Microstructure and Mechanical Characteristics of Lanthana-Bearing Nanostructured Ferritic Steels

Somayeh Pasebani & Indrajit Charit

Chemical and Materials Engineering University of Idaho, Moscow, ID

Collaborators:

Darryl P. Butt, Yaqiao Wu, Jatu Burns, Kerry Allahar (Boise State University) James Cole (Idaho National Laboratory) Lin Shao and Lloyd Price (Texas A&M)

University of Idaho

College of Engineerin

Outline

Introduction

- Oxide dispersion strengthened steels
- Applications of ODS alloys as fuel cladding materials
- Nanostructured ferritic steels

• Objectives

- o Rare earth oxide dispersion
- o Spark plasma sintering

• Experimental

- o Ball milling
- o Spark plasma sintering
- \circ Ion (Fe⁺²) irradiation
- o Characterization

Results and Discussion

- o Effect of milling time, SPS parameters and alloy composition
- o Microanalysis of oxide particles
- o Irradiation behavior
- Conclusions

Introduction

Oxide Dispersion Strengthened (ODS) Steels

- Excellent high temperature creep strength
- Good radiation damage tolerance
- Pioneering work by Fisher in 1982 (INCO): MA956/ MA957
- ODS steels developed for nuclear fission and fusion applications in the US, Japan and Europe

Oxide Dispersion Strengthened Steels

Alloy	Composition (wt %)									
Alloy	Fe	Ni	Cr	Al	Ti	Мо	W	С	Y ₂ O ₃	Other
MA956	bal.	-	20	4.5	0.5	-	-	0.05	0.5	
MA754	1.0	bal.	20	0.3	0.5	-	-	0.05	0.6	
MA758	-	bal.	30	0.3	-	-	0.5	0.05	0.6	
MA760	1.2	bal.	19.5	6.0	-	-	3.4	0.06	1.0	
MA6000	-	bal.	15	4.5	2.5	2.0	4.0	0.05	1.1	2.0Ta; 0.15Zr
MA957	bal.	-	14	-	0.9	0.3	-	0.01	0.25	
PM2000	bal	-	19	5.5	0.5	-	-	0.05	0.5	
PM1000	3.0	bal.	20	0.3	0.5	-	-	0.05	0.6	
PM3030	-	bal.	17	6.0	-	2.0	3.5	0.05	0.9	2.0Ta; 0.15Zr
ODM751	bal.	-	16.5	4.5	0.6	1.5	-	0.05	0.5	

Special Metals Corporation Plansee GmbH Dour Metal S.A. (now Dour Metal s.r.o.)

> University of Idaho College of Engineering

ODS Alloys for Nuclear Applications

- Fast reactors: Significant challenges to materials selection (T> 700 °C and high neutron doses)
- Limitations of some fuel cladding materials:
 - Zirconium alloys: susceptibility to hydrogen embrittlement, allotropic changes at higher temperatures, poor creep properties
 - o Austenitic stainless steels: swelling
 - SiC: low thermal conductivity, brittle
 - Ferritic-Martensitic (F-M) steels: susceptible to radiation hardening, embrittlement and relatively low strength at higher temperatures
- Development of ODS ferritic steels for fast reactors:
 - o Dimensional stability
 - o Thermal and radiation creep resistance
 - Helium traps (particle/matrix interface) and swelling resistance
 - o Resistance to irradiation hardening/embrittlement

Nanostructured Ferritic Steels (NFSs)

- Strengthened by ultrafine Y-Ti-O-enriched nanofeatures:
 - $_{\rm O}$ Large numbers of stable nanometer-scale precipitates
 - Fine-scale bubbles
 - Reduced swelling
 - Stabilized grain boundaries
 - o High creep strength

TEM micrograph and APT maps for MA957 Miller *et al.* (2004)

Objectives

Rare Earth Oxide Dispersions

- The most commonly used RE oxide: Y₂O₃
- Are there any potential alternative RE oxides?
- Meuller *et al.*, (2000): Dispersion hardening effect of La_2O_3 , Y_2O_3 and ZrO_2 in Mo-based ODS alloys demonstrated

Highest UTS and creep-rupture properties with La₂O₃

Spark Plasma Sintering

- Sintering at lower temperatures, shorter dwell times and lower cost
- No texture or anisotropy
- Simultaneous uniaxial pressing and passing of electrical current
- Joule effect

10

 Local melting, evaporation of oxide layers, surface and volume diffusion enhance the neck formation

(a) Schematic of SPS and (b) densification mechanisms in SPS Suárez *et al., (*2013)

Experimental

Experimental - Ball Milling

- The nominal composition (wt.%):

 Fe-14Cr-1Ti-0.3Mo-0.5La₂O₃ (14LMT)
 Fe-14Cr-1Ti-0.3Mo-0.3Y₂O₃ (14YMT)
 Other compositions
- SPEX 8000M shaker mill:
 - Hardened steel balls (8 mm in diameter)
 - $_{\circ}$ BPR of 10:1
 - $_{\odot}$ Milling time for 0–20 h
- As-milled powder characterization:
 - o XRD
 - \circ SEM/EDS
 - Transmission electron microscopy (TEM) and atom probe tomography (APT) studies

Spex mixer/mill

Milling vial and steel balls

College of Engineering

University of Idaho

Experimental - SPS

- Dr. Sinter SPS 515S with maximum current capacity of 1500 A and force of 30 kN
- Consolidating the milled powder via SPS at:
 - Temperature: 850-1050 °C
 Time: 0-45 min
 Pressure: 80 MPa
 Heating rate: 100 °C/min
- Under vacuum (7×10⁻³ Torr)
- Tri-Gemini cylindrical graphite die (12.7 mm inner diameter)

SPS chamber

Sintered samples

University of Idaho

College of Engineering

Experimental - Characterization

- Density measurement
- Mechanical Properties

 Vickers microhardness
 Compression testing
- Microstructural Characterization

- Sample preparation via electrojet-polishing test set-up and focused ion beam (FIB)
- TEM (JEOL 2010 and FEI Tecnai TF30-FEG STEM)
- APT(CAMECA LEAP 4000X HR)

Results & Discussion

Effect of Milling Time on Milled Powder

Milling time (h)	Lattice parameter (nm)	Crystallite size (nm)	Lattice strain (%)	Microhardness (HV)	Mean particle size (µm)				
0	0.2864 ± 0.0003	388 ± 13	0.10 ± 0.02	330 ± 24	14.1 ± 1.1				
2	0.2870 ± 0.0002	150 ± 12	0.50 ± 0.04	591 ± 12	16.6 ± 1.5				
5	0.2878 ± 0.0003	76 ± 9	0.66 ± 0.03	851 ± 10	26 ± 2.1				
10	0.2881 ± 0.0001	24 ± 8	0.77 ± 0.04	970 ± 20	5.5 ± 1.1				
15	0.2881 ± 0.0002	18 ± 5	0.82 ± 0.02	1011 ± 12	7.5 ± 1.2				
20	0.2880 ± 0.0002	14 ± 3	0.79 ± 0.02	929 ± 20	24.1 ± 1.8				
Pasebani et al., Acta Materialia 61 (2013) 5605									

Effect of Milling Time on Milled Powder

2 h

5 h

Microstructure of Milled Powder

- Heavily deformed microstructure
- Very small crystallite size
- The nanoclusters (NCs) were Cr-, Ti-, La-, O- enriched: the mean radius 0.97 nm
- The nucleation of NCs that occurred during MA will be enhanced during SPS.
- Stable O-vacancy pairs enable nucleation of O-enriched NCs.

Pasebani et al., J. Nuclear Materials 434 (2013) 282

5x5x35 nm³

• Activation energy for volume diffusion:

o 247±6, 98±4 and 64±6 kJ/mol (0, 10 and 20 h)

• Activation energy for grain boundary diffusion:

o 153±5, 164±4 and 144±15 kJ/mol (0, 10 and 20 h)

University of Idaho College of Engineering

Effect of Milling Time on Sintered Microstructure

- Micron sized grains after sintering with no milling
- Nanograins after milling for 5 h and sintering
- A bimodal type of grain structure at longer milling times
- Such bimodal present in HIP or extrusion, too
- No strong texture

Unmilled

5 h milled

Effects of Milling Time on Microstructure (Contd.)

- No bimodal structure in unmilled/sintered 14LMT sample with average grain size 2.5 μm
- Bimodal grain size after 10 and 20 h
- Nanograins with high dislocation density and smaller particles
 - Micron sized grains with low dislocation density and larger particles

Unmilled

10 h milled

20 h milled

University of Idaho College of Engineering

Effect of SPS Parameters on Microstructure

14LMT alloy SPSed at 850 °C for 45 min

14LMT alloy SPSed at 1050 °C for 45 min

14LMT alloy SPSed at 950 °C for 45 min

University of Idaho College of Engineering

Microanalysis of Oxide Particles

EFTEM elemental maps from raw data showing different elements in 14LMT alloy SPSed at 950 °C for 45 min

HRTEM micrograph of particle

•Ti and La were mostly concentrated in the particles smaller than 10 nm.

STEM HAADF micrograph of particles

Microanalysis of Nanoclusters APT Analysis

Effect of SPS Parameters on Mechanical Properties

• The relative density values after SPS at 850, 950 and 1050 °C for 45 min were 94.3%, 97.8% and 98.3%, respectively.

University of Idaho

College of Engineering

 Microhardness: 488, 561 and 324 HV, after SPS at 850, 950 and 1050 °C for 45 min, respectively.

- Tensile test at room temperature: 0.2% YS 836 MPa
- Strength is retained to a high level even at very high temperatures: Compression yield strength of 326 MPa at 800 °C

University of Idaho

College of Engineering

Effect of Alloy Composition on Microstructure

Fe-14Cr

Effect of Alloy Composition on Mechanical Properties

Pasebani et al., J. Alloys & Compounds 599 (2013) 206

University of Idaho College of Engineering

Effect of Alloy Composition on Oxide Particle Size

Ion Irradiation Experiments

- •Texas A&M IMF Lab Accelerator (Dr. Lin Shao)
- Machine: IoneX 1.7 MV Tandetron accelerator
- Ion Source: SNICS sputter source
- At 30 and 500 °C for 10, 50, and 100 dpa

Microstructure of Irradiated 14LMT

Microstructure and dislocations: Irradiated 500 °C for 100 dpa University of Idaho

College of Engineering

31

Un-irradiated

Microstructure of Irradiated 14LMT

Nanoparticles: Un-irradiated

Nanoparticles: Irradiated 500 °C for 100 dpa

• Nanoparticles size and number density did not show any significant difference after irradiation

STEM HAADF from nanoparticles: Irradiated 500 °C for 100 dpa

University of Idaho College of Engineering

Conclusions (I)

- The nucleation of Cr-Ti-La-O nanoclusters during high energy milling was investigated.
- The role of ball milling was more complex than just the dissolution of the solute elements with a significant impact on the densification behavior.
- Adding La and Ti to Fe-14Cr matrix would significantly improve the mechanical behavior and microstructural stability.

Conclusions (II)

- Nano-oxide particles formed before and during the SPS, and hence the interaction of nanoparticles with dislocations and grain boundaries could be complex and impede further recrystallization.
- The APT analysis of the specimen sintered at 950 °C revealed high number density of 1.2×10²⁴ m⁻³ of NCs with the average radius of 1.5 nm, enriched in Cr, Ti, La and O. At 1050 °C, the number density of NCs decreased to 0.66×10²⁴ m⁻³ and the average radius increased slightly.
- High number of NCs along with the Hall-Petch mechanism, dislocation hardening and solid solution hardening led to a significant hardening in the sintered NFSs.

Acknowledgments

- This work was supported partly by the Laboratory Directed Research and Development Program of Idaho National Laboratory (INL), Contract DE-AC07-05ID14517, and partly by a grant of the Advanced Test Reactor National Scientific User Facility (ATR NSUF).
- Staff of the Microscopy and Characterization Suite (MaCS) facility at Center of Advanced Energy Studies (CAES).
- Dr. Kun Mo (University of Illinois / Argonne National Laboratory)