\left(x_{1}, Q_{2}\right)=4, N\left(x_{3}, Q_{2}\right)=\left\{a_{1}, a_{2}, a_{3}\right\},\left\{a_{1}, a_{2}, a_{4}\right\} \subseteq N\left(x_{2}, Q_{2}\right), \tau\left(Q_{2}\right)=2 \tag{34}
\end{align*}
$$

To observe this, we see that (27) holds if $e\left(x_{1} x_{3}, Q_{2}\right)=8$ with $\tau\left(Q_{2}\right)=1$ and (28) holds if $e\left(x_{1} x_{3}, Q_{2}\right)=8$ with $\tau\left(Q_{2}\right)=2$. If $e\left(x_{3}, Q_{2}\right)=4, e\left(x_{1}, Q_{2}\right)=3$ and $\tau\left(Q_{2}\right)=1$ then (29) or (30) holds. If $e\left(x_{3}, Q_{2}\right)=4, e\left(x_{1}, Q_{2}\right)=3$ and $\tau\left(Q_{2}\right)=2$ then (31) holds if $N\left(x_{2}, Q_{2}\right) \subseteq N\left(x_{1}, Q_{2}\right)$ and otherwise (32) holds. If $e\left(x_{3}, Q_{2}\right)=3$ and $e\left(x_{1}, Q_{2}\right)=4$ then $e\left(x_{2}, Q_{2}\right) \geq 3$ and $\tau\left(Q_{2}\right)=2$ by Lemma 4.1(b). In this last situation, we see that (33) holds if $N\left(x_{2}, Q_{2}\right)=N\left(x_{3}, Q_{2}\right)$ and otherwise (34) holds. Clearly, $x_{3} \rightarrow Q_{2}$ in any case. We now choose two vertices z_{1} and z_{2} from Q_{2} such that $\left\{z_{1}, z_{2}\right\}=\left\{a_{3}, a_{4}\right\}$ if $e\left(T, Q_{2}\right) \leq 10$. If $e\left(T, Q_{2}\right) \geq 11$, then $\tau\left(Q_{2}\right)=2$ and we let $\left\{z_{1}, z_{2}\right\} \subseteq N\left(x_{1}, Q_{2}\right)$ such that $G_{0}-\left\{x_{1}, z_{1}, z_{2}\right\} \cong K_{4}$. We claim

$$
\begin{align*}
& G_{0}-\left\{z_{1}, z_{2}, x_{1}\right\} \supseteq C_{4}^{+}, G_{0}-\left\{z_{i}, x_{1}, x_{2}\right\} \supseteq C_{4}(i=1,2), G_{0}-\left\{z_{1}, z_{2}, x_{2}\right\} \supseteq C \tag{C}\\
& G_{0}+x \supseteq 2 C_{4} \text { for each } x \in V(G)-V\left(G_{0}\right) \text { with } e\left(x, G_{0}\right) \geq 2 \tag{36}
\end{align*}
$$

By a direct verification, we see that (35) holds. To observe (36), we see that if $e\left(x, Q_{2}\right) \geq 2$ then $x \rightarrow\left(Q_{2}, a_{i} ; V(T)\right)$ for some $a_{i} \in V\left(Q_{2}\right)$ and obviously, if $e(x, T) \geq 2$ then $G_{0}+x \supseteq 2 C_{4}$. Moreover, if $e\left(x, Q_{2}\right)=1$ and $e(x, T)=1$ then $\left[T+x, Q_{2}\right] \supseteq 2 C_{4}$ by Lemma 3.4(b). By (36), $e\left(c_{i}, G_{0}\right) \leq 1$ for each $c_{i} \in V\left(Q_{1}\right)$ as $G_{2} \nsupseteq 3 C_{4}$ and so $e\left(c_{i}, Q_{2}\right)=0$ for each $c_{i} \in N\left(x_{1} x_{2}, Q_{1}\right)$. Furthermore, if $c_{i} x_{0} \in E$ with $c_{i} \in V\left(Q_{1}\right)$ then $e\left(c_{i}, z_{1} z_{2}\right)=0$ for otherwise $x_{2} \rightarrow\left(Q_{1} ; x_{0} x_{1} z_{r}\right)$ for some $r \in$
$\{1,2\}$ and so $G_{2} \supseteq 3 C_{4}$ by the second formula (35). Hence $e\left(z_{1} z_{2}, Q_{1}\right)=0$. Thus if $F_{1}=x_{0} x_{1} z_{1} z_{2} x_{1}$, then

$$
\begin{equation*}
e\left(F_{1}-x_{1}, G_{2}\right) \leq 17 \text { and } e\left(F_{1}-x_{1}, G_{2}\right)+e\left(c_{4}, G_{2}\right) \leq 22 \tag{37}
\end{equation*}
$$

Lemma 4.12 Claim 2.3 holds and there exists Q_{p} in H_{1} such that $e\left(x_{1} x_{3}, Q_{p}\right)=7+q$ and $e\left(T, Q_{p}\right) \geq 10-q$ for some $q \in\{0,1\}$.

Proof. On the contrary, suppose that the lemma fails. If Claim 2.3 fails, then by the assumption on Q_{1}, we have that $\tau\left(Q_{1}\right)=2, e\left(x_{0}, Q_{1}\right)=4, x_{1} c_{2} \in E, e\left(x_{2}, c_{3} c_{4}\right)=2$ and $e\left(x_{3}, Q_{1}\right)=0$. Clearly, $c_{2} \in \mathcal{T}$ as $x_{0} \Rightarrow\left(Q_{1}, c_{2}\right)$. If Claim 2.3 holds but there exists no Q_{p} in H_{1} such that $e\left(x_{1} x_{3}, Q_{p}\right)=7+q$ and $e\left(T, Q_{p}\right) \geq 10-q$ for some $q \in\{0,1\}$, then by Subclaim (b), there exists Q_{p} in H_{2}, say $Q_{p}=Q_{3}$, such that one of $\left(1^{0}\right)$ to $\left(3^{0}\right)$ holds w.r.t. $Q_{p}=Q_{3}$. Thus there exists $v_{0} \in N\left(x_{1}, Q_{3}\right)$ such that either $x_{0} \Rightarrow\left(Q_{3}, v_{0}\right)$ or $c_{4} \Rightarrow\left(Q_{3}, v_{0}\right)$ and so $v_{0} \in \mathcal{T}$. Furthermore, as $e\left(c_{4}, Q_{3}\right) \geq 3$ we have $c_{4} \rightarrow Q_{3}$. For convenience, we define $v_{0}=c_{2}$ if Claim 2.3 fails. Thus in any case, there exists a strong feasible chain σ_{1} such that $v_{0} x_{1}$ and T are the first two items of σ_{1} and v_{0} is its terminal point. Moreover, each Q_{i} in $\mathcal{Q}-\left\{Q_{1}, Q_{3}\right\}$ is still an item of σ_{1} and if $v_{0}=c_{2}$ then Q_{3} is an item of σ_{1} as well. Let $F_{2}=T+v_{0} x_{1}$ and $R=V\left(F_{1}-x_{1}\right) \cup\left\{v_{0}\right\}$.

As $\left[F_{2}, Q_{2}\right] \nsupseteq 2 C_{4}$ and by (36), $e\left(v_{0}, G_{0}\right) \leq 1$. Thus if $v_{0} \in V\left(Q_{1}\right)$ (i.e., $v_{0}=c_{2}$) then $e\left(v_{0}, G_{2}\right) \leq 5$ and if $v_{0} \in V\left(Q_{3}\right)$ then $e\left(v_{0}, G_{3}\right) \leq 9$. Together with (37), we see that if $v_{0} \in V\left(Q_{1}\right)$ then $e\left(R, G_{2}\right) \leq 22$. We claim that if $v_{0} \in V\left(Q_{3}\right)$ then $e\left(R, G_{3}\right) \leq 30$. To see this, we have that $x_{2} \rightarrow\left(Q_{1}, c_{4}\right)$ and $c_{4} \rightarrow Q_{3}$. As $G_{3} \nsupseteq 4 C_{4}$ and by the second formula of (35), $\left[y, x_{0}, x_{1}, z_{i}\right] \nsupseteq C_{4}$ for all $y \in V\left(Q_{3}\right)$ and $i \in\{1,2\}$. Thus $i\left(x_{0} z_{i}, Q_{3}\right)=0$ for all $i \in\{1,2\}$. Moreover, we shall have $e\left(y, G_{0}\right) \leq 1$ for all $y \in V\left(Q_{3}\right)$ by (36). It follows that $e\left(x_{0} z_{1} z_{2}, Q_{3}\right) \leq 4$. With (37), we obtain that $e\left(R, G_{3}\right) \leq 17+4+e\left(v_{0}, G_{3}\right) \leq 30$. Thus $e\left(R, H_{2}\right) \geq 8(k-3)+2$ if $v_{0} \in V\left(Q_{1}\right)$ and $e\left(R, H_{3}\right) \geq 8(k-4)+2$ if $v_{0} \in V\left(Q_{3}\right)$. Therefore there exists Q_{r} in H_{2} such that $e\left(R, Q_{r}\right) \geq 9$ and if $v_{0} \in V\left(Q_{3}\right)$ then $r \geq 4$.

By the first formula of (35), we see that $\left[u, z_{1}, z_{2}, x_{1}, Q_{r}\right] \nsupseteq 2 C_{4}$ for each $u \in$ $\left\{x_{0}, v_{0}\right\}$ for otherwise either $\left[F, Q_{2}, Q_{r}\right] \supseteq 3 C_{4}$ or $\left[F_{2}, Q_{1}, Q_{2}, Q_{r}\right] \supseteq 4 C_{4}$. As either $x_{2} \rightarrow\left(Q_{1}, v_{0}\right)$ or $x_{2} \rightarrow\left(Q_{1}, c_{4}\right)$ and $c_{4} \rightarrow\left(Q_{3}, v_{0}\right)$ or $x_{0} \rightarrow\left(Q_{3}, v_{0}\right)$, we see that $\left[x_{0}, v_{0}, x_{1}, z_{i}, Q_{r}\right] \nsupseteq 2 C_{4}$ for each $i \in\{1,2\}$ by the second formula of (35). We conclude that $\left[Q_{r}, u, v, x_{1}, w\right] \nsupseteq 2 C_{4}$ and so $u \nrightarrow\left(Q_{r} ; v x_{1} w\right)$ for each $\{u, v, w\} \subseteq R$ with $|\{u, v, w\}|=3$, i.e., $u \nrightarrow\left(Q_{r} ; R-\{u\}\right)$ for each $u \in R$. As $e\left(R, Q_{r}\right) \geq 9$, it follows that $u \nrightarrow Q_{r}$ and so $e\left(u, Q_{r}\right) \leq 3$ for all $u \in R$. Moreover, $e\left(u, Q_{r}\right) \leq 2$ for $u \in\left\{x_{0}, v_{0}\right\}$ by Lemma $4.1(a)$. Thus $e\left(z_{1} z_{2}, Q_{r}\right) \geq 5$ and $e\left(x_{0} v_{0}, Q_{r}\right) \geq 3$. W.l.o.g., say $Q_{r}=$ $d_{1} d_{2} d_{3} d_{4} d_{1}$ and $e\left(z_{1}, d_{1} d_{2} d_{3}\right)=3$. Then $d_{2} d_{4} \notin E$ as $z_{1} \nrightarrow Q_{r}$. Then $e\left(d_{2}, R-\left\{z_{1}\right\}\right) \leq$ $1 e\left(d_{4}, R-\left\{z_{1}\right\}\right) \leq 1$ and so $e\left(d_{2} d_{4}, R\right) \leq 4$. Similarly, if $e\left(u, d_{2} d_{4}\right)=2$ for some $u \in R$
then $e\left(d_{1} d_{3}, R\right) \leq 4$ and so $e\left(R, Q_{r}\right) \leq 8$, a contradiction. Hence $e\left(u, d_{2} d_{4}\right) \leq 1$ for all $u \in R$. We claim $z_{2} d_{2} \notin E$. If this is false, say $z_{2} d_{2} \in E$. Then for each $u \in\left\{x_{0}, v_{0}\right\}$, $e\left(u, d_{1} d_{3}\right) \leq 1$ as $u \nrightarrow\left(Q_{r} ; z_{1} z_{2}\right)$. Moreover, $e\left(d_{2}, x_{0} v_{0}\right)=0$ as $z_{1} \nrightarrow\left(Q_{r} ; z_{2} u\right)$ for each $u \in\left\{x_{0}, v_{0}\right\}$. As $e\left(d_{4}, x_{0} v_{0}\right) \leq 1$, it follows that $e\left(z_{2}, d_{1} d_{2} d_{3}\right)=3, e\left(d_{4}, x_{0} v_{0}\right)=1$ and $e\left(x_{0} v_{0}, d_{1} d_{3}\right)=2$. Let $\{u, w\}=\left\{x_{0}, v_{0}\right\}$ be such that $e\left(u, Q_{r}\right)=2$. Then $u d_{4} \in E$, $e\left(u, d_{1} d_{3}\right)=1$ and $e\left(w, d_{1} d_{3}\right)=1$. W.l.o.g., say $u d_{1} \in E$. Then $\left[u, d_{1}, d_{4}\right] \supseteq C_{3}$ and $\left[z_{1}, z_{2}, d_{2}, d_{3}\right] \cong K_{4} \geq Q_{2}$. As $G_{0}-\left\{z_{1}, z_{2}\right\} \supseteq C_{4}^{+}$, we shall have $\tau\left(Q_{r}\right) \geq 1$ by (1). Thus $d_{1} d_{3} \in E$ and so $u \rightarrow\left(Q_{r} ; z_{1} z_{2}\right)$, a contradiction. Hence $z_{2} d_{2} \notin E$. Thus $e\left(z_{2}, d_{1} d_{3}\right) \geq 1$. W.l.o.g., say $z_{2} d_{3} \in E$. Thus $G_{0}+d_{3} \supseteq 2 C_{4}$. By Corollary 4.9.1(a), $e\left(u, d_{1} d_{3}\right) \leq 1$ for $u \in\left\{x_{0}, v_{0}\right\}$. As $e\left(d_{i}, R-\left\{z_{1}\right\}\right) \leq 1$ for $i \in\{2,4\}$, we obtain that $4 \geq e\left(R-\left\{z_{1}\right\}, d_{1} d_{3}\right) \geq 9-3-e\left(d_{2} d_{4}, R-\left\{z_{1}\right\}\right) \geq 4$. It follows that $e\left(z_{2}, d_{1} d_{3}\right)=2$ and $e\left(d_{2}, R-\left\{z_{1}\right\}\right)=1$. Thus $z_{2} \rightarrow\left(Q_{r}, d_{2} ; R-\left\{z_{2}\right\}\right)$, a contradiction.

By Lemma 4.12, there exists Q_{p} in H_{1} such that $e\left(x_{1} x_{3}, Q_{p}\right)=7+q$ and $e\left(T, Q_{p}\right) \geq$ $10-q$ for some $q \in\{0,1\}$. Clearly, $e\left(x_{3}, Q_{p}\right)+e\left(T, Q_{p}\right) \geq 17-e\left(x_{1}, Q_{p}\right) \geq 13$. By our assumption on $Q_{2}, e\left(T, Q_{2}\right) \geq e\left(T, Q_{p}\right)$. Therefore if $e\left(x_{1} x_{3}, Q_{2}\right)=7$ then $e\left(T, Q_{2}\right) \geq 10$ and so $e\left(x_{2}, Q_{2}\right) \geq 3$. Thus if $e\left(x_{1} x_{3}, Q_{2}\right)=7$ then $\tau\left(Q_{2}\right)=2$ by Lemma 4.1(b). Hence both (29) and (30) do not hold. If $e\left(x_{1}, Q_{2}\right)=3$ and $N\left(x_{2}, Q_{2}\right)=N\left(x_{1}, Q_{2}\right)$ then (31) holds with $x_{2} a_{3} \in E$ and if $e\left(x_{1}, Q_{2}\right)=3$ and $N\left(x_{2}, Q_{2}\right) \neq N\left(x_{1}, Q_{2}\right)$ then we may assume that (32) holds with $x_{2} a_{2} \in E$. Let $R_{1}=\left\{x_{0}, z_{1}, z_{2}, c_{4}\right\}$. By (37), $e\left(R_{1}, G_{2}\right) \leq 22$ and so $e\left(R_{1}, H_{2}\right) \geq 8 k-22=8(k-3)+2$. Say $e\left(R_{1}, Q_{3}\right) \geq 9$. The next lemma will complete the proof of Claim 2.4.

Lemma 4.13 There exists a labelling $Q_{3}=d_{1} d_{2} d_{3} d_{4} d_{1}$ such that $e\left(R_{1}, Q_{3}\right)=9$, $e\left(z_{1} z_{2}, d_{2} d_{3} d_{4}\right)=6$ and $d_{3} c_{4} \in E$.

Proof. As $G_{3} \nsupseteq 4 C_{4}$ and by the first formula of (35), we have (38) below. Since $x_{i} \rightarrow\left(Q_{1}, c_{4}\right)$ for $i \in\{0,2\}$ and by the first and second formulas of (35), we have (39) below:
 $c_{4} \nrightarrow\left(Q_{3} ; u x_{1} v\right)$ i.e., $c_{4} \nrightarrow\left(Q_{3} ; u v\right)$, for each $\{u, v\} \subseteq\left\{x_{0}, z_{1}, z_{2}\right\}$ with $u \neq v$. (39)

Let $Q_{3}=d_{1} d_{2} d_{3} d_{4} d_{1}$. As $e\left(R_{1}, Q_{3}\right) \geq 9$ and by (39), $c_{4} \nrightarrow Q_{3}$. By Lemma $4.1(a), e\left(c_{4}, Q_{3}\right) \leq 2$. We shall show that $e\left(x_{0}, Q_{3}\right) \leq 2$. Suppose that $e\left(x_{0}, Q_{3}\right)=4$. Then $\tau\left(Q_{3}\right)=2$ by Lemma $4.1(a)$. As $e\left(c_{4}, Q_{3}\right) \leq 2$, $e\left(z_{1} z_{2}, Q_{3}\right) \geq 3$. W.l.o.g., say $e\left(z_{1}, Q_{3}\right) \geq 2$. As $x_{0} \nrightarrow\left(Q_{3} ; z_{1} z_{2}\right), i\left(z_{1} z_{2}, Q_{3}\right)=0$. If $e\left(z_{2}, Q_{3}\right) \geq 1$, then $z_{1} \rightarrow\left(Q_{3} ; x_{0} z_{2}\right)$, a contradiction. Hence $e\left(z_{2}, Q_{3}\right)=0$ and so $e\left(z_{1}, Q_{3}\right) \geq 3$. As $c_{4} \nrightarrow\left(Q_{3} ; x_{0} z_{1}\right), e\left(c_{4}, Q_{3}\right) \leq 1$. It follows that $e\left(z_{1}, Q_{3}\right)=4$ and $e\left(c_{4}, Q_{3}\right)=1$, contradicting Lemma 4.10. Next, suppose $e\left(x_{0}, Q_{3}\right)=3$. Say $e\left(x_{0}, d_{1} d_{2} d_{3}\right)=3$. Then
$e\left(z_{1} z_{2}, Q_{3}\right) \geq 4$. By Lemma $4.1(a), x_{0} \rightarrow Q_{3}$ with $d_{2} d_{4} \in E$. As $x_{0} \nrightarrow\left(Q_{3} ; z_{1} z_{2}\right)$, it follows that $e\left(d_{i}, z_{1} z_{2}\right)=1$ for all $d_{i} \in V\left(Q_{3}\right)$ and $e\left(c_{4}, Q_{3}\right)=2$. Thus $c_{4} \rightarrow\left(Q_{3} ; x_{0} z_{i}\right)$ for some $i \in\{1,2\}$, a contradiction.

Suppose $e\left(x_{0}, Q_{3}\right)=0$. If $e\left(c_{4}, Q_{3}\right)=1$ then $e\left(z_{1} z_{2}, Q_{3}\right)=8$ and so the lemma holds. So assume $e\left(c_{4}, Q_{3}\right)=2$. Then $N\left(c_{4}, Q_{3}\right)=\left\{d_{i}, d_{i+1}\right\}$ for some $i \in\{1,2,3,4\}$ since $c_{4} \nrightarrow\left(Q_{3} ; z_{1} z_{2}\right)$. Say w.l.o.g. $N\left(c_{4}, Q_{3}\right)=\left\{d_{3}, d_{4}\right\}$. If $e\left(d_{1} d_{2}, z_{1} z_{2}\right)=4$, we have that $\left[d_{1}, d_{2}, z_{1}, z_{2}\right] \cong K_{4} \geq Q_{2},\left[c_{4}, d_{3}, d_{4}\right] \supseteq C_{3}$ and $G_{0}-\left\{z_{1}, z_{2}\right\} \supseteq C_{4}^{+}$. By (1), $\tau\left(Q_{3}\right) \geq 1$ and so $c_{4} \rightarrow\left(Q_{3} ; z_{1} z_{2}\right)$, a contradiction. Hence $e\left(d_{1} d_{2}, z_{1} z_{2}\right) \leq 3$. W.l.o.g., say $e\left(d_{1}, z_{1} z_{2}\right) \leq 1$. It follows that $e\left(R_{1}, Q_{3}\right)=9$ with $e\left(z_{1} z_{2}, d_{2} d_{3} d_{4}\right)=6$ and so the lemma holds. Therefore we may assume that $1 \leq e\left(x_{0}, Q_{3}\right) \leq 2$ in the following. Note that $e\left(F_{1}-x_{1}, Q_{3}\right) \geq 9-e\left(c_{4}, Q_{3}\right) \geq 7$.

Let Q_{2}^{\prime} be a 4-cycle of $G_{0}-V\left(T_{1}\right)$ where $T_{1}=x_{1} z_{1} z_{2} x_{1}$. Suppose that $e\left(T, Q_{2}\right) \geq 11$ or one of (27), (32), (33) and (34) holds. Recall that $x_{2} a_{2} \in E$ when (32) holds as assumed. In each of these cases, $\tau\left(Q_{2}^{\prime}\right)=\tau\left(Q_{2}\right)$. Thus we may apply Lemmas 4.4-4.6 to F_{1} and Q_{3} and see that (9) holds w.r.t. F_{1} and Q_{3}. By Lemma 4.2, $\left[F_{1}, Q_{3}\right] \nsupseteq P \uplus Q$ with $P \supseteq 2 P_{2}, Q \cong C_{4}$ and $\tau(Q)=\tau\left(Q_{3}\right)+2$. Then we apply Lemma 3.3 to F_{1}, Q_{3} and c_{4} and see that the lemma holds.

Therefore we may assume that $e\left(T, Q_{2}\right) \leq 10, \tau\left(Q_{2}^{\prime}\right)<\tau\left(Q_{2}\right)$ and either (28) or (31) holds in the remaining proof. We note two observations here. Observation A: For each $u \in\left\{x_{0}, c_{4}\right\},\left[u, z_{1}, z_{2}, Q_{3}\right] \nsupseteq C$ with $C \cong C_{3}$ such that $\left[u, z_{1}, z_{2}, Q_{3}\right]-V(C)>Q_{3}$. We see this by (1) since $\left[x_{1}, x_{2}, x_{3}, a_{1}\right] \cong K_{4} \geq Q_{2}$. Observation B: $\left[x_{0}, c_{4}, z_{1}, z_{2}, Q_{3}\right] \nsupseteq$ $2 C_{4}$. We see this since $x_{2} \rightarrow\left(Q_{1}, c_{4}\right)$ and $G_{0}-\left\{z_{1}, z_{2}, x_{2}\right\} \supseteq C_{4}$ by (35).

We will apply Corollary 4.9 .1 and Lemma 4.11 to either F, Q_{2} and Q_{3} or F^{\prime}, Q_{2} and Q_{3}. Note that $e\left(x_{1} x_{2}, Q_{2}\right) \leq 6$ and $e\left(x_{3}, Q_{2}\right)=4$.

As $e\left(z_{1} z_{2}, Q_{3}\right) \geq 9-e\left(x_{0} c_{4}, Q_{3}\right) \geq 5$, say w.l.o.g. $e\left(z_{1}, Q_{3}\right) \geq e\left(z_{2}, Q_{3}\right)$ and $e\left(z_{1}, d_{1} d_{2} d_{3}\right)=3$. We claim that $e\left(u, d_{1} d_{3}\right) \leq 1$ and $e\left(u, d_{2} d_{4}\right) \leq 1$ for each $u \in$ $\left\{x_{0}, c_{4}\right\}$ and $e\left(z_{2}, d_{2} d_{4}\right) \leq 1$. By (38), $e\left(d_{i}, x_{0} z_{2}\right) \leq 1$ for each $i \in\{2,4\}$. If $e\left(c_{4}, d_{2} d_{4}\right)=2$ then $e\left(x_{0} z_{2}, d_{1} d_{3}\right)=0$ by (39) and it follows that $e\left(R_{1}, Q_{3}\right) \leq 8$, a contradiction. If $e\left(u, d_{2} d_{4}\right)=2$ for some $u \in\left\{x_{0}, z_{2}\right\}$, then $e\left(w, d_{2} d_{4}\right)=0$ where $\{u, w\}=\left\{x_{0}, z_{2}\right\}$. Moreover, as $u \nrightarrow\left(Q_{3} ; z_{1} w\right)$ by (38), we have $e\left(w, d_{1} d_{3}\right)=0$. As $1 \leq e\left(x_{0}, Q_{3}\right) \leq 2$, we obtain $u=x_{0}$ and so $e\left(F_{1}-x_{1}, Q_{3}\right) \leq 6$, a contradiction. Suppose that $e\left(u, d_{1} d_{3}\right)=2$ for some $u \in\left\{x_{0}, c_{4}\right\}$ then $z_{2} d_{2} \notin E$ and $e\left(d_{4}, z_{1} z_{2}\right) \leq 1$ as $u \nrightarrow\left(Q_{3} ; z_{1} z_{2}\right)$. Thus $e\left(z_{2}, d_{1} d_{3}\right) \geq 1$ as $e\left(z_{1} z_{2}, Q_{3}\right) \geq 5$. Say w.l.o.g. $z_{2} d_{3} \in E$. Then $G_{0}+d_{3} \supseteq 2 C_{4}$. If $d_{2} d_{4} \notin E$, we obtain a contradiction with Corollary 4.9.1(a). Hence $d_{2} d_{4} \in E$. Thus $z_{1} \rightarrow Q_{3}$. As $z_{1} \nrightarrow\left(Q_{3} ; x_{0} z_{2}\right), i\left(x_{0} z_{2}, Q_{3}\right)=0$ and so $u=c_{4}$. As $c_{4} \nrightarrow\left(Q_{3} ; R_{1}-\left\{c_{4}\right\}\right), e\left(d_{4}, x_{0} z_{1} z_{2}\right) \leq 1$ and $e\left(d_{2}, x_{0} z_{2}\right)=0$. As $e\left(F_{1}-x_{1}, Q_{3}\right) \geq 7$, $e\left(x_{0} z_{2}, d_{1} d_{3}\right) \geq 3$ and so $i\left(x_{0} z_{2}, d_{1} d_{3}\right) \geq 1$, a contradiction. Hence the claim holds.

Suppose that $e\left(z_{1}, Q_{3}\right)=3$. Then $3 \geq e\left(z_{2}, Q_{3}\right) \geq 2, e\left(x_{0} z_{2}, Q_{3}\right) \geq 4$ and $e\left(x_{0} c_{4}, Q_{3}\right) \geq 3$. If $d_{2} d_{4} \in E$ then $z_{1} \rightarrow Q_{3}$. By (38), $e\left(d_{i}, x_{0} z_{2}\right)=1$ for all
$d_{i} \in V\left(Q_{3}\right)$. Thus $e\left(c_{4}, Q_{3}\right)=2$ and $c_{4} \rightarrow\left(Q_{3} ; R_{1}-\left\{c_{4}\right\}\right)$, a contradiction. Therefore $d_{2} d_{4} \notin E$. Assume that $e\left(u, d_{i} d_{4}\right)=2$ for some $i \in\{1,3\}$ and $u \in\left\{x_{0}, c_{4}\right\}$. Say w.l.o.g. $e\left(u, d_{1} d_{4}\right)=2$. If $e\left(z_{2}, d_{2} d_{3}\right) \geq 1$ then $\left[u, d_{1}, d_{4}\right] \supseteq C_{3}$ and $\left[z_{1}, z_{2}, d_{2}, d_{3}\right] \supseteq C_{4}^{+}$. By Observation $A, \tau\left(Q_{3}\right)=1$ and so $d_{1} d_{3} \in E$. This contradicts Lemma 4.11. Hence $e\left(z_{2}, d_{2} d_{3}\right)=0$ and so $e\left(z_{2}, d_{1} d_{4}\right)=2$. Since $z_{1} \nrightarrow\left(Q_{3}, d_{4} ; x_{0} z_{2}\right), x_{0} d_{4} \notin E$ and so $u=c_{4}$. As $\left[z_{1}, d_{2}, d_{3}\right] \cong C_{3}$ and $\left[z_{2}, d_{1}, d_{4}, c_{4}\right] \supseteq C_{4}^{+}$, we obtain $d_{1} d_{3} \in E$ by Observation A. Then $x_{0} d_{2} \notin E$ as $c_{4} \nrightarrow\left(Q_{3} ; x_{0} z_{1}\right)$. Consequently, $e\left(x_{0}, d_{1} d_{3}\right)=2$, a contradiction. Hence $e\left(u, d_{i} d_{4}\right) \neq 2$ for each $i \in\{1,3\}$ and $u \in\left\{x_{0}, c_{4}\right\}$. Assume that $e\left(x_{0}, Q_{3}\right)=2$. Then $e\left(x_{0}, d_{2} d_{i}\right)=2$ for some $i \in\{1,3\}$. Say w.l.o.g. $e\left(x_{0}, d_{1} d_{2}\right)=2$. Then $z_{2} d_{2} \notin E$ as $z_{1} \nrightarrow\left(Q_{3} ; x_{0} z_{2}\right)$ and $e\left(z_{2}, d_{1} d_{3}\right) \leq 1$ as $z_{2} \nrightarrow\left(Q_{3} ; x_{0} z_{1}\right)$. It follows that $z_{2} d_{4} \in E, e\left(z_{2}, d_{1} d_{3}\right)=1$ and $e\left(c_{4}, Q_{3}\right)=2$. If $e\left(c_{4}, d_{1} d_{2}\right)=2$ then $\left[c_{4}, d_{1}, x_{0}, d_{2}\right] \supseteq C_{4}$ and $\left[z_{1}, d_{3}, d_{4}, z_{2}\right] \supseteq C_{4}$, contradicting Observation B. Hence $e\left(c_{4}, d_{2} d_{3}\right)=2$. If $z_{2} d_{1} \in E$ then $\left[z_{2}, d_{1}, d_{4}\right] \cong C_{3}$ and $\left[z_{1}, d_{2}, c_{4}, d_{3}\right] \supseteq C_{4}^{+}$and if $z_{2} d_{3} \in E$ then $\left[z_{2}, d_{3}, d_{4}\right] \cong C_{3}$ and $\left[x_{0}, d_{1}, z_{1}, d_{2}\right] \supseteq C_{4}^{+}$. By Observation $A, d_{1} d_{3} \in E$. Thus $z_{2} \rightarrow\left(Q_{3} ; x_{0} z_{1}\right)$, a contradiction. We conclude that $e\left(x_{0}, Q_{3}\right)=1$. It follows that $e\left(z_{2}, Q_{3}\right)=3$ and $e\left(c_{4}, Q_{3}\right)=2$. Then $e\left(c_{4}, d_{2} d_{i}\right)=2$ for some $i \in\{1,3\}$. W.l.o.g., say $e\left(c_{4}, d_{1} d_{2}\right)=2$. If $z_{2} d_{4} \in E$ then $z_{2} d_{2} \notin E$ as $e\left(z_{2}, d_{2} d_{4}\right) \leq 1$. Thus $e\left(z_{2}, d_{1} d_{4} d_{3}\right)=3$. Then $\left[c_{4}, d_{1}, d_{2}\right] \supseteq C_{3}$ and $\left[z_{1}, z_{2}, d_{3}, d_{4}\right] \supseteq C_{4}^{+}$. By Observation A, $d_{1} d_{3} \in E$. This contradicts Lemma 4.11. Hence $z_{2} d_{4} \notin E$. Thus $e\left(z_{2}, d_{1} d_{2} d_{3}\right)=3$. By renaming d_{i} as d_{i+1} for all $d_{i} \in V\left(Q_{3}\right)$, we see that Lemma 4.13 holds.

Finally, $e\left(z_{1}, Q_{3}\right)=4$. Assume $e\left(x_{0}, Q_{3}\right)=2$. Say w.l.o.g. $e\left(x_{0}, d_{1} d_{4}\right)=2$. Then $e\left(z_{2}, d_{1} d_{4}\right)=0$ as $z_{1} \nrightarrow\left(Q_{3} ; x_{0} z_{2}\right)$. Thus $e\left(z_{2}, d_{2} d_{3}\right) \geq 1$. W.l.o.g., say $z_{2} d_{3} \in E$. Then $d_{2} d_{4} \notin E$ as $x_{0} \nrightarrow\left(Q_{3} ; z_{1} z_{2}\right)$. As $\left[z_{1}, z_{2}, d_{2}, d_{3}\right] \supseteq C_{4}^{+}$and $\left[x_{0}, d_{1}, d_{4}\right] \cong C_{3}$, we get $d_{1} d_{3} \in E$ by Observation A. This contradicts Lemma 4.11. Hence $e\left(x_{0}, Q_{3}\right)=1$. Say $x_{0} d_{1} \in E$. Then $z_{2} d_{1} \notin E$. As $e\left(z_{2}, d_{2} d_{4}\right) \leq 1$, it follows that $e\left(z_{2}, Q_{3}\right)=2$ and $e\left(c_{4}, Q_{3}\right)=2$. W.l.o.g., say $e\left(z_{2}, d_{2} d_{3}\right)=2$. As $z_{2} \nrightarrow\left(Q_{3} ; x_{0} z_{1}\right), d_{2} d_{4} \notin E$. Assume that $e\left(c_{4}, d_{i} d_{i+1}\right)=2$ for some $i \in\{1,3,4\}$, i.e., $e\left(c_{4}, d_{2} d_{3}\right) \neq 2$. Then $\left[c_{4}, d_{i}, d_{i+1}\right] \supseteq C_{3}$ and $\left[z_{1}, z_{2}, d_{i+2}, d_{i+3}\right] \supseteq C_{4}^{+}$. By Observation $A, d_{1} d_{3} \in E$. This contradicts Lemma 4.11 (if necessary, exchanging the subscripts of d_{1} with d_{3} or d_{2} with $\left.d_{4}\right)$. Therefore $e\left(c_{4}, d_{2} d_{3}\right)=2$. Then $\left[z_{1}, d_{1}, d_{4}\right] \cong C_{3}$ and $\left[z_{2}, d_{2}, c_{4}, d_{4}\right] \supseteq C_{4}^{+}$. By observation $A, d_{1} d_{3} \in E$.

Let $S=V(F) \cup\left\{c_{4}, d_{4}\right\}$. As $c_{4} \Rightarrow\left(Q_{3}, d_{4}\right), d_{4} \in \mathcal{T}$ and by (36), e($\left.d_{4}, G_{0}\right)=1$. As $e\left(x_{0}, Q_{3}\right)=1$ and $\left[F, Q_{3}\right] \nsupseteq 2 C_{4}$, we have $e\left(F, Q_{3}\right) \leq 9$ by Claim 2.2. As $e\left(T, Q_{2}\right) \leq 10$ and $e\left(F, G_{1}\right) \leq 16$, we get $e\left(F, G_{3}\right) \leq 35$. Clearly, $e\left(c_{4}, G_{3}\right) \leq 7$. As $x_{3} \rightarrow\left(Q_{2}, z_{1}\right)$ and $z_{1} \rightarrow\left(Q_{3}, d_{4}\right)$, we have $d_{4} \rightarrow\left(Q_{1} ; x_{0} x_{1} x_{2}\right)$. This implies that $e\left(d_{4}, Q_{1}\right) \leq 1$. Thus $e\left(d_{4}, G_{3}\right) \leq 4$. Hence $e\left(S, G_{3}\right) \leq 35+7+4=46$ and so $e\left(S, H_{3}\right) \geq 12 k-46=$ $12(k-4)+2$. Say $e\left(S, Q_{4}\right) \geq 13$. If $e\left(F, Q_{4}\right) \geq 9$, then we see, by Claim 2.2, that $e\left(x_{0}, Q_{4}\right)=0$ for otherwise $e\left(F, Q_{4}\right)=9,\left[T, Q_{4}, w\right] \supseteq 2 C_{4}$ where $w \in\left\{c_{4}, d_{4}\right\}$ with $e\left(w, Q_{4}\right) \geq 2$ and so $\left[F, Q_{1}, Q_{3}, Q_{4}\right] \supseteq 4 C_{4}$. Thus $e\left(T, Q_{4}\right) \geq 9$. As $x_{0} \Rightarrow\left(Q_{1}, c_{4}\right)$ and
$c_{4} \Rightarrow\left(Q_{3}, d_{4}\right)$, we see that $e\left(w, Q_{4}\right) \leq 1$ for each $w \in\left\{c_{4}, d_{4}\right\}$ by Lemma 3.2. Thus $e\left(T, Q_{4}\right) \geq 11$ and so $e\left(T, Q_{2}\right) \geq 11$ by the assumption on Q_{2}, a contradiction. Hence $e\left(F, Q_{4}\right) \leq 8$ and so $e\left(c_{4} d_{4}, Q_{4}\right) \geq 5$. Let $w \in\left\{c_{4}, d_{4}\right\}$ be such that $e\left(w, Q_{4}\right) \geq 3$. Then $w \rightarrow Q_{4}$ by Lemma 4.1(a). Hence $e(y, T) \leq 1$ for all $y \in V\left(Q_{4}\right)$ for otherwise $\left[F, Q_{1}, Q_{3}, Q_{4}\right] \supseteq 4 C_{4}$. Thus $e\left(x_{0} c_{4} d_{4}, Q_{4}\right) \geq 9$. Then $e\left(x_{0}, Q_{4}\right) \geq 3$ or $e\left(c_{4}, Q_{4}\right) \geq 3$. If $e\left(x_{0}, Q_{4}\right) \geq 3$ then $x_{0} \rightarrow\left(Q_{4} ; c_{4} d_{3} d_{4}\right),\left[z_{1}, z_{2}, d_{1}, d_{2}\right] \supseteq C_{4}$ and $x_{2} \rightarrow\left(Q_{1}, c_{4}\right)$. If $e\left(c_{4}, Q_{4}\right) \geq 3$ then $c_{4} \rightarrow\left(Q_{4} ; x_{0} d_{1} d_{4}\right),\left[z_{1}, z_{2}, d_{2}, d_{3}\right] \supseteq C_{4}$ and $x_{2} \rightarrow\left(Q_{1}, c_{4}\right)$. As $G_{0}-\left\{z_{1}, z_{2}, x_{2}\right\} \supseteq C_{4}$, we obtain $G_{4} \supseteq 5 C_{4}$, a contradiction. This proves the lemma.

By Lemma 4.13, we see that $e\left(x_{2}, z_{1} z_{2}\right)=0$, for if $e\left(x_{2}, z_{1} z_{2}\right) \geq 1$, say $x_{2} z_{2} \in E$, then $z_{1} \rightarrow\left(Q_{3}, d_{3} ; c_{4} x_{2} z_{2}\right)$ and so $G_{3} \supseteq 4 C_{4}$ since $G_{0}-\left\{z_{1}, z_{2}, x_{2}\right\} \supseteq C_{4}$ by (35). Thus $e\left(T, Q_{2}\right) \leq 10$ and each of (29) to (34) does not hold. Hence (27) or (28) holds. Then $\left\{a_{2}, a_{3}\right\}$ and $\left\{a_{3}, a_{4}\right\}$ are in the symmetric position for $\left\{z_{1}, z_{2}\right\}$. Therefore as obtaining (37), we also have $e\left(x_{0} c_{4} a_{2} a_{3}, G_{2}\right) \leq 22$ and if $e\left(x_{0} c_{4} a_{2} a_{3}, Q_{3}\right) \geq 9$ then as above, $e\left(x_{0} c_{4} a_{2} a_{3}, Q_{3}\right)=9$. Hence $e\left(x_{0} c_{4} a_{2} a_{3}, Q_{3}\right) \leq 9$. Thus $e\left(x_{0} c_{4} a_{2} a_{3}, H_{3}\right) \geq$ $8 k-22-9=8(k-4)+1$. Say $e\left(x_{0} c_{4} a_{2} a_{3}, Q_{4}\right) \geq 9$. By Lemma 4.13, there exists a labelling $Q_{4}=u_{1} u_{2} u_{3} u_{4} u_{1}$ such that $e\left(a_{2} a_{3}, u_{2} u_{3} u_{4}\right)=6$ and $c_{4} u_{3} \in E$. Thus $\left[a_{3}, d_{3}, c_{4}, u_{3}\right] \supseteq C_{4}, a_{4} \rightarrow\left(Q_{3}, d_{3}\right), a_{2} \rightarrow\left(Q_{4}, u_{3}\right),\left[T, a_{1}\right] \supseteq C_{4}$ and $x_{0} \rightarrow\left(Q_{1}, c_{4}\right)$, i.e., $G_{4} \supseteq 5 C_{4}$, a contradiction.
Proof of Claim 2.5. Suppose that the claim is false. By Lemmas 4.4-4.6 and Claim 2.4, we may assume that (12) holds. Say $Q=Q_{1}=c_{1} c_{2} c_{3} c_{4} c_{1}, N\left(x_{0}, Q_{1}\right)=$ $N\left(x_{2}, Q_{1}\right)=\left\{c_{1}, c_{2}, c_{3}\right\}, x_{3} c_{4} \in E$ and $c_{2} c_{4} \in E$. Let $F^{\prime}=T+c_{4} x_{3}$. Clearly, G_{1} has an automorphism f such that $f(F)=F^{\prime}$ and $f\left(c_{i}\right)=c_{i}$ for $i \in\{1,2,3\}$. As $G_{1} \nsupseteq 2 C_{4}$, $e\left(x_{1}, Q_{1}\right)=0$. Then $e\left(F+c_{4}, G_{1}\right)=19$ and so $e\left(F+c_{4}, H_{1}\right) \geq 10(k-2)+1$. Say $e\left(F+c_{4}, Q_{2}\right) \geq 11$. First, assume $e\left(u, Q_{2}\right) \geq 3$ for some $u \in\left\{x_{0}, c_{4}\right\}$. W.l.o.g., say $e\left(x_{0}, Q_{2}\right) \geq 3$. Then $x_{0} \rightarrow Q_{2}$. Thus $e(v, T) \leq 1$ for all $v \in V\left(Q_{2}\right)$. Hence $e\left(x_{0} c_{4}, Q_{2}\right) \geq 7$. W.l.o.g., say $e\left(x_{0}, Q_{2}\right)=4$. Then $\tau\left(Q_{2}\right)=2$ by Lemma 4.1(a). As $x_{2} \rightarrow\left(Q_{1}, c_{4}\right), c_{4} \nrightarrow\left(Q_{2} ; x_{0} x_{1} x_{3}\right)$ and so $e\left(x_{3}, Q_{2}\right)=0$. By Claim 2.4, e $\left(x_{0} x_{2}, Q_{2}\right) \leq 6$ and so $e\left(c_{4} x_{1}, Q_{2}\right) \geq 5$. It follows that $x_{0} \rightarrow\left(Q_{2} ; c_{4} x_{3} x_{1}\right)$ and so $G_{2} \supseteq 3 C_{4}$, a contradiction. Hence $e\left(u, Q_{2}\right) \leq 2$ for each $u \in\left\{x_{0}, c_{4}\right\}$. Thus $e\left(F, Q_{2}\right) \geq 9$. By Claim 2.2, we see that $e\left(x_{0}, Q_{2}\right)=0$ for otherwise $e\left(F, Q_{2}\right)=9, e\left(c_{4}, Q_{2}\right)=2$, $\left[T, Q_{2}, c_{4}\right] \supseteq 2 C_{4}$ and so $G_{2} \supseteq 3 C_{4}$. Thus $e\left(F^{\prime}, Q_{2}\right) \geq 11$. By Claim 2.2, e $e\left(c_{4}, Q_{2}\right)=0$ and so $e\left(T, Q_{2}\right) \geq 11$. By Lemma 4.1 $(b), \tau\left(Q_{2}\right)=2$. By Lemma 3.1(c), we may label $Q_{2}=b_{1} b_{2} b_{3} b_{4} b_{1}$ such that $e\left(x_{1}, b_{1} b_{2}\right)=2$ and $\left[x_{2}, x_{3}, b_{3}, b_{4}\right] \cong K_{4}$. Say $F_{1}=x_{0} x_{1} b_{1} b_{2} x_{1}$ and $Q_{2}^{\prime}=x_{2} x_{3} b_{3} b_{4} x_{2}$. Then $\sigma_{1}=\left(x_{0} x_{1}, x_{1} b_{1} b_{2} x_{1}, Q_{1}, Q_{2}^{\prime}, Q_{3}, \ldots, Q_{k-1}\right)$ is a strong feasible chain. As $x_{0} \rightarrow Q_{1},\left[T, Q_{2}, c_{i}\right] \nsupseteq 2 C_{4}$ and so $e\left(c_{i}, Q_{2}\right)=0$ for all $c_{i} \in V\left(Q_{1}\right)$. Thus $e\left(S, G_{2}\right) \leq 20$ where $S=\left\{x_{0}, c_{4}, b_{1}, b_{2}\right\}$. Hence $e\left(S, H_{2}\right) \geq 8 k-20=8(k-3)+4$. Say $e\left(S, Q_{3}\right) \geq 9$. As $x_{i} \rightarrow Q_{1}$ for $i \in\{0,2\}$, we readily see that $c_{4} \nrightarrow\left(Q_{3} ; u x_{1} v\right)$ for
each $\{u, v\} \subseteq\left\{x_{0}, b_{1}, b_{2}\right\}$ with $u \neq v$ for otherwise $G_{3} \supseteq 4 C_{4}$. As $e\left(S, Q_{3}\right) \geq 9$, this implies that $c_{4} \nrightarrow Q_{3}$. By Lemma 4.1(a), e($\left.c_{4}, Q_{3}\right) \leq 2$. Hence $e\left(F_{1}-x_{1}, Q_{3}\right) \geq 7$. By Lemmas 4.4-4.6 and Claim 2.4, either $e\left(x_{0}, Q_{3}\right)=0$ or one of (9) and (12) holds w.r.t. F_{1} and Q_{3}. However, if (12) holds w.r.t. F_{1} and Q_{3}, then $e\left(c_{4}, Q_{3}\right) \geq 2$ and so $c_{4} \rightarrow\left(Q_{3} ; x_{0} x_{1} b_{i}\right)$ where $i \in\{1,2\}$ with $N\left(b_{i}, Q_{3}\right)=N\left(x_{0}, Q_{3}\right)$, a contradiction. Hence $e\left(x_{0}, Q_{3}\right)=0$ or (9) holds w.r.t. F_{1} and Q_{3}. By Lemma 4.2, $\left[F_{1}, Q_{3}\right] \nsupseteq P \uplus Q$ with $P \supseteq 2 P_{2}, Q \cong C_{4}$ and $\tau(Q)=\tau\left(Q_{3}\right)+2$. Applying Lemma 3.3 to F_{1}, Q_{3} and c_{4}, there exists a labelling $Q_{3}=d_{1} d_{2} d_{3} d_{4} d_{1}$ such that $e\left(b_{1} b_{2}, d_{2} d_{3} d_{4}\right)=3$ and $c_{4} d_{3} \in E$. As $e\left(x_{3}, Q_{2}\right) \geq 3, e\left(x_{3}, b_{1} b_{2}\right) \geq 1$. Say w.l.o.g. $x_{3} b_{2} \in E$. Then $\left[c_{4}, x_{3}, b_{2}, d_{3}\right] \supseteq C_{4}$, $b_{1} \rightarrow\left(Q_{3}, d_{3}\right),\left[x_{1}, x_{2}, b_{3}, b_{4}\right] \supseteq C_{4}$ and $x_{0} \rightarrow\left(Q_{1}, c_{4}\right)$, i.e., $G_{3} \supseteq 4 C_{4}$, a contradiction】

Lemma 4.14 Let $\{i, r\} \subseteq\{1, \ldots, k-1\}$ with $i \neq r$ and $z \in V\left(Q_{i}\right)$. Suppose that $e\left(F+z, Q_{r}\right) \geq 11$ and $e\left(z, x_{2} x_{3}\right)=1$. Furthermore, suppose that either $x_{0} \Rightarrow\left(Q_{i}, z\right)$ or there exists Q_{j} with $j \neq i, r$ such that $x_{0} \Rightarrow\left(Q_{j}, y\right)$ and $y \Rightarrow\left(Q_{r}, z\right)$ for some $y \in V\left(Q_{j}\right)$. Then $e\left(x_{0} z, Q_{r}\right)=0$ and so $e\left(T, Q_{r}\right) \geq 11$.

Proof. For convenience, say $Q_{i}=Q_{1}, Q_{r}=Q_{2}$ and $x_{2} z \in E$. Moreover, if $x_{0} \nRightarrow$ $\left(Q_{1}, z\right)$, say $Q_{j}=Q_{3}$. If $x_{0} \Rightarrow\left(Q_{1}, z\right)$, let $\left[Q_{1}-z+x_{0}\right] \supseteq Q^{\prime} \cong C_{4}$. If $x_{0} \nRightarrow$ $\left(Q_{1}, z\right)$, let $\left[Q_{3}-y+x_{0}\right] \supseteq Q^{\prime} \cong C_{4}$ and $\left[Q_{1}-z+y\right] \supseteq Q^{\prime \prime} \cong C_{4}$. Then $\sigma^{\prime}=$ $\left(z x_{2}, T, Q^{\prime}, Q_{2}, \ldots, Q_{k-1}\right)$ is a strong feasible chain if $x_{0} \Rightarrow\left(Q_{1}, z\right)$ and otherwise $\sigma^{\prime}=\left(z x_{2}, T, Q^{\prime}, Q^{\prime \prime}, Q_{2}, Q_{4}, \ldots, Q_{k-1}\right)$ is a strong feasible chain. Say $F^{\prime}=T+z x_{2}$. If $e\left(F^{\prime}, Q_{2}\right) \geq 9$, then by Claim 2.2, we see that $e\left(z, Q_{2}\right)=0$ for otherwise $e\left(x_{0}, Q_{2}\right) \geq 2$ and $\left[T, x_{0}, Q_{2}\right] \supseteq 2 C_{4}$. Consequently, $e\left(F, Q_{2}\right) \geq 11$ and so $e\left(x_{0}, Q_{2}\right)=0$ by Claim 2.2. Thus the lemma holds. Hence assume $e\left(F^{\prime}, Q_{2}\right) \leq 8$. Then $e\left(x_{0}, Q_{2}\right) \geq 3$ and so $x_{0} \rightarrow Q_{2}$. Thus $e(u, T) \leq 1$ for all $u \in V\left(Q_{2}\right)$. Hence $8 \geq e\left(z x_{0}, Q_{2}\right) \geq 7$ and $4 \geq e\left(T, Q_{2}\right) \geq 3$. As either $e\left(x_{0}, Q_{2}\right)=4$ or $e\left(z, Q_{2}\right)=4$, we have $\tau\left(Q_{2}\right)=2$ by Lemma $4.1(a)$. As the roles of F and F^{\prime} can be exchanged in the following argument, we may assume w.l.o.g. that $e\left(x_{0}, Q_{2}\right)=4$. Suppose $e\left(x_{3}, Q_{2}\right)=0$. By Claim 2.4, $e\left(x_{0} x_{2}, Q_{2}\right) \leq 6$ and so $e\left(x_{1}, Q_{2}\right) \geq 5-e\left(c_{4}, Q_{2}\right) \geq 1$. Similarly, $e\left(z x_{1}, Q_{2}\right) \leq 6$ and so $e\left(x_{2}, Q_{2}\right) \geq 1$. Applying Claim 2.3 to F and Q_{2}, we get $e\left(x_{2}, Q_{2}\right)=1$. Thus $e\left(x_{1}, Q_{2}\right) \geq 2$. Then applying Claim 2.3 to F^{\prime} and Q_{2}, we see that $e\left(z, Q_{2}\right) \neq 4$. It follows that $e\left(z, Q_{2}\right)=e\left(x_{1}, Q_{2}\right)=3$. Let $x^{\prime} \in N\left(x_{2}, Q_{2}\right)$ and $\left[Q_{2}-x^{\prime}+x_{0}\right] \supseteq Q_{2}^{\prime} \cong C_{4}$. Then $\tau\left(Q_{2}^{\prime}\right)=\tau\left(Q_{2}\right)$ and $e\left(x^{\prime} x_{1}, Q_{2}^{\prime}\right)=8$. This contradicts Claim 2.4 since ($x^{\prime} x_{2}, T, Q_{1}, Q_{2}^{\prime}, Q_{3}, \ldots, Q_{k-1}$) is a strong feasible chain. Therefore $e\left(x_{3}, Q_{2}\right) \geq 1$. By Claim 2.5, $e\left(F-x_{1}, Q_{2}\right) \leq 6$. Thus $e\left(x_{2} x_{3}, Q_{2}\right) \leq 2$. Suppose $e\left(x_{3}, Q_{2}\right)=2$. Then $e\left(x_{2}, Q_{2}\right)=0$. Applying Claim 2.3 to F and Q_{2}, we get $e\left(x_{1}, Q_{2}\right)=0$. Thus $e\left(T, Q_{2}\right) \leq 2$, a contradiction. Hence $e\left(x_{3}, Q_{2}\right)=1$ and $e\left(x_{2}, Q_{2}\right) \leq 1$. Then $e\left(x_{1}, Q_{2}\right) \geq 1$ as $e\left(T, Q_{2}\right) \geq 3$. As $e\left(z, Q_{2}\right) \geq 3$ and by Claim 2.5, $e\left(F^{\prime}-x_{2}, Q_{2}\right) \leq 6$. Thus $e\left(x_{2}, Q_{2}\right)=1$ since $e\left(F+z, Q_{2}\right) \geq 11$. Since $e\left(x_{0}, Q_{2}\right)=4$,
$\tau\left(Q_{2}\right)=2$ and $e\left(x_{i}, Q_{2}\right)>0$ for all $x_{i} \in V(T)$, we readily see that $\left[F, Q_{2}\right] \supseteq 2 C_{4}$, a contradiction.

Lemma 4.15 Suppose that $e\left(T, Q_{i}\right) \geq 11$ and $\tau\left(Q_{i}\right)=2$ for some Q_{i} in H_{1}. Let $V\left(Q_{i}\right)=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ be such that $\left\{b_{1}, b_{2}, b_{3}\right\} \subseteq N\left(x_{1}\right)$ and $\left[x_{2}, x_{3}, b_{4}, b_{r}\right] \cong K_{4}$ for $r=2,3$. Furthermore, suppose that Q_{1} has a vertex z such that $e\left(x_{0}, Q_{i}\right) \geq 3$, $x_{0} \Rightarrow\left(Q_{1}, z\right)$ and $e\left(x_{0} z b_{1} b_{r}, G_{1} \cup Q_{i}\right) \leq 22$ for $r=2,3$. Then $x_{2} \nrightarrow\left(Q_{1}, z\right)$.

Proof. On the contrary, say $x_{2} \rightarrow\left(Q_{1}, z\right)$. W.l.o.g., say $Q_{i}=Q_{2}$. Let $Q_{2}^{\prime}=$ $x_{2} x_{3} b_{3} b_{4} x_{2}, T_{1}=x_{1} b_{1} b_{2} x_{1}, F_{1}=T_{1}+x_{0} x_{1}, G_{0}=\left[T, Q_{2}\right]$ and $S_{1}=\left\{x_{0}, b_{1}, b_{2}, z\right\}$. Then $\sigma_{1}=\left(x_{0} x_{1}, T_{1}, Q_{1}, Q_{2}^{\prime}, Q_{3}, \ldots, Q_{k-1}\right)$ is a strong feasible chain. As $e\left(S_{1}, G_{2}\right) \leq 22$, $e\left(S_{1}, H_{2}\right) \geq 8(k-3)+2$. Say $e\left(S_{1}, Q_{3}\right) \geq 9$. Clearly, $G_{0}-\left\{x_{1}, b_{i}, x_{2}\right\} \supseteq C_{4}$ for each $i \in\{1,2\}$ and $G_{0}-\left\{b_{1}, x_{1}, b_{2}\right\} \supseteq C_{4}$. As $x_{0} \rightarrow\left(Q_{1}, z\right)$ and $x_{2} \rightarrow\left(Q_{1}, z\right)$, this implies that $z \nrightarrow\left(Q_{3} ; u x_{1} v\right)$ for each $\{u, v\} \subseteq\left\{x_{0}, b_{1}, b_{2}\right\}$ with $u \neq v$ for otherwise $G_{3} \supseteq 4 C_{4}$. As $e\left(S_{1}, Q_{3}\right) \geq 9$, this further implies that $z \nrightarrow Q_{3}$. By Lemma 4.1(a), $e\left(z, Q_{3}\right) \leq 2$. Thus $e\left(F_{1}-x_{1}, Q_{3}\right) \geq 7$. By Claim 2.5, either $e\left(x_{0}, Q_{3}\right)=0$ or (9) holds w.r.t. F_{1} and Q_{3}. By Lemma 4.2, $\left[F_{1}, Q_{3}\right] \nsupseteq P \uplus Q$ with $P \supseteq 2 P_{2}$, $Q \cong C_{4}$ and $\tau(Q)=\tau\left(Q_{3}\right)+2$. By Lemma 3.3, we see that $e\left(S_{1}, Q_{3}\right)=9$ and there exists a labelling $Q_{3}=d_{1} d_{2} d_{3} d_{4} d_{1}$ such that $e\left(b_{1} b_{2}, d_{2} d_{3} d_{4}\right)=6$ and $z d_{3} \in E$. Let $S_{2}=\left\{x_{0}, b_{1}, b_{3}, z\right\}$. Similarly, if $e\left(S_{2}, Q_{3}\right) \geq 9$ then $e\left(S_{2}, Q_{3}\right)=9$. Thus $e\left(S_{2}, Q_{3}\right) \leq 9$ and so $e\left(S_{2}, G_{3}\right) \leq 31$. Then $e\left(S_{2}, H_{3}\right) \geq 8(k-4)+1$. Say $e\left(S_{2}, Q_{4}\right) \geq 9$. Similarly, there exists a labelling $Q_{4}=a_{1} a_{2} a_{3} a_{4} a_{1}$ such that $e\left(b_{1} b_{3}, a_{2} a_{3} a_{4}\right)=6$ and $z a_{3} \in E$. It follows that $\left[z, d_{3}, b_{1}, a_{3}\right] \supseteq C_{4}, b_{2} \rightarrow\left(Q_{3}, d_{3}\right), b_{3} \rightarrow\left(Q_{4}, a_{3}\right), T+b_{4} \supseteq C_{4}$ and $x_{0} \rightarrow\left(Q_{1}, z\right)$, i.e., $\left[F, Q_{1}, Q_{2}, Q_{3}, Q_{4}\right] \supseteq 5 C_{4}$, a contradiction.

Lemma 4.16 If $e\left(x_{0}, Q_{1}\right)=4$ and $e\left(x_{2} x_{3}, Q_{1}\right) \geq 1$ then $e\left(T, Q_{i}\right) \geq 11$ for some Q_{i} in $H_{1}, e\left(x_{1}, Q_{1}\right)=0$ and $e\left(x_{r}, Q_{1}\right) \leq 1$ for each $r \in\{2,3\}$. If $e\left(x_{0}, Q_{1}\right)=3$ and $e\left(x_{2} x_{3}, Q_{1}\right) \geq 3$ then $\tau\left(Q_{1}\right)=2$, $e\left(T, Q_{i}\right) \leq 10$ for all Q_{i} in H_{1}, and for some $\{r, t\}=\{2,3\}, e\left(x_{r}, Q_{1}\right)=0$ and $N\left(x_{t}, Q_{1}\right)=N\left(x_{0}, Q_{1}\right)$.

Proof. Say $Q_{1}=c_{1} c_{2} c_{3} c_{4} c_{1}$. First, suppose that $e\left(x_{0}, Q_{1}\right)=4$. By Lemma 4.1(a), $\tau\left(Q_{1}\right)=2$. Say w.l.o.g. $e\left(x_{2}, Q_{1}\right) \geq e\left(x_{3}, Q_{1}\right)$ and $x_{2} c_{4} \in E$. Let $G_{0}=\left[T, Q_{2}\right]$. We show $e\left(x_{2}, Q_{1}\right)=1$ first. If this is false, say w.l.o.g. $x_{2} c_{2} \in E$. Then $e\left(x_{2}, Q_{1}\right)=2$ and $e\left(x_{3}, Q_{1}\right)=0$ by Claim 2.5. By Claim 2.3, $e\left(x_{1}, Q_{1}\right)=0$. Then $e\left(F+c_{4}, G_{1}\right)=19$ and so $e\left(F+c_{4}, H_{1}\right) \geq 10 k-19=10(k-2)+1$. Say $e\left(F+c_{4}, Q_{2}\right) \geq 11$. By Lemma 4.14, $e\left(T, Q_{2}\right) \geq 11$ and $e\left(x_{0} c_{4}, Q_{2}\right)=0$. By Lemma 4.1 $(b), \tau\left(Q_{2}\right)=2$. By Lemma 3.1 (c), we label $V\left(Q_{2}\right)=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ such that $\left\{b_{1}, b_{2}, b_{3}\right\} \subseteq N\left(x_{1}\right)$, $\left[x_{2}, x_{3}, b_{4}, b_{r}\right] \cong K_{4}$ for $r=2,3$. As $G_{2} \nsupseteq 3 C_{4}$ and $x_{0} \rightarrow Q_{1}, e\left(c_{i}, G_{0}\right) \leq 1$ for all $c_{i} \in V\left(Q_{1}\right)$. Hence $e\left(c_{2} c_{4}, G_{0}-x_{2}\right)=0$. If $b_{i} c_{r} \in E$ for some $i \in\{1,2,3\}$ and $c_{r} \in\{1,3\}$ then $x_{2} \rightarrow\left(Q_{1}, c_{r} ; b_{i} x_{1} x_{0}\right)$ and $x_{3} \rightarrow\left(Q_{2}, b_{i}\right)$, i.e., $G_{2} \supseteq 3 C_{4}$, a
contradiction. Hence $e\left(b_{1} b_{2} b_{3}, Q_{1}\right)=0$. It follows that $\left(x_{0} b_{1} b_{r} c_{1}, G_{2}\right) \leq 22$ for $r=2,3$. By Lemma 4.15, $x_{2} \nrightarrow\left(Q_{1}, c_{1}\right)$, a contradiction. Hence $e\left(x_{2}, Q_{1}\right)=1$. If $e\left(x_{1}, Q_{1}\right) \geq 1$, let $F^{\prime}=T+c_{4} x_{2}$ and $Q_{1}^{\prime}=x_{0} c_{1} c_{2} c_{3} x_{0}$. Then $\tau\left(Q_{1}^{\prime}\right)=\tau\left(Q_{1}\right), e\left(c_{4}, Q_{1}^{\prime}\right)=4$ and $e\left(x_{1}, Q_{1}^{\prime}\right) \geq 2$. With F^{\prime} and Q_{1}^{\prime} replacing F and Q_{1} in this argument, we shall have $e\left(x_{1}, Q_{1}^{\prime}\right) \leq 1$, a contradiction. Hence $e\left(x_{1}, Q_{1}\right)=0$. Then $e\left(F+c_{4}, G_{1}\right) \leq 19$ and so $e\left(F+c_{4}, H_{1}\right) \geq 10(k-2)+1$. Thus $e\left(F+c_{4}, Q_{i}\right) \geq 11$ for some Q_{i} in H_{1} and so $e\left(T, Q_{i}\right) \geq 11$ by Lemma 4.14.

Next, suppose that $e\left(x_{0}, Q_{1}\right)=3$. By Claim 2.5, $e\left(x_{2} x_{3}, Q_{1}\right)=3$. Say $e\left(x_{0}, c_{1} c_{2} c_{3}\right)=$ 3. Then $c_{2} c_{4} \in E$. Say w.l.o.g. $e\left(x_{2}, Q_{1}\right) \geq e\left(x_{3}, Q_{1}\right)$. Suppose that $e\left(Q_{i}, T\right) \geq 11$ for some Q_{i} in H_{1}. We may assume that $e\left(T, Q_{2}\right) \geq 11$. Let Q_{2} be labelled and G_{0} defined as above. Then for each $c_{i} \in V\left(Q_{1}\right), G_{0}+c_{i} \nsupseteq 2 C_{4}$ and so $e\left(c_{i}, G_{0}\right) \leq 1$. Thus $e\left(c_{i}, G_{2}\right) \leq 5$ for all $c_{i} \in V\left(Q_{1}\right)$ and $e\left(c_{i}, G_{0}-\left\{x_{2}, x_{3}\right\}\right)=0$ for each $c_{i} \in N\left(x_{2} x_{3}, Q_{1}\right)$. Hence $e\left(b_{1} b_{2} b_{3}, Q_{1}\right) \leq 1$. Thus $e\left(b_{1} b_{i}, G_{2}\right) \leq 13$ and so $e\left(x_{0} b_{1} b_{i} c_{j}, G_{2}\right) \leq 22$ for each $i \in\{2,3\}$ and $c_{j} \in V\left(Q_{1}\right)$. By Lemma 4.15, $x_{2} \nrightarrow\left(Q_{1}, c_{j}\right)$ for each c_{j} with $x_{0} \Rightarrow\left(Q_{1}, c_{j}\right)$. As $x_{0} \Rightarrow\left(Q_{1}, c_{4}\right), x_{2} \nrightarrow\left(Q_{1}, c_{4}\right)$ and so $N\left(x_{2}, Q_{1}\right) \subseteq\left\{c_{2}, c_{4}, c_{r}\right\}$ for some $r \in\{1,3\}$. Thus $x_{2} \rightarrow\left(Q_{1}, c_{r+2}\right)$. Hence $x_{0} \nRightarrow\left(Q_{1}, c_{r+2}\right)$. This implies that $c_{1} c_{3} \in E$. Then $e\left(x_{2}, Q_{1}\right)=2$ with $x_{2} c_{4} \in E$ as $x_{2} \nrightarrow\left(Q_{1}, c_{4}\right)$. Hence $i\left(x_{0} x_{3}, Q_{1}\right) \neq 0$ and so $x_{2} \rightarrow\left(Q_{1} ; x_{0} x_{1} x_{3}\right)$, a contradiction. Therefore $e\left(T, Q_{i}\right) \leq 10$ for all Q_{i} in H_{1}. As $G_{1} \nsupseteq 2 C_{4}, e\left(c_{i}, T\right) \leq 1$ for all $c_{i} \in V\left(Q_{1}\right)$. Thus $e\left(F, G_{1}\right) \leq 15$. Let $c_{r} \in N\left(x_{2} x_{3}, Q_{1}\right)$. If $e\left(c_{r}, G_{1}\right) \leq 4$ then $e\left(F+c_{r}, G_{1}\right) \leq 19$ and so $e\left(F+c_{r}, H_{1}\right) \geq 10 k-19=10(k-2)+1$. Thus $e\left(F+c_{r}, Q_{i}\right) \geq 11$ for some Q_{i} in H_{1}. As $e\left(T, Q_{i}\right) \leq 10$ and by Lemma $4.14, x_{0} \nRightarrow\left(Q_{1}, c_{r}\right)$. Therefore for each $c_{r} \in N\left(x_{2} x_{3}, Q_{1}\right)$, either $e\left(c_{r}, G_{1}\right)=5$ or $x_{0} \nRightarrow\left(Q_{1}, c_{r}\right)$. Hence $c_{4} \notin N\left(x_{2} x_{3}, Q_{1}\right)$ and so $e\left(x_{2} x_{3}, c_{1} c_{2} c_{3}\right)=3$. Then $c_{1} c_{3} \in E$ for otherwise $e\left(c_{1}, G_{1}\right)=4$ and $x_{0} \Rightarrow\left(Q_{1}, c_{1}\right)$. Since $x_{2} \nrightarrow\left(Q_{1} ; x_{0} x_{1} x_{3}\right), e\left(x_{3}, Q_{1}\right)=0$.
Proof of Claim 2.6. Suppose that the claim is false. W.l.o.g., say $Q_{1}=c_{1} c_{2} c_{3} c_{4} c_{1}$, $e\left(x_{0}, Q_{1}\right)=4$ and $e\left(x_{2} x_{3}, Q_{1}\right) \geq 1$. By Lemma 4.1(a), $\tau\left(Q_{1}\right)=2$. By Lemma 4.16, $e\left(x_{1}, Q_{1}\right)=0, e\left(x_{r}, Q_{1}\right) \leq 1$ for $r \in\{2,3\}$ and $e\left(T, Q_{i}\right) \geq 11$ for some Q_{i} in H_{1}. W.l.o.g., say $x_{2} c_{4} \in E$ and $e\left(T, Q_{2}\right) \geq 11$. By Lemma 4.1 b), $\tau\left(Q_{2}\right)=2$. Among all the strong feasible chains σ with these properties, we may assume that σ is chosen such that $e\left(Q_{2}+x_{3}, Q_{1}\right)$ is maximal.

Let $T_{1}=\left\{c_{1}, c_{2}, c_{3}\right\}$ and $G_{0}=\left[T, Q_{2}\right]$. Let $i \in\{3, \ldots, k-1\}$. Note that $G_{0}+y \supseteq$ $2 C_{4}$ for all $y \in V(G)-V\left(G_{0}\right)$ with $e\left(y, G_{0}\right) \geq 2$. As $\left[G_{2}, Q_{i}\right] \nsupseteq 4 C_{4}$, this implies that $x \nrightarrow\left(Q_{i} ; V\left(G_{0}\right)\right)$ and $e\left(x, G_{0}\right) \leq 1$ for all $x \in T_{1} \cup\left\{x_{0}, c_{4}\right\}$. Moreover, for each $U \subseteq V\left(G_{0}\right)$ with $|U|=3, G_{0}-U \supseteq C_{4}$ and so $\left[x, U, Q_{i}\right] \nsupseteq 2 C_{4}$ for all $x \in T_{1} \cup\left\{x_{0}, c_{4}\right\}$. As $\left[x_{0}, c_{4}, x_{2}, x_{1}\right] \supseteq C_{4}$ and $G_{0}-\left\{x_{1}, x_{2}, u\right\} \supseteq C_{4}$ for all $u \in V\left(G_{0}-\left\{x_{1}, x_{2}\right\}\right)$, $\left[u, Q_{i}, T_{1}\right] \nsupseteq 2 C_{4}$ for all $u \in V\left(G_{0}-\left\{x_{1}, x_{2}\right\}\right)$. This implies that $u \nrightarrow\left(Q_{i} ; T_{1}\right)$ and $e\left(u, T_{1}\right) \leq 1$ for all $u \in V\left(G_{0}-\left\{x_{1}, x_{2}\right\}\right)$. Since $G_{0}-\left\{u, v, x_{i}\right\} \supseteq C_{4}$ for each
$\{u, v\} \subseteq V\left(G_{0}-\left\{x_{1}, x_{2}\right\}\right)$ with $u \neq v$ and $i \in\{1,2\}$, it follows that if $v x_{1} \in E$ then $u \nrightarrow\left(Q_{i} ; v x_{1} x_{0}\right)$ and if $v x_{2} \in E$ then $u \nrightarrow\left(Q_{i} ; c_{4} x_{2} v\right)$. These properties will be used several times in the following argument. We claim that for each Q_{i} in H_{2} with $e\left(G_{2}-\left\{x_{1}, x_{2}\right\}, Q_{i}\right) \geq 21$, one of (40) and (41) holds:

$$
\begin{align*}
& e\left(x_{0} c_{4}, Q_{i}\right)=0, e\left(c_{r}, Q_{i}\right) \leq 1 \text { for all } c_{r} \in T_{1}, e\left(d, T_{1}\right) \leq 1 \text { for all } d \in V\left(Q_{i}\right) ; \tag{40}\\
& \left.e\left(u, Q_{i}\right) \leq 1 \text { for all } u \in V\left(G_{0}\right)-\left\{x_{1}, x_{2}\right\}, e\left(d, G_{0}-\left\{x_{1}, x_{2}\right\}\right) \leq 1 \text { for all } d \in V\left(\left(x_{i} i\right)\right)\right)
\end{align*}
$$

Proof. Note that $\sigma^{\prime}=\left(c_{4} x_{2}, T, Q_{1}^{\prime}, Q_{2} \ldots, Q_{k-1}\right)$ is a strong feasible chain and so x_{0} and c_{4} are in the symmetric position in our argument where $Q_{1}^{\prime}=x_{0} c_{1} c_{2} c_{3} x_{0}$. Set $Z_{1}=V\left(Q_{1}+x_{0}\right)$ and $Z_{2}=G_{0}-\left\{x_{1}, x_{2}\right\}$. Suppose that $e\left(x, Q_{i}\right) \geq 3$ for some $x \in Z_{1}$. Then $x \rightarrow Q_{i}$ by Lemma 4.1(a). Thus for each $d \in V\left(Q_{i}\right), e\left(d, Z_{2}\right) \leq 1$ as $x \nrightarrow\left(Q_{i} ; V\left(G_{0}\right)\right)$. Hence $e\left(Z_{2}, Q_{i}\right) \leq 4$ and so $e\left(Z_{1}, Q_{i}\right) \geq 17$. Thus $e\left(x, Q_{i}\right)=4$ for some $x \in Z_{1}$ and $e\left(T_{1}, Q_{i}\right) \geq 9$. By Lemma 4.1 $(a), \tau\left(Q_{i}\right)=2$. If $e\left(u, Q_{i}\right) \geq 2$ for some $u \in Z_{2}$ then $u \rightarrow\left(Q_{i}, d\right)$ for some $d \in V\left(Q_{i}\right)$ with $e\left(d, T_{1}\right) \geq 2$. Thus $u \rightarrow\left(Q_{i} ; T_{1}\right)$, a contradiction. Hence $e\left(u, Q_{i}\right) \leq 1$ for all $u \in Z_{2}$. Thus (41) holds.

Therefore we may assume that $e\left(x, Q_{i}\right) \leq 2$ for all $x \in Z_{1}$. Thus $e\left(Q_{i}, Z_{1}\right) \leq 10$ and so $e\left(Z_{2}, Q_{i}\right) \geq 11$. Suppose that $e\left(y, Q_{i}\right)=2$ for some $y \in Z_{1}$. Assume for the moment $e\left(y, d d^{*}\right)=2$ for some $d \in V\left(Q_{i}\right)$. Say $Q_{i}=d_{1} d_{2} d_{3} d_{4} d_{1}$ with $e\left(y, d_{1} d_{3}\right)=2$. Then $e\left(d_{2}, G_{0}\right) \leq 1$ and $e\left(d_{4}, G_{0}\right) \leq 1$ as $y \nrightarrow\left(Q_{i} ; V\left(G_{0}\right)\right)$. Thus $e\left(d_{1} d_{3}, Z_{2}\right) \geq 9$ and $e\left(Z_{2}, Q_{i}\right) \leq 12$. Clearly, $e\left(Z_{1}, Q_{i}\right) \geq 21-12=9$ and so $e\left(T_{1}, Q_{i}\right) \geq 5$. Thus for each $u \in Z_{2}, u \nrightarrow Q_{i}$ as $u \nrightarrow\left(Q_{i} ; T_{1}\right)$ and so $e\left(u, Q_{i}\right) \leq 3$. As $e\left(Z_{2}, Q_{i}\right) \geq 11$, $e\left(z_{1}, Q_{i}\right)=3$ for some $z_{1} \in Z_{2}$. Suppose that $e\left(z_{1}, d_{2} d_{4}\right)=2$. Then w.l.o.g., say $z_{1} d_{1} \in E$. Then $d_{1} d_{3} \notin E$ as $z_{1} \nrightarrow Q_{i}$. As $e\left(d_{1} d_{3}, Z_{2}\right) \geq 9, e\left(d_{l}, Z_{2}\right)=5$ for some $l \in\{1,3\}$. By Lemma 3.1(b), $G_{0}+d_{l} \supseteq 2 K_{4}$. Say $\{l, m\}=\{1,3\}$. As $z_{1} \nrightarrow\left(Q_{i} ; T_{1}\right), e\left(d_{j}, T_{1}\right) \leq 1$ for $j \in\{1,3\}$. For each $c_{r} \in T_{1}, e\left(c_{r}, d_{2} d_{4}\right) \leq 1$ as $c_{r} \nrightarrow\left(Q_{i} ; V\left(G_{0}\right)\right)$. As $e\left(T_{1}, Q_{i}\right) \geq 5$, it follows that $e\left(c_{r}, d_{m} d_{t}\right)=2$ for some $c_{r} \in T_{1}$ and $t \in\{2,4\}$. Thus $\left[c_{r}, d_{m}, d_{t}\right] \cong C_{3}$ and so $\left[G_{2}, Q_{i}\right] \supseteq C_{3} \uplus 3 K_{4}$. By (1), $\tau\left(Q_{i}\right)=2$, a contradiction. Hence $e\left(z_{1}, d_{2} d_{4}\right)=1$. W.l.o.g., say $e\left(z_{1}, d_{1} d_{2} d_{3}\right)=3$. Then $d_{2} d_{4} \notin E$ as $z_{1} \nrightarrow Q_{i}$. Clearly, $e\left(z_{2}, d_{1} d_{3}\right)=2$ for some $z_{2} \in Z_{2}-\left\{z_{1}\right\}$ as $e\left(d_{1} d_{3}, Q_{i}\right) \geq 9$. Since $e\left(T_{1}, Q_{i}\right) \leq 6$, e($\left.x_{0} c_{4}, Q_{i}\right) \geq 9-6=3$. W.l.o.g., say $e\left(x_{0}, Q_{i}\right)=2$. As $x_{0} \nrightarrow\left(Q_{i} ; V\left(G_{0}\right)\right), e\left(x_{0}, d_{2} d_{4}\right) \leq 1$. Thus $e\left(x_{0}, d_{1} d_{3}\right) \geq 1$. Say w.l.o.g. $x_{0} d_{1} \in E$. If $e\left(x_{0}, d_{1} d_{3}\right)=1$, we have $x_{0} \Rightarrow\left(Q_{1}, y\right)$ and $e\left(y, d_{1} d_{3}\right)=2$. As $z_{1} \nrightarrow\left(Q_{i} ; T_{1}\right)$, $e\left(d_{r}, T_{1}\right) \leq 1$ and so $e\left(d_{r}, Q_{1}\right) \leq 2$ for $r \in\{2,4\}$. Thus we obtain a contradiction with Lemma 4.9.

The above argument shows that no vertex of Z_{1} is adjacent to two non-consecutive vertices of Q_{i}. It follows that $\tau\left(Q_{i}\right) \leq 1$ for otherwise we may choose a 4 -cycle Q_{i}^{\prime} from $\left[Q_{i}\right]$ such that y is adjacent to two non-consecutive vertices of Q_{i}^{\prime} and obtain a contradiction in the above argument with Q_{i}^{\prime} in place of Q_{i}. Hence $\left[G_{2}, Q_{i}\right] \nsupseteq C_{3} \uplus 3 K_{4}$
by (1). W.l.o.g., say $e\left(y, d_{1} d_{2}\right)=2$. We claim that $\tau\left(Q_{i}\right)=1$. As $e\left(d_{1} d_{3}, Z_{2}\right)+$ $e\left(d_{2} d_{4}, Z_{2}\right) \geq 11$, say w.l.o.g. $e\left(d_{1} d_{3}, Q_{i}\right) \geq 6$. If $G_{0}+d_{1} \supseteq 2 K_{4}$ then $\left[G_{2}, Q_{i}\right] \supseteq$ $2 P_{2} \uplus 3 K_{4}$ since $\left[y, d_{2}, d_{3}, d_{4}\right] \supseteq P_{4}$. By Lemma 4.2, $\tau\left(Q_{i}\right) \geq 1$. Hence assume that $G_{0}+d_{1} \nsupseteq 2 K_{4}$. By Lemma 3.1(b), e($\left.d_{1}, Z_{2}\right) \leq 4$. By Lemma 3.1 (d), if $e\left(d_{1}, Z_{2}\right)=4$ then $e\left(x_{1} x_{2}, Q_{2}\right)=7$ and so $e\left(x_{3}, Q_{2}\right)=4$. It follows that $e\left(d_{3}, Z_{2}\right) \geq 6-e\left(d_{1}, Z_{2}\right) \geq 2$ and $u v \in E$ for some $\{u, v\} \subseteq N\left(d_{3}, Z_{2}\right)$. By Lemma 3.1(b), $\left[Z_{2}\right]$ has a triangle T^{\prime} such that $u v \in E\left(T^{\prime}\right)$ and $G_{0}-V\left(T^{\prime}\right) \cong K_{4}$. Thus $\left[T^{\prime}+d_{3}\right] \supseteq C_{4}^{+}$. As $\left[y, d_{1}, d_{2}\right] \cong C_{3}$, we obtain that $\left[G_{2}, Q_{i}\right] \supseteq C_{3} \uplus 2 K_{4} \uplus C_{4}^{+}$. By (1), $\tau\left(Q_{i}\right) \geq 1$. W.l.o.g, say $d_{1} d_{3} \in E$. Then $y \rightarrow\left(Q_{i}, d_{4}\right)$ and so $e\left(d_{4}, Z_{2}\right) \leq 1$. As $\left[y, d_{1}, d_{2}\right] \cong C_{3}$ and $\left[d_{1}, d_{4}, d_{3}\right] \cong C_{3}$, we obtain that $G_{0}+d_{j} \nsupseteq 2 K_{4}$ for $j \in\{2,3\}$ since $\left[G_{2}, Q_{i}\right] \nsupseteq C_{3} \uplus 3 K_{4}$. By Lemma 3.1(b), $e\left(d_{j}, Z_{2}\right) \leq 4$ for $j \in\{2,3\}$. Hence $e\left(Z_{2}, Q_{i}\right) \leq 14$. As $e\left(Z_{2}, Q_{i}\right) \geq 11, e\left(u, Q_{i}\right) \geq 3$ for some $u \in Z_{2}$. Then $u \rightarrow\left(Q_{i}, d_{j}\right)$ for $j \in\{2,4\}$. If $e\left(x, d_{1} d_{3} d_{4}\right)=2$ for some $x \in Z_{1}$ then $x \rightarrow\left(Q_{i}, d_{2}\right)$ and so $e\left(d_{2}, Z_{2}\right) \leq 1$. It follows that $e\left(Z_{2}, Q_{i}\right)=11$ and $e\left(Z_{1}, Q_{i}\right)=10$. Thus $e\left(T_{1}, Q_{i}\right)=6$. As $e\left(c_{r}, d_{1} d_{3}\right) \leq 1$ for each $c_{r} \in T_{1}$, $e\left(d_{2} d_{4}, T_{1}\right) \geq 3$. Hence $e\left(d_{j}, T_{1}\right) \geq 2$ for some $j \in\{2,4\}$ and so $u \rightarrow\left(Q_{i} ; T_{1}\right)$, a contradiction. Therefore $e\left(x, d_{1} d_{4} d_{3}\right) \leq 1$ for all $x \in Z_{1}$. Thus $x d_{2} \in E$ for each $x \in Z_{1}$ with $e\left(x, Q_{i}\right)=2$. This implies that T_{1} has at most one vertex c_{r} with $e\left(c_{r}, Q_{i}\right)=2$ since $u \nrightarrow\left(Q_{i} ; T_{1}\right)$. Thus $e\left(T_{1}, Q_{i}\right) \leq 4$ and so $e\left(Z_{1}, Q_{i}\right) \leq 8$. Then $e\left(Z_{2}, Q_{i}\right) \geq 13$ and so $e\left(d_{2}, Z_{2}\right) \geq 13-e\left(d_{1} d_{3} d_{4}, Z_{2}\right) \geq 3$. As $e\left(Z_{2}, Q_{i}\right) \leq 14$, $e\left(x_{0} c_{4}, Q_{i}\right) \geq 7-e\left(T_{1}, Q_{i}\right) \geq 3$. Say w.l.o.g. $e\left(x_{0}, Q_{i}\right)=2$. Then $x_{0} d_{2} \in E$. As $e\left(d_{2}, Z_{2}\right) \geq 3, v x_{1} \in E$ for some $v \in N\left(d_{2}, Z_{2}\right)-\{u\}$. Thus $u \rightarrow\left(Q_{i}, d_{2} ; x_{0} x_{1} v\right)$, a contradiction.

Therefore $e\left(x, Q_{i}\right) \leq 1$ for all $x \in Z_{1}$. Thus $e\left(Z_{2}, Q_{i}\right) \geq 16$. We need show that $e\left(x_{0} c_{4}, Q_{i}\right)=0$. On the contrary, say w.l.o.g. $x_{0} d_{1} \in E$. Assume that $v d_{1} \in E$ for some $v \in N\left(x_{1}, Z_{2}\right)$. Then for each $u \in Z_{2}-\{v\}, u \nrightarrow\left(Q_{i}, d_{1}\right)$ and so $e\left(u, d_{2} d_{4}\right) \leq 1$. As $e\left(Z_{2}, Q_{i}\right) \geq 16$, it follows that $e\left(v, Q_{i}\right)=4$ and $e\left(u, Q_{i}\right)=3$ with $u d_{1} \in E$ for all $u \in Z_{2}-\{v\}$. Thus $v \rightarrow\left(Q_{i}, d_{1} ; x_{0} x_{1} u\right)$ for some $u \in N\left(x_{1}, Z_{2}\right)-\{v\}$, a contradiction. Hence $v d_{1} \notin E$ for each $v \in N\left(x_{1}, Z_{2}\right)$. As $e\left(x_{1}, Z_{2}\right) \geq 4$ and $e\left(Z_{2}, Q_{i}\right) \geq 16$, it follows that $e\left(x_{1}, Z_{2}\right)=4$ and $e\left(Z_{2}, Q_{i}\right)=16$. Thus $e\left(Z_{1}, Q_{i}\right)=5$ and so $e\left(c_{4}, Q_{i}\right)=1$. Similarly, we shall have that $e\left(x_{2}, Z_{2}\right)=4$. Thus $e\left(T, Q_{2}\right) \leq 10$, a contradiction. Hence $e\left(x_{0} c_{4}, Q_{i}\right)=0$ and so $e\left(Z_{2}, Q_{i}\right) \geq 18$. Thus $e\left(u, Q_{i}\right)=4$ for some $u \in Z_{2}$. As $u \nrightarrow\left(Q_{i} ; T_{1}\right), e\left(d, T_{1}\right) \leq 1$ for all $d \in V\left(Q_{i}\right)$. Hence (40) holds.

Let $N=\left[\cup Q_{i}\right]$ where i runs over $\{3, \ldots, k-1\}$ with $e\left(G_{2}-\left\{x_{1}, x_{2}\right\}, Q_{i}\right) \geq 21$. We say that a vertex z is attached to a subgraph G^{\prime} of G if $z \notin V\left(G^{\prime}\right)$ and $e\left(z, G^{\prime}\right)=1$. We have the following four properties.

Property 1. If $x y \in E\left(T_{1}, Z_{2}\right)$, neither x nor y is attached to some Q_{i} in N.
To see this, say w.l.o.g. $x y=c_{1} u_{1}$ with $u_{1} \in Z_{2}$ such that for some $v \in\left\{c_{1}, u_{1}\right\}, v$ is attached to some Q_{i} in N. Assume $v=c_{1}$. By (40), e(Z2, $\left.Q_{i}\right) \geq 21-e\left(T_{1}, Q_{i}\right) \geq 18$.

Let T^{\prime} be a triangle of $\left[Z_{2}\right]$ with $u_{1} \in V\left(T^{\prime}\right)$. As $e\left(Z_{2}, Q_{i}\right) \geq 18, e\left(T^{\prime}, Q_{i}\right) \geq 10$. By Lemma 3.4(a), $\left[c_{1}, T^{\prime}, Q_{i}\right] \supseteq 2 C_{4}$, a contradiction. Hence $v=u_{1}$. By (41), $e\left(Z_{2}, Q_{i}\right) \leq 4$ and $e\left(Z_{1}, Q_{i}\right) \geq 17$. Then $e\left(T_{1}, Q_{i}\right) \geq 9$. As $e\left(x, Q_{i}\right)=4$ for some $x \in Z_{1}$, we have $\tau\left(Q_{i}\right)=2$ by Lemma 4.1(a). By Lemma 3.4(b), $\left[u_{1}, T_{1}, Q_{i}\right] \supseteq 2 C_{4}$, a contradiction.

Property 2. For each Q_{i} in N, if (41) holds for Q_{i} then $\tau\left(Q_{i}\right)=2$ and $e\left(T_{1}, Q_{i}\right) \geq$ 10. Furthermore, if $e\left(T_{1}, Q_{i}\right)=10$ then $e\left(Z_{2}, T_{1}\right) \geq 2$.

To see this, we have $e\left(Z_{1}, Q_{i}\right) \geq 21-e\left(Z_{2}, Q_{i}\right) \geq 17$. Thus $e\left(x, Q_{i}\right)=4$ for some $x \in Z_{1}$. By Lemma 4.1 $(a), \tau\left(Q_{i}\right)=2$. Clearly, if $e\left(Z_{2}, Q_{i}\right) \leq 2$ then $e\left(T_{1}, Q_{i}\right) \geq$ $21-8-2=11$. For the proof, we may assume that $e\left(Z_{2}, Q_{i}\right) \geq 3$ and $e\left(T_{1}, Q_{i}\right) \leq 10$. W.l.o.g., say $Q_{i}=Q_{3}$. Then $e\left(x_{0} c_{4}, Q_{3}\right) \geq 7$. W.l.o.g., say $e\left(x_{0}, Q_{3}\right)=4$ and $e\left(c_{4}, Q_{3}\right) \geq 3$. As $e\left(Z_{1}, Q_{3}\right) \geq 17$, $e\left(d, Z_{1}\right)=5$ for some $d \in V\left(Q_{3}\right)$. Assume $e\left(c_{4}, Q_{3}\right)=4$. Then we replace c_{4} with d in Q_{1} and replace d with c_{4} in Q_{3} to obtain two disjoint 4-cycles C^{\prime} and $C^{\prime \prime}$, respectively. Clearly, $\tau\left(C^{\prime}\right)=\tau\left(C^{\prime \prime}\right)=2$. Thus $\left(x_{0} x_{1}, T, C^{\prime \prime}, Q_{2}, C^{\prime}, Q_{4}, \ldots, Q_{k-1}\right)$ is a strong feasible chain such that $e\left(x_{0}, C^{\prime \prime}\right)=4$, $e\left(x_{2}, C^{\prime \prime}\right)=1$ and $e\left(Z_{2}, C^{\prime \prime}\right) \geq e\left(Z_{2}, Q_{3}\right)-1$. By our assumption on $\sigma, e\left(Z_{2}, Q_{1}\right) \geq$ $e\left(Z_{2}, Q_{3}\right)-1$. By Property $1, N\left(T_{1}, Z_{2}\right) \cap N\left(Q_{3}, Z_{2}\right)=\emptyset$. As $e\left(c_{4}, Z_{2}\right)=0, E\left(Z_{2}, T_{1}\right)=$ $E\left(Z_{2}, Q_{1}\right)$. It follows that $e\left(Z_{2}, Q_{3}\right)+e\left(Z_{2}, Q_{3}\right)-1 \leq\left|Z_{2}\right|$. This yields that $e\left(Z_{2}, Q_{3}\right) \leq$ 3. It follows that $e\left(Z_{2}, Q_{3}\right)=3, e\left(T_{1}, Q_{3}\right)=10$ and $e\left(Z_{2}, T_{1}\right) \geq 2$. Hence we may assume that $e\left(c_{4}, Q_{3}\right)=3$. Then $e\left(Z_{2}, Q_{3}\right)=4$ and $e\left(T_{1}, Q_{3}\right)=10$. As $e\left(T, Q_{2}\right) \geq 11$, it is easy to see that $e\left(y, x_{1} x_{2}\right)=2$ for some $y \in N\left(Q_{3}, Z_{2}\right)$ such that $G_{0}-\left\{x_{1}, x_{2}, y\right\} \cong$ K_{4}. Let $G_{0}-\left\{x_{1}, x_{2}, y\right\} \supseteq Q^{\prime} \cong C_{4}$. Then $\left(x_{0} x_{1}, x_{1} y x_{2} x_{1}, Q_{1}, Q^{\prime}, Q_{3}, \ldots, Q_{k-1}\right)$ is a strong feasible chain with $e\left(x_{0}, Q_{3}\right)=4$ and $e\left(y, Q_{3}\right)=1$. Clearly, $e\left(x_{1} x_{2} y, Q^{\prime}\right) \geq 11$ and $e\left(G_{0}-\left\{x_{1}, y\right\}, Q_{3}\right)=3$. By the assumption on σ again, $e\left(Z_{2}, T_{1}\right)=e\left(Z_{2}, Q_{1}\right)=3$. Thus $N\left(T_{1}, Z_{2}\right) \cap N\left(Q_{3}, Z_{2}\right) \neq \emptyset$, contradicting Property 1.

Property 3. For each $v \in T_{1} \cup Z_{2}, v$ is attached to at most one Q_{i} in N.
To see this, suppose that for some $v \in T_{1} \cup Z_{2}, v$ is attached to some Q_{j} and Q_{r} in N with $j \neq r$. W.l.o.g., say $Q_{j}=Q_{3}$ and $Q_{r}=Q_{4}$. Say $e\left(v, u_{1} w_{1}\right)=2$ where $Q_{3}=u_{1} u_{2} u_{3} u_{4} u_{1}$ and $Q_{4}=w_{1} w_{2} w_{3} w_{4} w_{1}$. First, suppose that $v \in T_{1}$. By (40), $e\left(Z_{2}, Q_{3}\right) \geq 18$ and $e\left(Z_{2}, Q_{4}\right) \geq 18$. Then $e\left(x, u_{1} w_{1}\right)=2, e\left(y, Q_{3}\right)=4$ and $e\left(z, Q_{4}\right)=4$ for some $\{x, y, z\} \subseteq Z_{2}$ with $|\{x, y, z\}|=3$. Thus $\left[v, u_{1}, x, w_{1}\right] \supseteq C_{4}$, $y \rightarrow\left(Q_{3}, u_{1}\right), z \rightarrow\left(Q_{4}, w_{1}\right), G_{0}-\{x, y, z\} \supseteq C_{4}$ and $x_{0} \rightarrow\left(Q_{1}, v\right)$, i.e., $G_{4} \supseteq 5 C_{4}$, a contradiction. Hence $v \in Z_{2}$. As $\left[x_{0}, c_{4}, x_{2}, x_{1}\right] \supseteq C_{4}$ and $G_{0}-\left\{x_{1}, x_{2}, v\right\} \supseteq C_{4}$, we shall have that $\left[v, T_{1}, Q_{3}, Q_{4}\right] \nsupseteq 3 C_{4}$. By (41) and Property $2, \tau\left(Q_{i}\right)=2$ and $e\left(T_{1}, Q_{i}\right) \geq 10$ for $i \in\{3,4\}$. Suppose that $e\left(x, u_{1} w_{1}\right)=2$ for some $x \in T_{1}$. As $e\left(T_{1}, Q_{3}\right) \geq 10, y \rightarrow\left(Q_{3}, u_{1}\right)$ for some $y \in T_{1}-\{x\}$. Say $T_{1}=\{x, y, z\}$. Then $z \nrightarrow\left(Q_{4}, w_{1}\right)$. As $e\left(T_{1}, Q_{4}\right) \geq 10$, this implies that $e\left(z, Q_{4}\right)=2, z w_{1} \in E$ and $e\left(x y, Q_{4}\right)=8$. If $z u_{1} \in E$ then $\left[z, u_{1}, v, w_{1}\right] \supseteq C_{4}, x \rightarrow\left(Q_{4}, w_{1}\right)$ and $y \rightarrow\left(Q_{3}, u_{1}\right)$, a
contradiction. Hence $z u_{1} \notin E$. As $e\left(T_{1}, Q_{3}\right) \geq 10, e\left(z, Q_{3}\right) \geq 2$. Thus $z \rightarrow\left(Q_{3}, u_{1}\right)$ and $y \rightarrow\left(Q_{4}, w_{1}\right)$, a contradiction.

Therefore we may assume that for all $u \in V\left(Q_{3}\right), w \in V\left(Q_{4}\right)$ and $v \in Z_{2}$ if $e(v, u w)=2$ then $e(x, u w) \leq 1$ for all $x \in T_{1}$. Then $e\left(T_{1}, Q_{i}\right) \nsupseteq 11$ for some $i \in\{3,4\}$. Say w.l.o.g. $e\left(T_{1}, Q_{3}\right)=10$. Then $e\left(Z_{2}, Q_{3}\right) \geq 21-18=3$. By Property 2, $e\left(Z_{2}, T_{1}\right) \geq 2$. By Property $1, N\left(T_{1}, Z_{2}\right) \cap N\left(Q_{3}, Z_{2}\right)=\emptyset$. It follows that $e\left(Z_{2}, Q_{3}\right)=3$ and $e\left(Z_{2}, T_{1}\right)=2$. Say $N\left(Q_{3}, Z_{2}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$. By Property $1, N\left(Q_{4}, Z_{2}\right) \subseteq\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $x \in T_{1}$ be such that $e\left(x, Q_{3}\right)=4$. Then for any $w_{i} \in V\left(Q_{4}\right)$ with $e\left(w_{i},\left\{v_{1}, v_{2}, v_{3}\right\}\right)=1$, we shall have $x w_{i} \notin E$. It follows that $e\left(T_{1}, Q_{4}\right) \leq 12-e\left(Z_{2}, Q_{4}\right)$ and consequently, $e\left(Z_{1} \cup Z_{2}, Q_{4}\right) \leq 12+e\left(x_{0} c_{4}, Q_{4}\right) \leq 20$, a contradiction.

Let q be the number of vertices of $T_{1} \cup Z_{2}$ that are attached to some Q_{i} in N. By Property 3, $e\left(Z_{1} \cup Z_{2}, N\right) \leq q+20 p$ where $|V(N)|=4 p$. Let $r=e\left(T_{1}, Z_{2}\right)$. By Property $1, q \leq 8-2 r$. Clearly, $e\left(Z_{1} \cup Z_{2}, G_{2}\right) \leq 52+2 r$ and if the equality holds then $e\left(Z_{2}, G_{0}\right)=30$, i.e., $G_{0} \cong K_{7}$. Then $e\left(Z_{1} \cup Z_{2}, H_{2}\right) \geq 20 k-52-2 r=20(k-3)+8-2 r$. As $e\left(Z_{1} \cup Z_{2}, Q_{i}\right) \leq 20$ for all Q_{i} in $H_{2}-V(N)$, we obtain that $e\left(Z_{1} \cup Z_{2}, N\right) \geq$ $20 p+8-2 r$. This yields that $q=8-2 r$ and $e\left(Z_{1} \cup Z_{2}, N\right)=20 p+8-2 r$. It follows that $G_{0} \cong K_{7}, e\left(Z_{1}, Q_{i}\right)=20$ for all Q_{i} in N for which (41) holds and $e\left(Z_{2}, Q_{i}\right)=20$ for all Q_{i} in N for which (40) holds. We claim that $r=3$. If not, let $v \in Z_{2}$ be attached to some Q_{i} in N with $e\left(Z_{1}, Q_{i}\right)=20$ and $\tau\left(Q_{i}\right)=2$. Say $Q_{i}=Q_{3}$ and $v d \in E$ with $d \in V\left(Q_{3}\right)$. Let $c_{r} \in T_{1}$ be such that $e\left(c_{r}, Z_{2}\right)=0$. Then we replace c_{r} with d in Q_{1} and replace d with c_{r} in Q_{3} to obtain two disjoint 4 -cycles C^{\prime} and $C^{\prime \prime}$ such that $\tau\left(C^{\prime}\right)=\tau\left(C^{\prime \prime}\right)=2, e\left(Z_{2}, C^{\prime}\right)=r+1, e\left(x_{0}, C^{\prime}\right)=4$ and $e\left(x_{2}, C^{\prime}\right)=1$. By the assumption on $\sigma, e\left(Z_{2}, Q_{1}\right) \geq r+1$, i.e., $e\left(T_{1}, Z_{2}\right) \geq r+1$, a contradiction.

Say $E\left(T_{1}, Z_{2}\right)=\left\{c_{1} u_{1}, c_{2} u_{2}, c_{3} u_{3}\right\}$ and let $T_{2}=\left\{u_{1}, u_{2}, u_{3}\right\}$ and Q_{2}^{\prime} a 4-cycle in $G_{0}-T_{2}$. Clearly, $e\left(T_{1} \cup T_{2}, G_{2}\right)=36$ and so $e\left(T_{1} \cup T_{2}, H_{2}\right) \geq 12 k-36=12(k-3)$.

Property 4. For each Q_{i} in H_{2} with $e\left(T_{1} \cup T_{2}, Q_{i}\right) \geq 12$, either $e\left(T_{1}, Q_{i}\right)=0$, or $e\left(T_{2}, Q_{i}\right)=0$, or $e\left(T_{2}, Q_{i}\right)=6$ and $e\left(c_{r}, Q_{i}\right)=2$ for all $c_{r} \in T_{1}$.

To see this, first assume that $e\left(\left[T_{2}\right]+c_{r}, Q_{i}\right) \geq 9$ for some $c_{r} \in T_{1}$. Let $Q^{(r)}$ be a 4-cycle in $\left[Q_{1}-c_{r}+x_{0}\right]$. Then $\left(c_{r} u_{r},\left[T_{2}\right], Q^{(r)}, Q_{2}^{\prime}, Q_{3}, \ldots, Q_{k-1}\right)$ is a strong feasible chain. By Claim 2.2, we see that $e\left(c_{r}, Q_{i}\right)=0$ for otherwise $e\left(\left[T_{2}\right]+c_{r}, Q_{i}\right)=9$ and $\left[c_{t}, T_{2}, Q_{i}\right] \supseteq 2 C_{4}$ where $c_{t} \in T_{1}$ with $e\left(c_{t}, Q_{i}\right) \geq 2$, a contradiction. Thus $e\left(T_{2}, Q_{i}\right) \geq$ 9. Let r run over $\{1,2,3\}$, we see that $e\left(T_{1}, Q_{i}\right)=0$. Hence we may assume that $e\left(\left[T_{2}\right]+c_{r}, Q_{i}\right) \leq 8$ for all $r \in\{1,2,3\}$. If $e\left(c_{r}, Q_{i}\right) \leq 2$ for all $r \in\{1,2,3\}$ then the third statement of the property follows. Hence assume that $e\left(c_{r}, Q_{i}\right) \geq 3$ for some $c_{r} \in T_{1}$. By Lemma 4.1(a), $\tau\left(Q_{i}\right) \geq 1$ and $c_{r} \rightarrow Q_{i}$. As $c_{r} \nrightarrow\left(Q_{i} ; V\left(G_{0}\right)\right)$, $e\left(d, T_{2}\right) \leq 1$ for all $d \in V\left(Q_{i}\right)$. Thus $e\left(T_{1}, Q_{i}\right) \geq 12-e\left(T_{2}, Q_{i}\right) \geq 8$. Suppose that $e\left(T_{1}, Q_{i}\right) \geq 9$. If there exists $u_{t} \in T_{2}$ with $e\left(u_{t}, Q_{i}\right) \geq 1$, then $\left[T_{1}, u_{t}, Q_{i}\right] \supseteq 2 C_{4}$ by

Lemma $3.4(b)$, a contradiction. Therefore $e\left(T_{2}, Q_{i}\right)=0$. Hence we may assume that $e\left(T_{1}, Q_{i}\right)=8$. Then $e\left(T_{2}, Q_{i}\right)=4$ and $e\left(u_{t}, Q_{i}\right) \geq 2$ for some $u_{t} \in T_{2}$. Say w.l.o.g. $e\left(u_{1}, Q_{i}\right) \geq 2$. Suppose that $e\left(u_{1}, d d^{*}\right)=2$ for some $d \in V\left(Q_{i}\right)$. Say $Q_{i}=d_{1} d_{2} d_{3} d_{4} d_{1}$ with $e\left(u_{1}, d_{1} d_{3}\right)=2$. Then $e\left(d_{j}, T_{1}\right) \leq 1$ for $j \in\{2,4\}$. It follows that $e\left(d_{1} d_{3}, T_{1}\right)=6$, $e\left(d_{j}, T_{1}\right)=1$ for $j \in\{2,4\}$ and so $e\left(c_{s}, d_{1} d_{2} d_{3}\right)=3$ for some $c_{s} \in T_{1}$. By Lemma 4.1 $(a), d_{2} d_{4} \in E$. As $u_{1} \nrightarrow\left(Q_{i} ; T_{1}\right), e\left(u_{1}, d_{2} d_{4}\right)=0$. Thus $e\left(u_{2} u_{3}, d_{2} d_{4}\right)=2$. As $u \nrightarrow$ $\left(Q_{i} ; T_{1}\right)$ for each $u \in\left\{u_{2}, u_{3}\right\}$, we see that $e\left(u, d_{2} d_{4}\right)=1$ for each $u \in\left\{u_{2}, u_{3}\right\}$. Thus $\left[u_{2}, u_{3}, d_{2}, d_{4}\right] \supseteq C_{4},\left[c_{1}, d_{1}, u_{1}, d_{3}\right] \supseteq C_{4}$ and so $\left[c_{1}, Q_{i}, T_{2}\right] \supseteq 3 C_{4}$, a contradiction. This argument shows that no vertex of T_{2} is adjacent to two non-consecutive vertices of Q_{i}. This implies that $\tau\left(Q_{i}\right) \neq 2$ for otherwise we may choose a 4 -cycle Q_{i}^{\prime} from [Q_{i}] such that u_{1} is adjacent to two non-consecutive vertices of Q_{i}^{\prime} and then obtain a contradiction as above. Say w.l.o.g. $e\left(u_{1}, d_{1} d_{2}\right)=2$. As $\tau\left(Q_{i}\right) \geq 1$, say w.l.o.g. $d_{1} d_{3} \in E$. Then $e\left(d_{4}, T_{1}\right) \leq 1$ as $u_{1} \nrightarrow\left(Q_{i} ; T_{1}\right)$. Thus $e\left(T_{1}, d_{1} d_{2} d_{3}\right) \geq 7$ and so $e\left(c_{t}, d_{1} d_{2} d_{3}\right)=3$ for some $c_{t} \in T_{1}$. By Lemma 4.1(a), $d_{2} d_{4} \in E$ and so $\tau\left(Q_{i}\right)=2$, a contradiction.

By Property $4, e\left(T_{1} \cup T_{2}, Q_{i}\right)=12$ for all Q_{i} in H_{2}. Let s_{1} be the number of all the Q_{i} in H_{2} with $e\left(T_{1}, Q_{i}\right)=0$. Let s_{2} be the number of all the Q_{i} in H_{2} with $e\left(T_{2}, Q_{i}\right)=0$. Let s_{3} be the number of all the Q_{i} in H_{1} with $e\left(T_{2}, Q_{i}\right)=6$ and $e\left(c_{r}, Q_{i}\right)=2$ for all $c_{r} \in T_{1}$. Then $s_{1}+s_{2}+s_{3}=k-3$ by Property 4. If $s_{1} \geq s_{2}$, $e\left(c_{1}, G\right)=5+4 s_{2}+2 s_{3} \leq 5+2 s_{1}+2 s_{2}+2 s_{3}=2 k-1$, a contradiction. Hence $s_{1}<s_{2}$. Then $e\left(T_{2}, G\right)=21+12 s_{1}+6 s_{3}=6 k-6\left(s_{2}-s_{1}\right)+3 \leq 6 k-3$, a contradiction.
Proof of Claim 2.7. Suppose that the claim is false. By Lemma 4.16, we may assume that $Q_{1}=c_{1} c_{2} c_{3} c_{4} c_{1}$ with $\tau\left(Q_{1}\right)=2, N\left(x_{0}, Q_{1}\right)=N\left(x_{2}, Q_{1}\right)=\left\{c_{1}, c_{2}, c_{3}\right\}$ and $e\left(x_{3}, Q_{1}\right)=0$. Moreover, $e\left(T, Q_{i}\right) \leq 10$ for all Q_{i} in H_{1}. We have the following property.
Property A. For any strong feasible chain $\left(y_{0} y_{1}, C, J_{1}, \ldots, J_{k-1}\right)$ with $y_{1} \in V(C)$, there exist two labellings $C=y_{1} y_{2} y_{3} y_{1}$ and $J_{i}=v_{1} v_{2} v_{3} v_{4} v_{1}$ for some $i \in\{1, \ldots, k-1\}$ such that $N\left(y_{0}, J_{i}\right)=N\left(y_{2}, J_{i}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\tau\left(J_{i}\right)=2$. Moreover, $e\left(C, J_{r}\right) \leq 10$ for all $r \in\{1, \ldots, k-1\}$.

To see this, let $C=y_{1} y_{2} y_{3} y_{1}$ and $L=\cup_{i=1}^{k-1} J_{i}$. Then $2 e\left(y_{0}, L\right)+e\left(y_{2} y_{3}, L\right) \geq$ $8 k-6=8(k-1)+2$. Thus $2 e\left(y_{0}, J_{i}\right)+e\left(y_{2} y_{3}, J_{i}\right) \geq 9$ for some $i \in\{1, \ldots, k-$ 1\}. If $e\left(y_{0}, J_{i}\right) \leq 2$ then $e\left(y_{0} y_{2} y_{3}, J_{i}\right) \geq 7$. By Claim 2.5, $e\left(y_{0}, J_{i}\right) \leq 1$ and if the equality holds then $e\left(y_{0} y_{2} y_{3}, J_{i}\right)=7$. It follows that $2 e\left(y_{0}, J_{i}\right)+e\left(y_{2} y_{3}, J_{i}\right) \leq 8$, a contradiction. Hence $e\left(y_{0}, J_{i}\right) \geq 3$. If $e\left(y_{0}, J_{i}\right)=4$ then $e\left(y_{2} y_{3}, J_{i}\right)=0$ by Claim 2.6 and so $2 e\left(y_{0}, J_{i}\right)+e\left(y_{2} y_{3}, J_{i}\right)=8$, a contradiction. Thus $e\left(y_{0}, J_{i}\right)=3$ and $e\left(y_{2} y_{3}, J_{i}\right) \geq$
3. Then the property follows from Lemma 4.16.

Clearly, $e\left(F+c_{4}, G_{1}\right) \leq 19$ and so $e\left(F+c_{4}, H_{1}\right) \geq 10(k-2)+1$. Say $e\left(F+c_{4}, Q_{2}\right) \geq$ 11. We break into the following two cases.

Case 1. $e\left(F, Q_{2}\right) \geq 9$.
By Claim 2.2, we see that $e\left(x_{0}, Q_{2}\right)=0$ for otherwise $e\left(F, Q_{2}\right)=9,\left[T, Q_{2}, c_{4}\right] \supseteq$ $2 C_{4}$ and so $G_{2} \supseteq 3 C_{4}$. As $x_{0} \Rightarrow\left(Q_{1}, c_{4}\right)$ and by Lemma $3.2, e\left(c_{4}, Q_{2}\right) \leq 1$. By Property $A, e\left(T, Q_{2}\right)=10$ and $e\left(c_{4}, Q_{2}\right)=1$. If $e\left(c_{i}, Q_{2}\right) \geq 1$ for some $i \in\{1,2,3\}$ then $e\left(T+c_{i}, Q_{2}\right) \geq 11$, and by Lemma $3.4(a),\left[T+c_{i}, Q_{2}\right] \supseteq 2 C_{4}$ and so $G_{2} \supseteq 3 C_{4}$, a contradiction. Hence $e\left(c_{1} c_{2} c_{3}, Q_{2}\right)=0$. Let $w_{1} \in V\left(Q_{2}\right)$ be such that $w_{1} c_{4} \in E$ and $G_{0}=\left[T, Q_{2}\right]$. We claim that there exists no triangle $T_{1}=w_{1} u_{2} u_{3} w_{1}$ in $G_{0}-\left\{x_{1}, x_{2}\right\}$ such that (42) holds and there exists no triangle $T_{2}=x_{1} v_{2} v_{3} x_{1}$ in $G_{0}-\left\{w_{1}, x_{2}\right\}$ such that (43) holds:

$$
\begin{align*}
& G_{0}-V\left(T_{1}\right) \geq Q_{2}, x_{1} u_{2} \in E, G_{0}-\left\{u_{2}, u_{3}, x_{1}\right\} \supseteq C_{4}, G_{0}-\left\{x_{2}, w_{1}, u_{i}\right\} \supseteq C_{4}(i=2 \tag{枓}\\
& G_{0}-V\left(T_{2}\right) \geq Q_{2}, w_{1} v_{2} \in E, G_{0}-\left\{v_{2}, v_{3}, w_{1}\right\} \supseteq C_{4}, G_{0}-\left\{x_{2}, x_{1}, v_{i}\right\} \supseteq C_{4}(i=2, \tag{3ß}
\end{align*}
$$

To see this, suppose that (42) holds first. Let $R=\left\{c_{4}, u_{2}, u_{3}, x_{0}\right\}$ and $F_{1}=$ $c_{4} w_{1} u_{2} u_{3} w_{1}$. Then $e\left(R, G_{2}\right) \leq 23$ and so $e\left(R, H_{2}\right) \geq 8(k-3)+1$. Say $e\left(R, Q_{3}\right) \geq 9$. Assume $e\left(x_{0}, Q_{3}\right) \geq 3$. Then $x_{0} \rightarrow Q_{3}$ and so $x_{0} \rightarrow\left(Q_{3} ; x w_{1} y\right)$ for some $\{x, y\} \in$ $\left\{c_{4}, u_{2}, u_{3}\right\}$ with $x \neq y$. If $\{x, y\}=\left\{u_{2}, u_{3}\right\}$ then $\left[x_{0}, T_{1}, Q_{3}\right] \supseteq 2 C_{4}$ and so $G_{3} \supseteq 4 C_{4}$ as $G_{0}-V\left(T_{1}\right) \supseteq C_{4}$. Hence $c_{4} \in\{x, y\}$. Say $x=c_{4}$ and $y=u_{i}$ with $i \in\{2,3\}$. Then $\left[x_{0}, c_{4}, w_{1}, u_{i}, Q_{3}\right] \supseteq 2 C_{4}$ and $x_{2} \rightarrow\left(Q_{1}, c_{4}\right)$. Thus $G_{3} \supseteq 4 C_{4}$ as $G_{0}-\left\{x_{2}, w_{1}, u_{i}\right\} \supseteq$ C_{4}, a contradiction. Therefore $e\left(x_{0}, Q_{3}\right) \leq 2$ and so $e\left(u_{2} u_{3} c_{4}, Q_{3}\right) \geq 7$. Let $Q^{\prime}=$ $x_{0} c_{1} c_{2} c_{3} x_{0}$ and $Q^{\prime \prime}$ a 4 -cycle of $G_{0}-V\left(T_{1}\right)$. Then $\sigma_{1}=\left(c_{4} w_{1}, T_{1}, Q^{\prime}, Q^{\prime \prime}, Q_{3}, \ldots, Q_{k-1}\right)$ is a strong feasible chain. By Claim 2.5, either $e\left(c_{4}, Q_{3}\right)=0$ or (9) holds w.r.t. F_{1} and Q_{3}. By Lemma 4.2, $\left[F_{1}, Q_{3}\right] \nsupseteq P \uplus Q$ with $P \supseteq 2 P_{2}, Q \cong C_{4}$ and $\tau(Q)=\tau\left(Q_{3}\right)+2$. By Lemma 3.3, there exists a labelling $Q_{3}=d_{1} d_{2} d_{3} d_{4} d_{1}$ such that $e\left(u_{2} u_{3}, d_{2} d_{3} d_{4}\right)=6$ and $x_{0} d_{3} \in E$. Thus $u_{3} \rightarrow\left(Q_{3} ; x_{0} x_{1} u_{2}\right)$ and so $G_{3} \supseteq 4 C_{4}$ since $G_{0}-\left\{u_{2}, u_{3}, x_{1}\right\} \supseteq C_{4}$, a contradiction. Hence (42) does not hold with T_{1}. Similarly, (43) does not hold by an analogous argument with x_{0} and T_{2} in place of c_{4} and T_{1}.

In order to find the above mentioned T_{1} or T_{2} in G_{0}, we claim that there exists a 4-cycle $a_{1} a_{2} a_{3} a_{4} a_{1}$ in $\left[Q_{2}\right]$ such that one of (44) to (55) holds below. To see them, we have $\tau\left(Q_{2}\right) \geq 1$ by Lemma 4.1(b). Moreover if $\tau\left(Q_{2}\right)=1$ then for some $x_{i} \in V(T)$, $N\left(x_{i}, Q_{2}\right)=\left\{a, a^{*}\right\}$ for some $a \in V\left(Q_{2}\right)$ with $a a^{*} \in E$. Thus if $\tau\left(Q_{2}\right)=1$ then one of (45), (51) and (53) holds. If $e\left(x_{i}, Q_{2}\right)=2$ for some $x_{i} \in V(T)$ and $\tau\left(Q_{2}\right)=2$ then one of (44), (50) and (52) holds. If $e\left(x_{i}, Q_{2}\right)=4, e\left(x_{j}, Q_{2}\right)=e\left(x_{l}, Q_{2}\right)=3$ for some permutation (i, j, l) of $\{1,2,3\}$ then one of (46), (48) and (54) holds if $N\left(x_{j}, Q_{2}\right)=N\left(x_{l}, Q_{2}\right)$. Otherwise one of (47), (49) and (55) holds.

$$
\begin{equation*}
e\left(x_{2} x_{3}, Q_{2}\right)=8, e\left(x_{1}, a_{1} a_{3}\right)=2, a_{1} a_{3} \in E, a_{2} a_{4} \in E \tag{44}
\end{equation*}
$$

$$
\begin{align*}
& e\left(x_{2} x_{3}, Q_{2}\right)=8, e\left(x_{1}, a_{1} a_{3}\right)=2, a_{1} a_{3} \in E, a_{2} a_{4} \notin E ; \tag{45}\\
& e\left(x_{3}, Q_{2}\right)=4, e\left(x_{1} x_{2}, a_{1} a_{2} a_{3}\right)=6, a_{1} a_{3} \in E, a_{2} a_{4} \in E ; \tag{46}\\
& e\left(x_{3}, Q_{2}\right)=4, e\left(x_{1}, a_{1} a_{2} a_{4}\right)=3, e\left(x_{2}, a_{1} a_{2} a_{3}\right)=3, a_{1} a_{3} \in E, a_{2} a_{4} \in E ; \tag{47}\\
& e\left(x_{2}, Q_{2}\right)=4, e\left(x_{1} x_{3}, a_{1} a_{2} a_{3}\right)=6, a_{1} a_{3} \in E, a_{2} a_{4} \in E ; \tag{48}\\
& e\left(x_{2}, Q_{2}\right)=4, e\left(x_{1}, a_{1} a_{2} a_{4}\right)=3, e\left(x_{3}, a_{1} a_{2} a_{3}\right)=3, a_{1} a_{3} \in E, a_{2} a_{4} \in E ; \tag{49}\\
& e\left(x_{1} x_{3}, Q_{2}\right)=8, e\left(x_{2}, a_{1} a_{2}\right)=2, a_{1} a_{3} \in E, a_{2} a_{4} \in E ; \tag{50}\\
& e\left(x_{1} x_{3}, Q_{2}\right)=8, e\left(x_{2}, a_{1} a_{3}\right)=2, a_{1} a_{3} \in E, a_{2} a_{4} \notin E ; \tag{51}\\
& e\left(x_{1} x_{2}, Q_{2}\right)=8, e\left(x_{3}, a_{1} a_{2}\right)=2, a_{1} a_{3} \in E, a_{2} a_{4} \in E ; \tag{52}\\
& e\left(x_{1} x_{2}, Q_{2}\right)=8, e\left(x_{3}, a_{1} a_{3}\right)=2, a_{1} a_{3} \in E, a_{2} a_{4} \notin E ; \tag{53}\\
& e\left(x_{1}, Q_{2}\right)=4, e\left(x_{2} x_{3}, a_{1} a_{2} a_{3}\right)=6, a_{1} a_{3} \in E, a_{2} a_{4} \in E ; \tag{54}\\
& e\left(x_{1}, Q_{2}\right)=4, e\left(x_{2}, a_{1} a_{2} a_{4}\right)=3, e\left(x_{3}, a_{1} a_{2} a_{3}\right)=3, a_{1} a_{3} \in E, a_{2} a_{4} \in E . \tag{55}
\end{align*}
$$

We now claim that (55) and each of (46) to (52) do not hold. First, If (46) holds, we may assume w.l.o.g. $w_{1} \in\left\{a_{1}, a_{4}\right\}$ and let $\left\{w_{1}, u_{2}, u_{3}\right\}=\left\{a_{1}, a_{3}, a_{4}\right\}$ with $u_{2}=a_{3}$. If (47) holds, we may assume $w_{1} \in\left\{a_{1}, a_{3}, a_{4}\right\}$ and let $\left\{w_{1}, u_{2}, u_{3}\right\}=\left\{a_{1}, a_{3}, a_{4}\right\}$ with $u_{2} \in\left\{a_{1}, a_{4}\right\}$. If (48) holds then we may assume $w_{1} \in\left\{a_{1}, a_{4}\right\}$. Furthermore, if $w_{1}=a_{4}$, let $u_{2}=a_{1}$ and $u_{3}=a_{3}$ and if $w_{1}=a_{1}$, let $v_{2}=x_{3}$ and $v_{3}=a_{2}$. If (49) holds, we may assume $w_{1} \in\left\{a_{1}, a_{3}, a_{4}\right\}$ and let $\left\{w_{1}, u_{2}, u_{3}\right\}=\left\{a_{1}, a_{3}, a_{4}\right\}$ with $u_{2} \in\left\{a_{1}, a_{4}\right\}$. If (50) holds, we may assume $w_{1} \in\left\{a_{1}, a_{4}\right\}$ and let $\left\{w_{1}, u_{2}, u_{3}\right\}=\left\{a_{1}, a_{3}, a_{4}\right\}$ with $u_{2} \in\left\{a_{1}, a_{4}\right\}$. If (51) holds, we may assume $w_{1} \in\left\{a_{1}, a_{4}\right\}$. Furthermore, if $w_{1}=a_{4}$, let $v_{2}=x_{3}$ and $v_{3}=a_{2}$ and if $w_{1}=a_{1}$, let $v_{2}=a_{2}$ and $v_{3}=a_{3}$. If (52) holds, we may assume $w_{1} \in\left\{a_{1}, a_{4}\right\}$. Furthermore, if $w_{1}=a_{1}$, let $v_{2}=a_{4}$ and $v_{3}=a_{3}$ and if $w_{1}=a_{4}$, let $u_{2}=a_{3}$ and $u_{3}=a_{2}$. If (55) holds, we may assume $w_{1} \in\left\{a_{1}, a_{3}, a_{4}\right\}$ and let $\left\{w_{1}, u_{2}, u_{3}\right\}=\left\{a_{1}, a_{3}, a_{4}\right\}$ with $u_{2} \in\left\{a_{1}, a_{3}\right\}$. Then (42) holds with $T_{1}=w_{1} u_{2} u_{3} w_{1}$ and (43) holds with $T_{2}=x_{1} v_{2} v_{3} x_{1}$, a contradiction.

Therefore one of (44), (45), (53) and (54) holds. If (44) or (45) holds, we may assume $w_{1} \in\left\{a_{1}, a_{2}\right\}$. If (53) or (54) holds, we may assume $w_{1} \in\left\{a_{1}, a_{4}\right\}$. If (44) holds with $w_{1}=a_{2}$, let $u_{2}=a_{1}$ and $u_{3}=a_{4}$. If (45) holds with $w_{1}=a_{2}$, let $u_{2}=a_{1}$ and $u_{3}=a_{3}$. With $T_{1}=w_{1} u_{2} u_{3} w_{1}$, (42) holds, a contradiction. Hence if (44) or (45) holds, then $w_{1}=a_{1}$. Let T^{\prime} be a triangle of G_{0} such that if (44) or (45) holds then $V\left(T^{\prime}\right)=\left\{x_{1}, a_{1}, a_{3}\right\}$ and if (53) or (54) holds then $V\left(T^{\prime}\right)=\left\{x_{1}, a_{1}, a_{4}\right\}$. Then $G_{0}-V\left(T^{\prime}\right) \geq Q_{2}$. Let C be a 4 -cycle in $G_{0}-V\left(T^{\prime}\right)$ and $F^{\prime}=T^{\prime}+x_{0} x_{1}$. Then $\sigma_{2}=\left(x_{0} x_{1}, T^{\prime}, Q_{1}, C, Q_{3}, \ldots, Q_{k-1}\right)$ is a strong feasible chain with $x_{0} \Rightarrow\left(Q_{1}, c_{4}\right)$ and $e\left(c_{4}, T^{\prime}\right)=1$. Since $e\left(c_{i}, Q_{2}\right)=0$ for $i \in\{1,2,3\}$, it follows that $e\left(F^{\prime}+c_{4}, G_{2}\right) \leq 27$ and so $e\left(F^{\prime}+c_{4}, H_{2}\right) \geq 10(k-3)+3$. Thus $e\left(F^{\prime}+c_{4}, Q_{i}\right) \geq 11$ for some Q_{i} with $3 \leq i \leq k-1$. By Lemma 4.14, $e\left(T^{\prime}, Q_{3}\right) \geq 11$, contradicting Property A.
Case 2. e $\left(F, Q_{2}\right) \leq 8$.

In this case, $e\left(c_{4}, Q_{2}\right) \geq 3$ and so $c_{4} \rightarrow Q_{2}$. Thus $e(u, T) \leq 1$ for all $u \in V\left(Q_{2}\right)$ and so $e\left(x_{0} c_{4}, Q_{2}\right) \geq 7$. By Lemma 4.1 $(a), \tau\left(Q_{2}\right)=2$. Assume $e\left(x_{2} x_{3}, Q_{2}\right) \geq 1$. Then $e\left(x_{0}, Q_{2}\right) \neq 4$ by Claim 2.6. It follows that $e\left(c_{4}, Q_{2}\right)=4, e\left(x_{0}, Q_{2}\right)=3$ and $e\left(T, Q_{2}\right)=4$. As $c_{4} \nrightarrow\left(Q_{2} ; x_{0} x_{1} x_{3}\right), i\left(x_{0} x_{3}, Q_{2}\right)=0$ and so $e\left(x_{3}, Q_{2}\right) \leq 1$. If $e\left(x_{3}, Q_{2}\right)=1$, say $Q_{2}=b_{1} b_{2} b_{3} b_{4} b_{1}$ with $x_{3} b_{4} \in E$ and $e\left(x_{0}, b_{1} b_{2} b_{3}\right)=3$. By Lemma 4.16, $e\left(x_{2} x_{3}, Q_{2}\right) \leq 2$. Thus $e\left(x_{2}, Q_{2}\right) \leq 1$ and so $e\left(x_{1}, Q_{2}\right) \geq 2$. W.l.o.g., say $x_{1} b_{1} \in$ E. Then $\left[x_{1}, x_{3}, b_{1}, b_{4}\right] \supseteq C_{4},\left[x_{0}, b_{2}, c_{4}, b_{3}\right] \supseteq C_{4}$ and so $G_{2} \supseteq 3 C_{4}$, a contradiction. Hence $e\left(x_{3}, Q_{2}\right)=0$. Thus $e\left(x_{2}, Q_{2}\right) \geq 1$. By Claim 2.4, $e\left(x_{0} x_{2}, Q_{2}\right) \leq 6$. Thus $e\left(x_{2}, Q_{2}\right) \leq 3$ and $e\left(x_{1}, Q_{2}\right) \geq 1$. Let $u \in V\left(Q_{2}\right)$ with $x_{2} u \in E$. Let $\left[Q_{2}-u+c_{4}\right] \supseteq$ $C \cong C_{4}$. Then ($u x_{2}, T, C, x_{0} c_{1} c_{2} c_{3} x_{0}, Q_{3}, \ldots, Q_{k-1}$) is a strong feasible chain with $e(u, C)=4$ and $e\left(x_{1}, C\right) \geq 1$, contradicting Claim 2.6. Hence $e\left(x_{2} x_{3}, Q_{2}\right)=0$ and so $e\left(x_{0} x_{1} c_{4}, Q_{2}\right) \geq 11$. Let $Q_{2}=u_{1} u_{2} u_{3} u_{4} u_{1}$ be such that $u_{1} \in I\left(x_{0} x_{1}, Q_{2}\right)$ and $e\left(c_{4}, Q_{2}-u_{1}\right)=3$. Let $Q^{\prime}=x_{2} c_{1} c_{2} c_{3} x_{2}$ and $Q^{\prime \prime}=c_{4} u_{2} u_{3} u_{4} c_{4}$. Then $\sigma_{3}=$ $\left(x_{3} x_{1}, x_{1} x_{0} u_{1} x_{1}, Q^{\prime}, Q^{\prime \prime}, Q_{3}, \ldots, Q_{k-1}\right)$ is a strong feasible chain. By Property A, for some Q_{i} with $3 \leq i \leq k-1$, say $Q_{i}=Q_{3}=d_{1} d_{2} d_{3} d_{4} d_{1}$, such that $\tau\left(Q_{3}\right)=2$ and $N\left(x_{3}, Q_{3}\right)=N\left(z, Q_{3}\right)=\left\{d_{1}, d_{2}, d_{3}\right\}$ for some $z \in\left\{x_{0}, u_{1}\right\}$. Furthermore, by the above argument, for some Q_{j} with $4 \leq j \leq k-1$, say $Q_{j}=Q_{4}$, such that $\tau\left(Q_{4}\right)=2$ and $e\left(x_{3} x_{1} d_{4}, Q_{4}\right) \geq 11$. Let $w \in I\left(x_{1} x_{3}, Q_{4}\right)$. Then $d_{4} \rightarrow\left(Q_{4}, w ; x_{1} x_{2} x_{3}\right)$ and $z \rightarrow\left(Q_{3}, d_{4}\right)$. As $x_{0} \rightarrow\left(Q_{2}, z\right)$ if $z=u_{1}$, we obtain $\left[F, Q_{2}, Q_{3}, Q_{4}\right] \supseteq 4 C_{4}$, a contradiction.

Acknowledgement The author thanks the anonymous referee for his very careful reading and corrections.

5 References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London(1978).
[2] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14(1963), 423-439.
[3] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50(1984), 227-230.
[4] P. Erdős, Some recent combinatorial problems, Technical Report, University of Bielefeld, Nov. 1990.
[5] J. Komlós, G.N. Sárközy and E. Szemerédi, Proof of the Alon-Yuster conjecture, Discrete Mathematics, 235(2001), 255-269.
[6] B. Randerath, I. Schiermeyer, and H. Wang, On quadrilaterals in a graph, Discrete Mathematics, 203(1999), 229-237.
[7] H. Wang, On quadrilaterals in a graph, Discrete Mathematics, 288(2004), 149-166.

