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In this paper, we prove Erdős-Faudree’s conjecture: If G is a graph of order 4k and
the minimum degree of G is at least 2k then G contains k disjoint cycles of length
4.

Key words: 4-cycles, disjoint cycles, cycle coverings

1 Introduction and Notation

Let G be a graph. A set of graphs are said to be disjoint if no two of them have
any common vertex. Corrádi and Hajnal [2] investigated the maximum number of
disjoint cycles in a graph. They proved that if G is a graph of order at least 3k with
minimum degree at least 2k, then G contains k disjoint cycles. In particular, when
the order of G is exactly 3k, then G contains k disjoint triangles. Erdős and Faudree
[4] conjectured that if G is a graph of order 4k with minimum degree at least 2k, then
G contains k disjoint cycles of length 4. With respect to this conjecture, Randerath,
Schiermeyer and Wang [6] proved that G contains k − 1 cycles of length 4 and a
subgraph of order 4 with at least four edges such that all of them are disjoint. In [7],
we improved this result by showing the following result:

Theorem A Let G be a graph of order n with 4k + 1 ≤ n ≤ 4k + 4, where k is a
positive integer. Suppose that the minimum degree of G is at least 2k + 1. Then G
contains at least k disjoint cycles of length 4.

El-Zahar [3] conjectured that ifG is a graph of order n = n1+n2+· · ·+nk with ni ≥
3(1 ≤ i ≤ k) and the minimum degree of G is at least dn1/2e+ dn2/2e+ · · ·+ dnk/2e,
then G contains k disjoint cycles of lengths n1, n2, . . . , nk, respectively. He proved this
conjecture for k = 2. When n1 = n2 = · · · = nk = 4, El-Zahar’s conjecture reduces
to the above conjecture of Erdős and Faudree. Komlós, Sárközy and Szemerédi [5]
showed that for any graphH of order r with chromatic number k, there exist constants
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c and n0 such that if n ≥ n0, r|n and G is a graph of order n with minimum degree
at least (1 − 1/k)n + c then G contains n/r disjoint copies of H. In this paper, we
prove the following theorem:

Theorem B If G is a graph of order 4k and the minimum degree of G is at least 2k
then G contains k disjoint cycles of length 4.

We shall use the terminology and notation from [1] except as indicated. Let
G be a graph. Let u ∈ V (G). The neighborhood of u in G is denoted by N(u).
Let H be a subgraph of G or a subset of V (G) or a sequence of distinct vertices
of G. We define N(u,H) to be the set of neighbors of u contained in H, and let
e(u,H) = |N(u,H)|. Clearly, N(u,G) = N(u) and e(u,G) is the degree of u in G.
If X is a subgraph of G or a subset of V (G) or a sequence of distinct vertices of G,
we define N(X,H) = ∪uN(u,H) and e(X,H) =

∑
u e(u,H) where u runs over all

the vertices in X. Let x and y be two distinct vertices. We define I(xy,H) to be
N(x,H) ∩ N(y,H) and let i(xy,H) = |I(xy,H)|. Let each of X1, X2, . . . , Xr be a
subgraph of G or a subset of V (G). We use [X1, X2, . . . , Xr] to denote the subgraph of
G induced by the set of all the vertices that belong to at least one of X1, X2, . . . , Xr.
We use Ci to denote a cycle of length i for all integers i ≥ 3, and use Pj to denote
a path of order j for all integers j ≥ 1. For a cycle C of G, a chord of C is an edge
of G − E(C) which joins two vertices of C, and we use τ(C) to denote the number
of chords of C in G. An n-cycle is a cycle of length n. Clearly, if C is a 4-cycle then
τ(C) ∈ {0, 1, 2}.

We use C+
4 to denote a graph of order 4 with five edges. Obviously, C+

4 can be
obtained from K4 by deleting one edge from K4. If F is a graph of order 4 and size
4 with a triangle, we may write F as a trail x0x1x2x3x1.

If S is a set of subgraphs of G, we write G ⊇ S. For an integer k ≥ 1 and a graph
G′, we use kG′ to denote a set of k disjoint graphs isomorphic to G′. If G1, . . . , Gr are
r graphs and k1, . . . , kr are r positive integers, we use k1G1 ] · · · ] krGr to denote a
set of k1 + · · ·+ kr disjoint graphs which consist of k1 copies of G1, . . . , kr−1 copies of
Gr−1 and kr copies of Gr. For two graphs H1 and H2, the union of H1 and H2 is still
denoted by H1 ∪H2 as usual, that is, H1 ∪H2 = (V (H1) ∪ V (H2), E(H1) ∪ E(H2)).
Let each of Y and Z be a subgraph of G, or a subset of V (G), or a sequence of distinct
vertices of G. If Y and Z do not have any common vertices, we define E(Y, Z) to
be the set of all the edges of G between Y and Z. Clearly, e(Y, Z) = |E(Y, Z)|. If
C = x1x2 . . . xrx1 is a cycle, then the operations on the subscripts of the xi’s will be
taken by modulo r in {1, 2, . . . , r}. If C is a 4-cycle and u ∈ V (C), we use u∗ to
denote the unique vertex of C such that u and u∗ are not consecutive on C. For two
graphs G and H, we write G ∩H = ∅ if G and H are disjoint.

Let {H,Q1, . . . , Qt} be a set of t + 1 disjoint subgraphs of G such that Qi
∼= C4
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for i = 1, . . . , t. We say that {H,Q1, . . . , Qt} is optimal if [H,Q1, . . . , Qt] does not
contain t+1 disjoint subgraphs H ′, Q′1, . . . , Q

′
t such that H ′ ∼= H, Q′i

∼= C4(1 ≤ i ≤ t)
and

∑t
i=1 τ(Q′i) >

∑t
i=1 τ(Qi). Let Q be a 4-cycle and H a subgraph of order 4 in

G. We write H ≥ Q if H has a 4-cycle Q′ such that τ(Q′) ≥ τ(Q). Moreover, if
τ(Q′) > τ(Q), we write H > Q.

Let Q be a 4-cycle of G and u ∈ V (Q). Let x ∈ V (G)−V (Q). We write x→ (Q, u)
if [Q − u + x] ⊇ C4. In this case, we say that u is replaceable by x in Q. Moreover,
if [Q − u + x] ≥ Q then we write x ⇒ (Q, u) and if [Q − u + x] > Q then we write
x

a→ (Q, u). In addition, if it does not hold that x
a→ (Q, u) then we write x

na→ (Q, u).
Clearly, x ⇒ (Q, u) when x

a→ (Q, u). If x → (Q, u) for all u ∈ V (Q) then we write
x→ Q. Similarly, we define x⇒ Q. Note that if e(x,Q) = 3 then x→ Q if and only
if dd∗ ∈ E where d ∈ V (Q) with xd 6∈ E.

Let P be a path of order at least 2 or a sequence of at least two distinct vertices
in G − V (Q + x). Let X be a subset of V (G) − V (Q + x) with |X| ≥ 2. We write
x → (Q, u;P ) if x → (Q, u) and u is adjacent to the two end vertices of P . In
this case, if P is a path of order 3, then [x,Q, P ] ⊇ 2C4. We write x → (Q, u;X) if
x→ (Q, u; yz) for some {y, z} ⊆ X with y 6= z. We write x→ (Q;P ) if x→ (Q, u;P )
for some u ∈ V (Q). Similarly, we define x→ (Q;X).

We use “w.l.o.g.” for “without loss of generality” and “w.r.t.” for “with respect
to”.

2 Sketch of the Proof of Theorem B

Let G = (V,E) be a graph of order 4k with minimum degree at least 2k. Suppose,
for a contradiction, that G 6⊇ kC4. By the result of [6] mentioned in the introduction,
there exists a sequence (T,Q1, . . . , Qk−1) of k disjoint subgraphs such that T ∼= C3

and Qi
∼= C4 for i = 1, . . . , k − 1. We call such a sequence (T,Q1, . . . , Qk−1) a chain

of G. Among all the chains of G, we choose (T,Q1, . . . , Qk−1) such that

k−1∑
i=1

τ(Qi) is maximum. (1)

Subject to (1), we further choose (T,Q1, . . . , Qk−1) such that

|{Qi|τ(Qi) = 2, 1 ≤ i ≤ k − 1}| is maximum. (2)

A chain satisfying (1) and (2) is called a feasible chain of G. If (T,Q1, . . . , Qk−1)
is a feasible chain, we define the terminal point of (T,Q1, . . . , Qk−1) to be the unique
vertex of G which does not belong to V (T )∪V (∪k−1i=1Qi). A strong feasible chain of G
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is a sequence (xy, T,Q1, . . . , Qk−1) of subgraphs of G such that (T,Q1, . . . , Qk−1) is a
feasible chain of G, xy ∈ E, y ∈ V (T ) and x is the terminal point of (T,Q1, . . . , Qk−1).
The following Claims 2.1-2.7 will be proved in Section 4. Claims 2.1-2.4 are steps
towards Claims 2.5-2.7. We derive Theorem B from Claims 2.5-2.7 in this section.
Our first important step is the following Claim 2.1.

Claim 2.1. There exists a strong feasible chain in G.

By Claim 2.1, let σ = (x0x1, T,Q1, . . . , Qk−1) be any given strong feasible chain
with x1 ∈ V (T ). Let T = x1x2x3x1, F = x0x1x2x3x1 and Q = {Q1, . . . , Qk−1}.
Claim 2.2. For each Q ∈ Q, if e(F,Q) ≥ 9 then either e(x0, Q) = 0 or there exists
a labelling Q = a1a2a3a4a1 such that N(x0, Q) = {a1}, e(x1, Q) = 4, N(x2, Q) =
{a1, a4}, N(x3, Q) = {a1, a2}, a1a3 ∈ E and a2a4 6∈ E.
Claim 2.3. For each Q ∈ Q, if e(x0, Q) = 4 and e(x1, Q) ≥ 1 then e(x2, Q) ≤ 1 and
e(x3, Q) ≤ 1.

Claim 2.4. For each Q ∈ Q, e(x0x2, Q) ≤ 6 and e(x0x3, Q) ≤ 6.

Claim 2.5. For each Q ∈ Q, if e(F−x1, Q) ≥ 7 then either e(x0, Q) = 0 or e(x0, Q) =
1, e(x2x3, Q) = 6, N(x2, Q) = N(x3, Q).

Claim 2.6. For each Q ∈ Q, if e(x0, Q) = 4 then e(x2x3, Q) = 0.

Claim 2.7. For each Q ∈ Q, if e(x0, Q) = 3 then e(x2x3, Q) ≤ 2.

Proof of Theorem B. Clearly, e(x0, G− V (F )) + e(F − x1, G− V (F )) ≥ 8k− 6 =
8(k − 1) + 2. Thus e(x0, Q) + e(F − x1, Q) ≥ 9 for some Q ∈ Q. If e(x0, Q) = 4 then
e(x2x3, Q) = 0 by Claim 2.6 and so e(x0, Q) + e(F − x1, Q) = 8, a contradiction. If
e(x0, Q) = 3 then e(x2x3, Q) ≤ 2 by Claim 2.7 and so e(x0, Q) + e(F − x1, Q) ≤ 8,
a contradiction. Hence e(x0, Q) ≤ 2. Thus e(F − x1, Q) ≥ 7. By Claim 2.5, either
e(x0, Q) = 0 or e(x0, Q) = 1 with e(x2x3, Q) = 6. Then e(x0, Q) + e(F − x1, Q) ≤ 8,
a contradiction.

3 Preliminary Lemmas

Let G = (V,E) be a given graph in the following. Lemma 3.1 is an easy observation.

Lemma 3.1 Let T and Q be two disjoint subgraphs of G with T ∼= C3 and Q ∼= K4

such that e(T,Q) ≥ 11. Let x1 and x2 be two distinct vertices of T . Set G0 = [T,Q].
Then the following statements hold:

(a) For each x ∈ V (G)− V (G0) with e(x,G0) ≥ 2, [G0, x] ⊇ 2C4

(b) For each edge uv ∈ E(G0−{x1, x2}), there exists a triangle T ′ in G0−{x1, x2}
such that uv ∈ E(T ′) and G0 − V (T ′) ∼= K4.
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(c) There exists a labelling V (Q) = {b1, b2, b3, b4} such that {b1, b2, b3} ⊆ N(x1, Q)
and {x2, x3, b4, br} ∼= K4 for r = 2, 3.

(d) Let Z ⊆ V (G0 − {x1, x2}) with |Z| = 4. If e(x1x2, Q) = 8 then there exists a
triangle T ′ in [Z] such that G0 − V (T ′) ∼= K4.

Lemma 3.2 Let T and Q be two disjoint subgraphs of G and z ∈ V (G)− V (T ∪Q)
such that T ∼= C3, Q ∼= C4, e(T,Q) ≥ 9 and [T,Q, z] 6⊇ 2C4. Suppose that [T,Q, z] 6⊇
C with C ∼= C3 and [T,Q, z]− V (C) > Q. Then e(z,Q) ≤ 1.

Proof. Say Q = d1d2d3d4d1. Suppose e(z,Q) ≥ 2. As [T,Q, z] 6⊇ 2C, z 6→ (Q;V (T )).
As e(T,Q) ≥ 9, for each i ∈ {1, 2}, e(dr, T ) ≥ 2 for some r ∈ {i − 1, i + 1} and so
e(z, didi+2) ≤ 1. Thus we may assume e(z, d1d2) = 2. Then [z, d1, d2] ⊇ C3. As
e(d3d4, T ) ≥ 3, [T, d3, d4] ⊇ C+

4 . Thus τ(Q) ≥ 1. Say w.l.o.g. d1d3 ∈ E. Then
e(d4, T ) ≤ 1 and d2d4 6∈ E as z 6→ (Q;V (T )). It follows that e(d3, T ) = 3 or
e(d2, T ) = 3. Then [T,Q, z] ⊇ C3 ]K4 and so τ(Q) = 2, a contradiction.

Lemma 3.3 Let F = x0x1x2x3x1, Q a 4-cycle of G− V (F ) and z ∈ V (G)− V (F ∪
Q) such that z 6→ (Q;x2x3). Suppose that [F,Q] 6⊇ P ] Q′ with P ⊇ 2P2 and
τ(Q′) = τ(Q) + 2. Furthermore, suppose that e(x0x2x3z,Q) ≥ 9 such that either
e(x0, Q) = 1 and e(x2x3, Q) = 6 with N(x2, Q) = N(x3, Q) or e(x0, Q) = 0 with
e(x2x3, Q) ≥ 7. Then e(x0x2x3z,Q) = 9 and there exists a labelling Q = d1d2d3d4d1
such that e(x2x3, d2d3d4) = 6 and zd3 ∈ E.
Proof. Say Q = d1d2d3d4d1. If e(x0, Q) = 1, we may assume that N(x2, Q) =
N(x3, Q) = {d2, d3, d4}. It is easy to see that [x2, x3, Q] ⊇ P2 ] K4 regardless
e(x0, Q) = 0 or e(x0, Q) = 1. Thus [F,Q] ⊇ 2P2 ] K4. Then τ(Q) 6= 0 by our as-
sumption. As z 6→ (Q;x2x3), it follows that if e(x0, Q) = 1 then d2d4 ∈ E, d1d3 6∈ E
and N(z,Q) = {d3, di} for some i ∈ {2, 4}. Thus the lemma holds. So assume
e(x0, Q) = 0. If e(z,Q) = 1 then e(x2x3, Q) = 8 and obviously the lemma holds. So
assume e(z,Q) ≥ 2. For each i ∈ {1, 2}, e(dr, x2x3) = 2 for some r ∈ {i − 1, i + 1}
and so e(z, didi+2) ≤ 1 since z 6→ (Q;x2x3). Therefore N(z,Q) = {di, di+1} for some
i ∈ {1, 2, 3, 4}. Say w.l.o.g. N(z,Q) = {d3, d4}. As τ(Q) ≥ 1, say w.l.o.g. d2d4 ∈ E.
Then e(d1, x2x3) 6= 2 as z 6→ (Q, d1;x2x3). Thus e(d1, x2x3) = 1, e(x2x3, d2d3d4) = 6
and so the lemma holds.

Lemma 3.4 Let F = x0x1x2x3x1 and Q be two disjoint subgraphs with Q ∼= C4. The
following two statements hold:

(a) (Lemma 2.7, [7]) If e(F,Q) ≥ 11 and e(x0, Q) ≥ 1 then [F,Q] ⊇ 2C4, or there
exists a labelling Q = a1a2a3a4a1 such that N(x0, Q) = {a1, a2, a3}, e(x1, Q) = 4 and
N(x2, Q) = N(x3, Q) = {a1, a3}.

(b) If e(x0, Q) ≥ 1, e(x1x2x3, Q) ≥ 9, τ(Q) ≥ 1 and xi → Q for some i ∈ {1, 2, 3}
then [F,Q] ⊇ 2C4.
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Proof. We only need to show (b) here. Suppose that [F,Q] 6⊇ 2C4. Say Q =
d1d2d3d4d1 with d1d3 ∈ E. First, assume that e(x0, d2d4) ≥ 1. W.l.o.g., say x0d4 ∈ E.
As e(x2x3, Q) ≥ 9 − e(x1, Q) ≥ 5, e(xi, d1d2d3) ≥ 2 for some i ∈ {2, 3}. Say w.l.o.g.
e(x2, d1d2d3) ≥ 2. As [F,Q] 6⊇ 2C4, x2 6→ (Q, d4;x0x1x3) and so d4x3 6∈ E. If we
also have e(x3, d1d2d3) ≥ 2 then d4x2 6∈ E. Consequently, 6 ≥ e(x2x3, Q) ≥ 5 and so
e(x1, Q) ≥ 3. Thus e(x1, d1d3) ≥ 1. Say w.l.o.g. x1d1 ∈ E. Then [x0, d4, d1, x1] ⊇ C4

and [x2, x3, d2, d3] ⊇ C4, a contradiction. Hence e(x3, d1d2d3) ≤ 1. It follows that
e(x1x2, Q) = 8 and e(x3, Q) = 1. Then [x0, d4, dr, x1] ⊇ C4 and [x2, x3, d2, dt] ⊇ C4

where {r, t} = {1, 3} and e(x3, d2dt) = 1, a contradiction. Therefore e(x0, d1d3) ≥ 1.
Similarly, if d2d4 ∈ E then [F,Q] ⊇ 2C4, a contradiction. Hence d2d4 6∈ E. Say
w.l.o.g. x0d1 ∈ E. Suppose that e(xi, d2d4) = 2 for some i ∈ {2, 3}. W.l.o.g., say
e(x2, d2d4) = 2. Then x3d1 6∈ E as x2 6→ (Q, d1;x0x1x3). If e(x1, d2d4) = 0 then
e(x1, d1d3) = 2, e(x2, Q) = 4 and e(x3, d2d3d4) = 3. Consequently, [x0, d1, d3, x1] ⊇
C4 and [x2, d2, x3, d4] ⊇ C4, a contradiction. Hence e(x1, d2d4) ≥ 1. Say w.l.o.g.
x1d4 ∈ E. Then [x0, d1, d4, x1] ⊇ C4 and so [x2, x3, d2, d3] 6⊇ C4. This implies that
e(x2x3, d2d3) ≤ 2. As e(x1x2x3, Q) ≥ 9, it follows that e(x1, Q) = 4, x3d4 ∈ E
and e(x2x3, d2d3) = 2. Then [x0, d1, d2, x1] ⊇ C4 and so [x2, x3, d3, d4] 6⊇ C4. This
yields e(d3, x2x3) = 0. It follows that e(x3, d2d4) = 2 as e(x2x3, Q) ≥ 5. Thus
[x0, d1, d3, x1] ⊇ C4 and [x2, d2, x3, d4] ⊇ C4, a contradiction. Therefore e(xi, d2d4) ≤ 1
for each i ∈ {2, 3}. Hence xi 6→ Q for i ∈ {2, 3}. Thus x1 → Q. This implies
that {d2, d4} ⊆ N(x1). As e(x2x3, Q) ≥ 5, say w.l.o.g. e(x2, d1d2d3) = 3. As
[x0, d1, di, x1] ⊇ C4 for each i ∈ {2, 4}, [x2, x3, d3, di] 6⊇ C4 for each i ∈ {2, 4}. This
implies that e(x3, d2d3d4) = 0 and so e(x2x3, Q) ≤ 4, a contradiction.

Lemma 3.5 Let P be a path of order 4 and Q a 4-cycle of G such that P ∩ Q = ∅
and {P,Q} is optimal. If e(P,Q) ≥ 9 and [P,Q] 6⊇ 2C4 then either [P,Q] contains
two disjoint subgraphs T and C such that T ∼= C3, C ∼= C4 and τ(C) ≥ τ(Q), or
τ(Q) = 2 and there exist two labellings P = y1y2y3y4 and V (Q) = {b1, b2, b3, b4} such
that one of the following two statements (a) and (b) holds:

(a) N(y1, Q) ∪ N(y3, Q) ⊆ {b1, b2, b3}, 3 ≤ e(y2, Q) ≤ 4, e(y4, Q) = 0, e(P,Q) ≤
10;

(b) N(y1, Q)∪N(y4, Q) ⊆ {b1, b2}, N(y2, Q)∪N(y3, Q) ⊆ {b1, b2, b3}, e(P,Q) ≤ 10.

In addition, if (a) holds, then yi → (Q; yjyl) for each {i, j, l} = {1, 2, 3}. If (b)
holds, then e(yi, Q) = 3 for some i ∈ {2, 3} and yi → (Q; yjyl) for each {j, l} ⊆
{1, 2, 3, 4} − {i} with j 6= l. Furthermore, if any of (a) and (b) holds then [P,Q] ⊇
C3 ] C+

4 .

Proof. Let P = y1y2y3y4, Q = b1b2b3b4b1 and H = [P,Q]. For the proof, suppose that
H does not contain the two described subgraphs T and C. We shall prove that one
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of (a) and (b) holds. We divide the proof into the two cases: τ(Q) ≤ 1 or τ(Q) = 2.
Case 1. τ(Q) ≤ 1.
In this case, H 6⊇ C3 ] C+

4 and H 6⊇ P4 ] K4 by the assumption of the lemma.
As e(y1y2, Q) + e(y3y4, Q) ≥ 9, we may assume w.l.o.g. that e(y1y2, Q) ≥ 5. Then
e(y1y2, b1b2) ≥ 3 or e(y1y2, b3b4) ≥ 3. W.l.o.g., say the former holds. Then [y1, y2, b1, b2] ⊇
C+

4 . As H 6⊇ C3 ] C+
4 and H 6⊇ 2C4, we see e(y3y4, b3b4) ≤ 1. If we also have

e(y1y2, b3b4) ≥ 3, then e(y3y4, b1b2) ≤ 1 and so e(y1y2, Q) ≥ 7. Thus either [y1, y2, b1, b2] ∼=
K4 or [y1, y2, b3, b4] ∼= K4. W.l.o.g., say the former holds. Then e(y3y4, b3b4) = 0 as
H 6⊇ P4 ] K4. Thus e(y1y2, Q) = 8, e(y3y4, b1b2) = 1 and so H ⊇ P4 ] K4, a con-
tradiction. Hence e(y1y2, b3b4) ≤ 2. If e(y3y4, b1b2) ≥ 3, then we also have that
e(y1y2, b3b4) ≤ 1 and so e(b1b2, P ) ≥ 7. Consequently, either [b1, b2, y1, y2] ∼= K4

or [b1, b2, y3, y4] ∼= K4. W.l.o.g., say the former holds. Then e(y3y4, b3b4) = 0 as
H 6⊇ P4 ] K4. Thus e(b1b2, P ) = 8, e(y1y2, b3b4) = 1 and so H ⊇ P4 ] K4, a
contradiction. We conclude that e(y3y4, b1b2) ≤ 2. As e(P,Q) ≥ 9, it follows that
e(y1y2, b1b2) = 4 and e(y3y4, b3b4) = 1. Thus H ⊇ P4 ]K4, a contradiction.

Case 2. τ(Q) = 2.
W.l.o.g., say e(y1, Q) ≥ e(y4, Q). Then e(y1, Q) ≥ 1. Suppose that e(y1, Q) = 4.

As H 6⊇ 2C4 and H 6⊇ C3]K4, e(bi, P−y1) ≤ 1 for each bi ∈ V (Q). Thus e(P,Q) ≤ 8,
a contradiction. Hence e(y1, Q) ≤ 3.

Suppose e(y1y4, Q) ≤ 2. Then e(y2y3, Q) ≥ 7. If e(y4, Q) = 1, then e(y1, Q) = 1
and it is easy to see that if N(y1, Q) 6= N(y4, Q) then H ⊇ 2C4. Moreover, if
N(y1, Q) = N(y4, Q), say w.l.o.g. e(b1, y1y4) = 2, then yib1 ∈ E and e(yj, b2b3b4) =
3 for some {i, j} = {2, 3}. Consequently, H ⊇ C3 ] K4, a contradiction. Hence
e(y4, Q) = 0. If e(y1, Q) = 1 then e(y2y3, Q) = 8 and so H ⊇ C3]K4, a contradiction.
Hence we may assume that e(y1, b1b2) = 2. If {b3, b4} ⊆ N(y3) then it is easy to see
that for some i ∈ {1, 2}, e(y3, Q − bi) = 3, y2bi ∈ E and so H ⊇ C3 ] K4, a
contradiction. Hence {b3, b4} 6⊆ N(y3). Say w.l.o.g. y3b4 6∈ E. Then e(y2, Q) = 4,
e(y3, b1b2b3) = 3 and so (a) holds. Therefore we may assume e(y1y4, Q) ≥ 3 and so
e(y1, Q) ≥ 2 in the following.

Suppose e(y1, Q) = 2. Say w.l.o.g. e(y1, b1b2) = 2. We claim e(y4, b3b4) = 0. If
this is false, say w.l.o.g. y4b4 ∈ E. Then y2b4 6∈ E as H 6⊇ 2C4. Then e(y2y3, b1b2b3) ≥
9 − e(y1y4, Q) − e(y3, b4) ≥ 9 − 4 − 1 = 4. If e(b3, y2y3) = 0 then e(y2y3, b1b2) = 4
and y3b4 ∈ E. Consequently, [y1, y2, b1, b2] ⊇ K4 and [y3, y4, b4] ⊇ C3, a contradiction.
Hence e(b3, y2y3) ≥ 1. It follows that either E(y2y3, b1b3) or E(y2y3, b2b3) contains
two independent edges. Then we readily see that H ⊇ 2C4, a contradiction. Hence
e(y4, b3b4) = 0 and so e(y4, b1b2) ≥ 1. If N(y2y3, Q) ⊆ {b1, b2, bi} for some i ∈ {3, 4},
then we may assume w.l.o.g. i = 3 and so (b) holds. Therefore we may assume that
e(bi, y2y3) ≥ 1 for i ∈ {3, 4}. Since E(y1y4, b1b2) contains two independent edges,
E(y2y3, b3b4) does not contain two independent edges for otherwise H ⊇ 2C4. Thus
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E(y2y3, b3b4) = {yrb3, yrb4} for some r ∈ {2, 3}. Then e(y4y2y3, b1b2) ≥ 5. Thus y2bi ∈
E and e(bj, y3y4) = 2 for some {i, j} = {1, 2}. Then [y1, y2, bi] ⊇ C3 and [y3, y4, bj] ⊇
C3. As H 6⊇ C3 ] K4, this implies that [y3, bj, b3, b4] 6⊇ K4 and [y2, b3, b4, bi] 6⊇ K4.
This yields that e(y3, b3b4) ≤ 1 and e(y2, b3b4) ≤ 1, a contradiction. Finally, suppose
e(y1, Q) = 3. Say e(y1, b1b2b3) = 3. Then e(b4, y2y3y4) ≤ 1 since H 6⊇ 2C4 and
H 6⊇ C3 ]K4. As H 6⊇ 2C4, i(y2y4, Q) = 0. We claim e(y4, Q) = 0. On the contrary,
say e(y4, Q) ≥ 1. If y4b4 ∈ E, then e(b4, y2y3) = 0. Moreover, E(y2y3, b1b2b3) does
not contain two independent edges for otherwise H ⊇ 2C4. Thus e(y2y3, b1b2b3) ≤ 3
and it follows that e(y4, Q) = 3 and e(y2y3, b1b2b3) = 3. Then either y1 → (Q; y2y3y4)
or y4 → (Q; y1y2y3), a contradiction. Hence y4b4 6∈ E. Say w.l.o.g. y4b3 ∈ E. Then
y2b3 6∈ E as i(y2y4, Q) = 0. If y3b4 ∈ E then y2b4 6∈ E as e(b4, y2y3y4) ≤ 1. Moreover,
since [y3, y4, b3, b4] ⊇ C4, e(y2, b1b2) = 0 as H 6⊇ 2C4. Thus e(y2, Q) = 0 and so
e(y3y4, Q) ≥ 6. It follows that y4 → (Q; y1y2y3), a contradiction. Hence y3b4 6∈ E. As
i(y2y4, Q) = 0, e(y2y4, Q) ≤ 4. It follows that e(y3, Q− b4) ≥ 2 and so e(y3, b1b2) ≥ 1.
W.l.o.g., say y3b1 ∈ E. Then [y3, y4, b3, b1] ⊇ C4 and so y2b4 6∈ E as H 6⊇ 2C4. Thus
e(y2y4, Q) = e(y2y4, Q−b4) ≤ 3 as i(y2y4, Q) = 0. Consequently, e(y3, b1b2b3) = 3 and
e(y2y4, b1b2b3) = 3. As y4 6→ (Q; y1y2y3), we see that e(y4, b1b2) = 0. Consequently,
e(y2, b1b2) = 2. Then [y3, y4, b3] ∼= C3 and [y1, y2, b1, b2] ∼= K4, a contradiction. Hence
e(y4, Q) = 0. If y3b4 6∈ E then (a) holds. If y3b4 ∈ E then y2b4 6∈ E. Since
e(y2, b1b2b3) + e(y3, Q) ≥ 6, y3 ⇒ (Q, bi) and biy2 ∈ E for some i ∈ {1, 2, 3}. Thus
H ⊇ C3 ]K4, a contradiction.

Lemma 3.6 Let P ′ and P ′′ be two paths of order 2 and Q a 4-cycle of G such that they
are disjoint and {P ′ ∪ P ′′, Q} is optimal. If e(P ′ ∪ P ′′, Q) ≥ 9 and [P ′, P ′′, Q] 6⊇ 2C4

then either [P ′, P ′′, Q] ⊇ C3 ] C+
4 or [P ′, P ′′, Q] ⊇ P4 ]K4.

Proof. Let P ′ = x1x2, P
′′ = x3x4, Q = a1a2a3a4a1 and H = [P ′, P ′′, Q]. On the

contrary, suppose that H 6⊇ P4 ]K4 and H 6⊇ C3 ] C+
4 . As e(P ′ ∪ P ′′, Q) ≥ 9, say

w.l.o.g. e(x1x2, Q) ≥ 5. As e(x1x2, Q) = e(x1x2, a1a2) + e(x1x2, a3a4), say w.l.o.g.
e(x1x2, a1a2) ≥ 3. Then [x1, x2, a1, a2] ⊇ C+

4 and so [x3, x4, a3, a4] 6⊇ Ci for i = 3, 4.
Thus e(x3x4, a3a4) ≤ 1. If we also have e(x1x2, a3a4) ≥ 3, then e(x3x4, a1a2) ≤ 1 and
so e(x1x2, Q) ≥ 7. W.l.o.g., say e(x1x2, a1a2) = 4. Then e(x3x4, a3a4) = 0 as H 6⊇
P4]K4. Thus e(x1x2, Q) = 8, e(x3x4, a1a2) = 1 and so H ⊇ P4]K4, a contradiction.
Hence e(x1x2, a3a4) ≤ 2. Similarly, if e(x3x4, a1a2) ≥ 3, then e(x1x2, a3a4) ≤ 1
and so e(a1a2, P

′ ∪ P ′′) ≥ 7. Consequently, e(a1a2, x1x2) = 4 or e(a1a2, x3x4) = 4.
W.l.o.g., say e(a1a2, x1x2) = 4. Then e(a3a4, x3x4) = 0 as H 6⊇ P4 ] K4. Thus
e(a1a2, P

′ ∪ P ′′) = 8, e(x1x2, a3a4) = 1 and so H ⊇ P4 ]K4, a contradiction. Hence
e(x3x4, a1a2) ≤ 2. As e(P ′ ∪ P ′′, Q) ≥ 9, it follows that e(x1x2, a1a2) = 4 and
e(x3x4, a3a4) = 1. Thus H ⊇ P4 ]K4, a contradiction.
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4 Proofs of Claims 2.1-2.7

Our proof will go along a series of lemmas.

Lemma 4.1 Let (T,Q1, . . . , Qk−1) be a feasible chain of G and x the terminal point
of (T,Q1, . . . , Qk−1). Then the following two statements hold:

(a) For each Qi, if e(x,Qi) ≥ 3 then x → Qi. Furthermore, for each u ∈ V (Qi),
if e(x,Qi − u) = 3 then uu∗ ∈ E and if e(x,Qi) = 4 then τ(Qi) = 2.

(b) For each Qi, if e(T,Qi) ≥ 10 then τ(Qi) ≥ 1 and for some {y, z} ⊆ V (T )
with y 6= z, y → Qi and z → Qi. Moreover, if τ(Qi) = 1 then there exists a ∈ V (Qi)
such that aa∗ ∈ E and N(y,Qi) = {a, a∗} for some y ∈ V (T ). Furthermore, if
e(T,Qi) ≥ 11 then τ(Qi) = 2 and y → Qi for all y ∈ V (T ).

Proof. To see (a), let u ∈ V (Qi) be such that e(x,Qi − u) = 3. By (1), x
na→ (Qi, u).

This implies uu∗ ∈ E. Thus x→ Qi and (a) follows.
To see (b), say Qi = a1a2a3a4a1 and T = x1x2x3x1. If τ(Qi) = 2 then xr → Qi for

each xr ∈ V (T ) with e(xr, Qi) ≥ 3 and so the lemma holds. So assume τ(Qi) ≤ 1.
As e(T,Qi) ≥ 10, e(xj, Qi) = 4 for some xj ∈ V (T ). Say w.l.o.g. e(x1, Qi) = 4.
By (1), x1

na→ (Qi, u) and so uu∗ ∈ E for all u ∈ I(x2x3, Qi). As i(x2x3, Qi) ≥ 2,
say w.l.o.g. with a1 ∈ I(x2x3, Qi). Then a1a3 ∈ E. As τ(Qi) = 1, it follows that
I(x2x3, Qi) = {a1, a3}. By (1), x2

na→ (Qi;x1x3) and x3
na→ (Qi;x1x2). This implies

that e(x2x3, Qi) = 6 with N(xr, Qi) = {a1, a3} for some r ∈ {2, 3}.

Lemma 4.2 There exists no sequence (P,Q′1, Q
′
2, . . . , Q

′
k−1) of k disjoint subgraphs of

G with P ⊇ 2P2 and Q′i
∼= C4(1 ≤ i ≤ k− 1) such that

∑k−1
i=1 τ(Q′i) ≥

∑k−1
i=1 τ(Qi) + 2.

Proof. On the contrary, suppose that there exists a sequence (P,Q′1, Q
′
2, . . . , Q

′
k−1)

as described in the lemma such that
∑k−1

i=1 τ(Q′i) ≥
∑k−1

i=1 τ(Qi)+2. Subject to this, we
choose (P,Q′1, Q

′
2, . . . , Q

′
k−1) such that

∑k−1
i=1 τ(Q′i) is maximal. As G 6⊇ kC4, [P ] 6⊇ C4.

By (1), [P ] 6⊇ C3 and so e([P ]) ≤ 3. Thus e(P,∪k−1i=1Q
′
i) ≥ 8k− 6 = 8(k− 1) + 2. This

implies that e(P,Q′i) ≥ 9 for some 1 ≤ i ≤ k−1. Say i = 1. By (1), [P∪Q′1] 6⊇ C3]C+
4 .

By Lemma 3.6, [P,Q′1] ⊇ P ′ ]Q′′ such that P ′ ∼= P4 and Q′′ ∼= K4. As P ′ ⊇ 2P2 and
by the maximality of (P,Q′1, Q

′
2, . . . , Q

′
k−1), τ(Q′1) = 2. Replacing P and Q′1 by P ′ and

Q′′, we see that either e(P ′, Q′′) ≥ 9 or e(P ′, Q′j) ≥ 9 for some j ∈ {2, 3, . . . , k − 1}.
By Lemma 3.5, [P ′, Q′′] ⊇ C3 ] C+

4 or [P ′, Q′j] ⊇ C3 ] C+
4 , contradicting (1).

Proof of Claim 2.1. On the contrary, suppose that there exists no strong feasible
chain inG. Among all the feasible chains ofG, we choose (T,Q1, . . . , Qk−1) such that if
u denotes its terminal point then e(u,Q1) is maximal. As e(u,G) ≥ 2k, e(u,Q1) ≥ 3.
If e(u,Q1) = 4, let v and w be two distinct vertices of Q1. If e(u,Q1) = 3, then
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e(u,Qi) ≤ 3 for all i ∈ {1, . . . , k − 1}. In this situation, e(u,Qi) = 3 for some
i ∈ {2, . . . , k−1} as e(u,G) ≥ 2k, and then we may assume w.l.o.g. that e(u,Q2) = 3.
Then let v ∈ V (Q1) and w ∈ V (Q2) be such that e(u,Q1−v) = 3 and e(u,Q2−w) = 3.
In any case, we define S = {u, v, w}. By Lemma 4.1, If e(u,Q1) = 4 then τ(Q1) = 2
and if e(u,Q1) = 3 and e(u,Q2) = 3 then vv∗ ∈ E, ww∗ ∈ E, u ⇒ (Q1, v) and
u ⇒ (Q2, w). Say T = x1x2x3x1 and R = {x1, x2, x3} ∪ S. Let G′ = [u, T,Q1]
if e(u,Q1) = 4 and otherwise G′ = [u, T,Q1, Q2]. We shall estimate e(R,G′). If
e(u,Q1) = 4, then u ⇒ Q1 and so e(y, T ) = 0 for all y ∈ V (Q1) for otherwise the
claim holds. Thus e(R,G′) = 18. If e(u,Q1) = 3 and e(u,Q2) = 3, then e(v, T ) = 0
and e(w, T ) = 0 for similar reasons. As u→ Q1 and u→ Q2, we see that [T +y] 6⊇ C4

and so e(y, T ) ≤ 1 for all y ∈ V (Q1 ∪Q2)− {v, w}. Furthermore, by the maximality
of e(u,Q1), we see that if e(u,Q1) = 3 then e(v,Q2) ≤ 3 and e(w,Q1) ≤ 3. It follows
that if e(u,Q1) = 3 then e(T,G′) ≤ 12, e(S,G′) ≤ 18 and so e(R,G′) ≤ 30. Therefore,
if e(u,Q1) = 4 then e(R,G− V (G′)) ≥ 12k − 18 = 12(k − 2) + 6 and if e(u,Q1) = 3
then e(R,G − V (G′)) ≥ 12k − 30 = 12(k − 3) + 6. In any case, there exists Qr in
G− V (G′) such that e(R,Qr) ≥ 13. Let u′ ∈ S be such that e(u′, Qr) ≥ e(z,Qr) for
all z ∈ S. Evidently, we may assume w.l.o.g. u = u′. As e(R,Qr) ≥ 13, e(u,Qr) ≥ 1
and e(T,Qr) ≥ 1. Let Qr = c1c2c3c4c1. If e(u,Qr) = 4 then e(ci, T ) = 0 for all
ci ∈ V (Qr) for otherwise the claim holds, a contradiction. Hence e(u,Qr) ≤ 3.

First, suppose e(u,Qr) = 3. Then e(S,Qr) ≤ 9 and so e(T,Qr) ≥ 4. By Lemma
4.1(a), u → Qr and so e(ci, T ) ≤ 1 for all ci ∈ V (T ) since [u,Qr, T ] 6⊇ 2C4. Thus
e(ci, T ) = 1 for all ci ∈ V (T ). Say w.l.o.g. e(u, c1c2c3) = 3. Then u ⇒ (Qr, c4) and
e(c4, T ) = 1. Thus the claim holds, a contradiction.

Next, suppose e(u,Qr) = 2. Then e(S,Qr) ≤ 6 and so e(T,Qr) ≥ 7. Assume
for the moment that e(u, cic

∗
i ) = 2 for some ci ∈ V (Qr). Say w.l.o.g. e(u, c1c3) = 2.

As [u,Qr, T ] 6⊇ 2C4, u 6→ (Qr, cj;V (T )) and so e(cj, T ) ≤ 1 for j ∈ {2, 4}. As
e(T,Qr) ≥ 7, either e(c1c2, T ) = 4 or e(c3c4, T ) = 4. W.l.o.g., say e(c1, T ) = 3
and e(c2, T ) = 1. Then u 6⇒ (Qr, c2) for otherwise the claim holds. This implies
c2c4 ∈ E. Thus [c2, c3, c4] ∼= C3, e(u, c2c3c4) = 1 and [c1, T ] ∼= K4, i.e., the claim
holds, a contradiction. This argument shows that τ(Qr) ≤ 1 for otherwise we may
choose a 4-cycle from [Qr] such that u is adjacent to two non consecutive vertices
of this 4-cycle and repeat the above argument to obtain a contradiction. W.l.o.g.,
say e(u, c1c2) = 2. Assume for the moment that e(ci, T ) ≥ 2 for some i ∈ {3, 4}.
Say w.l.o.g. e(c4, T ) ≥ 2. Then [c4, T ] ≥ Qr, [u, c1, c2] ∼= C3 and e(c3, uc1c2) = 1.
Therefore the claim holds, a contradiction. Hence e(c3, T ) ≤ 1 and e(c4, T ) ≤ 1.
Thus e(c1c2, T ) ≥ 5. Let j ∈ {1, 2} be such that e(cj, T ) = 3. Then [cj, T ] ∼= K4

and [u,Qr − cj] ⊇ 2P2. By Lemma 4.2, τ(Qr) 6= 0. W.l.o.g., say c1c3 ∈ E. Then
u⇒ (Qr, c4). Since the claim does not hold, e(c4, T ) = 0. It follows that (c1c2, T ) = 6
and e(c3, T ) = 1. Thus [c2, T ] > Qr and [c1, c3, c4] ∼= C3, contradicting (1).

10



Finally, e(u,Qr) = 1. Then e(S,Qr) ≤ 3 and so e(T,Qr) ≥ 10. By Lemma
4.1(b), τ(Qr) ≥ 1. Moreover, if τ(Qr) = 1, we may assume that c1c3 ∈ E and
N(xi, Qr) = {c1, c3} for some xi ∈ V (T ). W.l.o.g., say e(u, c1c2c3) = 1. Then
T + c4 ⊇ C+

4 and so the claim holds, a contradiction. Hence τ(Qr) = 2. W.l.o.g.,
say uc1 ∈ E. Then e(u, c1cicj) = 1, [c1, ci, cj] ∼= C3 and so T + ct 6⊇ K4 for each
permutation (i, j, t) of {2, 3, 4}. This implies that e(ci, T ) ≤ 2 for i ∈ {2, 3, 4} and so
e(T,Qr) ≤ 9, a contradiction. This proves Claim 2.1.

By Claim 2.1, we choose a strong feasible chain σ = (x0x1, T,Q1, . . . , Qk−1) with
x1 ∈ V (T ). Let T = x1x2x3x1, F = x0x1x2x3x1 and Q = {Q1, . . . , Qk−1}. Set Gi =
[F,∪ir=1Qr] and Hi = G− V (Gi) for each i ∈ {1, . . . , k − 1}. Clearly, Gi 6⊇ (i+ 1)C4

for each i ∈ {1, . . . , k− 1}. A terminal point of G is a terminal point of some feasible
chain of G. Let T be the set of all the terminal points of G. The following Lemma
4.3 and Lemma 4.4 are the initial elimination process for the proofs of Claims 2.2-2.5.

Lemma 4.3 Let Q ∈ Q. If e(F,Q) ≥ 9, e(x0, Q) > 0 and [F,Q] 6⊇ 2C4, then there
exist a labelling F = z0z1z2z3z1 and a 4-cycle a1a2a3a4a1 in [Q] such that one of the
following statements (3) to (8) holds:

N(z0, Q) = {a1}, N(z2, Q) = {a1, a4}, N(z3, Q) = {a1, a2}, e(z1, Q) = 4, a1a3 ∈ E, a2a4 6∈ E;(3)

N(z0z2z3, Q) ⊆ {a1, a3}, 3 ≤ e(z1, Q) ≤ 4, a1a3 ∈ E; (4)

N(z0z1, Q) ⊆ {a1, a3}, N(z2, Q) ⊆ {a1, a4, a3}, N(z3, Q) ⊆ {a1, a2, a3}, a1a3 ∈ E, a2a4 6∈ E; (5)

N(z0, Q) ⊆ {a1, a2}, N(z2, Q) ⊆ {a1, a2, a3}, N(z3, Q) ⊆ {a1}, a1a3 ∈ E, a2a4 6∈ E; (6)

N(z0, Q) = {a1}, N(z1, Q) = N(z2, Q) = {a1, a2, a3}, N(z3, Q) = {a1, a3}, a1a3 ∈ E, a2a4 6∈ E;(7)

N(z0, Q) = {a1}, e(z1z2, Q) = 8, e(z3, Q) = 0, a1a3 ∈ E. (8)

In addition, if (3) or (8) holds then [T,Q, v] ⊇ 2C4 for each v ∈ V (G) − V (F ∪ Q)
with e(v,Q) ≥ 2.

Proof. The last statement is obvious since v → (Q, a) for some a ∈ V (Q) with
e(a, T ) ≥ 2. We proceed to prove one of (3) to (8) to be true. Let H = [F,Q],
F = z0z1z2z3z1 and Q = a1a2a3a4a1. As H 6⊇ 2C4, z0 6→ (Q;V (T )). As e(F,Q) ≥ 9,
e(u, T ) ≥ 2 for some u ∈ V (Q). Then z0 6→ Q and so e(z0, Q) ≤ 2 by Lemma 4.1(a).
We now divide the proof into the following two cases.

Case 1. e(z0, Q) = 2.
In this case, e(T,Q) ≥ 7. First, suppose that e(z0, a1a3) = 2 or e(z0, a2a4) = 2.

W.l.o.g., say the former holds. Then z0 → (Q, ai) for i ∈ {2, 4}. As H 6⊇ 2C4,
e(a2, T ) ≤ 1 and e(a4, T ) ≤ 1. Thus e(a1a3, T ) ≥ 5. W.l.o.g., say e(a1, T ) = 3
and e(a3, T ) ≥ 2. As H 6⊇ 2C4, z2 6→ (Q; z0z1z3) and so e(z2, a2a4) ≤ 1. Sim-
ilarly, e(z3, a2a4) ≤ 1. Assume that e(z2, Q) = 3 or e(z3, Q) = 3. W.l.o.g., say
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e(z2, a1a4a3) = 3. Then e(a4, z1z3) = 0. As z2 6→ (Q; z0z1z3), a2a4 6∈ E. As
[z0, z1, z3, a1] ∼= C+

4 and [a3, a4, z2] ∼= C3, H ⊇ C3 ] C+
4 and so a1a3 ∈ E by (1).

If z1a2 6∈ E, then (5) holds. If z1a2 ∈ E, then H ⊇ 2C4 = {z1a2a3z0z1, z2a4a1z3z2},
a contradiction. Next, assume that e(z2, Q) ≤ 2 and e(z3, Q) ≤ 2. We claim
e(z2z3, a2a4) = 0. If this is false, say w.l.o.g. z2a4 ∈ E. Then e(a4, z1z3) = 0. As
e(T,Q) ≥ 7, e(z1z3, a1a2a3) ≥ 5. It follows that e(a1a3, z1z3) = 4 and e(a2, z1z3) = 1.
As e(z3, Q) < 3, a2z1 ∈ E. Thus H ⊇ 2C4 = {z1a2a3z0z1, z2a4a1z3z2}, a contradic-
tion. Hence e(z2z3, a2a4) = 0. It remains to show that a1a3 ∈ E and so (4) holds.
Clearly, if a2a4 ∈ E, then [a2, a3, a4] ∼= C3, H ⊇ C3 ] K4 and so a1a3 ∈ E by (1).
On the contrary, say a1a3 6∈ E. Then a2a4 6∈ E and so τ(Q) = 0. If e(z1, a2a4) = 2,
then z1

a→ (Q, a3). By (1), [z2, z3, a3] 6⊇ C3 and so e(a3, z2z3) ≤ 1. As e(T,Q) ≥ 7,
it follows that e(z1, Q) = 4. Thus z1

a→ (Q, a1) and [a1, z2, z3] ⊇ C3, contradicting
(1). If e(z1, a2a4) ≤ 1, say z1a2 6∈ E. Then e(z1, a1a4a3) = 3 and e(z2z3, a1a3) = 4.
Consequently, [z0, z1, a4, a1] ⊇ C+

4 and [z2, z3, a3] ⊇ C3, contradicting (1).
Next, suppose e(z0, aiai+1) = 2 for some ai ∈ V (Q). Say w.l.o.g. e(z0, a1a2) = 2.

We may assume that τ(Q) ≤ 1 for otherwise we choose a 4-cycle Q′ from [Q] such that
a1 and a2 are not consecutive onQ′ and repeat the above argument. ThusH 6⊇ C3]K4

by (1). As [z0, a1, a2] ∼= C3 andH 6⊇ C3]K4, we see that e(a4, T ) ≤ 2 and e(a3, T ) ≤ 2.
If e(a3, T ) = 2 or e(a4, T ) = 2, then H ⊇ C3 ] C+

4 and so τ(Q) ≥ 1 by (1). If
e(a3, T ) ≤ 1 and e(a4, T ) ≤ 1, then e(a1, T ) = 3 or e(a2, T ) = 3 and so H ⊇ 2P2]K4.
Then by Lemma 4.2, τ(Q) 6= 0. We conclude that τ(Q) = 1. W.l.o.g., say a1a3 ∈ E.
Then [a1, a4, a3] ∼= C3 and z0 → (Q, a4). Thus e(a2, T ) ≤ 2 and e(a4, T ) ≤ 1 as
H 6⊇ C3 ]K4 and H 6⊇ 2C4. We shall prove that (6) holds. We claim e(a4, z2z3) = 0.
If false, say a4z2 ∈ E. Then e(a4, z1z3) = 0. If z3a3 ∈ E then [z3, a3, a4, z2] ⊇ C4 and
so e(z1, a1a2) = 0 as H 6⊇ 2C4. Similarly, if z3a1 ∈ E then z1a3 6∈ E. This implies
that e(z1z3, a1a2a3) ≤ 4 and if e(z1z3, a1a2a3) = 4 then e(a2, z1z3) = 2. As e(z2, Q) ≥
7 − e(z1z3, Q) ≥ 3, we see that e(z2, Q − a2) ≥ 2 and so z2 → (Q, a2). As H 6⊇ 2C4,
z2 6→ (Q, a2; z0z1z3). Thus a2z3 6∈ E. We conclude that e(z1z3, a1a2a3) ≤ 3. It follows
that e(z2, Q) = 4 and e(z1z3, a1a2a3) = 3. As z2

a→ (Q, a2), [z0, z1, a2] 6⊇ C3 by (1) and
so a2z1 6∈ E. Thus e(a2, z1z3) = 0. As H 6⊇ 2C4, z2 6→ (Q, a1; z0z1z3) and so a1z3 6∈ E.
Thus e(a3, z1z3) = 2 as e(z1z3, a1a2a3) = 3, and so e(a3, T ) = 3, a contradiction.
Hence e(a4, z2z3) = 0. Next, we claim e(a3, z2z3) ≤ 1. If false, say e(a3, z2z3) = 2.
Then z1a3 6∈ E as e(a3, T ) ≤ 2. As [a3, z2, z3] ∼= C3 and H 6⊇ C3 ]K4, e(z1, a1a2) ≤ 1.
Thus e(z1, Q) ≤ 2 and so e(z2z3, a1a2) ≥ 7 − 2 − 2 = 3. Then {a1zi, a2zj} ⊆ E for
some {i, j} = {2, 3}. Thus zi → (Q, a2; z0z1zj), i.e., H ⊇ 2C4, a contradiction. Hence
e(a3, z2z3) ≤ 1. As e(z2z3, Q) ≥ 9 − e(z0z1, Q) ≥ 3, we may assume w.l.o.g. that
e(z2, Q) ≥ 2. If N(z3, Q) ⊆ {a1} then (6) holds. So suppose e(z3, a2a3) ≥ 1. First,
assume z3a2 ∈ E. Then e(z2, a1a3) ≤ 1 as z2 6→ (Q, a2; z0z1z3). Thus e(z2, a1a3) = 1
and z2a2 ∈ E. Then z1a2 6∈ E as e(a2, T ) ≤ 2. As z3 6→ (Q, a2; z0z1z2), e(z3, a1a3) ≤ 1.
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It follows that e(z1, a1a4a3) ≥ 7− 2− 2 = 3. Thus z1
a→ (Q, a2) and [a2, z2, z3] ∼= C3,

contradicting (1). Hence z3a2 6∈ E. Finally, assume z3a3 ∈ E. Then z2a3 6∈ E as
e(a3, z2z3) ≤ 1. Hence e(z2, a1a2) = 2. Then z3a1 6∈ E as z3 6→ (Q, a2; z0z1z2). Thus
e(z2z3, Q) = 3 and so e(z1, Q) = 4. Then H ⊇ 2C4 = {z0z1a4a1z0, z2a2a3z3z2}, a
contradiction.

Case 2. e(z0, Q) = 1.
Then e(T,Q) ≥ 8. Say z0a1 ∈ E. If e(z3, Q) = 0 or e(z2, Q) = 0, we assume

e(z3, Q) = 0. Then e(z1z2, Q) = 8 and [z0, a1, z1] ∼= C3. By (1), z2
na→ (Q, a1) and

so a1a3 ∈ E. Thus (8) holds. Hence we may assume e(z3, Q) ≥ 1 and e(z2, Q) ≥ 1.
Suppose e(z3, Q) = 1 or e(z2, Q) = 1. Say the former holds. If z3a1 ∈ E, then
e(z2, a2a4) ≤ 1 as z2 6→ (Q, a1; z0z1z3). Thus e(z1, Q) = 4 and e(z2, Q) = 3. W.l.o.g.,
say e(z2, a1a2a3) = 3. Then a2a4 6∈ E as z2 6→ (Q, a1; z0z1z3). As [a1, z2, z3] ∼= C3

and by (1), z1
na→ (Q, a1) and so a1a3 ∈ E. Thus (6) holds. If z3a3 ∈ E, then it is

easy to see that E(z1z2, a2a4) does not contain two independent edges for otherwise
H ⊇ 2C4. Consequently, e(z1z2, a2a4) ≤ 2 and so e(T,Q) ≤ 7, a contradiction. Hence
e(z3, a2a4) = 1. Say w.l.o.g. z3a2 ∈ E. As above, if τ(Q) = 2 then E(z1z2, a3a4) does
not contain two independent edges since H 6⊇ 2C4 and so e(T,Q) ≤ 7, a contradiction.
Hence τ(Q) ≤ 1. If z2a3 ∈ E then z1a4 6∈ E as H 6⊇ 2C4. Consequently, e(z2, Q) =
4 and e(z1, a1a2a3) = 3. Clearly, [z1, z0, a1] ∼= C3 and [z1, z3, a2] ∼= C3. By (1),
z2

na→ (Q, a1) and z2
na→ (Q, a2), which implies that τ(Q) = 2, a contradiction. Hence

z2a3 6∈ E. It follows that e(z2, a2a1a4) = 3 and e(z1, Q) = 4. Then [a2, z2, z3] ⊇ C3.
By (1) z1

na→ (Q, a2) and so a2a4 ∈ E. By exchanging the subscripts of a1 with a2 and
a3 with a4, we see that (6) holds. Therefore we may assume below that e(zi, Q) ≥ 2
for i ∈ {2, 3}.

First, suppose that either e(z3, Q) = 2 or e(z2, Q) = 2. Say the former holds.
Then e(z1z2, Q) ≥ 6. Assume for the moment e(z3, a2a4) = 2. Then z2a1 6∈ E as
z3 6→ (Q, a1; z0z1z2). Thus e(z2, Q) ≤ 3 and so e(z1, Q) ≥ 3. Hence e(z1, a2a4) ≥ 1.
W.l.o.g., say z1a2 ∈ E. Then [z0, z1, a2, a1] ⊇ C4. Thus z2a3 6∈ E as H 6⊇ 2C4.
It follows that e(z1, Q) = 4 and e(z2, a2a4) = 2. Clearly, [a2, z2, z3] ∼= C3. By (1),
z1

na→ (Q, a2) and so a2a4 ∈ E. Then [z0, z1, a1] ∼= C3 and [a2, a4, z2, z3] ∼= K4.
By (1), τ(Q) = 2. Then [z0, z1, a3, a1] ⊇ C4 and so H ⊇ 2C4, a contradiction.
Hence e(z3, a2a4) 6= 2. Next, assume e(z3, a1a3) = 2. As z2 6→ (Q, a1; z0z1z3),
e(z2, a2a4) ≤ 1. Hence e(z2, Q) ≤ 3 and so e(z1, Q) ≥ 3. If e(z2, Q) = 3, we
may assume e(z2, a1a2a3) = 3. Then [a2, a3, z2, z3] ⊇ C4 and so z1a4 6∈ E as
H 6⊇ 2C4. Consequently, e(z1, a1a2a3) = 3. As z2 6→ (Q, a1; z0z1z3), a2a4 6∈ E.
Clearly, [z0, z1, a2, a1] ∼= C+

4 and [a3, z2, z3] ∼= C3. By (1), τ(Q) = 1, i.e., a1a3 ∈ E,
and so (7) holds. Hence we may assume e(z2, Q) ≤ 2. It follows that e(z2, Q) = 2
and e(z1, Q) = 4. As H 6⊇ 2C4, we readily see e(z2, a2a4) = 0. Thus e(z2, a1a3) = 2.
As [a1, z2, z3] ∼= C3, z1

na→ (Q, a1) by (1). Thus a1a3 ∈ E and so (4) holds. Next,
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assume that e(z3, a4a3) = 2 or e(z3, a2a3) = 2. Say the former holds. If z1a2 ∈ E then
[z0, z1, a2, a1] ⊇ C4 and so e(z2, a3a4) = 0 as H 6⊇ 2C4. Consequently, e(z1, Q) = 4,
e(z2, a1a2) = 2 and clearly, H ⊇ 2C4, a contradiction. Hence z1a2 6∈ E. Thus
e(z1, Q) ≤ 3 and so e(z2, Q) ≥ 3. If z2a2 6∈ E then e(z1z2, a1a4a3) = 6. If
z2a2 ∈ E, then z1a4 6∈ E because [z2, a2, a3, z3] ⊇ C4 and H 6⊇ 2C4. Conse-
quently, e(z2, Q) = 4 and e(z1, a1a3) = 2. In either situation, [a1, z0, z1] ∼= C3 and
[z2, z3, a3, a4] ∼= K4. By (1), τ(Q) = 2 and so z3 → (Q, a1; z0z1z2), a contradiction.
Finally, assume that e(z3, a1a2) = 2 or e(z3, a1a4) = 2. Say the former holds. As
z2 6→ (Q, a1; z0z1z3), e(z2, a2a4) ≤ 1. Thus e(z2, Q) ≤ 3 and so e(z1, Q) ≥ 3. We
claim that z2a3 6∈ E. If false, then [z3, z2, a3, a2] ⊇ C4 and so z1a4 6∈ E as H 6⊇ 2C4.
Thus e(z1, a1a2a3) = 3, e(z2, a1a3) = 2 and e(z2, a2a4) = 1. As z2 6→ (Q, a1; z0z1z3),
a2a4 6∈ E. As [a2, z1, z3] ∼= C3, z2

na→ (Q, a2) by (1) and this implies that z2a4 6∈ E.
Thus z2a2 ∈ E and so e(a2, T ) = 3, i.e., τ(a2z1z2z3a2) = 2 > τ(Q). By (1),
[a1, a4, a3] 6⊇ C3 and so a1a3 6∈ E. Thus τ(Q) = 0. But, as [z0, a1, a4, a3] ⊇ 2P2, we ob-
tain a contradiction with Lemma 4.2. Hence z2a3 6∈ E. Thus z2a1 ∈ E, e(z2, a2a4) = 1
and e(z1, Q) = 4. If z2a2 ∈ E, then [a1, a2, z2, z3] ∼= K4, [z1, a3, a4] ∼= C3 and so
τ(Q) = 2 by (1). Consequently, (4) holds by exchanging the subscripts of a2 with
a3. Hence assume z2a2 6∈ E and z2a4 ∈ E. As [a1, z2, z3] ∼= C3, z1

na→ (Q, a1) by (1)
and so a1a3 ∈ E. Then a2a4 6∈ E for otherwise H ⊇ 2C4 = {z2z3a2a4z2, z0z1a3a1z0}.
Then (3) holds.

Finally, suppose that e(z2, Q) ≥ 3 and e(z3, Q) ≥ 3. First, assume that either
e(z2, a2a4) = 2 or e(z3, a2a4) = 2. Say the former holds. Then z3a1 6∈ E as z2 6→
(Q, a1; z0z1z3). Thus e(z3, a2a3a4) = 3. Then z2a1 6∈ E as z3 6→ (Q, a1; z0z1z2) and so
e(z2, a2a3a4) = 3. Thus e(z1, a2a4) = 0 as H 6⊇ 2C4. Hence e(z1, a1a3) = 2. Obviously,
H ⊇ C3 ] K4. Thus τ(Q) = 2 by (1) and so H ⊇ 2C4, a contradiction. Hence
e(z2, a2a4) ≤ 1 and e(z3, a2a4) ≤ 1. Thus e(z2, Q) = e(z3, Q) = 3 and e(z1, Q) ≥ 2.
W.l.o.g., say e(z2, a1a4a3) = 3. If z3a4 ∈ E then e(z3, a1a4a3) = 3. Thus z1a2 6∈ E
and a2a4 6∈ E as H 6⊇ 2C4. Since τ(Q) ≤ 1 and [z2, z3, a3, a4] ⊇ K4, [a1, z0, z1] 6⊇ C3

by (1) and so z1a1 6∈ E. Thus e(z1, a3a4) = 2. As [a2, a1, z0, z1] ⊇ 2P2 and by Lemma
4.2, τ(Q) 6= 0 and so a1a3 ∈ E. Thus [a1, a2, a3] ∼= C3, [T, a4] ∼= K4 and so τ(Q) = 2
by (1), a contradiction. Therefore z3a4 6∈ E and so e(z3, a1a2a3) = 3. Then we
see that e(z1, a2a4) = 0 and a2a4 6∈ E as H 6⊇ 2C4. Thus e(z1, a1a3) = 2. Since
[z0, z1, z3, a1] ∼= C+

4 and [a3, a4, z2] ∼= C3, we obtain τ(Q) = 1 by (1) and so a1a3 ∈ E.
Thus (5) holds.

Lemma 4.4 Let Q ∈ Q. If e(F − x1, Q) ≥ 7 with e(x0, Q) ≥ 1 then there exist
two labellings F = z0z1z2z3z1 and Q = u1u2u3u4u1 such that one of the following
statements (9) to (14) holds:

e(z0, Q) = 1, N(z2, Q) = N(z3, Q) = {u2, u3, u4}; (9)
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e(z0, Q) = 4, {u2, u3, u4} ⊆ N(z2, Q), e(z3, Q) = 0, τ(Q) = 2; (10)

N(z0, Q) = {u1, u2, u3}, e(z2, Q) = 4, e(z3, Q) = 0, u2u4 ∈ E; (11)

N(z0, Q) = N(z2, Q) = {u1, u2, u3}, N(z3, Q) = {u4}, u2u4 ∈ E; (12)

N(z0, Q) = {u1}, N(z2, Q) = {u1, u4, u3}, N(z3, Q) = {u1, u2, u3}, u2u4 6∈ E;(13)

N(z0, Q) = {u1, u3}, N(z2, Q) = {u1, u4, u3}, N(z3, Q) = {u1, u3}, u2u4 6∈ E.(14)

Moreover, if one of (10) to (12) holds, then z2 → Q and v → (Q; z0z1z2) for each
v ∈ V (G)− V (F ∪Q) with e(v,Q) ≥ 2.

Proof. The last statement is an easy observation. We claim that there exist two
labellings F = z0z1z2z3z1 and Q = u1u2u3u4u1 such that either one of (9) to (14)
holds or one of (15) to (20) holds:

N(z0, Q) = {u1}, e(z2, Q) = 4, N(z3, Q) = {u2, u3}, u1u3 ∈ E, u2u4 6∈ E; (15)

N(z0, Q) = {u1, u3}, N(z2, Q) = {u1, u4, u3}, N(z3, Q) = {u1, u2, u3}, u2u4 6∈ E; (16)

N(z0, Q) = {u1, u3}, N(z2, Q) = {u1, u4, u3}, N(z3, Q) = {u1, u2}, u2u4 6∈ E; (17)

N(z0, Q) = {u1, u2}, e(z2, Q) = 4, N(z3, Q) = {u3}, u1u3 ∈ E, u2u4 6∈ E; (18)

N(z0, Q) = {u1, u2}, N(z2, Q) = {u1, u2, u3}, N(z3, Q) = {u1, u4}, τ(Q) = 0; (19)

N(z0, Q) = {u1, u2}, N(z2, Q) = {u1, u4, u3}, N(z3, Q) = {u1, u3}, u1u3 ∈ E, u2u4 6∈ E.(20)

To see these, say w.l.o.g. Q = Q1 = u1u2u3u4u1. Say F = z0z1z2z3z1. Suppose
e(z0, Q1) ≥ 3. Say e(z0, u1u2u3) = 3. By Lemma 4.1(a), u2u4 ∈ E and z0 → Q1. As
G1 6⊇ 2C4, e(ui, z2z3) ≤ 1 for each ui ∈ V (Q1). If e(z0, Q1) = 4 then τ(Q1) = 2 and
consequently, e(z2, Q1) = 0 or e(z3, Q1) = 0 as G1 6⊇ 2C4. Say w.l.o.g. e(z3, Q1) = 0
and so (10) holds. If e(z0, Q1) = 3 then e(ui, z2z3) = 1 for all ui ∈ V (Q1). If
e(z3, Q1) = 0 or e(z2, Q1) = 0, say w.l.o.g. e(z3, Q1) = 0, then (11) holds. Hence
we may assume w.l.o.g. that z3u4 ∈ E and e(z2, u1u2u3) ≥ 1. Then z3u2 6∈ E as
z3 6→ (Q1; z0z1z2). Hence z2u2 ∈ E. For the same reason, e(z3, u1u3) = 0 and so
e(z2, u1u3) = 2. Thus (12) holds. Next, suppose e(z0, Q1) = 1. Then e(z2z3, Q1) ≥ 6.
Say z0u1 ∈ E. Assume e(zi, u2u4) = 2 for some i ∈ {2, 3}. Say w.l.o.g. e(z2, u2u4) = 2.
Then z3u1 6∈ E as z2 6→ (Q1, u1; z0z1z3). Similarly, if e(z3, u2u4) = 2 then z2u1 6∈ E,
and consequently, e(z2z3, u2u3u4) = 6. Thus (9) holds. If e(z3, u2u4) ≤ 1 then
e(z3, Q1) = 2, e(z2, Q1) = 4 and we may assume w.l.o.g. that e(z3, u2u3) = 2. Then
u2u4 6∈ E as z3 6→ (Q1, u1; z0z1z2). Clearly, [z2, z3, u2, u3] ⊇ K4 and so G1 ⊇ P4 ]K4.
By Lemma 4.2, τ(Q1) 6= 0 and so u1u3 ∈ E. Thus (15) holds. If e(zi, u2u4) ≤ 1 for
i ∈ {2, 3} then (13) holds or N(z2, Q1) = N(z3, Q1). If the latter holds then (9) holds
(if necessary, exchanging the subscripts of some ui’s).

Therefore we may assume e(z0, Q1) = 2. Then e(z2z3, Q1) ≥ 5. First, sup-
pose N(z0, Q1) = {ui, ui+2} for some i ∈ {1, 2}. Say w.l.o.g. e(z0, u1u3) = 2.
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Then e(u2, z2z3) ≤ 1 and e(u4, z2z3) ≤ 1 as G1 6⊇ 2C4. Then e(zi, u1u3) = 2 and
e(zi, u2u4) = 1 for some i ∈ {2, 3}. W.l.o.g., say e(z2, u1u4u3) = 3. As e(z3, u1u3) ≥ 1
and z2 6→ (Q1; z0z1z3), u2u4 6∈ E. Hence one of (14), (16) and (17) holds. Next,
suppose N(z0, Q1) = {ui, ui+1} for some i ∈ {1, 2, 3, 4}. W.l.o.g., say e(z0, u1u2) = 2
and e(z2, Q1) ≥ e(z3, Q1). If e(z2, Q1) = 4, then e(z3, u1u2) = 0 as G1 6⊇ 2C4. Then
e(z3, u3u4) ≥ 1 and so G1 ⊇ C3 ]C+

4 . Thus τ(Q1) ≥ 1 by (1). Say w.l.o.g. u1u3 ∈ E.
Then z3u4 6∈ E and u2u4 6∈ E as z0 6→ (Q1; z2z1z3). Thus z3u3 ∈ E and so (18) holds.
Hence we may assume e(z2, Q1) = 3. Then {u1, u2} ⊆ N(z2) or {u3, u4} ⊆ N(z2).
First, assume the former holds. As e(z2, u3u4) = 1, say w.l.o.g. z2u3 ∈ E. Then
z3u2 6∈ E and e(z3, u1u3) ≤ 1 as G1 6⊇ 2C4. Thus z3u4 ∈ E and e(z3, u1u3) = 1.
If z3u3 ∈ E then [z2, z3, u3, u4] ⊇ C+

4 and so G1 ⊇ C3 ] C+
4 . Thus τ(Q1) ≥ 1 by

(1) and consequently, z3 → (Q1; z0z1z2), a contradiction. Hence z3u3 6∈ E and so
z3u1 ∈ E. Then τ(Q1) = 0 as G1 6⊇ 2C4 and so (19) holds. Therefore we may assume
{u3, u4} ⊆ N(z2). As e(z2, Q1) = 3, say w.l.o.g. e(z2, u1u4u3) = 3. Then z3u2 6∈ E
as z2 6→ (Q1, u2; z0z1z3). Thus e(z3, u1u3) ≥ 1. Then u2u4 6∈ E for otherwise either
z0 → (Q1; z2z1z3) or z2 → (Q1; z0z1z3). If z3u4 ∈ E then G1 ⊇ C3 ] C+

4 and so
τ(Q1) ≥ 1 by (1). Consequently, u1u3 ∈ E and so z0 → (Q, u4; z2z1z3), a contradic-
tion. Hence z3u4 6∈ E and so e(z3, u1u3) = 2. Again, G1 ⊇ C3 ]C+

4 and so u1u3 ∈ E.
Thus (20) holds.

To prove the lemma, we shall eliminate each of (15) to (20). We do so by con-
tradiction. First, suppose that (18) or (20) holds. Let P = u2z0z1z3. As G1 6⊇ 2C4,
e(z1, u1u2) = 0. Thus e(P,G1) ≤ 15 and so e(P,H1) ≥ 8k − 15 = 8(k − 2) + 1. Say
w.l.o.g. e(P,Q2) ≥ 9. As [z2, u1, u3, u4] ∼= K4 > Q1 and by (1), [P,Q2] 6⊇ C with
C ∼= C3 and [V (P ∪Q2)− V (C)] ≥ Q2. Then we apply Lemma 3.5 to P and Q2 and
see that either z0 → (Q2; z1z2z3) or z1 → (Q2; z0u1u2). Consequently, G2 ⊇ 3C4, a
contradiction.

Next, suppose that either (16) or (17) holds. Let L = z0z1z3u2. As G1 6⊇ 2C4,
e(z1, u2u4) = 0. Thus e(L + u4, G1) ≤ 19 and so e(L + u4, H1) ≥ 10(k − 2) + 1.
Say w.l.o.g. e(L + u4, Q2) ≥ 11. Clearly, [Q1 − u2 + z2] > Q1. Then [L,Q2] 6⊇ C
with C ∼= C3 and [V (L ∪ Q2) − V (C)] ≥ Q2. If e(L,Q2) ≥ 9 then by Lemma
3.5, τ(Q2) = 2 and there exist two labellings L = y1y2y3y4 and Q2 = b1b2b3b4b1
such that one of (a) and (b) in Lemma 3.5 holds w.r.t. L and Q2. Moreover, if (a)
holds then z0 → (Q2; z1z2z3) or u2 → (Q2; z1z2z3), and consequently, G2 ⊇ 3C4, a
contradiction. Hence (b) holds. Then e(z1, Q2) 6= 3 for otherwise z1 → (Q2; z0u3u2)
and so G2 ⊇ 3C4. Thus e(L,Q2) = 9 with e(z3, b1b2b3) = 3 and e(z1, Q2) = 2. Thus
e(u4, Q2) ≥ 11 − 9 = 2. Then either z3 → (Q2; z1z2u4) or u4 → (Q2; z1z2z3), and
so G2 ⊇ 3C4, a contradiction. Hence e(L,Q2) ≤ 8 and so e(u4, Q2) ≥ 3. As x0 ⇒
(Q1, u4), u4 ∈ T . By Lemma 4.1(a), u4 → Q2. AsG2 6⊇ 3C4, we see that u4 6→ (Q2;P )
for each P ∈ {z0z1z3, z0u3u2, z3z2z1, z3u1u2, z1z3u2}. This means that u4 6→ (Q2; vw)
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for each {v, w} ⊆ V (L) with v 6= w and {v, w} 6= {z0, z1}. Thus N(bi, L) = {z0, z1}
for each bi ∈ V (Q2) with e(bi, L) ≥ 2. As e(L,Q2) ≥ 11−e(u4, Q2) ≥ 7, it follows that
|I(z0z1, Q2) ∩N(u4)| ≥ 3. Thus z1 → (Q2; z0u1u4) and so G2 ⊇ 3C4, a contradiction.

Next, suppose that (19) holds. Let L1 = u4z3z1z0 and L2 = u3u2z0z1. As G1 6⊇
2C4, e(z1, u1u2u3) = 0. Thus e(L1, G1) ≤ 15, e(L2, G1) ≤ 15 and so e(L1, H1) +
e(L2, H1) ≥ 16(k− 2) + 2. Say e(L1, Q2) + e(L2, Q2) ≥ 17. Clearly, G1−V (Li) ∼= C+

4

for i = 1, 2. By (1) and Lemma 3.5, e(Li, Q2) ≤ 10 for i = 1, 2. Then for some
s ∈ {1, 2}, e(Ls, Q2) = 9 + r with r ∈ {0, 1}. By Lemma 3.5, τ(Q2) = 2 and there
exist two labellings Ls = y1y2y3y4 and Q2 = b1b2b3b4b1 such that one of (a) and (b)
in Lemma 3.5 holds w.r.t. Ls and Q2. First, assume Ls = L1. Then e(u2u3, Q2) ≥
17 − 9 − r − e(z0z1, Q2) = 8 − r − e(z0z1, Q2). As G2 6⊇ 3C4, [u2, z0, z1, z3, Q2] 6⊇
2C4 and [u3, u4, z3, z1, Q2] 6⊇ 2C4. This implies that u2 6→ (Q2; z0z3) and u3 6→
(Q2;u4z1). If (b) holds, this further implies that e(u2, Q2) ≤ 2 with e(u2, b3b4) ≤ 1
and e(u3, Q2) ≤ 2 with e(u3, b3b4) ≤ 1. Assume e(u2, b1b2) 6= 0. Say w.l.o.g. u2b1 ∈ E.
As e(b1, z1u4) ≥ 1, we see that e(z3, b2b3) ≤ 1 for otherwise z3 → (Q2, b1;u2z0z1) or
z3 → (Q2, b1;u2u3u4) and so G2 ⊇ 3C4. It follows that e(L1, Q2) = 9 with e(z1, Q2) =
3 and e(z0, Q2) = 2. Thus z1 → (Q2, b1;u2u1z0) and so G2 ⊇ 3C4, a contradiction.
Hence e(u2, b1b2) = 0. Next, assume e(u3, b1b2) 6= 0. Say u3b1 ∈ E. As G2 6⊇ 3C4,
z1 6→ (Q2, b1;u3u2z0). This implies that z0b1 6∈ E or e(z1, Q2) ≤ 2. It follows that
e(L1, Q2) = 9 with e(z3, b1b2b3) = 3, e(u4, b1b2) = 2 and e(z0z1, Q2) = 4. Thus
e(u2u3, Q2) ≥ 4. Hence e(u3, Q2) ≥ 3 and so u3 → (Q2;u4z3z1). Thus G2 ⊇ 3C4,
a contradiction. Therefore e(u3, b1b2) = 0 and so e(u2u3, Q2) ≤ 2. It follows that
e(L1, Q2) = 10, e(u2, b3b4) = 1 and e(u3, b3b4) = 1. If u2b4 ∈ E, then [u2, z0, b1, b4] ⊇
C4, [z1, z3, b2, b3] ⊇ C4 and [z2, u1, u4, u3] ⊇ C4, a contradiction. Hence u2b3 ∈ E.
Then z3 → (Q2, b3;u2z0z1) and so G2 ⊇ 3C4, a contradiction. Hence (a) holds. If
y1 = z0, then z0 → (Q2; z1z2z3) and so [F,Q2] ⊇ 2C4, a contradiction. Hence y1 = u4.
As G2 6⊇ 2C4, z3 6→ (Q2;u2u3u4) and z3 6→ (Q2;u2z0z1). Thus i(u2u4, Q2) = 0 and
i(u2z1, Q2) = 0. Hence e(u2, Q2) ≤ 1. As e(u2u3, Q2) ≥ 8 − r − e(z1, Q2) ≥ 4,
e(u3, Q2) ≥ 3. Thus u3 → (Q2; z1z3u4) and so G2 ⊇ 3C4, a contradiction. Therefore
Ls = L2 and e(z3u4, Q2) ≥ 8− r− e(z0z1, Q2). If (a) holds, then y1 6= z1 for otherwise
z1 → (Q2; z0u2u3) by Lemma 3.5 and so G2 ⊇ 3C4. Thus y1 = u3 and so e(z1, Q2) = 0.
Consequently, e(z3u4, Q2) ≥ 4 and if the equality holds then e(L2, Q2) = 10. As
G2 6⊇ 3C4, u2 6→ (Q2; z0z1z3) and so i(z0z3, Q2) = 0. Hence e(z3, Q2) ≤ 2 and so
e(u4, Q2) ≥ 2. Then i(u2u4, Q2) 6= 0. As G 6⊇ 3C4, z0 6→ (Q2;u2u3u4). This implies
e(z0, Q2) ≤ 2. Thus e(L2, Q2) = 9 and so e(u4, Q2) ≥ 3. Thus u4 → (Q2; z0u2u3)
and so G2 ⊇ 3C4, a contradiction. Hence (b) holds. Then [z0, u2, b3, bi] ⊇ C4 for
each i ∈ {1, 2} and e(bi, L2) = 4 for some i ∈ {1, 2}. Say w.l.o.g. e(b1, L2) = 4. As
[z0, u2, b3, b2] ⊇ C4 and G2 6⊇ 3C4, we see that [z3, z1, b1, b4] 6⊇ C4 and [u4, u3, b1, b4] 6⊇
C4. Hence e(b4, z3u4) = 0. Suppose that e(u2, Q2) = 3, ie., e(u2, b1b2b3) = 3. As G2 6⊇
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3C4, u2 6→ (Q2;u3u4z3) and u2 6→ (Q2; z0z1z3). As {b1, b2} = N(z0u3, Q2), it follows
that N(z3, Q2) ⊆ {b3} and if the equality holds then z0b3 6∈ E and e(z0, b1b2) = 2.
Hence e(u4, Q2) ≥ 8−r−e(z0z1, Q2)−e(z3, Q2) ≥ 2 and if the last equality holds then
e(L2, Q2) = 10 with e(z0, b1b2b3) = 3 and e(z3, Q2) = 0. Thus either e(u4, Q2) ≥ 3
and u4 → (Q2; z0u2u3) or e(z0, Q2) ≥ 3 and z0 → (Q2;u2u3u4) and so G2 ⊇ 3C4,
a contradiction. Hence e(u2, Q2) 6= 3. Thus e(z0, Q2) = 3 and e(z1u3, b1b2) = 4.
As z0 6→ (Q2; z1z3u4) and z0 6→ (Q2; z1z2z3), we see that e(z3u4, b1b2) = 0. With
e(b4, z3u4) = 0, we obtain 2 ≥ e(z3u4, Q2) ≥ 8− e(z0z1, Q2) ≥ 3, a contradiction.

Finally, suppose that (15) holds. Let L3 = u4u1z0z1 and L4 = u2z3z1z0. Clearly,
G1 − V (L3) ∼= G1 − V (L4) ∼= K4 > Q1. As G1 6⊇ 2C4, e(z1, u2u4) = 0. Thus
e(L3, G1) ≤ 16 and e(L4, G1) ≤ 15. Then e(L3, H1) + e(L4, H1) ≥ 16(k − 2) + 1. Say
e(L3, Q2) + e(L4, Q2) ≥ 17. Let s ∈ {3, 4} be such that e(Ls, Q2) ≥ 9. By Lemma
3.5, τ(Q2) = 2 and there exist two labellings Ls = y1y2y3y4 and Q2 = b1b2b3b4b1 such
that one of (a) and (b) in Lemma 3.5 holds w.r.t. Ls and Q2. Thus e(Ls, Q2) = 9 + r
with r ∈ {0, 1}. First, assume Ls = L4. Then e(u1u4, Q2) ≥ 8 − r − e(z0z1, Q2). If
(b) holds then e(z1, Q2) 6= 3 for otherwise z1 → (Q2; z0u1u2) and so G2 ⊇ 3C4. Thus
e(L4, Q2) = 9 with e(z3, b1b2b3) = 3 and e(z1u2z0, b1b2) = 6. Hence e(u1u4, Q2) ≥ 4.
AsG2 6⊇ 3C4, z3 6→ (Q2;u2u3u4) and u2 6→ (Q2; z3u3u4). This implies e(u4, b1b2b3) = 0
and so e(u4, Q2) ≤ 1. Thus e(u1, Q2) ≥ 3 and so G2 ⊇ 3C4 since u1 → (Q2; z0z1z3),
a contradiction. Hence (a) holds. As [F,Q2] 6⊇ 2C4, z0 6→ (Q2; z1z2z3). Then y1 6=
z0. Thus y1 = u2 and so e(u1u4, Q2) ≥ 4. As G2 6⊇ 3C4, z3 6→ (Q2;u2u3u4) and
z3 6→ (Q2;u1z0z1). This implies that i(u2u4, Q2) = 0 and i(u1z1, Q2) = 0. Hence
e(u1, Q2) ≤ 2. Moreover, asG2 6⊇ 3C4, u2 6→ (Q2;u4u3z3) and so i(u4z3, Q2) = 0. This
implies that e(u4, Q2) ≤ 1 and if equality holds then e(L4, Q2) = 9 with e(z3, Q2) = 3.
It follows that e(u1u4, Q2) ≤ 3, a contradiction.

Note that if using Qi in place of Q2 in the above argument, then for each Qi in H1

with e(L4, Qi) ≥ 9, we see that e(u4, Qi) ≤ 1 and if e(u4, Qi) = 1 then e(L4, Qi) = 9.
Next, assume e(L3, Q2) = 9 + r. Then e(u2z3, Q2) ≥ 8 − r − e(z0z1, Q2). First,

assume (b) holds w.r.t. L3 and Q2. As G2 6⊇ 3C4, z0 6→ (Q2; z1z2u4). Then e(z0, Q2) 6=
3. Thus e(L3, Q2) = 9 with e(u1, b1b2b3) = 3 and e(z0u4z1, b1b2) = 6 by Lemma 3.5.
Hence e(u2z3, Q2) ≥ 4. As G2 6⊇ 3C4, u1 6→ (Q2; z0z1z3) and z3 6→ (Q2; z1z0u1).
This implies e(z3, Q2) ≤ 1 and so e(u2, Q2) ≥ 3. Thus u2 → (Q2; z1z0u1) and so
G2 ⊇ 3C4, a contradiction. Hence (a) holds. As G2 6⊇ 3C4, z0 6→ (Q2;u1u3u4)
and so y1 6= u4. Thus y1 = z1 and so e(u4, Q2) = 0. As z0 6→ (Q2; z1z2z3) and
u1 6→ (Q2; z0z1z3), we see that N(z3, Q2) ⊆ {b4} and if the equality holds then
N(z1z0u1, Q2) = {b1, b2, b3}. However, if z3b4 ∈ E then [z0, z1, z3, u1, Q2] ⊇ 2C4, a
contradiction. Hence e(z3, Q2) = 0. As G2 6⊇ 3C4, z0 6→ (Q2; z1z3u2) and z1 6→
(Q2; z0u1u2). It follows that N(u2, Q2) ⊆ {b4}. As G2 6⊇ 3C4, [z1, z0, u1, u2, Q2] 6⊇ 2C4

and so u2b4 6∈ E. Thus e(u2, Q2) = 0. If follows that r = 1, i.e., e(z0, Qp) = 4 and
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e(z1u1, b1b2b3) = 6. Let R = L4 + u4 + b1. Clearly, e(L4, G2) ≤ 22, e(u4, G2) = 3 and
e(b1, G2) ≤ 8. Thus e(R,H2) ≥ 12(k − 3) + 3. Say e(R,Q3) ≥ 13. If e(L4, Q3) ≥ 9,
then τ(Q3) = 2 and one of (a) and (b) in Lemma 3.5 holds w.r.t. L4 and Q3. As
noted above, e(u4, Q3) ≤ 1 and if the equality holds then e(L4, Q3) = 9. Thus
e(b1, Q3) ≥ 3. Consequently, either b1 → (Q3; z0z1z3) or b1 → (Q3; z1z3u2). In
the former, G3 ⊇ 4C4 since u1 → (Q2, b1) and z2 → (Q1, u1), and in the latter,
G3 ⊇ 4C4 since z0 → (Q2, b1) and z2 → (Q1, u2), a contradiction. Hence e(L4, Q3) ≤ 8
and so e(u4b1, Q3) ≥ 5. Let T ′ = z0u1b1z0, Q

′
1 = z1b2b4b3z1 and Q′2 = z2z3u2u3z2.

Clearly, τ(Q′1) = 1, τ(Q′2) = 2 and so (T ′, Q′1, Q
′
2, Q3, . . . , Qk−1) is a feasible chain.

Thus u4 ∈ T . As z0 ⇒ (Q2, b1), b1 ∈ T . As e(R,Q3) ≥ 13, e(w,R) ≥ 4 for
some w ∈ V (Q3). Let S1 = {z0z1z3, z0u1u2, z0u1u4, z1z2z3, z1z2u4, z1z3u2, u2u1u4} and
S2 = {z0z1z3, z0u1u2, z0b1z1, z0u1b1, z1z0b1, z3u3u2, z3z1b1}. It is easy to check that
G2−V (P + b1) ⊇ 2C4 for each P ∈ S1 and G2−V (P +u4) ⊇ 2C4 for each P ∈ S2. If
e(b1, Q3) ≥ 3 then b1 → Q3 by Lemma 4.1(a). As e(w,R − b1) ≥ 3, b1 → (Q3, w;P )
for some P ∈ S1 and so G3 ⊇ 4C4, a contradiction. Hence e(b1, Q3) ≤ 2 and
so e(u4, Q3) ≥ 3. Then u4 → (Q3, w;P ) for some P ∈ S2 and so G3 ⊇ 4C4, a
contradiction.

Lemma 4.5 The statement (14) does not hold.

Proof. On the contrary, say (14) holds. W.l.o.g., say Q = Q1 = c1c2c3c4c1 with
N(x0, Q1) = N(x3, Q1) = {c1, c3} and N(x2, Q1) = {c1, c4, c2}. Subject to this con-
dition, we may assume that σ and Q1 is chosen such that e(x1, Q1) is maximal. As
G1 6⊇ 2C4, e(x1, c2c4) = 0 and so N(x1, Q1) ⊆ {c1, c3}. Let R = V (F ) ∪ {c2, c4}.
Clearly, e(x0c2, G1) + e(R,G1) ≤ 27 and so e(x0c2, H1) + e(R,H1) ≥ 16k − 27 =
16(k− 2) + 5. Say e(x0c2, Q2) + e(R,Q2) ≥ 17. Clearly, G1−{x0, c1, c2, c4} ⊇ C4. As
G2 6⊇ 3C4, this implies that x 6→ (Q2; yc1z), i.e., x 6→ (Q2; yz), for each permutation
(x, y, z) of {x0, c2, c4}. We have {c2, c4} ⊆ T since x0 ⇒ (Q2, cr) for each r ∈ {2, 4}.
Set F ′ = c4x2x1x3x2.

Suppose that e(u,Q2) ≥ 3 for some u ∈ {x0, c2, c4}. Then u → Q2 by Lemma
4.1(a). Thus e(d, T ) ≤ 1 for each d ∈ V (Q2) and so e(T,Q2) ≤ 4. Hence 2e(x0c2, Q2) ≥
17−e(F ′, Q2) ≥ 17−8 = 9. This implies that e(x0c2, Q2) ≥ 5. Assume for the moment
that e(x0c2, Q2) ≥ 7. By Lemma 4.1(a), we see that τ(Q2) = 2. Since x0 6→ (Q2; c2c4)
and c2 6→ (Q2;x0c4), it follows that e(c4, Q2) = 0. Thus e(T,Q2) ≥ 17− 2e(x0c2, Q2).
This implies that N(x0, Q2)∩N(T,Q2) 6= ∅. For each xj ∈ V (T ) with i(x0xj, Q2) 6= 0,
if j 6= 1 then c2 → (Q2;x0x1xj) and xi → (Q1, c2) where {i, j} = {2, 3}, i.e.,
G2 ⊇ 3C4, a contradiction. Hence N(x0, Q2) ∩ N(x2x3, Q2) = ∅. If e(x0c2, Q2) = 7
then e(T,Q2) ≥ 3 and so i(x0x1, Q2) ≥ 2. Consequently, x1 → (Q2;x0c1c2). Thus
G2 ⊇ 3C4 as [x2, x3, c3, c4] ⊇ C4, a contradiction. Hence e(x0c2, Q2) = 8. Then
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e(x2x3, Q2) = 0. Let d ∈ V (Q2) be such that e(d, x0x1) = 2. Then [x0, d, x1] ∼= C3,
c2 ⇒ (Q2, d) and τ(x2c1c4c3x2) = τ(Q1) + 1, contradicting (1). Next, assume that
e(x0c2, Q2) = 6. Then e(F ′, Q2) ≥ 17 − 12 = 5. As e(T,Q2) ≤ 4, e(c4, Q2) ≥ 1.
If e(c2, Q2) < 3 then e(x0, Q2) = 4 and e(c2, Q2) = 2. Moreover, τ(Q2) = 2 by
Lemma 4.1(a). Consequently, x0 → (Q2; c2c4) or c2 → (Q2;x0c4), a contradiction.
Hence e(c2, Q2) ≥ 3 and so c2 → Q2. As e(F ′, Q2) ≥ 5 there exists d ∈ V (Q2) such
that e(d, F ′) ≥ 2. As e(d, T ) ≤ 1, we have e(d, c4xi) = 2 for some xi ∈ V (T ). If
xi = x1 then c2 → (Q2;x1x2c4) and [x0, x3, c1, c3] ⊇ C4, a contradiction. If xi 6= x1,
let {i, j} = {2, 3}. Then c2 → (Q2;xic1c4) and [x0, x1, xj, c3] ⊇ C4, a contradiction.
We conclude that e(x0c2, Q2) = 5. Thus e(F ′, Q2) ≥ 17 − 10 = 7. As e(T,Q2) ≤ 4,
e(c4, Q2) ≥ 3. Hence c4 → Q2 by Lemma 4.1(a). As i(x0c2, Q2) ≥ 1, c4 → (Q2;x0c2),
a contradiction.

Therefore e(u,Q2) ≤ 2 for all u ∈ {x0, c2, c4}. Then e(F,Q2) ≥ 17− e(x0c4, Q2)−
2e(c2, Q2) ≥ 17− 8 = 9 and e(F ′, Q2) ≥ 17− 2e(x0c2, Q2) ≥ 9. If e(x0, Q2) = 0 then
e(T,Q2) ≥ 9. Furthermore, applying Lemma 3.2 to F , Q2 and each z ∈ {c2, c4}, we
would have e(cr, Q2) ≤ 1 for each r ∈ {2, 4} and consequently, e(x0c2, Q2)+e(R,Q2) ≤
12 + 2e(c2, Q2) + e(c4, Q2) ≤ 15, a contradiction. Hence e(x0, Q2) ≥ 1. Similarly,
e(c4, Q2) ≥ 1. By Lemma 4.3, there exist two labellings F = z0z1z2z3z1 and Q2 =
a1a2a3a4a1 such that one of (3) to (8) holds w.r.t. F and Q2 where z0 = x0, z1 = x1
and {z2, z3} = {x2, x3}. Since e(F,Q2) + e(z0, Q2) ≥ 17− 2e(c2, Q2)− e(c4, Q2) ≥ 11,
it follows that e(z0, Q2) = 2. Since e(F,Q2) + e(z0, Q2) ≤ 12 and e(c4, Q2) ≤ 2, it
follows that 2e(c2, Q2) ≥ 3 and so e(c2, Q2) = 2. We also see that if e(F,Q2) = 9 then
e(c4, Q2) = 2 since e(c4, Q2) ≥ 17− e(F,Q2)− e(z0, Q2)− 2e(c2, Q2).

As e(z0, Q2) = 2, each of (3), (7) and (8) does not hold w.r.t. F and Q2. Thus
one of (4) to (6) holds w.r.t. F and Q2. Then e(a1, T ) ≥ 2. Hence for each r ∈ {2, 4},
cr 6→ (Q2, a1) and so e(cr, a2a4) ≤ 1. We also note that if (5) holds w.r.t. F and
Q2 then e(zi, Q2) = 3 for exactly one zi ∈ {z2, z3}. This is because (14) holds
w.r.t. F and Q2 by Lemma 4.4. Hence if (5) holds w.r.t. F and Q2 then there
exists exactly one vertex zi ∈ V (T ) such that e(zi, Q2) = 3 and we may assume that
e(z2, a1a4a3) = 3 and N(z3, Q2) = {a1, a3}. Assume for the moment that (6) holds
w.r.t. F and Q2. Then c2a2 6∈ E for otherwise [c2, a2, z0, c1] ⊇ C4, z1 → (Q2, a2)
and [x2, x3, c3, c4] ⊇ C4, i.e., G2 ⊇ 3C4. Thus e(c2, a1a4a3) = 2 and so c2 → (Q2, a2).
Then e(a2, T ) ≤ 1. It follows that e(F,Q2) = 9 with e(a2, z1z2) = 1, e(a1, T ) = 3,
e(a3, z1z2) = 2 and z1a4 ∈ E. If c2a1 6∈ E then [c2, a3, a4] ∼= C3, [T + a1] ⊇ K4 > Q2

and x0 ⇒ (Q1, c2), contradicting (1). Hence c2a1 ∈ E. Then [c2, a1, z0, c1] ⊇ C4 and
[x2, x3, c3, c4] ⊇ C4. Hence z1 6→ (Q2, a1) as G2 6⊇ 3C4. This implies z1a2 6∈ E and so
a2z2 ∈ E. As e(F,Q2) = 9, e(c4, Q2) = 2. Since there are exactly two distinct vertices
zi from T with e(zi, Q2) = 3, it follows, by Lemma 4.3, that (6) holds w.r.t. F ′ and
Q2. In particular, there exist two labellings F ′ = z′0z

′
1z
′
2z
′
3z
′
1 and Q2 = a′1a

′
2a
′
3a
′
4a
′
1
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such that a′1a
′
3 ∈ E, a′2a

′
4 6∈ E, e(z′0, a

′
1a
′
2) = 2 and N(z′2, Q2) = {a′1, a′2, a′3}. Clearly,

z′2 = z1, z
′
1 = z2 and {a′1, a′3} = {a1, a3}. As e(z1, a1a4a3) = 3, it follows that

a′2 = a4. Thus [c4, a4, z1, x2] ⊇ C4, z0 → (Q2, a4) and x3 → (Q1, c4), i.e., G2 ⊇ 3C4,
a contradiction. Therefore only one of (4) and (5) holds w.r.t. F and Q2. When (4)
holds w.r.t. F and Q2, either e(a1, F ) = 4 or e(a3, F ) = 4. In this case, we may
assume that e(a1, F ) = 4. We claim that for each r ∈ {2, 4} if e(cr, Q2) = 2 then
cra1 ∈ E regardless which of (4) and (5) holds w.r.t. F and Q2. To observe this, we
see that if cra1 6∈ E then [cr, a2, a3, a4] ⊇ C3 as e(cr, a2a4) ≤ 1. Moreover, if (4) holds
then a2a4 6∈ E for otherwise cr → (Q2, a1;V (T )). Thus in any case, we have that
[T + a1] ⊇ K4 > Q2 and x0 ⇒ (Q1, cr), contradicting (1). Hence the claim holds.
If (4) holds w.r.t. F and Q2 then [c2, a1, z0, c1] ⊇ C4 and [x2, x3, c3, c4] ⊇ C4. Thus
z1 6→ (Q2, a1) as G2 6⊇ 3C4. This implies that a2a4 6∈ E and e(z1, a2a4) = 1. W.l.o.g.,
say e(z1, a1a4a3) = 3. Then e(F,Q2) = 9 and e(a3, F ) = 4. Thus e(c4, Q2) = 2. If (5)
holds w.r.t. F and Q2 then e(c4, Q2) = 2 as e(F,Q2) = 9. Thus the above argument
implies that if (4) or (5) holds w.r.t. F and Q2 then e(c2c4, a1a3) = 4 since a1 and
a3 are in the symmetric position. In any case, let V (T ) = {xr, xs, xt} be such that
e(xr, a1a4a3) = 3 where xr ∈ {z1, z2}. Then N(y,Q2) = {a1, a3} for all y ∈ R−{xr}.
If xr = z1 then (5) and (14) hold w.r.t F ′ and Q2 and if xr = z2 then (5) and (14)
hold w.r.t. F and Q2. By the assumption on σ and Q1, we shall have e(x1, c1c3) = 2.

Let S = {x0, c2, c4, a2}. Then e(S,G2) ≤ 18 and so e(S,H2) ≥ 8k − 18 = 8(k −
3) + 6. Say e(S,Q3) ≥ 9. As in the beginning, x 6→ (Q3; yc1z), i.e., x 6→ (Q3; yz), for
each permutation (x, y, z) of {x0, c2, c4} for otherwise [G1, Q3] ⊇ 3C4. As G3 6⊇ 4C4,
x 6→ (Q3; ya1z), i.e., x 6→ (Q3; yz), for each a2 ∈ {x, y, z} ⊆ S with |{x, y, z}| = 3.
We conclude that x 6→ (Q3;S−{x}) for all x ∈ S. As x0 ⇒ (Q2, a2), we have a2 ∈ T .
Thus S ⊆ T . As e(S,Q3) ≥ 9 and by Lemma 4.1(a), x → (Q3;S − {x}) for each
x ∈ S with e(x,Q3) ≥ 3, a contradiction.

Lemma 4.6 The statement (13) does not hold.

Proof. On the contrary, say (13) holds. W.l.o.g., say Q = Q1 = a1a2a3a4a1,
N(x0, Q1) = {a1}, N(x2, Q1) = {a1, a4, a3}, N(x3, Q1) = {a1, a2, a3} and a2a4 6∈ E.
As G1 6⊇ 2C4, e(x1, a2a4) = 0. Let L1 = x0x1x2a4 and L2 = x0x1x3a2. Then
e(L1, G1) ≤ 15 and e(L2, G1) ≤ 15. Thus e(L1, H1) + e(L2, H1) ≥ 16(k − 2) + 2. Say
e(L1, Q2) + e(L2, Q2) ≥ 17. W.l.o.g., say e(L2, Q2) ≥ 9. Clearly, G1 − V (L2) > Q1.
By Lemma 3.5, there exist two labellings L2 = y1y2y3y4 and Q2 = b1b2b3b4b1 with
τ(Q2) = 2 such that one of (a) and (b) in Lemma 3.5 holds w.r.t. L2 and Q2. We
claim that e(x0a4, Q2) = 0, e(x2x3, Q2) = 8 and e(x1a2, b1b2b3) = 6. To see this, let
e(L2, Q2) = 9 + r where r ∈ {0, 1}. Then e(x2a4, Q2) ≥ 17 − 9 − r − e(x0x1, Q2) =
8 − r − e(x0x1, Q2). Assume that (b) holds. Then e(x1, Q2) 6= 3 for otherwise
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x1 → (Q2;x0a1a2) and [x2, x3, a3, a4] ⊇ C4, i.e., G2 ⊇ 3C4. Thus e(x3, Q2) = 3,
e(L2, Q2) = 9 and e(x2a4, Q2) ≥ 4. As G2 6⊇ 3C4, x3 6→ (Q2; a2a3a4). Thus
i(a2a4, Q2) = 0, i.e., e(a4, b1b2) = 0. If e(a4, b3b4) = 2 then a4 → (Q2, b1;x0x1x3)
and so G2 ⊇ 3C4, a contradiction. Hence e(a4, Q2) ≤ 1 and so e(x2, Q2) ≥ 3. Thus
x3 → (Q2;x0x1x2), i.e., [F,Q2] ⊇ 2C4, a contradiction. Hence (a) holds. Then
y1 6= x0 for otherwise x0 → (Q2;x1x2x3) and so [F,Q2] ⊇ 2C4. Thus y1 = a2 and
e(x0, Q2) = 0. Hence e(x2a4, Q2) ≥ 8 − r − e(x1, Q2) ≥ 4 and if the last equal-
ity holds then r = 1, i.e., e(L2, Q2) = 10. As x3 6→ (Q2; a2a3a4), i(a2a4, Q2) = 0.
Thus if e(a4, Q2) ≥ 2 then a4 → (Q2; a2a3x3) and so G2 ⊇ 3C4, a contradiction.
Hence e(a4, Q2) ≤ 1. As G2 6⊇ 3C4, a2 6→ (Q2; a4a3x2). Thus i(x2a4, Q2) = 0
and so e(x2a4, Q2) ≤ 4. It follows that e(x2a4, Q2) = 4 and e(L2, Q2) = 10 (i.e.,
e(x1a2, b1b2b3) = 6 and e(x3, Q2) = 4). As G2 6⊇ 3C4, a2 6→ (Q2; a4a3x3). Thus
e(a4, Q2) = 0 and so e(x2, Q2) = 4.

Let R = {x0, b2, b3, a2, a4}. Then e(R,G2) ≤ 29 and so e(x0, H2) + e(R,H2) ≥
12k−31 = 12(k−3)+5. Say e(x0, Q3)+e(R,Q3) ≥ 13. Note that [x0, x1, xi, a1] ⊇ C4

for i ∈ {2, 3} and [a2, a3, x3, bi] ⊇ C4 for i ∈ {1, 2, 3}. Set F1 = x0x1b2b3x1,
Q′2 = x2x3b1b4x2 and σ1 = (x0x1, x1b2b3x1, Q1, Q

′
2, Q3, . . . , Qk−1). Then σ1 is a

strong feasible chain. Let S1 = {b2x1b3, b2x3a2, b2x2a4, b3x3a2, b3x2a4, a2a3a4}, S2 =
{x0a1a2, x0x1b2, x0x1b3, b2b4b3} and S3 = {x0a1a4, x0x1b2, x0x1b3}. Each P ∈ S1∪S2∪
S3 has its two endvertices in R. It is easy to check that G2 − V (P + x0) ⊇ 2C4 for
each P ∈ S1, G2 − V (P + a4) ⊇ 2C4 for each P ∈ S2 and G2 − V (P + a2) ⊇ 2C4

for each P ∈ S3. Thus x0 6→ (Q3;P ) for each P ∈ S1, a4 6→ (Q3;P ) for each
P ∈ S2 and a2 6→ (Q3;P ) for each P ∈ S3. If e(x0, Q3) ≥ 3 then x0 → Q3. As
e(Q3, R − {x0}) ≥ 13 − 2e(x0, Q3) ≥ 5, e(u,R − {x0}) ≥ 2 for some u ∈ V (Q3)
and so x0 → (Q3, u;P ) for some P ∈ S1, a contradiction. Hence e(x0, Q3) ≤ 2
and so e(R,Q3) ≥ 11. If e(a2a4, Q3) ≤ 4 then e(F1 − x1, Q3) ≥ 7. By Lemmas
4.4-4.5, we see that either e(x0, Q3) = 0 or one of (9) and (13) holds w.r.t. F1 and
Q3. Thus e(x0, Q3) + e(F1 − x1, Q3) ≤ 8. Consequently, e(x0, Q3) + e(R,Q3) ≤
8 + e(a2a4, Q3) ≤ 12, a contradiction. Therefore e(a2a4, Q3) ≥ 5. Let {r, t} = {2, 4}
be such that e(ar, Q3) ≥ 3. Let {p, q} = {2, 3} be such that e(xp, a1ara3) = 3 and
e(xq, a1ata3) = 3.

We claim that ar → Q3. On the contrary, suppose that ar 6→ Q3. Then e(ar, Q3) =
3. Let Q3 = u1u2u3u4u1 be such that e(ar, u1u2u3) = 3. Then u2u4 6∈ E. If a1a3 6∈ E,
we would have τ(x0a1xpx1x0) ≥ τ(Q1) = 0. Then (ara3, xqata3xq, x0a1xpx1x0, Q2, . . . , Qk−1)
is a strong feasible chain and so ar → Q3 by Lemma 4.1(a), a contradiction. Hence
a1a3 ∈ E. We shall show that e(u4, R − {ar}) = 0. If e(u4, F1 − x1) ≥ 1, then
for some i ∈ {2, 3}, say w.l.o.g. i = 2, such that [x0, x1, b2, u4] ⊇ P4. Moreover,
xp ⇒ (Q2, b2), τ(xqa1ata3xq) = τ(Q1)+1 and τ(aru1u2u3ar) = τ(Q3)+1. This contra-
dicts Lemma 4.2. If u4at ∈ E, then [x0x1, u4at] ⊇ 2P2, τ(x2a1a3x3x2) = τ(Q1)+1 and
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τ(aru1u2u3ar) = τ(Q3) + 1, contradicting Lemma 4.2. Therefore e(u4, R−{ar}) = 0.
Since a4 6→ (Q3, u2;P ) for each P ∈ S2 and a2 6→ (Q3, u2;P ) for each P ∈ S3, we
see that u2 6∈ I(x0bi, Q3) for each i ∈ {2, 3}. If I(x0bi, Q3) 6= ∅ for some i ∈ {2, 3},
then I(x0bi, {u1, u3}) 6= ∅. W.l.o.g., say e(u1, x0b2) = 2. Then [ar, u2, u3] ∼= C3,
[u1, x0, x1, b2] ⊇ C4, [xq, a1, at, a3] ∼= K4 and [xp, b1, b3, b4] ∼= K4. This violates
(2) on σ. Therefore I(x0bi, {u1, u3}) = ∅ for each i ∈ {2, 3}. We conclude that
i(x0bi, Q3) = 0 for each i ∈ {2, 3}. It follows that e(b2b3, Q3) ≤ 2(3 − e(x0, Q3)).
This yields that e(b2b3, Q3) + 2e(x0, Q3) ≤ 6. Consequently, e(arat, Q3) ≥ 13− 6 = 7.
Hence e(at, Q3) = 4, a contradiction as atu4 6∈ E. Therefore ar → Q3.

First, assume that ar = a4. As a4 6→ (Q3;P ) for each P ∈ S2, we have i(x0y,Q3) =
0 for each y ∈ {a2, b2, b3} and i(b2b3, Q3) = 0. Thus e(x0, Q3) + e(b2b3, Q3) ≤ 4 and
e(x0, Q3) + e(a2, Q3) ≤ 4. It follows that e(x0, Q3) + e(R,Q3) ≤ 4 + 4 + e(a4, Q3) ≤
12, a contradiction. Therefore we may assume that ar = a2 and e(a4, Q3) ≤ 2.
As a2 6→ (Q3;P ) for each P ∈ S3, i(x0bi, Q3) = 0 for each i ∈ {2, 3}. Then
e(b2b3, Q3) ≤ 2(4 − e(x0, Q3)). Thus e(b2b3, Q3) + 2e(x0, Q3) ≤ 8. On the other
hand, e(b2b3, Q3) + 2e(x0, Q3) ≥ 13 − e(a2a4, Q3) ≥ 13 − 6 = 7. As e(a2a4, Q3) ≥ 5,
i(a2a4, Q3) ≥ 1. If e(x0, Q3) = 0 then e(b2b3, Q3) ≥ 7 and so e(bi, Q3) = 4 for some
i ∈ {2, 3}. Consequently, bi → (Q3; a2a3a4), [x0, x1, x2, a1] ⊇ C4 and x3 → (Q2, bi),
i.e., G3 ⊇ 4C4, a contradiction. If e(x0, Q3) = 1, say d ∈ V (Q3) with x0d ∈ E.
Then e(b2b3, Q3 − d) ≥ 5. W.l.o.g., say e(b2, Q3 − d) = 3. If da2 ∈ E then
b2 → (Q3;x0a1a2), [x2, x3, a3, a4] ⊇ C4 and x1 → (Q2, b2), i.e., G3 ⊇ 4C4, a con-
tradiction. Hence a2d 6∈ E. Thus dd∗ ∈ E as a2 → Q3. Therefore b2 → Q3. Thus
b2 → (Q3; a2a3a4) and it follows, as above, that G3 ⊇ 4C4, a contradiction. Finally,
we have e(x0, Q3) = 2. Then e(b2b3, Q3) ≥ 3. Say Q3 = d1d2d3d4d1 with x0d1 ∈ E.
If x0d3 ∈ E then e(b2b3, d2d4) ≥ 3 and so x0 → (Q3; b2b3), a contradiction. Therefore
e(x0, d2d4) = 1. W.l.o.g., say x0d2 ∈ E. Then e(b2b3, d3d4) ≥ 3. If e(a2, d1d2) = 2
then [x0, d1, a2, d2] ⊇ C4, [b2, b3, d3, d4] ⊇ C4, x2 → (Q1, a2) and [x1, x3, b1, b4] ⊇ C4,
i.e., G3 ⊇ 4C4, a contradiction. Hence e(a2, d1d2) ≤ 1 and so e(a2, Q3) = 3. It follows
that e(b2b3, d3d4) = 4. As a2 → Q3, τ(Q3) ≥ 1. Thus x0 → (Q3; b2b3) again, a
contradiction.

Lemma 4.7 In Lemma 4.3, none of (4), (5) and (7) holds.

Proof. If (5) holds then e(F − z1, Q) ≥ 7 with 1 ≤ e(z0, Q) ≤ 2 and none of (9) to
(12) holds w.r.t. F and Q. By Lemmas 4.4-4.6, this is impossible. Hence (5) does
not hold.

Suppose that (4) holds. W.l.o.g., say Q = Q1 = c1c2c3c4c1 with c1c3 ∈ E,
N(xi, Q1) ⊆ {c1, c3} for each i ∈ {0, 2, 3} and e(F,Q1) ≥ 9. As 9 ≤ e(F,Q1) ≤ 10,
at most one of the ten possible edges between F and Q1 may miss from G1. Let
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R = {x0, x2, x3, c2, c4}. Clearly, e(R,G1) ≤ 19. We claim

For each {u, v, w} ⊆ R with u ∈ {x0, c2, c4} and |{u, v, w}| = 3,

G1 − {u, v, w, z} ⊇ C4 for some z ∈ I(vw,G1 − {u, v, w}). (21)

To see this, let u = x0 first. If {v, w} = {x2, x3} then obviously, we can take z =
x1. If {v, w} = {c2, c4} then take z = c1 since T + c3 ⊇ C4. Therefore we may
assume w.l.o.g. that v = x2 and w = c2 in order to see (21). As e(x2x3, c1c3) ≥ 3,
{x2ci, x3cj} ⊆ E for some {i, j} = {1, 3}. Say w.l.o.g. {x2c1, x3c3} ⊆ E. If x1c4 ∈ E
then [x3, c3, c4, x1] ⊇ C4 and we take z = c1. If x1c4 6∈ E then e(x1, c1c2c3) = 3 and
e(x2x3, c1c3) = 4. Then [x3, c1, c4, c3] ⊇ C4 and we take z = x1. Next, let u ∈ {c2, c4}.
Say w.l.o.g. u = c2. First, assume {v, w} = {x2, x3}. If e(x0, c1c3) = 2, take z = x1.
If e(x0, c1c3) 6= 2 then e(x0, c1c3) = 1, e(x1, Q2) = 4 and e(x2x3, c1c3) = 4. Say
w.l.o.g. x0c1 ∈ E. Then [x0, c1, c4, x1] ⊇ C4 and we take z = c3. Next, assume that
v = x0 and w ∈ {x2, x3}. W.l.o.g., say w = x2. If e(x3, c1c3) = 2, take z = x1.
If e(x3, c1c3) = 1 then e(x0x2, c1c3) = 4 and e(x1, Q1) = 4. Say w.l.o.g. x3c3 ∈ E.
Then [x1, x3, c3, c4] ⊇ C4 and we take z = c1. If {v, w} = {x0, c4} then we have either
x0c1 ∈ E and e(c3, T ) = 3 or x0c3 ∈ E and e(c1, T ) = 3. Then we take z = c1 or
z = c3 accordingly. Finally, let {v, w} = {c4, xi} for some i ∈ {2, 3}. Say w.l.o.g.
{v, w} = {c4, x2}. We have either c1x2 ∈ E and e(c3, x0x1x3) = 3 or c3x2 ∈ E and
e(c1, x0x1x3) = 3. Then we take z = c1 or z = c3 accordingly.

We have e(x0, H1) + e(R,H1) ≥ 12k − 3 − 19 = 12(k − 2) + 2. Say e(x0, Q2) +
e(R,Q2) ≥ 13. As G2 6⊇ 3C4 and by (21), u 6→ (Q2;R−{u}) for each u ∈ {x0, c2, c4}.
If e(x0, Q2) ≥ 3 then x0 → Q2 and e(R − {x0}, Q2) ≥ 13 − 2e(x0, Q2) ≥ 5. Thus
x0 → (Q2;R− {x0}), a contradiction. Hence e(x0, Q2) ≤ 2. Then e(R,Q2) ≥ 11.

Suppose c2c4 6∈ E. We claim {c2, c4} ⊆ T . This is obvious if e(x0, Q1) = 2 for we
have x0 ⇒ (Q1, ci) for i ∈ {2, 4} in this situation. If e(x0, c1c3) = 1, then e(x1, Q1) =
4 and e(x2x3, c1c3) = 4. Say w.l.o.g. x0c1 ∈ E. Then for each {i, j} = {2, 4},
τ(x0x1cic1x0) = τ(Q1) and so (cjc3, x2x3c3x2, x0x1cic1x0, Q2, . . . , Qk−1) is a strong
feasible chain. Thus {c2, c4} ⊆ T . If e(ci, Q2) ≥ 3 for some i ∈ {2, 4} then ci → Q2 by
Lemma 4.1(a). Consequently, ci → (Q2;R − {ci}) as e(R,Q2) ≥ 11, a contradiction.
Hence e(ci, Q2) ≤ 2 for i ∈ {2, 4}. Thus e(F − x1, Q2) ≥ 13 − e(x0c2c4, Q2) ≥ 7.
As e(x0, Q2) ≤ 2 and by Lemmas 4.4-4.6, either e(x0, Q2) = 0 or e(x0, Q2) = 1 with
e(F − x1, Q2) = 7. It follows that e(x0, Q2) + e(R,Q2) ≤ 12, a contradiction.

Therefore c2c4 ∈ E. Clearly, either x0c1 ∈ E and e(c3, T ) = 3 or x0c3 ∈ E
and e(c1, T ) = 3. W.l.o.g., say the former holds. Let F1 = x0c1c2c4c1 and Q′1 =
x1x2c3x3x1. Then σ1 = (x0c1, c1c2c4c1, Q

′
1, Q2, . . . , Qk−1) is a strong feasible chain.

Furthermore, e(F1, Q
′
1) ≥ 9 and (4) holds w.r.t. F1 and Q′1. As e(F −x1, Q2)+e(F1−

c1, Q2) = e(x0, Q2) + e(R,Q2) ≥ 13, we may assume w.l.o.g. that e(F − x1, Q2) ≥ 7.
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By Lemmas 4.4-4.6, either e(x0, Q2) = 0 with e(x2x3, Q2) ≥ 7 or e(x0, Q2) = 1 with
e(x2x3, Q2 − d) = 6 and e(d, x2x3) = 0 for some d ∈ V (Q2). Thus e(ci, Q2) ≥ 3 for
some i ∈ {2, 4} since e(x0, Q2) + e(R,Q2) ≥ 13. It follows that ci → (Q2;x2x3), a
contradiction.

Finally, suppose that (7) holds. Say Q = Q1 = a1a2a3a4a1, N(x0, Q1) = {a1},
N(x1, Q1) = N(x2, Q1) = {a1, a2, a3}, N(x3, Q1) = {a1, a3}, a1a3 ∈ E and a2a4 6∈ E.
Let F2 = a4a3a2x2a3 andQ′1 = x0x1x3a1x0. Then σ2 = (a4a3, a3a2x2a3, Q

′
1, Q2, . . . , Qk−1)

is a strong feasible chain and a4 ∈ T . Set R1 = {x0, a4, a2, x2}, R′ = R1 − {x0} and
R′′ = R1−{a4}. Then e(R1, G1) = 13 and so e(R1, H1) ≥ 8(k−2)+3. Say e(R1, Q2) ≥
9. It is easy to see that G1 − V (P + x0) ⊇ C4 for each P ∈ {a4a3x2, a4a3a2, a2x1x2}
and G1 − V (P + a4) ⊇ C4 for each P ∈ {x0a1a2, x0x1x2, a2a3x2}. As G2 6⊇ 3C4,
this implies that x0 6→ (Q2;R

′) and a4 6→ (Q2;R
′′). As e(R1, Q2) ≥ 9, this implies

that x0 6→ Q2 and a4 6→ Q2. By Lemma 4.1(a), e(x0, Q2) ≤ 2 and e(a4, Q2) ≤ 2.
Thus e(F2 − a3, Q2) = e(R′, Q2) ≥ 7. By Lemmas 4.4-4.6, e(a4, Q2) = 0 or (9) holds
w.r.t. F2 and Q2. By Lemma 4.2, [F2, Q2] 6⊇ P ] Q such that P ⊇ 2P2, Q ∼= C4

and τ(Q) = τ(Q2) + 2. Applying Lemma 3.3 to F2, Q2 and z = x0, we have a la-
belling Q2 = d1d2d3d4d1 such that e(a2x2, d2d3d4) = 6 and x0d3 ∈ E. Consequently,
a2 → (Q2, d3;x0x1x2) and x3 → (Q1, a2), i.e., G2 ⊇ 3C4, a contradiction.

Lemma 4.8 In Lemma 4.3, (6) does not hold.

Proof. On the contrary, suppose that (6) holds. Say w.l.o.g. Q = Q1 = c1c2c3c4c1
such that e(F,Q1) ≥ 9, N(x0, Q1) ⊆ {c1, c2}, N(x2, Q1) ⊆ {c1, c2, c3}, N(x3, Q1) ⊆
{c1}, c1c3 ∈ E and c2c4 6∈ E. If e(x2, c2c3) = 2 and e(c1, x0x1x3) = 3, let F ′ =
c4c3x2c2c3 and Q′ = c1x0x1x3c1. Then (c4c3, c3x2c2c3, Q

′, Q2, . . . , Qk−1) is a strong fea-
sible chain of G. Moreover, N(c4, Q

′) ⊆ {c1, x1},N(x2, Q
′) ⊆ {c1, x3, x1}, N(c2, Q

′) ⊆
{c1, x0, x1}, N(c3, Q

′) ⊆ {c1, x1} and e(F ′, Q′) ≥ 9. Thus (5) holds w.r.t. F ′ and Q′,
contradicting Lemma 4.7. Therefore either e(x2, c2c3) = 1 or e(c1, x0x1x3) = 2. Thus
one of (22) to (26) holds:

N(x0, Q) = {c1, c2}, N(x1, Q) = {c2, c3, c4}, N(x2, Q) = {c1, c2, c3}, x3c1 ∈ E, c1c3 ∈ E;(22)

N(x0, Q) = {c1, c2}, e(x1, Q) = 4, N(x2, Q) = {c1, c2, c3}, x3c1 6∈ E, c1c3 ∈ E; (23)

N(x0, Q) = {c1, c2}, e(x1, Q) = 4, N(x2, Q) = {c1, c3}, x3c1 ∈ E, c1c3 ∈ E; (24)

N(x0, Q) = {c1, c2}, e(x1, Q) = 4, N(x2, Q) = {c1, c2}, x3c1 ∈ E, c1c3 ∈ E; (25)

N(x0, Q) = {c2}, e(x1, Q) = 4, N(x2, Q) = {c1, c2, c3}, x3c1 ∈ E, c1c3 ∈ E. (26)

If (25) holds, let F ′ = x3x1c3c4x1 and Q′1 = c1x2c2x0c1. Then (24) holds w.r.t. F ′

and Q′1 (by relabelling the vertices accordingly). If (26) holds, let F ′′ = x3x1c2x0x1
and Q′′1 = c1x2c3c4c1. Then (23) holds w.r.t. F ′′ and Q′′1 (by relabelling the vertices
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accordingly). Therefore we only need to eliminate each of (22), (23) and (24) in order
to prove that (6) does not hold.

Suppose that one of (22), (23) and (24) holds. Let T1 = c1x0c2c1, F1 = T1 +
c4c1, Q

′
1 = c3x1x3x2c3, T2 = x1c2x0x1, F2 = T2 + x3x1 and Q′′1 = x2c1c4c3x2.

Then τ(Q′1) = τ(Q′′1) = 1. Thus both σ1 = (c4c1, T1, Q
′
1, Q2, . . . , Qk−1) and σ2 =

(x3x1, T2, Q
′′
1, Q2, . . . , Qk−1) are strong feasible chains and so {c4, x3} ⊆ T . First,

assume that (22) or (23) holds. Let R = {c4, x0, c2, x3}, R′ = R − {x3} and
R′′ = R−{c4}. Then e(R,G1) ≤ 14 and so e(R,H1) ≥ 8(k−2)+2. Say e(R,Q2) ≥ 9.
It is easy to see that G1 − V (P + x3) ⊇ C4 for each P ∈ {x0x1c4, x0c1c2, c2c3c4} and
G1−V (P +c4) ⊇ C4 for each P ∈ {x0x1x3, x0c1c2, c2x2x3}. As G2 6⊇ 3C4, this implies
that x3 6→ (Q2;R

′) and c4 6→ (Q2;R
′′). As e(R,Q2) ≥ 9, this further implies that

x3 6→ Q2 and c4 6→ Q2. By Lemma 4.1(a), e(x3, Q2) ≤ 2 and e(c4, Q2) ≤ 2. Since
e(F1−c1, Q2) = e(R′, Q2) ≥ 7, we see, by Lemmas 4.4-4.6, that either e(c4, Q2) = 0 or
there exists d ∈ V (Q2) such that e(c4, Q2) = 1 N(x0, Q2) = N(c2, Q2) = V (Q2)−{d}.
By Lemma 4.2, [F1, Q2] 6⊇ P ] Q with P ∼= 2P2, Q ∼= C4 and τ(Q) = τ(Q2) + 2. As
x3 6→ (Q2;x0c2), we may apply Lemma 3.3 to F1, Q2 and z = x3. Thus there ex-
ists a labelling Q2 = d1d2d3d4d1 such that e(x0c2, d2d3d4) = 6 and x3d3 ∈ E. Then
c2 → (Q2, d3;x0x1x3) and x2 → (Q2, c2), i.e., G2 ⊇ 3C4, a contradiction.

Therefore (24) holds. Then e(F − x1, G1) + e(F1 − c1, G1) = 20 and so e(F −
x1, H1)+e(F1−c1, H1) ≥ 12k−20 ≥ 12(k−2)+4. Say e(F−x1, Q2)+e(F1−c1, Q2) ≥
13. Let R1 = {x0, x2, x3, c2, c4}. It is easy to check that G1−V (P +x0) ⊇ C4 for each
P ∈ {x3x1x2, x3x1c4, x3x1c2, x2c3c4, x2c3c2, c4c3c2}. As G2 6⊇ 3C4, this implies that
x0 6→ (Q2;R1−{x0}). As e(R1, Q2) = e(F − x1, Q2) + e(F1− c1, Q2)− e(x0, Q2) ≥ 9,
this further implies that x0 6→ Q2. By Lemma 4.1(a), e(x0, Q2) ≤ 2. Assume for
the moment that e(F − x1, Q2) ≥ 7. As e(x0, Q2) ≤ 2, we see, by Lemmas 4.4-4.6,
that either e(x0, Q2) = 0 with e(x2x3, Q2) ≥ 7 or e(x0, Q2) = 1 with e(x2, Q2) =
e(x3, Q2) = 3. Then e(x0, Q2) + e(F − x1, Q2) ≤ 8 and so e(c2c4, Q2) ≥ 13 − 8 = 5.
As x3 ∈ T and e(x3, Q2) ≥ 3, we obtain x3 → (Q2; c2c4), i.e., x3 → (Q2; c2c3c4).
As [x0, x1, x2, c1] ⊇ C4, it follows that G2 ⊇ 3C4, a contradiction. Therefore e(F −
x1, Q2) ≤ 6 and so e(F1 − c1, Q2) ≥ 7. By Lemmas 4.4-4.6, we have that either
e(c4, Q2) = 0 or one of (9) to (12) holds w.r.t. F1 and Q2. As e(x0, Q2) ≤ 2, we
conclude that e(x0, Q2) ≤ 1 and one of (10) to (12) holds w.r.t. F1 and Q2. Thus
e(x0, Q2) + e(F1 − c1, Q2) ≤ 8 and so e(x2x3, Q2) ≥ 13 − 8 = 5. Then e(xi, Q2) ≥ 3
for some i ∈ {2, 3}. Thus xi → (Q2; c4c2), i.e., xi → (Q2; c4c3c2). Say {i, j} = {2, 3}.
Then [c1, x0, x1, xj] ⊇ C4 and so G2 ⊇ 3C4, a contradiction.

Lemma 4.9 Set G0 = [F,Q2] and let z1 and z2 be two distinct vertices in G0 − x1
such that if z1 6∈ V (T ) then xi → (Q2, z1) and e(z1, T − xi) ≥ 1 for some xi ∈ V (T ).
In addition, suppose that G0 +x ⊇ 2C4 for each x ∈ V (G)−V (G0) with e(x,G0) ≥ 2.
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Then for any i ∈ {1, 3, . . . , k− 1}, there exists no labelling Qi = d1d2d3d4d1 such that
the following hold:

(a) x0d1 ∈ E, d2d4 6∈ E, e(z1, d1d2d3) = 3, e(z2, d1d3) = 2;
(b) If e(x0, d1d3) = 1 then Qi 6= Q1, e(d2d4, Q1) ≤ 4 and for some y ∈ V (Q1),

x0 ⇒ (Q1, y), e(y, d1d3) = 2.

Proof. Suppose that there exists Qi as described. Say w.l.o.g. Qi = Q3 = d1d2d3d4d1.
Let L = [F,Q2, Q3] if e(x0, d1d3) = 2 and otherwise L = [F,Q1, Q2, Q3]. Say |V (L)| =
4p. We claim e(F + d2 + d4, L) ≤ 12p − 2. If e(x0, Q3) ≥ 3 then x0 → (Q3, d3) by
Lemma 4.1(a) and so [F,Q2, Q3] ⊇ 3C4 since G0 + d3 ⊇ C4, a contradiction. Hence
e(x0, Q3) ≤ 2. Obviously, e(F, F ) = 8. As [F,Q2] 6⊇ 2C4, e(F,Q2) ≤ 12 by Lemma
4.3. As [F,Q3] 6⊇ 2C4, if e(F,Q3) ≥ 9 then e(F,Q3) = 9, e(x0, Q3) = 1 and one of (3)
and (8) holds w.r.t. F and Q3 by Lemmas 4.3 and 4.7-4.8. Then by our assumption,
e(y,Q3) ≥ 2. Thus [T,Q3, y] ⊇ 2C4 and so [F,Q1, Q3] ⊇ 3C4, a contradiction. Hence
e(F,Q3) ≤ 8. If e(x0, d1d3) = 1 then e(x0, Q1) ≥ 2 as x0 ⇒ (Q1, y). In this situation,
as [F,Q1] 6⊇ 2C4, we obtain e(F,Q1) ≤ 8 by Lemmas 4.3 and 4.7-4.8. For each
t ∈ {2, 4}, since x0 ⇒ (Q3, dt) or x0 ⇒ (Q1, y) and y ⇒ (Q3, dt), we have dt ∈ T .
Moreover, G0 + dt 6⊇ 2C4 and so e(dt, G0) ≤ 1. If e(x0, d1d3) = 2 then e(d2d4, L) ≤ 6
and so e(F,L) + e(d2d4, L) ≤ 8 + 12 + 8 + 6 = 12p − 2 as claimed. Hence assume
that e(x0, d1d3) = 1. Then e(y, d1d3) = 2. If e(F,Q2) + e(d2d4, F ∪ Q2) ≤ 14 then
e(F,L)+e(d2d4, L) ≤ 14+e(F, F ∪Q1∪Q3)+e(d2d4, Q1∪Q3) ≤ 14+24+8 = 12p−2
as claimed. Therefore we may assume that e(F,Q2) + e(d2d4, F ∪ Q2) ≥ 15. As
e(F,Q2) ≤ 12 and e(di, G0) ≤ 1 for i ∈ {2, 4}, we see that x0dr ∈ E and e(dr, G0) = 1
for some r ∈ {2, 4}. Let {r, t} = {2, 4}. As e(x0, Q3) ≤ 2, x0dt 6∈ E. It follows that
e(F,Q2) = 12 and e(dt, G0) = 1. Then e(x0, Q2) = 0 and e(T,Q2) = 12 by Lemmas
4.3. By Lemma 4.1(b), τ(Q2) = 2. If e(dr, G0−x1) = 1 then [G0 +x0 +dr]− zi ⊇ 2C4

where i ∈ {1, 2} with drzi 6∈ E. Consequently, zi → (Q3, dr) and so [F,Q2, Q3] ⊇
3C4, a contradiction. Hence drx1 ∈ E. Thus dr = d4. Then [x0, d1, d4, x1] ⊇ C4,
[d2, d3, z1, z2] ⊇ C4 and G0 − {x1, z1, z2} ⊇ C4, a contradiction. Therefore the claim
holds. Then e(F + d2 + d4, G− V (L)) = 12k − 12p + 2 = 12(k − p) + 2. Thus there
exists Qr in G− V (L) such that e(F + d2 + d4, Qr) ≥ 13.

First, assume that e(F,Qr) ≤ 8. Then e(d2d4, Qr) ≥ 5. Since {d2, d4} ⊆ T ,
we have dt → Qr for some t ∈ {2, 4} by Lemma 4.1(a). Then T + v 6⊇ C4 and so
e(v, T ) ≤ 1 for all v ∈ V (Qr) since x0 → (Q3, dt) or x0 → (Q1, y) and y → (Q3, dt).
This yields e(x0d2d4, Qr) ≥ 9. Then dt → (Qr;x0d1ds) where {ds, dt} = {d2, d4}. As
G0 + d3 ⊇ 2C4, we obtain [F,Q2, Q3, Qr] ⊇ 4C4, a contradiction.

Therefore e(F,Qr) ≥ 9. Then by Lemmas 4.3 and 4.7-4.8, either e(x0, Qr) = 0
or one of (3) and (8) holds w.r.t. F and Qr. If (3) or (8) holds w.r.t. F and Qr,
then e(F,Qr) = 9 and [T,Qr, dt] ⊇ 2C4 where dt ∈ {d2, d4} with e(dt, Qr) ≥ 2.
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Consequently, [F,Q3, Qr] ⊇ 3C4 or [F,Q1, Q3, Qr] ⊇ 4C4, a contradiction. Hence
e(x0, Qr) = 0 and so e(T,Qr) ≥ 9. Then by Lemma 3.2, e(dt, Qr) ≤ 1 for each t ∈
{2, 4}. Thus e(T,Qr) ≥ 11 and so τ(Qr) = 2 by Lemma 4.1(b). By our assumption,
there are two distinct vertices xa and xb in T such that z1xa ∈ E, z1 6∈ {xa, xb} and
if z1 6∈ V (T ) then xb → (Q2, z1). Let {a, b, c} = {1, 2, 3}. If e(d2, Qr) = 0 then
e(T,Qr) = 12 and e(d4, Qr) = 1. If d2w ∈ E for some w ∈ V (Qr), we claim that
xaw 6∈ E. To see this, assume xaw ∈ E. Then [z1, xa, w, d2] ⊇ C4. If z1 ∈ V (T ),
then xb → (Qr, w) and so [T,Qr, d2] ⊇ 2C4. If z1 6∈ V (T ) then xb → (Q2, z1),
xc → (Qr, w) and so [T,Q2, Qr, d2] ⊇ 3C4. It follows that [F,Q2, Q3, Qr] ⊇ 4C4

or [F,Q1, Q2, Q3, Qr] ⊇ 5C4, a contradiction. Hence xaw 6∈ E. In any case, we
conclude that e(F + d2 + d4, Qr) = 13, e(T,Qr) ≥ 11 and e(d4, Qr) = 1. Thus
e(F + d2 + d4, G − V (L ∪ Qr)) ≥ 12(k − p) + 2 − 13 = 12(k − p − 1) + 1. Then
e(F + d2 + d4, Qt) ≥ 13 for some Qt in G − V (L ∪ Qr). By the above argument,
we shall have that e(T,Qt) ≥ 11, e(d4, Qt) = 1 and τ(Qt) = 2. Let w ∈ V (Qr)
and v ∈ V (Qt) be such that {v, w} ⊆ N(d4). As e(T,Qr) ≥ 11 and e(T,Qt) ≥
11, there exists u ∈ V (T ) such that e(u, vw) = 2. Let V (T ) = {u, x, z}. Then
[u, v, d4, w] ⊇ C4, x → (Qr, w) and z → (Qt, v), i.e., [T,Qr, Qt, d4] ⊇ 3C4. It follows
that [F,Q3, Qr, Qt] ⊇ 4C4 or [F,Q1, Q3, Qr, Qt] ⊇ 5C4, a contradiction.

In the above proof, the condition that G0 + x ⊇ 2C4 for all x ∈ V (G) − V (G0)
with e(x,G0) ≥ 2 is used for the estimation of e(F,Q2) + e(d2d4, F ∪ Q2) and so is
the condition of z2. Moreover, if e(x0, d1d3) = 2 then the condition of z2 is used only
for G0 + d3 ⊇ 2C4. Observing this, we have the following corollary.

Corollary 4.9.1 Set G0 = [F,Q2] and let z1 be a vertex in G0 − x1 such that if
z1 6∈ V (T ) then xi → (Q2, z1) and e(z1, T − xi) ≥ 1 for some xi ∈ V (T ). Let
i ∈ {1, 3, . . . , k − 1}. Then the following two statements hold:

(a) If G0 +x ⊇ 2C4 for each x ∈ V (G)−V (G0) with e(x,G0) ≥ 2 then there exists
no labelling Qi = d1d2d3d4d1 such that e(x0, d1d3) = 2, d2d4 6∈ E, e(z1, d1d2d3) = 3
and e(d3, G0) ≥ 2.

(b) If there exists a labelling Qi = d1d2d3d4d1 such that e(x0, d1d3) = 2, d2d4 6∈ E,
e(z1, d1d2d3) = 3, and G0 + d3 ⊇ 2C4, then e(F + d2 + d4, F ∪Q2 ∪Qi) ≥ 35.

Proof. The statement (a) is evident. To see (b), suppose that e(F + d2 + d4, F ∪
Q2 ∪Qi) ≤ 34. Then e(F + d2 + d4, G− V (F ∪Q2 ∪Qi)) ≥ 12k− 34 = 12(k− 3) + 2.
Then a contradiction follows word by word from the last two paragraphs in the proof
of Lemma 4.9.

Proof of Claim 2.2. By Lemmas 4.3 and 4.7-4.8, it remains to show that (8) does
not hold. On the contrary, say w.l.o.g. Q = Q1 = a1a2a3a4a1, N(x0, Q1) = {a1},
e(x1x2, Q1) = 8, a1a3 ∈ E and e(x3, Q1) = 0. Let R = {x0, x3, a2, a4}. Then
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e(R,G1) ≤ 14 and so e(R,H1) ≥ 8(k−2)+2. Say e(R,Q2) ≥ 9. Let F ′ = x3x1a1x0x1.
Clearly, G1 has an automorphism α such that α(F ) = F ′ and α(ai) = ai(i = 2, 3, 4).
Thus x3 ∈ T . It is easy to see that for each {x, y, z} ⊆ R with |{x, y, z}| = 3,
there exists v ∈ {a1, a3, x1, x2} such that e(v, yz) = 2 and G1 − {x, y, v, z} ⊇ C4. As
G2 6⊇ 3C4, this implies that x 6→ (Q2;R − {x}) for each x ∈ R. As e(R,Q2) ≥ 9, it
follows that x 6→ Q2 and so e(x,Q2) ≤ 3 for all x ∈ R. Furthermore, e(x0, Q2) ≤ 2 and
e(x3, Q2) ≤ 2 by Lemma 4.1(a). Thus e(a2a4, Q2) ≥ 5. W.l.o.g., say e(a2, d1d2d3) = 3
with Q2 = d1d2d3d4d1. Then d2d4 6∈ E as a2 6→ Q2. Moreover, e(d2, R−{a2}) ≤ 1 and
e(d4, R−{a2}) ≤ 1. Thus e(d1d3, R−{a2}) ≥ 4 and so i(d1d3, R−{a2}) ≥ 1. Assume
for the moment that x 6∈ I(d1d3, R−{a2}) for each x ∈ {x0, x3}. Then e(a4, d1d3) = 2
and e(d1d3, x0x3) = 2. Thus e(d2, x0x3) = 0 as a4 6→ (Q2;R−{a4}). As e(R,Q2) ≥ 9,
e(x0x3, Q2 − d2) ≥ 3. W.l.o.g., say e(x0, Q2) = 2. Then e(x0, dtd4) = 2 for some t ∈
{1, 3}. Then e(d4, x3a4) = 0 as a2 6→ (Q2;R−{a2}). It follows that e(x3, d1d3) = 1 and
e(a4, d1d2d3) = 3. Thus [x0, dt, d4] ⊇ C3, τ(a2d2a4d3a2) = τ(Q1) and [x1, a1, a3, x2] ∼=
K4 > Q2, contradicting (1). Therefore e(xi, d1d3) = 2 for some i ∈ {0, 3}. Say w.l.o.g.
e(x0, d1d3) = 2. Then for each i ∈ {2, 4}, [T,Q1, di] 6⊇ 2C4 and so e(di, Q1) ≤ 1 and
e(di, T ) ≤ 1. Thus e(d2d4, G2) ≤ 8. As x0 6→ (Q2; a2a4), a4d2 6∈ E. As e(a4, Q2) ≥ 2,
e(a4, d1d3) ≥ 1. Say w.l.o.g. a4d3 ∈ E. Then [T,Q1, d3] ⊇ 2C4. By Corollary 4.9.1(b),
e(F +d2 +d4, G2) ≥ 35. As [F,Q2] 6⊇ 2C4 and e(x0, Q2) = 2, we have e(F,Q2) ≤ 8 by
Lemmas 4.3 and 4.7-4.8. Thus e(F,G2) ≤ 25 and e(F + d2 + d4, G2) ≤ 25 + 8 = 33,
a contradiction.

Lemma 4.10 Suppose that Q1 = c1c2c3c4c1 and e(x0x2, Q1) ≥ 7 with e(x0, c1c2c3) =
3 and x2c4 ∈ E. Set G0 = [T,Q2] and let z1 ∈ V (G0) − {x1, x2}. Furthermore,
suppose that if z1 6= x3 then x1z1 ∈ E, x3 → (Q2, z1) and G0 + x ⊇ 2C4 for each
x ∈ V (G) − V (G0) with e(x,G0) ≥ 2. Then there exists no Qr in H1 such that
e(x0z1, Qr) = 8 and e(c4, Qr) = 1.

Proof. On the contrary, suppose that there exists Qr as described. Let Q′1 =
x0c1c2c3x0 and F ′ = c4x2x1x3x2. Then σ′ = (c4x2, x2x1x3x2, Q

′
1, Q2, . . . , Qk−1) is a

strong feasible chain. Let L = [G1, Qr] if z1 = x3 and otherwise L = [G2, Qr]. Let
|V (L)| = 4p. Say Qr = d1d2d3d4d1 with c4d1 ∈ E. By Lemma 4.1(a), c2c4 ∈ E and
if e(x0, Q1) = 4 then τ(Q1) = 2. Thus x2 → Q1. We estimate e(F ′ + d2 + d4, L).
As x0 → Qr, we see that for each i ∈ {2, 4}, if z1 = x3 then e(di, T ) = 1 and
if z1 6= x3 then e(di, G0) = 1 and e(di, T ) = 0. As x3 → Qr or x3 → (Q2, z1)
and z1 → Qr, we see that di 6→ (Q1;x0x1x2) and so e(di, Q1) ≤ 1 for i ∈ {2, 4}.
Thus e(d2d4, L) ≤ 12. Clearly, e(F ′, F ′) = 8. As G1 6⊇ 2C4, e(F

′, Q′1) ≤ 8. If
z1 6= x3 then e(F ′, Q2) ≤ 12 as [F ′, Q2] 6⊇ 2C4. It follows that if z1 = x3 then
e(F ′ + d2 + d4, L) ≤ 8 + 8 + 12 + e(F ′, Qr) = 28 + 5 = 12p − 3 and otherwise
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e(F ′+ d2 + d4, L) ≤ 8 + 8 + 12 + 12 + e(F ′, Qr) = 40 + 1 = 12p− 7. Thus e(F ′+ d2 +
d4, G− V (L)) > 12(k− p). Hence e(F ′ + d2 + d4, Qt) ≥ 13 for some Qt in G− V (L).

First, assume that e(F ′, Qt) ≥ 9. By Claim 2.2, we see that if e(c4, Qt) 6= 0
then e(F ′, Qt) = 9 and [T,Qt, di] ⊇ 2C4 where di ∈ {d2, d4} with e(di, Qt) ≥ 2.
Consequently, [F,Qr, Qt] ⊇ 3C4 as x0 → (Qr, di), a contradiction. Hence e(c4, Qt) = 0
and so e(T,Qt) ≥ 9. As x0 ⇒ Qr and by Lemma 3.2, e(di, Qt) ≤ 1 for i ∈ {2, 4}.
Thus e(T,Qt) ≥ 11 and so τ(Qt) = 2 by Lemma 4.1(b). If i(d2d4, Qt) = 1 then
x2 → (Qt; d2d3d4) and [d1, x0, x1, z1] ⊇ C4. If i(d2d4, Qt) = 0 then i(x1dj, Qt) = 1
for some j ∈ {2, 4} and we have that x2 → (Qt;x1z1dj) and x0 → (Qr, dj). Since
x3 → (Q2, z1) if z1 6= x3, we obtain that [L,Qt] − V (Q1) ⊇ pC4 in either case, a
contradiction. Hence e(F ′, Qt) ≤ 8 and so e(d2d4, Qt) ≥ 5. W.l.o.g., say e(d2, Qt) ≥ 3.
As x0 ⇒ (Qt, d2), d2 ∈ T and so d2 → Qt. Thus e(u, T ) ≤ 1 for all u ∈ V (Qt). Then
e(d2d4c4, Qt) ≥ 9. This yields d2 → (Qt; d4d1c4). It follows that [L,Qt] ⊇ (p + 1)C4

since x2 → (Q1, c4) and [x0, x1, z1, d3] ⊇ C4 and if z1 6= x3 then x3 → (Q2, z1), a
contradiction.

Lemma 4.11 Let (u0u1, u1u2u3u1, J1, . . . , Jk−1) be a strong feasible chain. Set G0 =
[V (J1) ∪ {u1, u2, u3}]. Suppose that J1 has two distinct vertices z1 and z2 such that
the following three conditions hold:

(10) {z1, z2} ⊆ N(u1), e(u3, J1) = 4, e(u1u2, J1) ≤ 6;
(20) G0 + x ⊇ 2C4 for any x ∈ V (G)− V (G0) with e(x,G0) ≥ 2;
(30) G0 − {z1, z2, u1} ⊇ C4.

Then for each Ji(i ≥ 2), there exists no labelling Ji = d1d2d3d4d1 such that N(u0, Ji) =
{d1, d4}, d2d4 6∈ E, d1d3 ∈ E, N(z1, Ji) ⊇ {d1, d2, d3}, and e(z2, d2d3) ≥ 1.

Proof. On the contrary, suppose that there exists Ji as described. Let F ′ =
u0u1u2u3u1, P = d4u0u1u2 and L = [F ′, J1, Ji]. We estimate e(P,L). As u0 → (Ji, d2),
G0 + d2 6⊇ 2C4. Thus e(d2, G0 − z1) = 0 by (20) and so e(d2, u1u2) = 0. Clearly,
z1

a→ (Ji, d4). So by Lemma 4.2, u3
na→ (J1, z1). This implies that z1z2 ∈ E. Thus

[z1, z2, d2, d3] ⊇ C4 and by (30), we have [u0, u1, d1, d4] 6⊇ C4. Thus e(u1, d1d4) = 0.
As u3 → (J1, z1), z1 6→ (Ji, d4;u0u1u2) and so u2d4 6∈ E. By (10), it follows that
e(u1u2, L) ≤ 12 + e(u2, d1d3). By (30), z1 6→ (Ji, d4;u0u1z2). Thus d4z2 6∈ E.
As [F ′, Ji] 6⊇ 2C4, u2 6→ (Ji, d4;u0u1u3). Thus if e(u2, d1d3) = 2 then d4u3 6∈ E.
It follows that e(u2, d1d3) + e(d4, G0 − {u1, u2, z2}) ≤ 5. Consequently, e(P,L) ≤
12 + 5 + e(u0, L) + e(d4, Ji +u0) = 23. Then e(P,G−V (L)) ≥ 8k− 23 = 8(k− 3) + 1
and so e(P, Jr) ≥ 9 for some Jr in G − V (L). We have that u3 ⇒ (J1, z1) and
τ(z1d1d2d3z1) = τ(Ji) + 1. By (1), [P, Jr] 6⊇ C ] Q such that C ∼= C3 and Q >
Jr. By Lemma 3.5, either u1 → (Jr;u0d4) or u0 → (Jr;u1u2). In the former,
[u1, u0, d1, d4, Jr] ⊇ 2C4. Consequently, [L, Jr] ⊇ 4C4 since [z1, z2, d2, d3] ⊇ C4 and
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G0 − {z1, z2, u1} ⊇ C4, a contradiction. In the latter, [F ′, Jr] ⊇ 2C4, a contradiction.

Proof of Claim 2.3 and Claim 2.4. We prove them by contradiction. Say Q =
Q1 = c1c2c3c4c1. To prove Claim 2.3, we assume that e(x0, Q1) = 4, x1c2 ∈ E and
e(x2, Q1) ≥ 2. By Lemma 4.1(a), τ(Q1) = 2. Thus we may assume e(x2, c3c4) = 2.
To prove Claim 2.4, we may assume e(x0x2, Q1) ≥ 7. Moreover, if e(x0, Q1) = 4 then
e(x2, c2c3c4) = 3 and if e(x0, Q1) = 3 then e(x0, c1c2c3) = 3. In any case, if e(x0, Q1) =
4 then τ(Q1) = 2 and V (Q1) ⊆ T and if e(x0, Q1) = 3 then c2c4 ∈ E and c4 ∈ T . Note
that x2 → Q1 if e(x0x2, Q1) ≥ 7. As G1 6⊇ 2C4, e(x3, Q1) = 0 and i(x1x2, Q1) = 0.
Let T ′ = x2x3x1x2, F

′ = T ′ + c4x2 and Q′1 = x0c1c2c3x0. Then τ(Q′1) = τ(Q1) and
so σ′ = (c4x2, T

′, Q′1, Q2, . . . , Qk−1) is a strong feasible chain. It is easy to check that
e(F ′−x2, G1)+e(F−x1, G1) ≤ 23 and so e(F ′−x2, H1)+e(F−x1, H1) ≥ 12(k−2)+1.
Say w.l.o.g. r0 = e(F ′ − x2, Q2) + e(F − x1, Q2) ≥ 13.

Subclaim (a). It holds that e(x0c4, Q2) = 0 and so e(x3, Q2) + e(T,Q2) ≥ 13.
Proof. On the contrary, suppose that e(x0c4, Q2) ≥ 1. Assume that e(x3, Q2) ≤ 2.

Then e(F + c4, Q2) ≥ 13 − e(x3, Q2) ≥ 11. Suppose that e(v,Q2) ≥ 3 for some v ∈
{x0, c4}. Then v → Q2 by Lemma 4.1(a). Thus e(d, T ) ≤ 1 for all d ∈ V (Q2). Then
e(x0c4, Q2) ≥ 7. By Lemma 4.1(a), τ(Q2) = 2. Clearly, e(x1x2, Q2) ≤ 4 − e(x3, Q2).
Then e(x0x3, Q2) ≥ 13 − e(x3, Q2) − (4 − e(x3, Q2)) − e(c4, Q2) ≥ 9 − e(c4, Q2) ≥ 5.
Hence i(x0x3, Q2) ≥ 1 and so c4 → (Q2;x0x1x3). Then x2 6→ (Q1, c4) for otherwise
G2 ⊇ 3C4. By our assumption on Q1, we shall have that e(x0, Q1) = 4, x1c2 ∈
E and e(x2, c3c4) = 2. Then e(x3, Q2) < 2 for otherwise x3 → (Q2;x0c1c4) and
[x1, x2, c2, c3] ⊇ C4, i.e., G2 ⊇ 3C4. As r0 ≥ 13, it follows that e(x3, Q2) = 1,
e(x0c4, Q2) = 8 and e(x1x2, Q2) = 3. If e(x2, Q2) ≥ 2 then x2 → (Q2;x0x1x3) and
if e(x1, Q2) ≥ 2 then x1 → (Q2; c4x2x3), i.e., [F,Q2] ⊇ 2C4 or [F ′, Q2] ⊇ 2C4, a
contradiction. Therefore e(v,Q2) ≤ 2 for v ∈ {x0, c4}. Then e(F,Q2) ≥ 9. By Claim
2.2, we see that e(x0, Q2) = 0 for otherwise e(c4, Q2) = 2 and [T,Q2, c4] ⊇ 2C4. Hence
e(F ′, Q2) ≥ 11. As e(x0c4, Q2) ≥ 1, [F ′, Q2] ⊇ 2C4 by Claim 2.2, a contradiction.

Therefore e(x3, Q2) ≥ 3. If e(F,Q2) ≥ 9, then by Claim 2.2, e(x0, Q2) = 0 for
otherwise e(x3, Q2) = 2. Thus e(c4, Q2) ≥ 1 as e(x0c4, Q2) ≥ 1. Then e(F ′, Q2) ≥
10 and so [F ′, Q2] ⊇ 2C4 by Claim 2.2, a contradiction. Therefore e(F,Q2) ≤ 8.
Similarly, e(F ′, Q2) ≤ 8. It follows that e(x0x3, Q2) ≥ 13 − e(F ′, Q2) ≥ 5 and
e(x3c4, Q2) ≥ 13 − e(F,Q2) ≥ 5. In particular, we obtain i(x0x3, Q2) ≥ 1 and
i(x3c4, Q2) ≥ 1. As r0 ≥ 13, e(F ′ − x2, Q2) ≥ 7 or e(F − x1, Q2) ≥ 7. First, assume
that e(F ′ − x2, Q2) ≥ 7. Then by Lemmas 4.4-4.6, one of (9) to (12) holds w.r.t. F ′

andQ2. As e(x3c4, Q2) ≥ 5, (9) does not hold w.r.t. F ′ andQ2. Thus e(v,Q2) ≥ 3 and
v → Q2 for each v ∈ {c4, x3}. Since i(x0x3, Q2) ≥ 1, c4 → (Q2;x0x1x3). As G2 6⊇ 3C4,
x2 6→ (Q1, c4). By our assumption on Q1, we have that e(x0, Q1) = 4, x1c2 ∈ E and
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e(x2, c3c4) = 2. As e(x0c4, Q2) ≥ 13 − e(x3, Q2) − e(T,Q2) ≥ 13 − 4 − 4 = 5, we
have that i(x0c4, Q2) ≥ 1. Then x3 → (Q2;x0c1c4) and [x1, x2, c3, c2] ⊇ C4, i.e.,
G2 ⊇ 3C4, a contradiction. Hence e(F − x1, Q2) ≥ 7. By Lemmas 4.4-4.6, one
of (9) to (12) holds w.r.t. to F and Q2. As e(x0x3, Q2) ≥ 5, (9) does not hold
w.r.t. F and Q2. Thus e(v,Q2) ≥ 3 and v → Q2 for each v ∈ {x0, x3}. Again,
e(x0c4, Q2) ≥ 13 − e(x3, Q2) − e(T,Q2) ≥ 5. Then x1c2 6∈ E for otherwise G2 ⊇ 3C4

as above. Thus e(x2, Q1) ≥ 3 and so x2 → (Q1, c4). Then e(c4, Q2) < 2 for otherwise
c4 → (Q2;x0x1x3) and so G2 ⊇ 3C4. As r0 ≥ 13, it follows that e(x3, Q2) = 4,
e(c4, Q2) = 1 and e(x0, Q2) = 4. This contradicts Lemma 4.10 with z1 = x3. 2

Subclaim (b). Suppose that Claim 2.3 holds. Then there exists Qp in H1 such that
either e(x0c4, Qp) = 0, e(x1x3, Qp) = 7 + q and e(T,Qp) ≥ 10− q for some q ∈ {0, 1},
or one of the following statements holds:

(10) e(c4x1, Qp) = 7 + t and e(x0, Qp) ≥ 3− 2t, e(x2x3, Qp) = 0;
(20) e(c4, Qp) = 4, e(x0, Qp) ≥ 3, e(x1, Qp) ≥ 3, and e(x2x3, Qp) = 0;
(30) e(x0, Qp) = 4, e(c4, Qp) = 3, e(x1, Qp) ≥ 3 with e(x1x2, Qp) = 4, and

e(x3, Qp) = 0.

Proof. By the assumed Claim 2.3, e(x1, Q1) = 0. Then e(F ′ − x2, G1) + e(F +
c4, G1) ≤ 31 and so e(F ′− x2, H1) + e(F + c4, H1) ≥ 16(k− 2) + 1. Thus there exists
Qp in H1 such that r1 = e(F ′ − x2, Qp) + e(F + c4, Qp) ≥ 17. Let G′ = [G1, Qp]. If
e(c4x0, Qp) = 0 then r1 = 2e(x1x3, Qp)+e(x2, Qp) ≥ 17. Thus e(x1x3, Qp) = 7+q and
e(T,Qp) ≥ 17− 7− q = 10− q for some q ∈ {0, 1} and so the lemma holds. We now
assume e(x0c4, Qp) ≥ 1. First, suppose e(F ′− x2, Qp) ≥ 7. By Lemmas 4.4-4.6, there
exist two labellings F ′ = z0z1z2z3z1 and Qp = u1u2u3u4u1 such that either e(c4, Qp) =
0 or one of (9) to (12) holds w.r.t. F ′ and Qp. Then e(xi, Qp) 6= 2 for i ∈ {1, 3}.
If e(c4, Qp) ≤ 1 then e(x1x3, Qp) + 2e(c4, Qp) ≤ 8 and so e(F,Qp) ≥ 17 − 8 = 9.
By Claim 2.2, e(x0, Qp) = 0 for otherwise e(x3, Qp) = 2. Thus e(T,Qp) ≥ 9 and
e(c4, Qp) ≥ 1. By Claim 2.2, [F ′, Qp] ⊇ 2C4, a contradiction. Hence e(c4, Qp) ≥ 3
and so c4 → Qp. Thus e(ui, T ) ≤ 1 for all ui ∈ V (Qp) and so e(F ′, Qp) ≤ 8. If
z2 = x3 then e(x3, Qp) ≥ 3. As G′ 6⊇ 3C4, c4 6→ (Qp;x0x1x3) and so i(x0x3, Qp) = 0.
Thus e(x0, Qp) + e(F ′ − x2) ≤ 8 and so e(F ′, Qp) ≥ 17 − 8 = 9, a contradiction.
Hence z2 = x1. If e(x2, Qp) = 1 then e(x1, Qp) = 3 and e(c4, Qp) = 4, contradicting
the assumed Claim 2.3 (w.r.t. F ′ and Qp). Hence e(x2, Qp) = 0. If e(x3, Qp) = 1
then (12) holds w.r.t. F ′ and Q2 such that x3u4 ∈ E and e(c4x1, u1u2u3) = 6. Thus
e(x0, u1u2u3) ≥ 17 − 2e(F ′, Qp) = 3. Then [x3, u4, u3, x1] ⊇ C4, [x0, u1, c4, u2] ⊇ C4

and x2 → (Q1, c4), i.e., G′ ⊇ 3C4, a contradiction. Hence e(x3, Qp) = 0. Say
e(c4x1, Qp) = 7 + t with t ∈ {0, 1}. Then e(x0, Qp) ≥ 17− 2(7 + t) = 3− 2t, i.e., (10)
holds.
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Next, suppose e(F ′ − x2, Qp) ≤ 6. Then e(F + c4, Qp) ≥ 11. If e(F,Qp) ≥ 9
then by Claim 2.2, e(x0, Qp) = 0 for otherwise e(c4, Qp) ≥ 2 and so [T,Qp, c4] ⊇ 2C4.
But then e(F ′, Qp) ≥ 11 and so e(c4, Qp) = 0 by Claim 2.2. Thus e(c4x0, Qp) =
0, a contradiction. Hence e(F,Qp) ≤ 8 and so e(c4, Qp) ≥ 3. By Lemma 4.1(a),
c4 → Qp. Then e(v, T ) ≤ 1 for all v ∈ V (Qp). Hence e(x0c4, Qp) ≥ 7 and 4 ≥
e(T,Qp) ≥ 3. As e(w,Qp) = 4 for some w ∈ {c4, x0}, τ(Qp) = 2 by Lemma 4.1(a).
As G′ 6⊇ 3C4, c4 6→ (Qp;x0x1x3) and so i(x0x3, Qp) = 0. If e(x3, Qp) ≥ 1 then
e(x0, Qp) = 3, e(x3, Qp) = 1, e(c4, Qp) = 4 and e(x1x2, Qp) = 3. Then e(x1, Qp) = 0
for otherwise [x1, x3, u, v] ⊇ C4 for an edge uv of [Qp] and so [x1, x3, x0, c4, Qp] ⊇ 2C4,
a contradiction. Thus e(x2, Qp) = 3, and consequently, r1 = 16, a contradiction.
Hence e(x3, Qp) = 0. As r1 ≥ 17, 2e(x1, Qp) + e(x2, Qp) ≥ 17− e(x0, Qp)− 2e(c4, Qp).
This implies that e(x1, Qp) ≥ 1. First, assume e(x0c4, Qp) = 8. By the assumed Claim
2.3, e(x2, Qp) ≤ 1. If e(x2, Qp) = 1, we apply the assumed Claim 2.3 to F ′ and Qp and
see that e(x1, Qp) = 1. Thus r1 = 15, a contradiction. Hence e(x2, Qp) = 0. Then
2e(x1, Qp) ≥ 5. Thus e(x1, Qp) ≥ 3 and so (20) holds. Next, assume e(x0, Qp) = 3 and
e(c4, Q3) = 4. Then 2e(x1, Qp) + e(x2, Qp) ≥ 6. As i(x1x2, Qp) = 0, e(x1x2, Qp) ≤ 4
and so e(x1, Q2) ≥ 2. Applying the assumed Claim 2.3 to F ′ and Qp, we obtain
e(x2, Qp) = 0. Thus e(x1, Qp) ≥ 3 and so (20) holds. Finally, assume e(x0, Qp) = 4
and e(c4, Qp) = 3. Then 2e(x1, Qp) + e(x2, Qp) ≥ 7. Thus e(x1, Qp) ≥ 3. In addition,
if e(x1, Qp) = 3 then e(x2, Qp) = 1. Thus (30) holds. This proves Subclaim (b). 2

By Subclaim (a), e(x3, Q2) + e(T,Q2) ≥ 13. This yields that e(x1x3, Q2) ≥ 7 or
e(x2x3, Q2) ≥ 7. Accordingly, we divide our proof into two cases. Case I will be
readily reduced to Case II by choosing an appropriate strong feasible chain.

Case I. e(x2x3, Q2) ≥ 7.
To reduce this case to Case II, we assume that we will arrive a contradiction

in Case II. Thus e(x1x3, Q2) ≤ 6. If e(x1, Q1) ≥ 1, then by the assumption on
Q1, e(x0, Q1) = 4, e(x2, c3c4) = 2, x1c2 ∈ E. Then e(x1, Q

′
1) ≥ 2, e(x2, Q

′
1) ≥ 1,

e(c4, Q
′
1) = 4. With F , Q1 and σ replaced by F ′, Q′1 and σ′, this goes to Case II

(if necessary, exchanging the subscripts of x1 and x2). Suppose that e(x1, Q1) = 0.
Then e(x0x2, Q1) ≥ 7. If there exists Qp in H1 such that e(x1x3, Qp) = 7 + q and
e(T,Qp) ≥ 10−q for some q ∈ {0, 1}, then e(x3, Qp)+e(T,Qp) ≥ 17−e(x1, Qp) ≥ 13.
Thus we may replace Q2 by Qp and go to Case II. If there exists no such Qp in H1,
then by Subclaim (b), there exists Qp in H1 such that Qp satisfies one of (10)-(30). If
e(c4x1, Qp) ≥ 7, then replacing F , Q1 and Qp by F ′, Qp and Q′1, we go to Case II. If
e(c4x1, Qp) ≤ 6, then (30) holds with e(x0, Qp) = 4, e(c4, Qp) = 3, e(x1, Qp) = 3 and
e(x2, Qp) = 1. By Lemma 4.1(a), τ(Qp) = 2. Let c ∈ N(x2, Qp) and F ′′ = T + x2c.
Let Q′p be a 4-cycle in [Qp− c+ x0]. Then τ(Q′p) = 2, e(c,Q′p) = 4 and e(x1, Q

′
p) = 4.
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Replacing F , Q1 and Qp by F ′′, Q′p and Q1, we go to Case II.

Case II. e(x1x3, Q2) ≥ 7.
We may assume that e(T,Q2) ≥ e(T,Qi) for all Qi in H1 with e(x1x3, Qi) ≥ 7 and

e(x3, Qi)+e(T,Qi) ≥ 13. Clearly, if e(x1x3, Q2) = 8 then e(x2, Q2) ≥ 1. If e(x3, Q2) =
3 then e(x2, Q2) ≥ 3. If e(x1, Q2) = 3 then e(x2, Q2) ≥ 2. Let G0 = [T,Q2]. By (1),
G0 6⊇ C ∼= C3 such that G0 − V (C) > Q2. If {i, j} = {1, 3} with e(xi, Q2) = 4 and
u ∈ I(x2xj, Q2), then [x2, xj, u] ∼= C3 and so xi

na→ (Q2, u). This implies that uu∗ ∈ E.
Hence τ(Q2) ≥ 1. We claim there exists a labelling V (Q2) = {a1, a2, a3, a4} such that
a1a2a3a4a1 is a 4-cycle in [Q2] and one of (27) to (34) holds:

e(x1x3, Q2) = 8, x2a1 ∈ E,N(x2, Q2) ⊆ {a1, a3}, a1a3 ∈ E, a2a4 6∈ E; (27)

e(x1x3, Q2) = 8, x2a1 ∈ E, τ(Q2) = 2; (28)

e(x3, Q2) = 4, N(x1, Q2) = {a2, a3, a4}, N(x2, Q2) = {a1, a3}, a1a3 ∈ E, a2a4 6∈ E;(29)

e(x3, Q2) = 4, N(x1, Q2) = {a1, a4, a3}, N(x2, Q2) = {a1, a3}, a1a3 ∈ E, a2a4 6∈ E;(30)

e(x3, Q2) = 4, N(x1, Q2) = {a1, a4, a3}, {a1, a4} ⊆ N(x2, Q2), τ(Q2) = 2; (31)

e(x3, Q2) = 4, N(x1, Q2) = {a2, a3, a4}, {a1, a4} ⊆ N(x2, Q2), τ(Q2) = 2; (32)

e(x1, Q2) = 4, N(x3, Q2) = N(x2, Q2) = {a1, a2, a3}, τ(Q2) = 2; (33)

e(x1, Q2) = 4, N(x3, Q2) = {a1, a2, a3}, {a1, a2, a4} ⊆ N(x2, Q2), τ(Q2) = 2. (34)

To observe this, we see that (27) holds if e(x1x3, Q2) = 8 with τ(Q2) = 1 and
(28) holds if e(x1x3, Q2) = 8 with τ(Q2) = 2. If e(x3, Q2) = 4, e(x1, Q2) = 3 and
τ(Q2) = 1 then (29) or (30) holds. If e(x3, Q2) = 4, e(x1, Q2) = 3 and τ(Q2) = 2
then (31) holds if N(x2, Q2) ⊆ N(x1, Q2) and otherwise (32) holds. If e(x3, Q2) = 3
and e(x1, Q2) = 4 then e(x2, Q2) ≥ 3 and τ(Q2) = 2 by Lemma 4.1(b). In this last
situation, we see that (33) holds if N(x2, Q2) = N(x3, Q2) and otherwise (34) holds.
Clearly, x3 → Q2 in any case. We now choose two vertices z1 and z2 from Q2 such
that {z1, z2} = {a3, a4} if e(T,Q2) ≤ 10. If e(T,Q2) ≥ 11, then τ(Q2) = 2 and we let
{z1, z2} ⊆ N(x1, Q2) such that G0 − {x1, z1, z2} ∼= K4. We claim

G0 − {z1, z2, x1} ⊇ C+
4 , G0 − {zi, x1, x2} ⊇ C4(i = 1, 2), G0 − {z1, z2, x2} ⊇ C4;(35)

G0 + x ⊇ 2C4 for each x ∈ V (G)− V (G0) with e(x,G0) ≥ 2. (36)

By a direct verification, we see that (35) holds. To observe (36), we see that
if e(x,Q2) ≥ 2 then x → (Q2, ai;V (T )) for some ai ∈ V (Q2) and obviously, if
e(x, T ) ≥ 2 then G0 + x ⊇ 2C4. Moreover, if e(x,Q2) = 1 and e(x, T ) = 1 then
[T + x,Q2] ⊇ 2C4 by Lemma 3.4(b). By (36), e(ci, G0) ≤ 1 for each ci ∈ V (Q1) as
G2 6⊇ 3C4 and so e(ci, Q2) = 0 for each ci ∈ N(x1x2, Q1). Furthermore, if cix0 ∈ E
with ci ∈ V (Q1) then e(ci, z1z2) = 0 for otherwise x2 → (Q1;x0x1zr) for some r ∈
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{1, 2} and so G2 ⊇ 3C4 by the second formula (35). Hence e(z1z2, Q1) = 0. Thus if
F1 = x0x1z1z2x1, then

e(F1 − x1, G2) ≤ 17 and e(F1 − x1, G2) + e(c4, G2) ≤ 22. (37)

Lemma 4.12 Claim 2.3 holds and there exists Qp in H1 such that e(x1x3, Qp) = 7+q
and e(T,Qp) ≥ 10− q for some q ∈ {0, 1}.

Proof. On the contrary, suppose that the lemma fails. If Claim 2.3 fails, then by the
assumption on Q1, we have that τ(Q1) = 2, e(x0, Q1) = 4, x1c2 ∈ E, e(x2, c3c4) = 2
and e(x3, Q1) = 0. Clearly, c2 ∈ T as x0 ⇒ (Q1, c2). If Claim 2.3 holds but there
exists no Qp in H1 such that e(x1x3, Qp) = 7 + q and e(T,Qp) ≥ 10 − q for some
q ∈ {0, 1}, then by Subclaim (b), there exists Qp in H2, say Qp = Q3, such that one
of (10) to (30) holds w.r.t. Qp = Q3. Thus there exists v0 ∈ N(x1, Q3) such that
either x0 ⇒ (Q3, v0) or c4 ⇒ (Q3, v0) and so v0 ∈ T . Furthermore, as e(c4, Q3) ≥ 3
we have c4 → Q3. For convenience, we define v0 = c2 if Claim 2.3 fails. Thus in any
case, there exists a strong feasible chain σ1 such that v0x1 and T are the first two
items of σ1 and v0 is its terminal point. Moreover, each Qi in Q − {Q1, Q3} is still
an item of σ1 and if v0 = c2 then Q3 is an item of σ1 as well. Let F2 = T + v0x1 and
R = V (F1 − x1) ∪ {v0}.

As [F2, Q2] 6⊇ 2C4 and by (36), e(v0, G0) ≤ 1. Thus if v0 ∈ V (Q1) (i.e., v0 = c2)
then e(v0, G2) ≤ 5 and if v0 ∈ V (Q3) then e(v0, G3) ≤ 9. Together with (37), we
see that if v0 ∈ V (Q1) then e(R,G2) ≤ 22. We claim that if v0 ∈ V (Q3) then
e(R,G3) ≤ 30. To see this, we have that x2 → (Q1, c4) and c4 → Q3. As G3 6⊇ 4C4

and by the second formula of (35), [y, x0, x1, zi] 6⊇ C4 for all y ∈ V (Q3) and i ∈ {1, 2}.
Thus i(x0zi, Q3) = 0 for all i ∈ {1, 2}. Moreover, we shall have e(y,G0) ≤ 1 for all
y ∈ V (Q3) by (36). It follows that e(x0z1z2, Q3) ≤ 4. With (37), we obtain that
e(R,G3) ≤ 17 + 4 + e(v0, G3) ≤ 30. Thus e(R,H2) ≥ 8(k − 3) + 2 if v0 ∈ V (Q1) and
e(R,H3) ≥ 8(k − 4) + 2 if v0 ∈ V (Q3). Therefore there exists Qr in H2 such that
e(R,Qr) ≥ 9 and if v0 ∈ V (Q3) then r ≥ 4.

By the first formula of (35), we see that [u, z1, z2, x1, Qr] 6⊇ 2C4 for each u ∈
{x0, v0} for otherwise either [F,Q2, Qr] ⊇ 3C4 or [F2, Q1, Q2, Qr] ⊇ 4C4. As either
x2 → (Q1, v0) or x2 → (Q1, c4) and c4 → (Q3, v0) or x0 → (Q3, v0), we see that
[x0, v0, x1, zi, Qr] 6⊇ 2C4 for each i ∈ {1, 2} by the second formula of (35). We conclude
that [Qr, u, v, x1, w] 6⊇ 2C4 and so u 6→ (Qr; vx1w) for each {u, v, w} ⊆ R with
|{u, v, w}| = 3, i.e., u 6→ (Qr;R−{u}) for each u ∈ R. As e(R,Qr) ≥ 9, it follows that
u 6→ Qr and so e(u,Qr) ≤ 3 for all u ∈ R. Moreover, e(u,Qr) ≤ 2 for u ∈ {x0, v0}
by Lemma 4.1(a). Thus e(z1z2, Qr) ≥ 5 and e(x0v0, Qr) ≥ 3. W.l.o.g., say Qr =
d1d2d3d4d1 and e(z1, d1d2d3) = 3. Then d2d4 6∈ E as z1 6→ Qr. Then e(d2, R−{z1}) ≤
1 e(d4, R−{z1}) ≤ 1 and so e(d2d4, R) ≤ 4. Similarly, if e(u, d2d4) = 2 for some u ∈ R
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then e(d1d3, R) ≤ 4 and so e(R,Qr) ≤ 8, a contradiction. Hence e(u, d2d4) ≤ 1 for all
u ∈ R. We claim z2d2 6∈ E. If this is false, say z2d2 ∈ E. Then for each u ∈ {x0, v0},
e(u, d1d3) ≤ 1 as u 6→ (Qr; z1z2). Moreover, e(d2, x0v0) = 0 as z1 6→ (Qr; z2u) for each
u ∈ {x0, v0}. As e(d4, x0v0) ≤ 1, it follows that e(z2, d1d2d3) = 3, e(d4, x0v0) = 1 and
e(x0v0, d1d3) = 2. Let {u,w} = {x0, v0} be such that e(u,Qr) = 2. Then ud4 ∈ E,
e(u, d1d3) = 1 and e(w, d1d3) = 1. W.l.o.g., say ud1 ∈ E. Then [u, d1, d4] ⊇ C3

and [z1, z2, d2, d3] ∼= K4 ≥ Q2. As G0 − {z1, z2} ⊇ C+
4 , we shall have τ(Qr) ≥ 1 by

(1). Thus d1d3 ∈ E and so u → (Qr; z1z2), a contradiction. Hence z2d2 6∈ E. Thus
e(z2, d1d3) ≥ 1. W.l.o.g., say z2d3 ∈ E. Thus G0 + d3 ⊇ 2C4. By Corollary 4.9.1(a),
e(u, d1d3) ≤ 1 for u ∈ {x0, v0}. As e(di, R − {z1}) ≤ 1 for i ∈ {2, 4}, we obtain that
4 ≥ e(R− {z1}, d1d3) ≥ 9− 3− e(d2d4, R− {z1}) ≥ 4. It follows that e(z2, d1d3) = 2
and e(d2, R− {z1}) = 1. Thus z2 → (Qr, d2;R− {z2}), a contradiction. 2

By Lemma 4.12, there exists Qp in H1 such that e(x1x3, Qp) = 7+q and e(T,Qp) ≥
10 − q for some q ∈ {0, 1}. Clearly, e(x3, Qp) + e(T,Qp) ≥ 17 − e(x1, Qp) ≥ 13.
By our assumption on Q2, e(T,Q2) ≥ e(T,Qp). Therefore if e(x1x3, Q2) = 7 then
e(T,Q2) ≥ 10 and so e(x2, Q2) ≥ 3. Thus if e(x1x3, Q2) = 7 then τ(Q2) = 2
by Lemma 4.1(b). Hence both (29) and (30) do not hold. If e(x1, Q2) = 3 and
N(x2, Q2) = N(x1, Q2) then (31) holds with x2a3 ∈ E and if e(x1, Q2) = 3 and
N(x2, Q2) 6= N(x1, Q2) then we may assume that (32) holds with x2a2 ∈ E. Let
R1 = {x0, z1, z2, c4}. By (37), e(R1, G2) ≤ 22 and so e(R1, H2) ≥ 8k−22 = 8(k−3)+2.
Say e(R1, Q3) ≥ 9. The next lemma will complete the proof of Claim 2.4.

Lemma 4.13 There exists a labelling Q3 = d1d2d3d4d1 such that e(R1, Q3) = 9,
e(z1z2, d2d3d4) = 6 and d3c4 ∈ E.

Proof. As G3 6⊇ 4C4 and by the first formula of (35), we have (38) below. Since
xi → (Q1, c4) for i ∈ {0, 2} and by the first and second formulas of (35), we have (39)
below:

u 6→ (Q3; vx1w), i.e., u 6→ (Q3; vw), for each permutation (u, v, w) of {x0, z1, z2};(38)

c4 6→ (Q3;ux1v) i.e., c4 6→ (Q3;uv), for each {u, v} ⊆ {x0, z1, z2} with u 6= v. (39)

Let Q3 = d1d2d3d4d1. As e(R1, Q3) ≥ 9 and by (39), c4 6→ Q3. By Lemma
4.1(a), e(c4, Q3) ≤ 2. We shall show that e(x0, Q3) ≤ 2. Suppose that e(x0, Q3) = 4.
Then τ(Q3) = 2 by Lemma 4.1(a). As e(c4, Q3) ≤ 2, e(z1z2, Q3) ≥ 3. W.l.o.g.,
say e(z1, Q3) ≥ 2. As x0 6→ (Q3; z1z2), i(z1z2, Q3) = 0. If e(z2, Q3) ≥ 1, then
z1 → (Q3;x0z2), a contradiction. Hence e(z2, Q3) = 0 and so e(z1, Q3) ≥ 3. As
c4 6→ (Q3;x0z1), e(c4, Q3) ≤ 1. It follows that e(z1, Q3) = 4 and e(c4, Q3) = 1,
contradicting Lemma 4.10. Next, suppose e(x0, Q3) = 3. Say e(x0, d1d2d3) = 3. Then
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e(z1z2, Q3) ≥ 4. By Lemma 4.1(a), x0 → Q3 with d2d4 ∈ E. As x0 6→ (Q3; z1z2), it
follows that e(di, z1z2) = 1 for all di ∈ V (Q3) and e(c4, Q3) = 2. Thus c4 → (Q3;x0zi)
for some i ∈ {1, 2}, a contradiction.

Suppose e(x0, Q3) = 0. If e(c4, Q3) = 1 then e(z1z2, Q3) = 8 and so the lemma
holds. So assume e(c4, Q3) = 2. Then N(c4, Q3) = {di, di+1} for some i ∈ {1, 2, 3, 4}
since c4 6→ (Q3; z1z2). Say w.l.o.g. N(c4, Q3) = {d3, d4}. If e(d1d2, z1z2) = 4, we
have that [d1, d2, z1, z2] ∼= K4 ≥ Q2, [c4, d3, d4] ⊇ C3 and G0 − {z1, z2} ⊇ C+

4 . By (1),
τ(Q3) ≥ 1 and so c4 → (Q3; z1z2), a contradiction. Hence e(d1d2, z1z2) ≤ 3. W.l.o.g.,
say e(d1, z1z2) ≤ 1. It follows that e(R1, Q3) = 9 with e(z1z2, d2d3d4) = 6 and so
the lemma holds. Therefore we may assume that 1 ≤ e(x0, Q3) ≤ 2 in the following.
Note that e(F1 − x1, Q3) ≥ 9− e(c4, Q3) ≥ 7.

LetQ′2 be a 4-cycle ofG0−V (T1) where T1 = x1z1z2x1. Suppose that e(T,Q2) ≥ 11
or one of (27), (32), (33) and (34) holds. Recall that x2a2 ∈ E when (32) holds as
assumed. In each of these cases, τ(Q′2) = τ(Q2). Thus we may apply Lemmas 4.4-4.6
to F1 and Q3 and see that (9) holds w.r.t. F1 and Q3. By Lemma 4.2, [F1, Q3] 6⊇ P]Q
with P ⊇ 2P2, Q ∼= C4 and τ(Q) = τ(Q3) + 2. Then we apply Lemma 3.3 to F1, Q3

and c4 and see that the lemma holds.
Therefore we may assume that e(T,Q2) ≤ 10, τ(Q′2) < τ(Q2) and either (28) or

(31) holds in the remaining proof. We note two observations here. Observation A: For
each u ∈ {x0, c4}, [u, z1, z2, Q3] 6⊇ C with C ∼= C3 such that [u, z1, z2, Q3]−V (C) > Q3.
We see this by (1) since [x1, x2, x3, a1] ∼= K4 ≥ Q2. Observation B: [x0, c4, z1, z2, Q3] 6⊇
2C4. We see this since x2 → (Q1, c4) and G0 − {z1, z2, x2} ⊇ C4 by (35).

We will apply Corollary 4.9.1 and Lemma 4.11 to either F,Q2 and Q3 or F ′, Q2

and Q3. Note that e(x1x2, Q2) ≤ 6 and e(x3, Q2) = 4.
As e(z1z2, Q3) ≥ 9 − e(x0c4, Q3) ≥ 5, say w.l.o.g. e(z1, Q3) ≥ e(z2, Q3) and

e(z1, d1d2d3) = 3. We claim that e(u, d1d3) ≤ 1 and e(u, d2d4) ≤ 1 for each u ∈
{x0, c4} and e(z2, d2d4) ≤ 1. By (38), e(di, x0z2) ≤ 1 for each i ∈ {2, 4}. If
e(c4, d2d4) = 2 then e(x0z2, d1d3) = 0 by (39) and it follows that e(R1, Q3) ≤ 8,
a contradiction. If e(u, d2d4) = 2 for some u ∈ {x0, z2}, then e(w, d2d4) = 0 where
{u,w} = {x0, z2}. Moreover, as u 6→ (Q3; z1w) by (38), we have e(w, d1d3) = 0. As
1 ≤ e(x0, Q3) ≤ 2, we obtain u = x0 and so e(F1 − x1, Q3) ≤ 6, a contradiction.
Suppose that e(u, d1d3) = 2 for some u ∈ {x0, c4} then z2d2 6∈ E and e(d4, z1z2) ≤ 1
as u 6→ (Q3; z1z2). Thus e(z2, d1d3) ≥ 1 as e(z1z2, Q3) ≥ 5. Say w.l.o.g. z2d3 ∈ E.
Then G0 + d3 ⊇ 2C4. If d2d4 6∈ E, we obtain a contradiction with Corollary 4.9.1(a).
Hence d2d4 ∈ E. Thus z1 → Q3. As z1 6→ (Q3;x0z2), i(x0z2, Q3) = 0 and so u = c4.
As c4 6→ (Q3;R1−{c4}), e(d4, x0z1z2) ≤ 1 and e(d2, x0z2) = 0. As e(F1−x1, Q3) ≥ 7,
e(x0z2, d1d3) ≥ 3 and so i(x0z2, d1d3) ≥ 1, a contradiction. Hence the claim holds.

Suppose that e(z1, Q3) = 3. Then 3 ≥ e(z2, Q3) ≥ 2, e(x0z2, Q3) ≥ 4 and
e(x0c4, Q3) ≥ 3. If d2d4 ∈ E then z1 → Q3. By (38), e(di, x0z2) = 1 for all
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di ∈ V (Q3). Thus e(c4, Q3) = 2 and c4 → (Q3;R1 − {c4}), a contradiction. There-
fore d2d4 6∈ E. Assume that e(u, did4) = 2 for some i ∈ {1, 3} and u ∈ {x0, c4}. Say
w.l.o.g. e(u, d1d4) = 2. If e(z2, d2d3) ≥ 1 then [u, d1, d4] ⊇ C3 and [z1, z2, d2, d3] ⊇ C+

4 .
By Observation A, τ(Q3) = 1 and so d1d3 ∈ E. This contradicts Lemma 4.11. Hence
e(z2, d2d3) = 0 and so e(z2, d1d4) = 2. Since z1 6→ (Q3, d4;x0z2), x0d4 6∈ E and so
u = c4. As [z1, d2, d3] ∼= C3 and [z2, d1, d4, c4] ⊇ C+

4 , we obtain d1d3 ∈ E by Ob-
servation A. Then x0d2 6∈ E as c4 6→ (Q3;x0z1). Consequently, e(x0, d1d3) = 2, a
contradiction. Hence e(u, did4) 6= 2 for each i ∈ {1, 3} and u ∈ {x0, c4}. Assume that
e(x0, Q3) = 2. Then e(x0, d2di) = 2 for some i ∈ {1, 3}. Say w.l.o.g. e(x0, d1d2) = 2.
Then z2d2 6∈ E as z1 6→ (Q3;x0z2) and e(z2, d1d3) ≤ 1 as z2 6→ (Q3;x0z1). It fol-
lows that z2d4 ∈ E, e(z2, d1d3) = 1 and e(c4, Q3) = 2. If e(c4, d1d2) = 2 then
[c4, d1, x0, d2] ⊇ C4 and [z1, d3, d4, z2] ⊇ C4, contradicting Observation B. Hence
e(c4, d2d3) = 2. If z2d1 ∈ E then [z2, d1, d4] ∼= C3 and [z1, d2, c4, d3] ⊇ C+

4 and if
z2d3 ∈ E then [z2, d3, d4] ∼= C3 and [x0, d1, z1, d2] ⊇ C+

4 . By Observation A, d1d3 ∈ E.
Thus z2 → (Q3;x0z1), a contradiction. We conclude that e(x0, Q3) = 1. It follows
that e(z2, Q3) = 3 and e(c4, Q3) = 2. Then e(c4, d2di) = 2 for some i ∈ {1, 3}.
W.l.o.g., say e(c4, d1d2) = 2. If z2d4 ∈ E then z2d2 6∈ E as e(z2, d2d4) ≤ 1. Thus
e(z2, d1d4d3) = 3. Then [c4, d1, d2] ⊇ C3 and [z1, z2, d3, d4] ⊇ C+

4 . By Observation A,
d1d3 ∈ E. This contradicts Lemma 4.11. Hence z2d4 6∈ E. Thus e(z2, d1d2d3) = 3.
By renaming di as di+1 for all di ∈ V (Q3), we see that Lemma 4.13 holds.

Finally, e(z1, Q3) = 4. Assume e(x0, Q3) = 2. Say w.l.o.g. e(x0, d1d4) = 2. Then
e(z2, d1d4) = 0 as z1 6→ (Q3;x0z2). Thus e(z2, d2d3) ≥ 1. W.l.o.g., say z2d3 ∈ E.
Then d2d4 6∈ E as x0 6→ (Q3; z1z2). As [z1, z2, d2, d3] ⊇ C+

4 and [x0, d1, d4] ∼= C3, we
get d1d3 ∈ E by Observation A. This contradicts Lemma 4.11. Hence e(x0, Q3) = 1.
Say x0d1 ∈ E. Then z2d1 6∈ E. As e(z2, d2d4) ≤ 1, it follows that e(z2, Q3) = 2
and e(c4, Q3) = 2. W.l.o.g., say e(z2, d2d3) = 2. As z2 6→ (Q3;x0z1), d2d4 6∈ E.
Assume that e(c4, didi+1) = 2 for some i ∈ {1, 3, 4}, i.e., e(c4, d2d3) 6= 2. Then
[c4, di, di+1] ⊇ C3 and [z1, z2, di+2, di+3] ⊇ C+

4 . By Observation A, d1d3 ∈ E. This
contradicts Lemma 4.11 (if necessary, exchanging the subscripts of d1 with d3 or d2
with d4). Therefore e(c4, d2d3) = 2. Then [z1, d1, d4] ∼= C3 and [z2, d2, c4, d4] ⊇ C+

4 .
By observation A, d1d3 ∈ E.

Let S = V (F )∪{c4, d4}. As c4 ⇒ (Q3, d4), d4 ∈ T and by (36), e(d4, G0) = 1. As
e(x0, Q3) = 1 and [F,Q3] 6⊇ 2C4, we have e(F,Q3) ≤ 9 by Claim 2.2. As e(T,Q2) ≤ 10
and e(F,G1) ≤ 16, we get e(F,G3) ≤ 35. Clearly, e(c4, G3) ≤ 7. As x3 → (Q2, z1)
and z1 → (Q3, d4), we have d4 6→ (Q1;x0x1x2). This implies that e(d4, Q1) ≤ 1. Thus
e(d4, G3) ≤ 4. Hence e(S,G3) ≤ 35 + 7 + 4 = 46 and so e(S,H3) ≥ 12k − 46 =
12(k − 4) + 2. Say e(S,Q4) ≥ 13. If e(F,Q4) ≥ 9, then we see, by Claim 2.2, that
e(x0, Q4) = 0 for otherwise e(F,Q4) = 9, [T,Q4, w] ⊇ 2C4 where w ∈ {c4, d4} with
e(w,Q4) ≥ 2 and so [F,Q1, Q3, Q4] ⊇ 4C4. Thus e(T,Q4) ≥ 9. As x0 ⇒ (Q1, c4) and
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c4 ⇒ (Q3, d4), we see that e(w,Q4) ≤ 1 for each w ∈ {c4, d4} by Lemma 3.2. Thus
e(T,Q4) ≥ 11 and so e(T,Q2) ≥ 11 by the assumption on Q2, a contradiction. Hence
e(F,Q4) ≤ 8 and so e(c4d4, Q4) ≥ 5. Let w ∈ {c4, d4} be such that e(w,Q4) ≥ 3.
Then w → Q4 by Lemma 4.1(a). Hence e(y, T ) ≤ 1 for all y ∈ V (Q4) for otherwise
[F,Q1, Q3, Q4] ⊇ 4C4. Thus e(x0c4d4, Q4) ≥ 9. Then e(x0, Q4) ≥ 3 or e(c4, Q4) ≥ 3.
If e(x0, Q4) ≥ 3 then x0 → (Q4; c4d3d4), [z1, z2, d1, d2] ⊇ C4 and x2 → (Q1, c4). If
e(c4, Q4) ≥ 3 then c4 → (Q4;x0d1d4), [z1, z2, d2, d3] ⊇ C4 and x2 → (Q1, c4). As
G0−{z1, z2, x2} ⊇ C4, we obtain G4 ⊇ 5C4, a contradiction. This proves the lemma.
2

By Lemma 4.13, we see that e(x2, z1z2) = 0, for if e(x2, z1z2) ≥ 1, say x2z2 ∈ E,
then z1 → (Q3, d3; c4x2z2) and so G3 ⊇ 4C4 since G0 − {z1, z2, x2} ⊇ C4 by (35).
Thus e(T,Q2) ≤ 10 and each of (29) to (34) does not hold. Hence (27) or (28) holds.
Then {a2, a3} and {a3, a4} are in the symmetric position for {z1, z2}. Therefore as
obtaining (37), we also have e(x0c4a2a3, G2) ≤ 22 and if e(x0c4a2a3, Q3) ≥ 9 then
as above, e(x0c4a2a3, Q3) = 9. Hence e(x0c4a2a3, Q3) ≤ 9. Thus e(x0c4a2a3, H3) ≥
8k − 22 − 9 = 8(k − 4) + 1. Say e(x0c4a2a3, Q4) ≥ 9. By Lemma 4.13, there exists
a labelling Q4 = u1u2u3u4u1 such that e(a2a3, u2u3u4) = 6 and c4u3 ∈ E. Thus
[a3, d3, c4, u3] ⊇ C4, a4 → (Q3, d3), a2 → (Q4, u3), [T, a1] ⊇ C4 and x0 → (Q1, c4), i.e.,
G4 ⊇ 5C4, a contradiction.

Proof of Claim 2.5. Suppose that the claim is false. By Lemmas 4.4-4.6 and
Claim 2.4, we may assume that (12) holds. Say Q = Q1 = c1c2c3c4c1, N(x0, Q1) =
N(x2, Q1) = {c1, c2, c3}, x3c4 ∈ E and c2c4 ∈ E. Let F ′ = T+c4x3. Clearly, G1 has an
automorphism f such that f(F ) = F ′ and f(ci) = ci for i ∈ {1, 2, 3}. As G1 6⊇ 2C4,
e(x1, Q1) = 0. Then e(F + c4, G1) = 19 and so e(F + c4, H1) ≥ 10(k − 2) + 1. Say
e(F + c4, Q2) ≥ 11. First, assume e(u,Q2) ≥ 3 for some u ∈ {x0, c4}. W.l.o.g.,
say e(x0, Q2) ≥ 3. Then x0 → Q2. Thus e(v, T ) ≤ 1 for all v ∈ V (Q2). Hence
e(x0c4, Q2) ≥ 7. W.l.o.g., say e(x0, Q2) = 4. Then τ(Q2) = 2 by Lemma 4.1(a). As
x2 → (Q1, c4), c4 6→ (Q2;x0x1x3) and so e(x3, Q2) = 0. By Claim 2.4, e(x0x2, Q2) ≤ 6
and so e(c4x1, Q2) ≥ 5. It follows that x0 → (Q2; c4x3x1) and so G2 ⊇ 3C4, a
contradiction. Hence e(u,Q2) ≤ 2 for each u ∈ {x0, c4}. Thus e(F,Q2) ≥ 9. By
Claim 2.2, we see that e(x0, Q2) = 0 for otherwise e(F,Q2) = 9, e(c4, Q2) = 2,
[T,Q2, c4] ⊇ 2C4 and so G2 ⊇ 3C4. Thus e(F ′, Q2) ≥ 11. By Claim 2.2, e(c4, Q2) = 0
and so e(T,Q2) ≥ 11. By Lemma 4.1(b), τ(Q2) = 2. By Lemma 3.1(c), we may label
Q2 = b1b2b3b4b1 such that e(x1, b1b2) = 2 and [x2, x3, b3, b4] ∼= K4. Say F1 = x0x1b1b2x1
and Q′2 = x2x3b3b4x2. Then σ1 = (x0x1, x1b1b2x1, Q1, Q

′
2, Q3, . . . , Qk−1) is a strong

feasible chain. As x0 → Q1, [T,Q2, ci] 6⊇ 2C4 and so e(ci, Q2) = 0 for all ci ∈ V (Q1).
Thus e(S,G2) ≤ 20 where S = {x0, c4, b1, b2}. Hence e(S,H2) ≥ 8k−20 = 8(k−3)+4.
Say e(S,Q3) ≥ 9. As xi → Q1 for i ∈ {0, 2}, we readily see that c4 6→ (Q3;ux1v) for
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each {u, v} ⊆ {x0, b1, b2} with u 6= v for otherwise G3 ⊇ 4C4. As e(S,Q3) ≥ 9, this
implies that c4 6→ Q3. By Lemma 4.1(a), e(c4, Q3) ≤ 2. Hence e(F1 − x1, Q3) ≥ 7.
By Lemmas 4.4-4.6 and Claim 2.4, either e(x0, Q3) = 0 or one of (9) and (12) holds
w.r.t. F1 and Q3. However, if (12) holds w.r.t. F1 and Q3, then e(c4, Q3) ≥ 2 and
so c4 → (Q3;x0x1bi) where i ∈ {1, 2} with N(bi, Q3) = N(x0, Q3), a contradiction.
Hence e(x0, Q3) = 0 or (9) holds w.r.t. F1 and Q3. By Lemma 4.2, [F1, Q3] 6⊇ P ]Q
with P ⊇ 2P2, Q ∼= C4 and τ(Q) = τ(Q3) + 2. Applying Lemma 3.3 to F1, Q3 and c4,
there exists a labelling Q3 = d1d2d3d4d1 such that e(b1b2, d2d3d4) = 3 and c4d3 ∈ E.
As e(x3, Q2) ≥ 3, e(x3, b1b2) ≥ 1. Say w.l.o.g. x3b2 ∈ E. Then [c4, x3, b2, d3] ⊇ C4,
b1 → (Q3, d3), [x1, x2, b3, b4] ⊇ C4 and x0 → (Q1, c4), i.e., G3 ⊇ 4C4, a contradiction

Lemma 4.14 Let {i, r} ⊆ {1, . . . , k − 1} with i 6= r and z ∈ V (Qi). Suppose that
e(F + z,Qr) ≥ 11 and e(z, x2x3) = 1. Furthermore, suppose that either x0 ⇒ (Qi, z)
or there exists Qj with j 6= i, r such that x0 ⇒ (Qj, y) and y ⇒ (Qr, z) for some
y ∈ V (Qj). Then e(x0z,Qr) = 0 and so e(T,Qr) ≥ 11.

Proof. For convenience, say Qi = Q1, Qr = Q2 and x2z ∈ E. Moreover, if x0 6⇒
(Q1, z), say Qj = Q3. If x0 ⇒ (Q1, z), let [Q1 − z + x0] ⊇ Q′ ∼= C4. If x0 6⇒
(Q1, z), let [Q3 − y + x0] ⊇ Q′ ∼= C4 and [Q1 − z + y] ⊇ Q′′ ∼= C4. Then σ′ =
(zx2, T,Q

′, Q2, . . . , Qk−1) is a strong feasible chain if x0 ⇒ (Q1, z) and otherwise
σ′ = (zx2, T,Q

′, Q′′, Q2, Q4, . . . , Qk−1) is a strong feasible chain. Say F ′ = T + zx2. If
e(F ′, Q2) ≥ 9, then by Claim 2.2, we see that e(z,Q2) = 0 for otherwise e(x0, Q2) ≥ 2
and [T, x0, Q2] ⊇ 2C4. Consequently, e(F,Q2) ≥ 11 and so e(x0, Q2) = 0 by Claim
2.2. Thus the lemma holds. Hence assume e(F ′, Q2) ≤ 8. Then e(x0, Q2) ≥ 3 and
so x0 → Q2. Thus e(u, T ) ≤ 1 for all u ∈ V (Q2). Hence 8 ≥ e(zx0, Q2) ≥ 7 and
4 ≥ e(T,Q2) ≥ 3. As either e(x0, Q2) = 4 or e(z,Q2) = 4, we have τ(Q2) = 2
by Lemma 4.1(a). As the roles of F and F ′ can be exchanged in the following
argument, we may assume w.l.o.g. that e(x0, Q2) = 4. Suppose e(x3, Q2) = 0.
By Claim 2.4, e(x0x2, Q2) ≤ 6 and so e(x1, Q2) ≥ 5 − e(c4, Q2) ≥ 1. Similarly,
e(zx1, Q2) ≤ 6 and so e(x2, Q2) ≥ 1. Applying Claim 2.3 to F and Q2, we get
e(x2, Q2) = 1. Thus e(x1, Q2) ≥ 2. Then applying Claim 2.3 to F ′ and Q2, we see
that e(z,Q2) 6= 4. It follows that e(z,Q2) = e(x1, Q2) = 3. Let x′ ∈ N(x2, Q2)
and [Q2 − x′ + x0] ⊇ Q′2

∼= C4. Then τ(Q′2) = τ(Q2) and e(x′x1, Q
′
2) = 8. This

contradicts Claim 2.4 since (x′x2, T,Q1, Q
′
2, Q3, . . . , Qk−1) is a strong feasible chain.

Therefore e(x3, Q2) ≥ 1. By Claim 2.5, e(F − x1, Q2) ≤ 6. Thus e(x2x3, Q2) ≤ 2.
Suppose e(x3, Q2) = 2. Then e(x2, Q2) = 0. Applying Claim 2.3 to F and Q2, we
get e(x1, Q2) = 0. Thus e(T,Q2) ≤ 2, a contradiction. Hence e(x3, Q2) = 1 and
e(x2, Q2) ≤ 1. Then e(x1, Q2) ≥ 1 as e(T,Q2) ≥ 3. As e(z,Q2) ≥ 3 and by Claim 2.5,
e(F ′ − x2, Q2) ≤ 6. Thus e(x2, Q2) = 1 since e(F + z,Q2) ≥ 11. Since e(x0, Q2) = 4,
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τ(Q2) = 2 and e(xi, Q2) > 0 for all xi ∈ V (T ), we readily see that [F,Q2] ⊇ 2C4, a
contradiction.

Lemma 4.15 Suppose that e(T,Qi) ≥ 11 and τ(Qi) = 2 for some Qi in H1. Let
V (Qi) = {b1, b2, b3, b4} be such that {b1, b2, b3} ⊆ N(x1) and [x2, x3, b4, br] ∼= K4 for
r = 2, 3. Furthermore, suppose that Q1 has a vertex z such that e(x0, Qi) ≥ 3,
x0 ⇒ (Q1, z) and e(x0zb1br, G1 ∪Qi) ≤ 22 for r = 2, 3. Then x2 6→ (Q1, z).

Proof. On the contrary, say x2 → (Q1, z). W.l.o.g., say Qi = Q2. Let Q′2 =
x2x3b3b4x2, T1 = x1b1b2x1, F1 = T1+x0x1, G0 = [T,Q2] and S1 = {x0, b1, b2, z}. Then
σ1 = (x0x1, T1, Q1, Q

′
2, Q3, . . . , Qk−1) is a strong feasible chain. As e(S1, G2) ≤ 22,

e(S1, H2) ≥ 8(k − 3) + 2. Say e(S1, Q3) ≥ 9. Clearly, G0 − {x1, bi, x2} ⊇ C4 for
each i ∈ {1, 2} and G0 − {b1, x1, b2} ⊇ C4. As x0 → (Q1, z) and x2 → (Q1, z), this
implies that z 6→ (Q3;ux1v) for each {u, v} ⊆ {x0, b1, b2} with u 6= v for otherwise
G3 ⊇ 4C4. As e(S1, Q3) ≥ 9, this further implies that z 6→ Q3. By Lemma 4.1(a),
e(z,Q3) ≤ 2. Thus e(F1 − x1, Q3) ≥ 7. By Claim 2.5, either e(x0, Q3) = 0 or
(9) holds w.r.t. F1 and Q3. By Lemma 4.2, [F1, Q3] 6⊇ P ] Q with P ⊇ 2P2,
Q ∼= C4 and τ(Q) = τ(Q3) + 2. By Lemma 3.3, we see that e(S1, Q3) = 9 and there
exists a labelling Q3 = d1d2d3d4d1 such that e(b1b2, d2d3d4) = 6 and zd3 ∈ E. Let
S2 = {x0, b1, b3, z}. Similarly, if e(S2, Q3) ≥ 9 then e(S2, Q3) = 9. Thus e(S2, Q3) ≤ 9
and so e(S2, G3) ≤ 31. Then e(S2, H3) ≥ 8(k − 4) + 1. Say e(S2, Q4) ≥ 9. Similarly,
there exists a labelling Q4 = a1a2a3a4a1 such that e(b1b3, a2a3a4) = 6 and za3 ∈ E.
It follows that [z, d3, b1, a3] ⊇ C4, b2 → (Q3, d3), b3 → (Q4, a3), T + b4 ⊇ C4 and
x0 → (Q1, z), i.e., [F,Q1, Q2, Q3, Q4] ⊇ 5C4, a contradiction.

Lemma 4.16 If e(x0, Q1) = 4 and e(x2x3, Q1) ≥ 1 then e(T,Qi) ≥ 11 for some
Qi in H1, e(x1, Q1) = 0 and e(xr, Q1) ≤ 1 for each r ∈ {2, 3}. If e(x0, Q1) = 3
and e(x2x3, Q1) ≥ 3 then τ(Q1) = 2, e(T,Qi) ≤ 10 for all Qi in H1, and for some
{r, t} = {2, 3}, e(xr, Q1) = 0 and N(xt, Q1) = N(x0, Q1).

Proof. Say Q1 = c1c2c3c4c1. First, suppose that e(x0, Q1) = 4. By Lemma 4.1(a),
τ(Q1) = 2. Say w.l.o.g. e(x2, Q1) ≥ e(x3, Q1) and x2c4 ∈ E. Let G0 = [T,Q2]. We
show e(x2, Q1) = 1 first. If this is false, say w.l.o.g. x2c2 ∈ E. Then e(x2, Q1) = 2 and
e(x3, Q1) = 0 by Claim 2.5. By Claim 2.3, e(x1, Q1) = 0. Then e(F + c4, G1) = 19
and so e(F + c4, H1) ≥ 10k − 19 = 10(k − 2) + 1. Say e(F + c4, Q2) ≥ 11. By
Lemma 4.14, e(T,Q2) ≥ 11 and e(x0c4, Q2) = 0. By Lemma 4.1(b), τ(Q2) = 2.
By Lemma 3.1(c), we label V (Q2) = {b1, b2, b3, b4} such that {b1, b2, b3} ⊆ N(x1),
[x2, x3, b4, br] ∼= K4 for r = 2, 3. As G2 6⊇ 3C4 and x0 → Q1, e(ci, G0) ≤ 1 for
all ci ∈ V (Q1). Hence e(c2c4, G0 − x2) = 0. If bicr ∈ E for some i ∈ {1, 2, 3}
and cr ∈ {1, 3} then x2 → (Q1, cr; bix1x0) and x3 → (Q2, bi), i.e., G2 ⊇ 3C4, a
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contradiction. Hence e(b1b2b3, Q1) = 0. It follows that (x0b1brc1, G2) ≤ 22 for r = 2, 3.
By Lemma 4.15, x2 6→ (Q1, c1), a contradiction. Hence e(x2, Q1) = 1. If e(x1, Q1) ≥ 1,
let F ′ = T + c4x2 and Q′1 = x0c1c2c3x0. Then τ(Q′1) = τ(Q1), e(c4, Q

′
1) = 4 and

e(x1, Q
′
1) ≥ 2. With F ′ and Q′1 replacing F and Q1 in this argument, we shall have

e(x1, Q
′
1) ≤ 1, a contradiction. Hence e(x1, Q1) = 0. Then e(F + c4, G1) ≤ 19 and

so e(F + c4, H1) ≥ 10(k − 2) + 1. Thus e(F + c4, Qi) ≥ 11 for some Qi in H1 and so
e(T,Qi) ≥ 11 by Lemma 4.14.

Next, suppose that e(x0, Q1) = 3. By Claim 2.5, e(x2x3, Q1) = 3. Say e(x0, c1c2c3) =
3. Then c2c4 ∈ E. Say w.l.o.g. e(x2, Q1) ≥ e(x3, Q1). Suppose that e(Qi, T ) ≥ 11
for some Qi in H1. We may assume that e(T,Q2) ≥ 11. Let Q2 be labelled
and G0 defined as above. Then for each ci ∈ V (Q1), G0 + ci 6⊇ 2C4 and so
e(ci, G0) ≤ 1. Thus e(ci, G2) ≤ 5 for all ci ∈ V (Q1) and e(ci, G0 − {x2, x3}) = 0
for each ci ∈ N(x2x3, Q1). Hence e(b1b2b3, Q1) ≤ 1. Thus e(b1bi, G2) ≤ 13 and
so e(x0b1bicj, G2) ≤ 22 for each i ∈ {2, 3} and cj ∈ V (Q1). By Lemma 4.15,
x2 6→ (Q1, cj) for each cj with x0 ⇒ (Q1, cj). As x0 ⇒ (Q1, c4), x2 6→ (Q1, c4)
and so N(x2, Q1) ⊆ {c2, c4, cr} for some r ∈ {1, 3}. Thus x2 → (Q1, cr+2). Hence
x0 6⇒ (Q1, cr+2). This implies that c1c3 ∈ E. Then e(x2, Q1) = 2 with x2c4 ∈ E
as x2 6→ (Q1, c4). Hence i(x0x3, Q1) 6= 0 and so x2 → (Q1;x0x1x3), a contradiction.
Therefore e(T,Qi) ≤ 10 for all Qi in H1. As G1 6⊇ 2C4, e(ci, T ) ≤ 1 for all ci ∈ V (Q1).
Thus e(F,G1) ≤ 15. Let cr ∈ N(x2x3, Q1). If e(cr, G1) ≤ 4 then e(F + cr, G1) ≤ 19
and so e(F + cr, H1) ≥ 10k − 19 = 10(k − 2) + 1. Thus e(F + cr, Qi) ≥ 11 for some
Qi in H1. As e(T,Qi) ≤ 10 and by Lemma 4.14, x0 6⇒ (Q1, cr). Therefore for each
cr ∈ N(x2x3, Q1), either e(cr, G1) = 5 or x0 6⇒ (Q1, cr). Hence c4 6∈ N(x2x3, Q1) and
so e(x2x3, c1c2c3) = 3. Then c1c3 ∈ E for otherwise e(c1, G1) = 4 and x0 ⇒ (Q1, c1).
Since x2 6→ (Q1;x0x1x3), e(x3, Q1) = 0.

Proof of Claim 2.6. Suppose that the claim is false. W.l.o.g., say Q1 = c1c2c3c4c1,
e(x0, Q1) = 4 and e(x2x3, Q1) ≥ 1. By Lemma 4.1(a), τ(Q1) = 2. By Lemma 4.16,
e(x1, Q1) = 0, e(xr, Q1) ≤ 1 for r ∈ {2, 3} and e(T,Qi) ≥ 11 for some Qi in H1.
W.l.o.g., say x2c4 ∈ E and e(T,Q2) ≥ 11. By Lemma 4.1(b), τ(Q2) = 2. Among all
the strong feasible chains σ with these properties, we may assume that σ is chosen
such that e(Q2 + x3, Q1) is maximal.

Let T1 = {c1, c2, c3} and G0 = [T,Q2]. Let i ∈ {3, . . . , k− 1}. Note that G0 + y ⊇
2C4 for all y ∈ V (G) − V (G0) with e(y,G0) ≥ 2. As [G2, Qi] 6⊇ 4C4, this implies
that x 6→ (Qi;V (G0)) and e(x,G0) ≤ 1 for all x ∈ T1 ∪ {x0, c4}. Moreover, for each
U ⊆ V (G0) with |U | = 3, G0−U ⊇ C4 and so [x, U,Qi] 6⊇ 2C4 for all x ∈ T1∪{x0, c4}.
As [x0, c4, x2, x1] ⊇ C4 and G0 − {x1, x2, u} ⊇ C4 for all u ∈ V (G0 − {x1, x2}),
[u,Qi, T1] 6⊇ 2C4 for all u ∈ V (G0 − {x1, x2}). This implies that u 6→ (Qi;T1) and
e(u, T1) ≤ 1 for all u ∈ V (G0 − {x1, x2}). Since G0 − {u, v, xi} ⊇ C4 for each
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{u, v} ⊆ V (G0 − {x1, x2}) with u 6= v and i ∈ {1, 2}, it follows that if vx1 ∈ E
then u 6→ (Qi; vx1x0) and if vx2 ∈ E then u 6→ (Qi; c4x2v). These properties will be
used several times in the following argument. We claim that for each Qi in H2 with
e(G2 − {x1, x2}, Qi) ≥ 21, one of (40) and (41) holds:

e(x0c4, Qi) = 0, e(cr, Qi) ≤ 1 for all cr ∈ T1, e(d, T1) ≤ 1 for all d ∈ V (Qi); (40)

e(u,Qi) ≤ 1 for all u ∈ V (G0)− {x1, x2}, e(d,G0 − {x1, x2}) ≤ 1 for all d ∈ V (Qi).(41)

Proof. Note that σ′ = (c4x2, T,Q
′
1, Q2 . . . , Qk−1) is a strong feasible chain and

so x0 and c4 are in the symmetric position in our argument where Q′1 = x0c1c2c3x0.
Set Z1 = V (Q1 + x0) and Z2 = G0 − {x1, x2}. Suppose that e(x,Qi) ≥ 3 for some
x ∈ Z1. Then x → Qi by Lemma 4.1(a). Thus for each d ∈ V (Qi), e(d, Z2) ≤ 1 as
x 6→ (Qi;V (G0)). Hence e(Z2, Qi) ≤ 4 and so e(Z1, Qi) ≥ 17. Thus e(x,Qi) = 4 for
some x ∈ Z1 and e(T1, Qi) ≥ 9. By Lemma 4.1(a), τ(Qi) = 2. If e(u,Qi) ≥ 2 for some
u ∈ Z2 then u→ (Qi, d) for some d ∈ V (Qi) with e(d, T1) ≥ 2. Thus u→ (Qi;T1), a
contradiction. Hence e(u,Qi) ≤ 1 for all u ∈ Z2. Thus (41) holds.

Therefore we may assume that e(x,Qi) ≤ 2 for all x ∈ Z1. Thus e(Qi, Z1) ≤ 10
and so e(Z2, Qi) ≥ 11. Suppose that e(y,Qi) = 2 for some y ∈ Z1. Assume for the
moment e(y, dd∗) = 2 for some d ∈ V (Qi). Say Qi = d1d2d3d4d1 with e(y, d1d3) = 2.
Then e(d2, G0) ≤ 1 and e(d4, G0) ≤ 1 as y 6→ (Qi;V (G0)). Thus e(d1d3, Z2) ≥ 9
and e(Z2, Qi) ≤ 12. Clearly, e(Z1, Qi) ≥ 21 − 12 = 9 and so e(T1, Qi) ≥ 5. Thus
for each u ∈ Z2, u 6→ Qi as u 6→ (Qi;T1) and so e(u,Qi) ≤ 3. As e(Z2, Qi) ≥ 11,
e(z1, Qi) = 3 for some z1 ∈ Z2. Suppose that e(z1, d2d4) = 2. Then w.l.o.g., say
z1d1 ∈ E. Then d1d3 6∈ E as z1 6→ Qi. As e(d1d3, Z2) ≥ 9, e(dl, Z2) = 5 for
some l ∈ {1, 3}. By Lemma 3.1(b), G0 + dl ⊇ 2K4. Say {l,m} = {1, 3}. As
z1 6→ (Qi;T1), e(dj, T1) ≤ 1 for j ∈ {1, 3}. For each cr ∈ T1, e(cr, d2d4) ≤ 1 as
cr 6→ (Qi;V (G0)). As e(T1, Qi) ≥ 5, it follows that e(cr, dmdt) = 2 for some cr ∈ T1
and t ∈ {2, 4}. Thus [cr, dm, dt] ∼= C3 and so [G2, Qi] ⊇ C3]3K4. By (1), τ(Qi) = 2, a
contradiction. Hence e(z1, d2d4) = 1. W.l.o.g., say e(z1, d1d2d3) = 3. Then d2d4 6∈ E
as z1 6→ Qi. Clearly, e(z2, d1d3) = 2 for some z2 ∈ Z2 − {z1} as e(d1d3, Qi) ≥ 9.
Since e(T1, Qi) ≤ 6, e(x0c4, Qi) ≥ 9 − 6 = 3. W.l.o.g., say e(x0, Qi) = 2. As
x0 6→ (Qi;V (G0)), e(x0, d2d4) ≤ 1. Thus e(x0, d1d3) ≥ 1. Say w.l.o.g. x0d1 ∈ E.
If e(x0, d1d3) = 1, we have x0 ⇒ (Q1, y) and e(y, d1d3) = 2. As z1 6→ (Qi;T1),
e(dr, T1) ≤ 1 and so e(dr, Q1) ≤ 2 for r ∈ {2, 4}. Thus we obtain a contradiction with
Lemma 4.9.

The above argument shows that no vertex of Z1 is adjacent to two non-consecutive
vertices of Qi. It follows that τ(Qi) ≤ 1 for otherwise we may choose a 4-cycle Q′i
from [Qi] such that y is adjacent to two non-consecutive vertices of Q′i and obtain a
contradiction in the above argument with Q′i in place of Qi. Hence [G2, Qi] 6⊇ C3]3K4
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by (1). W.l.o.g., say e(y, d1d2) = 2. We claim that τ(Qi) = 1. As e(d1d3, Z2) +
e(d2d4, Z2) ≥ 11, say w.l.o.g. e(d1d3, Qi) ≥ 6. If G0 + d1 ⊇ 2K4 then [G2, Qi] ⊇
2P2 ] 3K4 since [y, d2, d3, d4] ⊇ P4. By Lemma 4.2, τ(Qi) ≥ 1. Hence assume that
G0 + d1 6⊇ 2K4. By Lemma 3.1(b), e(d1, Z2) ≤ 4. By Lemma 3.1(d), if e(d1, Z2) = 4
then e(x1x2, Q2) = 7 and so e(x3, Q2) = 4. It follows that e(d3, Z2) ≥ 6−e(d1, Z2) ≥ 2
and uv ∈ E for some {u, v} ⊆ N(d3, Z2). By Lemma 3.1(b), [Z2] has a triangle T ′

such that uv ∈ E(T ′) and G0−V (T ′) ∼= K4. Thus [T ′+d3] ⊇ C+
4 . As [y, d1, d2] ∼= C3,

we obtain that [G2, Qi] ⊇ C3 ] 2K4 ] C+
4 . By (1), τ(Qi) ≥ 1. W.l.o.g, say d1d3 ∈ E.

Then y → (Qi, d4) and so e(d4, Z2) ≤ 1. As [y, d1, d2] ∼= C3 and [d1, d4, d3] ∼= C3, we
obtain that G0 +dj 6⊇ 2K4 for j ∈ {2, 3} since [G2, Qi] 6⊇ C3]3K4. By Lemma 3.1(b),
e(dj, Z2) ≤ 4 for j ∈ {2, 3}. Hence e(Z2, Qi) ≤ 14. As e(Z2, Qi) ≥ 11, e(u,Qi) ≥ 3
for some u ∈ Z2. Then u → (Qi, dj) for j ∈ {2, 4}. If e(x, d1d3d4) = 2 for some
x ∈ Z1 then x → (Qi, d2) and so e(d2, Z2) ≤ 1. It follows that e(Z2, Qi) = 11
and e(Z1, Qi) = 10. Thus e(T1, Qi) = 6. As e(cr, d1d3) ≤ 1 for each cr ∈ T1,
e(d2d4, T1) ≥ 3. Hence e(dj, T1) ≥ 2 for some j ∈ {2, 4} and so u → (Qi;T1),
a contradiction. Therefore e(x, d1d4d3) ≤ 1 for all x ∈ Z1. Thus xd2 ∈ E for
each x ∈ Z1 with e(x,Qi) = 2. This implies that T1 has at most one vertex cr
with e(cr, Qi) = 2 since u 6→ (Qi;T1). Thus e(T1, Qi) ≤ 4 and so e(Z1, Qi) ≤ 8.
Then e(Z2, Qi) ≥ 13 and so e(d2, Z2) ≥ 13 − e(d1d3d4, Z2) ≥ 3. As e(Z2, Qi) ≤ 14,
e(x0c4, Qi) ≥ 7 − e(T1, Qi) ≥ 3. Say w.l.o.g. e(x0, Qi) = 2. Then x0d2 ∈ E. As
e(d2, Z2) ≥ 3, vx1 ∈ E for some v ∈ N(d2, Z2) − {u}. Thus u → (Qi, d2;x0x1v), a
contradiction.

Therefore e(x,Qi) ≤ 1 for all x ∈ Z1. Thus e(Z2, Qi) ≥ 16. We need show that
e(x0c4, Qi) = 0. On the contrary, say w.l.o.g. x0d1 ∈ E. Assume that vd1 ∈ E for
some v ∈ N(x1, Z2). Then for each u ∈ Z2 − {v}, u 6→ (Qi, d1) and so e(u, d2d4) ≤ 1.
As e(Z2, Qi) ≥ 16, it follows that e(v,Qi) = 4 and e(u,Qi) = 3 with ud1 ∈ E for all
u ∈ Z2−{v}. Thus v → (Qi, d1;x0x1u) for some u ∈ N(x1, Z2)−{v}, a contradiction.
Hence vd1 6∈ E for each v ∈ N(x1, Z2). As e(x1, Z2) ≥ 4 and e(Z2, Qi) ≥ 16, it follows
that e(x1, Z2) = 4 and e(Z2, Qi) = 16. Thus e(Z1, Qi) = 5 and so e(c4, Qi) = 1.
Similarly, we shall have that e(x2, Z2) = 4. Thus e(T,Q2) ≤ 10, a contradiction.
Hence e(x0c4, Qi) = 0 and so e(Z2, Qi) ≥ 18. Thus e(u,Qi) = 4 for some u ∈ Z2. As
u 6→ (Qi;T1), e(d, T1) ≤ 1 for all d ∈ V (Qi). Hence (40) holds. 2

Let N = [∪Qi] where i runs over {3, . . . , k−1} with e(G2−{x1, x2}, Qi) ≥ 21. We
say that a vertex z is attached to a subgraph G′ of G if z 6∈ V (G′) and e(z,G′) = 1.
We have the following four properties.

Property 1. If xy ∈ E(T1, Z2), neither x nor y is attached to some Qi in N .
To see this, say w.l.o.g. xy = c1u1 with u1 ∈ Z2 such that for some v ∈ {c1, u1}, v is

attached to some Qi in N . Assume v = c1. By (40), e(Z2, Qi) ≥ 21− e(T1, Qi) ≥ 18.
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Let T ′ be a triangle of [Z2] with u1 ∈ V (T ′). As e(Z2, Qi) ≥ 18, e(T ′, Qi) ≥ 10.
By Lemma 3.4(a), [c1, T

′, Qi] ⊇ 2C4, a contradiction. Hence v = u1. By (41),
e(Z2, Qi) ≤ 4 and e(Z1, Qi) ≥ 17. Then e(T1, Qi) ≥ 9. As e(x,Qi) = 4 for some
x ∈ Z1, we have τ(Qi) = 2 by Lemma 4.1(a). By Lemma 3.4(b), [u1, T1, Qi] ⊇ 2C4, a
contradiction. 2

Property 2. For each Qi in N , if (41) holds for Qi then τ(Qi) = 2 and e(T1, Qi) ≥
10. Furthermore, if e(T1, Qi) = 10 then e(Z2, T1) ≥ 2.

To see this, we have e(Z1, Qi) ≥ 21− e(Z2, Qi) ≥ 17. Thus e(x,Qi) = 4 for some
x ∈ Z1. By Lemma 4.1(a), τ(Qi) = 2. Clearly, if e(Z2, Qi) ≤ 2 then e(T1, Qi) ≥
21−8−2 = 11. For the proof, we may assume that e(Z2, Qi) ≥ 3 and e(T1, Qi) ≤ 10.
W.l.o.g., say Qi = Q3. Then e(x0c4, Q3) ≥ 7. W.l.o.g., say e(x0, Q3) = 4 and
e(c4, Q3) ≥ 3. As e(Z1, Q3) ≥ 17, e(d, Z1) = 5 for some d ∈ V (Q3). Assume
e(c4, Q3) = 4. Then we replace c4 with d in Q1 and replace d with c4 in Q3 to obtain
two disjoint 4-cycles C ′ and C ′′, respectively. Clearly, τ(C ′) = τ(C ′′) = 2. Thus
(x0x1, T, C

′′, Q2, C
′, Q4, . . . , Qk−1) is a strong feasible chain such that e(x0, C

′′) = 4,
e(x2, C

′′) = 1 and e(Z2, C
′′) ≥ e(Z2, Q3) − 1. By our assumption on σ, e(Z2, Q1) ≥

e(Z2, Q3)−1. By Property 1, N(T1, Z2)∩N(Q3, Z2) = ∅. As e(c4, Z2) = 0, E(Z2, T1) =
E(Z2, Q1). It follows that e(Z2, Q3)+e(Z2, Q3)−1 ≤ |Z2|. This yields that e(Z2, Q3) ≤
3. It follows that e(Z2, Q3) = 3, e(T1, Q3) = 10 and e(Z2, T1) ≥ 2. Hence we may
assume that e(c4, Q3) = 3. Then e(Z2, Q3) = 4 and e(T1, Q3) = 10. As e(T,Q2) ≥ 11,
it is easy to see that e(y, x1x2) = 2 for some y ∈ N(Q3, Z2) such that G0−{x1, x2, y} ∼=
K4. Let G0 − {x1, x2, y} ⊇ Q′ ∼= C4. Then (x0x1, x1yx2x1, Q1, Q

′, Q3, . . . , Qk−1) is a
strong feasible chain with e(x0, Q3) = 4 and e(y,Q3) = 1. Clearly, e(x1x2y,Q

′) ≥ 11
and e(G0−{x1, y}, Q3) = 3. By the assumption on σ again, e(Z2, T1) = e(Z2, Q1) = 3.
Thus N(T1, Z2) ∩N(Q3, Z2) 6= ∅, contradicting Property 1. 2

Property 3. For each v ∈ T1 ∪ Z2, v is attached to at most one Qi in N .
To see this, suppose that for some v ∈ T1 ∪ Z2, v is attached to some Qj and

Qr in N with j 6= r. W.l.o.g., say Qj = Q3 and Qr = Q4. Say e(v, u1w1) = 2
where Q3 = u1u2u3u4u1 and Q4 = w1w2w3w4w1. First, suppose that v ∈ T1. By
(40), e(Z2, Q3) ≥ 18 and e(Z2, Q4) ≥ 18. Then e(x, u1w1) = 2, e(y,Q3) = 4 and
e(z,Q4) = 4 for some {x, y, z} ⊆ Z2 with |{x, y, z}| = 3. Thus [v, u1, x, w1] ⊇ C4,
y → (Q3, u1), z → (Q4, w1), G0 − {x, y, z} ⊇ C4 and x0 → (Q1, v), i.e., G4 ⊇ 5C4,
a contradiction. Hence v ∈ Z2. As [x0, c4, x2, x1] ⊇ C4 and G0 − {x1, x2, v} ⊇ C4,
we shall have that [v, T1, Q3, Q4] 6⊇ 3C4. By (41) and Property 2, τ(Qi) = 2 and
e(T1, Qi) ≥ 10 for i ∈ {3, 4}. Suppose that e(x, u1w1) = 2 for some x ∈ T1. As
e(T1, Q3) ≥ 10, y → (Q3, u1) for some y ∈ T1 − {x}. Say T1 = {x, y, z}. Then
z 6→ (Q4, w1). As e(T1, Q4) ≥ 10, this implies that e(z,Q4) = 2, zw1 ∈ E and
e(xy,Q4) = 8. If zu1 ∈ E then [z, u1, v, w1] ⊇ C4, x → (Q4, w1) and y → (Q3, u1), a
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contradiction. Hence zu1 6∈ E. As e(T1, Q3) ≥ 10, e(z,Q3) ≥ 2. Thus z → (Q3, u1)
and y → (Q4, w1), a contradiction.

Therefore we may assume that for all u ∈ V (Q3), w ∈ V (Q4) and v ∈ Z2 if
e(v, uw) = 2 then e(x, uw) ≤ 1 for all x ∈ T1. Then e(T1, Qi) 6≥ 11 for some
i ∈ {3, 4}. Say w.l.o.g. e(T1, Q3) = 10. Then e(Z2, Q3) ≥ 21 − 18 = 3. By
Property 2, e(Z2, T1) ≥ 2. By Property 1, N(T1, Z2) ∩ N(Q3, Z2) = ∅. It follows
that e(Z2, Q3) = 3 and e(Z2, T1) = 2. Say N(Q3, Z2) = {v1, v2, v3}. By Property
1, N(Q4, Z2) ⊆ {v1, v2, v3}. Let x ∈ T1 be such that e(x,Q3) = 4. Then for any
wi ∈ V (Q4) with e(wi, {v1, v2, v3}) = 1, we shall have xwi 6∈ E. It follows that
e(T1, Q4) ≤ 12− e(Z2, Q4) and consequently, e(Z1 ∪ Z2, Q4) ≤ 12 + e(x0c4, Q4) ≤ 20,
a contradiction. 2

Let q be the number of vertices of T1 ∪ Z2 that are attached to some Qi in N .
By Property 3, e(Z1 ∪ Z2, N) ≤ q + 20p where |V (N)| = 4p. Let r = e(T1, Z2). By
Property 1, q ≤ 8−2r. Clearly, e(Z1∪Z2, G2) ≤ 52+2r and if the equality holds then
e(Z2, G0) = 30, i.e., G0

∼= K7. Then e(Z1∪Z2, H2) ≥ 20k−52−2r = 20(k−3)+8−2r.
As e(Z1 ∪ Z2, Qi) ≤ 20 for all Qi in H2 − V (N), we obtain that e(Z1 ∪ Z2, N) ≥
20p+ 8− 2r. This yields that q = 8− 2r and e(Z1 ∪Z2, N) = 20p+ 8− 2r. It follows
that G0

∼= K7, e(Z1, Qi) = 20 for all Qi in N for which (41) holds and e(Z2, Qi) = 20
for all Qi in N for which (40) holds. We claim that r = 3. If not, let v ∈ Z2 be
attached to some Qi in N with e(Z1, Qi) = 20 and τ(Qi) = 2. Say Qi = Q3 and
vd ∈ E with d ∈ V (Q3). Let cr ∈ T1 be such that e(cr, Z2) = 0. Then we replace cr
with d in Q1 and replace d with cr in Q3 to obtain two disjoint 4-cycles C ′ and C ′′

such that τ(C ′) = τ(C ′′) = 2, e(Z2, C
′) = r + 1, e(x0, C

′) = 4 and e(x2, C
′) = 1. By

the assumption on σ, e(Z2, Q1) ≥ r + 1, i.e., e(T1, Z2) ≥ r + 1, a contradiction.
Say E(T1, Z2) = {c1u1, c2u2, c3u3} and let T2 = {u1, u2, u3} and Q′2 a 4-cycle in

G0 − T2. Clearly, e(T1 ∪ T2, G2) = 36 and so e(T1 ∪ T2, H2) ≥ 12k − 36 = 12(k − 3).

Property 4. For each Qi in H2 with e(T1 ∪ T2, Qi) ≥ 12, either e(T1, Qi) = 0, or
e(T2, Qi) = 0, or e(T2, Qi) = 6 and e(cr, Qi) = 2 for all cr ∈ T1.

To see this, first assume that e([T2] + cr, Qi) ≥ 9 for some cr ∈ T1. Let Q(r) be a
4-cycle in [Q1 − cr + x0]. Then (crur, [T2], Q

(r), Q′2, Q3, . . . , Qk−1) is a strong feasible
chain . By Claim 2.2, we see that e(cr, Qi) = 0 for otherwise e([T2] + cr, Qi) = 9 and
[ct, T2, Qi] ⊇ 2C4 where ct ∈ T1 with e(ct, Qi) ≥ 2, a contradiction. Thus e(T2, Qi) ≥
9. Let r run over {1, 2, 3}, we see that e(T1, Qi) = 0. Hence we may assume that
e([T2] + cr, Qi) ≤ 8 for all r ∈ {1, 2, 3}. If e(cr, Qi) ≤ 2 for all r ∈ {1, 2, 3} then
the third statement of the property follows. Hence assume that e(cr, Qi) ≥ 3 for
some cr ∈ T1. By Lemma 4.1(a), τ(Qi) ≥ 1 and cr → Qi. As cr 6→ (Qi;V (G0)),
e(d, T2) ≤ 1 for all d ∈ V (Qi). Thus e(T1, Qi) ≥ 12 − e(T2, Qi) ≥ 8. Suppose that
e(T1, Qi) ≥ 9. If there exists ut ∈ T2 with e(ut, Qi) ≥ 1, then [T1, ut, Qi] ⊇ 2C4 by
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Lemma 3.4(b), a contradiction. Therefore e(T2, Qi) = 0. Hence we may assume that
e(T1, Qi) = 8. Then e(T2, Qi) = 4 and e(ut, Qi) ≥ 2 for some ut ∈ T2. Say w.l.o.g.
e(u1, Qi) ≥ 2. Suppose that e(u1, dd

∗) = 2 for some d ∈ V (Qi). Say Qi = d1d2d3d4d1
with e(u1, d1d3) = 2. Then e(dj, T1) ≤ 1 for j ∈ {2, 4}. It follows that e(d1d3, T1) = 6,
e(dj, T1) = 1 for j ∈ {2, 4} and so e(cs, d1d2d3) = 3 for some cs ∈ T1. By Lemma
4.1(a), d2d4 ∈ E. As u1 6→ (Qi;T1), e(u1, d2d4) = 0. Thus e(u2u3, d2d4) = 2. As u 6→
(Qi;T1) for each u ∈ {u2, u3}, we see that e(u, d2d4) = 1 for each u ∈ {u2, u3}. Thus
[u2, u3, d2, d4] ⊇ C4, [c1, d1, u1, d3] ⊇ C4 and so [c1, Qi, T2] ⊇ 3C4, a contradiction.
This argument shows that no vertex of T2 is adjacent to two non-consecutive vertices
of Qi. This implies that τ(Qi) 6= 2 for otherwise we may choose a 4-cycle Q′i from
[Qi] such that u1 is adjacent to two non-consecutive vertices of Q′i and then obtain
a contradiction as above. Say w.l.o.g. e(u1, d1d2) = 2. As τ(Qi) ≥ 1, say w.l.o.g.
d1d3 ∈ E. Then e(d4, T1) ≤ 1 as u1 6→ (Qi;T1). Thus e(T1, d1d2d3) ≥ 7 and so
e(ct, d1d2d3) = 3 for some ct ∈ T1. By Lemma 4.1(a), d2d4 ∈ E and so τ(Qi) = 2, a
contradiction. 2

By Property 4, e(T1 ∪ T2, Qi) = 12 for all Qi in H2. Let s1 be the number of
all the Qi in H2 with e(T1, Qi) = 0. Let s2 be the number of all the Qi in H2 with
e(T2, Qi) = 0. Let s3 be the number of all the Qi in H1 with e(T2, Qi) = 6 and
e(cr, Qi) = 2 for all cr ∈ T1. Then s1 + s2 + s3 = k − 3 by Property 4. If s1 ≥ s2,
e(c1, G) = 5+4s2+2s3 ≤ 5+2s1+2s2+2s3 = 2k−1, a contradiction. Hence s1 < s2.
Then e(T2, G) = 21 + 12s1 + 6s3 = 6k − 6(s2 − s1) + 3 ≤ 6k − 3, a contradiction.

Proof of Claim 2.7. Suppose that the claim is false. By Lemma 4.16, we may
assume that Q1 = c1c2c3c4c1 with τ(Q1) = 2, N(x0, Q1) = N(x2, Q1) = {c1, c2, c3}
and e(x3, Q1) = 0. Moreover, e(T,Qi) ≤ 10 for all Qi in H1. We have the following
property.

Property A. For any strong feasible chain (y0y1, C, J1, . . . , Jk−1) with y1 ∈ V (C), there
exist two labellings C = y1y2y3y1 and Ji = v1v2v3v4v1 for some i ∈ {1, . . . , k−1} such
that N(y0, Ji) = N(y2, Ji) = {v1, v2, v3} and τ(Ji) = 2. Moreover, e(C, Jr) ≤ 10 for
all r ∈ {1, . . . , k − 1}.

To see this, let C = y1y2y3y1 and L = ∪k−1i=1 Ji. Then 2e(y0, L) + e(y2y3, L) ≥
8k − 6 = 8(k − 1) + 2. Thus 2e(y0, Ji) + e(y2y3, Ji) ≥ 9 for some i ∈ {1, . . . , k −
1}. If e(y0, Ji) ≤ 2 then e(y0y2y3, Ji) ≥ 7. By Claim 2.5, e(y0, Ji) ≤ 1 and if the
equality holds then e(y0y2y3, Ji) = 7. It follows that 2e(y0, Ji) + e(y2y3, Ji) ≤ 8, a
contradiction. Hence e(y0, Ji) ≥ 3. If e(y0, Ji) = 4 then e(y2y3, Ji) = 0 by Claim 2.6
and so 2e(y0, Ji)+e(y2y3, Ji) = 8, a contradiction. Thus e(y0, Ji) = 3 and e(y2y3, Ji) ≥
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3. Then the property follows from Lemma 4.16. 2

Clearly, e(F+c4, G1) ≤ 19 and so e(F+c4, H1) ≥ 10(k−2)+1. Say e(F+c4, Q2) ≥
11. We break into the following two cases.

Case 1. e(F,Q2) ≥ 9.
By Claim 2.2, we see that e(x0, Q2) = 0 for otherwise e(F,Q2) = 9, [T,Q2, c4] ⊇

2C4 and so G2 ⊇ 3C4. As x0 ⇒ (Q1, c4) and by Lemma 3.2, e(c4, Q2) ≤ 1. By
Property A, e(T,Q2) = 10 and e(c4, Q2) = 1. If e(ci, Q2) ≥ 1 for some i ∈ {1, 2, 3}
then e(T + ci, Q2) ≥ 11, and by Lemma 3.4(a), [T + ci, Q2] ⊇ 2C4 and so G2 ⊇ 3C4, a
contradiction. Hence e(c1c2c3, Q2) = 0. Let w1 ∈ V (Q2) be such that w1c4 ∈ E and
G0 = [T,Q2]. We claim that there exists no triangle T1 = w1u2u3w1 in G0 − {x1, x2}
such that (42) holds and there exists no triangle T2 = x1v2v3x1 in G0−{w1, x2} such
that (43) holds:

G0 − V (T1) ≥ Q2, x1u2 ∈ E,G0 − {u2, u3, x1} ⊇ C4, G0 − {x2, w1, ui} ⊇ C4(i = 2, 3);(42)

G0 − V (T2) ≥ Q2, w1v2 ∈ E,G0 − {v2, v3, w1} ⊇ C4, G0 − {x2, x1, vi} ⊇ C4(i = 2, 3).(43)

To see this, suppose that (42) holds first. Let R = {c4, u2, u3, x0} and F1 =
c4w1u2u3w1. Then e(R,G2) ≤ 23 and so e(R,H2) ≥ 8(k − 3) + 1. Say e(R,Q3) ≥ 9.
Assume e(x0, Q3) ≥ 3. Then x0 → Q3 and so x0 → (Q3;xw1y) for some {x, y} ∈
{c4, u2, u3} with x 6= y. If {x, y} = {u2, u3} then [x0, T1, Q3] ⊇ 2C4 and so G3 ⊇ 4C4

as G0− V (T1) ⊇ C4. Hence c4 ∈ {x, y}. Say x = c4 and y = ui with i ∈ {2, 3}. Then
[x0, c4, w1, ui, Q3] ⊇ 2C4 and x2 → (Q1, c4). Thus G3 ⊇ 4C4 as G0 − {x2, w1, ui} ⊇
C4, a contradiction. Therefore e(x0, Q3) ≤ 2 and so e(u2u3c4, Q3) ≥ 7. Let Q′ =
x0c1c2c3x0 and Q′′ a 4-cycle of G0−V (T1). Then σ1 = (c4w1, T1, Q

′, Q′′, Q3, . . . , Qk−1)
is a strong feasible chain. By Claim 2.5, either e(c4, Q3) = 0 or (9) holds w.r.t. F1 and
Q3. By Lemma 4.2, [F1, Q3] 6⊇ P ]Q with P ⊇ 2P2, Q ∼= C4 and τ(Q) = τ(Q3) + 2.
By Lemma 3.3, there exists a labelling Q3 = d1d2d3d4d1 such that e(u2u3, d2d3d4) = 6
and x0d3 ∈ E. Thus u3 → (Q3;x0x1u2) and so G3 ⊇ 4C4 since G0−{u2, u3, x1} ⊇ C4,
a contradiction. Hence (42) does not hold with T1. Similarly, (43) does not hold by
an analogous argument with x0 and T2 in place of c4 and T1.

In order to find the above mentioned T1 or T2 in G0, we claim that there exists a
4-cycle a1a2a3a4a1 in [Q2] such that one of (44) to (55) holds below. To see them, we
have τ(Q2) ≥ 1 by Lemma 4.1(b). Moreover if τ(Q2) = 1 then for some xi ∈ V (T ),
N(xi, Q2) = {a, a∗} for some a ∈ V (Q2) with aa∗ ∈ E. Thus if τ(Q2) = 1 then one
of (45), (51) and (53) holds. If e(xi, Q2) = 2 for some xi ∈ V (T ) and τ(Q2) = 2
then one of (44), (50) and (52) holds. If e(xi, Q2) = 4, e(xj, Q2) = e(xl, Q2) = 3
for some permutation (i, j, l) of {1, 2, 3} then one of (46), (48) and (54) holds if
N(xj, Q2) = N(xl, Q2). Otherwise one of (47), (49) and (55) holds.

e(x2x3, Q2) = 8, e(x1, a1a3) = 2, a1a3 ∈ E, a2a4 ∈ E; (44)
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e(x2x3, Q2) = 8, e(x1, a1a3) = 2, a1a3 ∈ E, a2a4 6∈ E; (45)

e(x3, Q2) = 4, e(x1x2, a1a2a3) = 6, a1a3 ∈ E, a2a4 ∈ E; (46)

e(x3, Q2) = 4, e(x1, a1a2a4) = 3, e(x2, a1a2a3) = 3, a1a3 ∈ E, a2a4 ∈ E; (47)

e(x2, Q2) = 4, e(x1x3, a1a2a3) = 6, a1a3 ∈ E, a2a4 ∈ E; (48)

e(x2, Q2) = 4, e(x1, a1a2a4) = 3, e(x3, a1a2a3) = 3, a1a3 ∈ E, a2a4 ∈ E; (49)

e(x1x3, Q2) = 8, e(x2, a1a2) = 2, a1a3 ∈ E, a2a4 ∈ E; (50)

e(x1x3, Q2) = 8, e(x2, a1a3) = 2, a1a3 ∈ E, a2a4 6∈ E; (51)

e(x1x2, Q2) = 8, e(x3, a1a2) = 2, a1a3 ∈ E, a2a4 ∈ E; (52)

e(x1x2, Q2) = 8, e(x3, a1a3) = 2, a1a3 ∈ E, a2a4 6∈ E; (53)

e(x1, Q2) = 4, e(x2x3, a1a2a3) = 6, a1a3 ∈ E, a2a4 ∈ E; (54)

e(x1, Q2) = 4, e(x2, a1a2a4) = 3, e(x3, a1a2a3) = 3, a1a3 ∈ E, a2a4 ∈ E. (55)

We now claim that (55) and each of (46) to (52) do not hold. First, If (46) holds,
we may assume w.l.o.g. w1 ∈ {a1, a4} and let {w1, u2, u3} = {a1, a3, a4} with u2 = a3.
If (47) holds, we may assume w1 ∈ {a1, a3, a4} and let {w1, u2, u3} = {a1, a3, a4}
with u2 ∈ {a1, a4}. If (48) holds then we may assume w1 ∈ {a1, a4}. Furthermore, if
w1 = a4, let u2 = a1 and u3 = a3 and if w1 = a1, let v2 = x3 and v3 = a2. If (49) holds,
we may assume w1 ∈ {a1, a3, a4} and let {w1, u2, u3} = {a1, a3, a4} with u2 ∈ {a1, a4}.
If (50) holds, we may assume w1 ∈ {a1, a4} and let {w1, u2, u3} = {a1, a3, a4} with
u2 ∈ {a1, a4}. If (51) holds, we may assume w1 ∈ {a1, a4}. Furthermore, if w1 = a4,
let v2 = x3 and v3 = a2 and if w1 = a1, let v2 = a2 and v3 = a3. If (52) holds, we
may assume w1 ∈ {a1, a4}. Furthermore, if w1 = a1, let v2 = a4 and v3 = a3 and if
w1 = a4, let u2 = a3 and u3 = a2. If (55) holds, we may assume w1 ∈ {a1, a3, a4} and
let {w1, u2, u3} = {a1, a3, a4} with u2 ∈ {a1, a3}. Then (42) holds with T1 = w1u2u3w1

and (43) holds with T2 = x1v2v3x1, a contradiction.
Therefore one of (44), (45), (53) and (54) holds. If (44) or (45) holds, we may

assume w1 ∈ {a1, a2}. If (53) or (54) holds, we may assume w1 ∈ {a1, a4}. If (44)
holds with w1 = a2, let u2 = a1 and u3 = a4. If (45) holds with w1 = a2, let u2 = a1
and u3 = a3. With T1 = w1u2u3w1, (42) holds, a contradiction. Hence if (44) or
(45) holds, then w1 = a1. Let T ′ be a triangle of G0 such that if (44) or (45) holds
then V (T ′) = {x1, a1, a3} and if (53) or (54) holds then V (T ′) = {x1, a1, a4}. Then
G0 − V (T ′) ≥ Q2. Let C be a 4-cycle in G0 − V (T ′) and F ′ = T ′ + x0x1. Then
σ2 = (x0x1, T

′, Q1, C,Q3, . . . , Qk−1) is a strong feasible chain with x0 ⇒ (Q1, c4) and
e(c4, T

′) = 1. Since e(ci, Q2) = 0 for i ∈ {1, 2, 3}, it follows that e(F ′ + c4, G2) ≤ 27
and so e(F ′ + c4, H2) ≥ 10(k − 3) + 3. Thus e(F ′ + c4, Qi) ≥ 11 for some Qi with
3 ≤ i ≤ k − 1. By Lemma 4.14, e(T ′, Q3) ≥ 11, contradicting Property A.

Case 2. e(F,Q2) ≤ 8.
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In this case, e(c4, Q2) ≥ 3 and so c4 → Q2. Thus e(u, T ) ≤ 1 for all u ∈ V (Q2)
and so e(x0c4, Q2) ≥ 7. By Lemma 4.1(a), τ(Q2) = 2. Assume e(x2x3, Q2) ≥ 1.
Then e(x0, Q2) 6= 4 by Claim 2.6. It follows that e(c4, Q2) = 4, e(x0, Q2) = 3 and
e(T,Q2) = 4. As c4 6→ (Q2;x0x1x3), i(x0x3, Q2) = 0 and so e(x3, Q2) ≤ 1. If
e(x3, Q2) = 1, say Q2 = b1b2b3b4b1 with x3b4 ∈ E and e(x0, b1b2b3) = 3. By Lemma
4.16, e(x2x3, Q2) ≤ 2. Thus e(x2, Q2) ≤ 1 and so e(x1, Q2) ≥ 2. W.l.o.g., say x1b1 ∈
E. Then [x1, x3, b1, b4] ⊇ C4, [x0, b2, c4, b3] ⊇ C4 and so G2 ⊇ 3C4, a contradiction.
Hence e(x3, Q2) = 0. Thus e(x2, Q2) ≥ 1. By Claim 2.4, e(x0x2, Q2) ≤ 6. Thus
e(x2, Q2) ≤ 3 and e(x1, Q2) ≥ 1. Let u ∈ V (Q2) with x2u ∈ E. Let [Q2 − u + c4] ⊇
C ∼= C4. Then (ux2, T, C, x0c1c2c3x0, Q3, . . . , Qk−1) is a strong feasible chain with
e(u,C) = 4 and e(x1, C) ≥ 1, contradicting Claim 2.6. Hence e(x2x3, Q2) = 0
and so e(x0x1c4, Q2) ≥ 11. Let Q2 = u1u2u3u4u1 be such that u1 ∈ I(x0x1, Q2)
and e(c4, Q2 − u1) = 3. Let Q′ = x2c1c2c3x2 and Q′′ = c4u2u3u4c4. Then σ3 =
(x3x1, x1x0u1x1, Q

′, Q′′, Q3, . . . , Qk−1) is a strong feasible chain. By Property A, for
some Qi with 3 ≤ i ≤ k − 1, say Qi = Q3 = d1d2d3d4d1, such that τ(Q3) = 2
and N(x3, Q3) = N(z,Q3) = {d1, d2, d3} for some z ∈ {x0, u1}. Furthermore, by
the above argument, for some Qj with 4 ≤ j ≤ k − 1, say Qj = Q4, such that
τ(Q4) = 2 and e(x3x1d4, Q4) ≥ 11. Let w ∈ I(x1x3, Q4). Then d4 → (Q4, w;x1x2x3)
and z → (Q3, d4). As x0 → (Q2, z) if z = u1, we obtain [F,Q2, Q3, Q4] ⊇ 4C4, a
contradiction.
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