
Lecture 12 – Selecting Models 
 
I. Introduction. So, we have an array of models to choose from. Now the goal of phylogeny 

estimation isn’t simply restricted to choosing a tree topology, but also to find the optimal 
combination of 2n-3 branch lengths, model, and model parameters, in addition. Felsenstein 
presents this material in the first half of Chapter 19. There’s a good (but slightly dated) review 
in Sullivan and Joyce (2005. Ann. Rev. Ecol. Evol. Syst., 36:445) and another from a slightly 
different perspective in Posada and Buckley (2004. Syst. Biol., 53:793). 

 
All models are wrong, but some are useful. 

 
 

 
 
All these are from the exact same data (Cicero & Johnson 2001). The authors selected HKY+I+G 

for ML analyses. Lots of folks used to use K2P for saturation plots; it’s both wrong and 
misleading for detecting multiple hits. The HKY+I+G model is wrong (surely) but is 
nevertheless useful. Even for data exploration, model choice can matter. 

 
 

p-distance K2P	 

HKY+I+G 



There are several approaches to selecting a model for phylogeny estimation. There are those 
based on absolute goodness of fit, relative goodness of fit, and more innovative approaches 
that incorporate both fit and performance. 

 
All these are based on the fact that the likelihood score is interpretable as a measure of fit 
between the model and data and that this is directly comparable across models (contrast this 
with tree length across weighting schemes under parsimony). 

 
The first thing to note is that most approaches to model-based phylogeny estimation require 
that the model be selected and defined prior to any tree search. 

 
A. Iterative Approach.  
 
Ideally, we could evaluate models (and estimate the parameters of those models) and 
topologies simultaneously.  
 

One way around that that has been widely used is based on understanding of the manner in 
which parameters vary across topologies. (This was the topic of chapter 2 of my dissertation: 
Sullivan, J., K. E. Holsinger, and C. Simon. 1996. The effect of topology on estimates of 
among-site rate variation. Journal of Molecular Evolution, 42:308-312.) 

 
Parameters estimated from random trees can exhibit a strong bias and can be very poor 
estimates. Here, data are simulated with a = 0.8. 

 
 
But even decent trees can provide better estimates than random trees: 
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So, any decent tree (i.e., better than random) actually provides decent estimates of model 
parameters; they are not terribly different than those derived from the ML tree.  
 
This is from the data set you’re using in lab. As you can see, even though the NJ tree is 
substantially worse than the ML tree (ca. 5.3 ln L units), the MLE’s of parameters (of the 
HKY+I+G model) are not very different when optimized on each. 

 
Tree               ML          NJ 
------------------------------------ 
-ln L           6591.293    6586.008 
Ti/tv: 
  exp. ratio    2.684860    2.854459 
  kappa         5.503353    5.850992 
Shape           0.787432    0.766300 
P_inv           0.456164    0.456575 

 
 
This suggests that we ought to be able to use a rapidly built approximate tree (i.e., an NJ tree or 
an MP tree) on which to estimate model parameters and select a model. 
 
So, this is a successive approach commonly implemented. 
 

Step 1: Construct an initial tree using NJ with LogDet distances. Save the tree. 
 
Step 2: Calculate the likelihood score of alternative models of nucleotide substitution, with 

all model parameters optimized simultaneously. Choose from among these model 
based on some (statistical) criterion. 

 
Step 3: Conduct a new search of tree space under the likelihood criterion, using the model 

chosen in Step 2, with the parameters of that model fixed to values estimated in 
Step 2. If the trees found in the current search are a subset of the trees found in the 
preceding search, STOP; otherwise, go back to Step 2. 

 
Again, this has become the standard manner in which ML trees are estimated, and it seems to 
work pretty well (Sullivan et al., 2005. Mol. Biol. Evol. 22:1386).  
 
Let’s take a look at the stage here where we evaluate alternative models. There are a few 
different approaches that have been applied to model selection in phylogenetics, and we’ll 
discuss some of them. 
 

II. Absolute Goodness of Fit. 
 

Perhaps the most intuitively appealing approach to model selection would be to assess the 
absolute goodness of fit between model and data.  
 
This is based on the expectation that the model that fits the best should perform the best.  



So how does one assess goodness of fit in an absolute sense? It is actually doable, but it is 
rarely done.  
 
As we discussed Monday, the test was first developed by Nick Goldman in 1993 (J. Mol. Evol. 
36:182 – it’s called the Goldman-Cox test) and is an extension of the parametric bootstrap. 
 
In order to understand this test, we need to introduce the concept of the unconstrained 
likelihood or the maximum possible likelihood that a data set could possibly achieve. 

 
 
Remember that we only keep track of site patterns, and the frequency with which they occur. 
 

  1      A G T A C A . . . . . . . . . . . . . . . 
  2      A G T A . . . . . . . . . . . . . . . . . 
  3      A G T A . . . . . . . . . . . . . . . . . 
  .      . . . . . . . . . . . . . . . . . . . . . 
  .      . . . . . . . . . . . . . . . . . . . . .  
  n      A G T A . . . . . . . . . . . . . . . . . 
Pattern  1 2 3 1 . . . . . . . . . . . . . . . .(a) 

 
such that: 

 

 
Now this value has an upper bound. It’s bounded by the condition in which the model predicts 
the data exactly.  
 
That is, when:  

La  =  fa. 
 
Thus, the upper bound is given by: 
 

 

 
So, this is simply calculated from the histogram of the site patterns in the data. This can be 
thought of as the likelihood-score we would achieve if every site had its own model and 
could evolve on its own tree.  

lnL(τ ) = fa (lnLa (τ ))
a=1

4n

∑

€ 

lnLmax = fa (ln fa
a=1

4 n

∑ )



 
We can measure the deterioration in likelihood score associated with forcing all the data to fit 
a single model and tree. This quantity is given by: 
 

d = lnLmax - lnL(t|Data,Model) 
 
So, now we have a test statistic that measures how well the data fit the model, and we need to 
find a way to assess its significance.  
 
This is where the parametric bootstrap comes in. We have this quantity as we’ve estimated 
from the real data, where we don’t know how good the model is. Now we can simulate the 
distribution under the null hypothesis of a perfect fit between model and data.  
 
In the simulated data sets, we know that there’s a perfect fit between model and data because 
we’re using the model under examination to generate the test statistic in the replicate.  
 
Such a test is shown here for a data set I published several years ago. 
 

 
The test statistic for the real data was 676.54 lnL units. That falls right in the middle of the 
distribution I generated under the null hypothesis of a perfect fit.  
 
So, in theory, one might be able to do such a test on all models under consideration and pick 

the simplest one that is not rejectable.  
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The logic for this is that a more complex model will necessarily have a better likelihood score 

than a simpler model, even if the simpler model is true. This is because the extra 
parameters in the more general model will explain stochastic variation, even if they’re 
superfluous. 

 
Remember though that even if we simply restrict our attention to the GTR+I+G family of 

models, there are a prohibitively large number of models we might be interested in 
considering and we would have to construct the null distribution for each via simulation to 
select the simplest model that exhibits an adequate fit.  

 
An alternative approach is through use of posterior predictive simulations (Bollback, 2002. 

Mol. Biol. Evol., 19:1171), which incorporates uncertainty in parameter estimation better.  
 
We therefore need a method of evaluating models prior to conducting intensive data analysis, 

especially because these seem to be very low power tests (Ripplinger and Sullivan, 2010. 
Mol Biol. Evol., 27:2790). Jeremy Brown has developed such tests (e.g., Brown. 2014, 
Syst Biol. 63:334) that are inference based. 

 
III. Relative Goodness of Fit 

 
Given that it’s not feasible to do a series of absolute goodness-of-fit tests, most methods of a 

priori model selection have focused on the relative goodness-of-fit of alternative models.  
 
That is, we can evaluate the relative fit of each of the set of models that we’re interested in 

testing and choose one on this basis. 
 
The first issue to deal with is what measure of fit we should be using? There are a number of 

alternatives. 
 
A. Akaike Information Criterion (AIC). 
 

The AIC was developed in 1974 to penalize models that are over-parameterized.  
 

AICi = -2 lnLi + 2di, 
 

where di is the number of parameters in model i. This can be calculated for all models being 
considered and the one with the minimum AIC can be chosen.  

 
Thus, the AIC includes a measure of fit (the likelihood score of the model) and a penalty for 

over-parameterization.  
 
The AICC corrects for small sample size by multiplying the by, 2di, by:  

(2di
2 + 2di) / (n – di – 1), where n is the sample size (approximated by number of sites). 

 



This converges to the traditional AIC with data sets of the size typically used in 
phylogenetics; n ~ 400 (unless you’re examining highly partitioned models – more on these 
later).  

 
The theoretical justification for this is that it is an approximation for the Kullback-Leibler 

distance: 
 

E (lnP(D | MT) | MT) – E (lnP(D | Mi) | MT), 
 

Where MT is the true model and Mi is the model under consideration. So, the AIC minimizes 
the information lost by using the approximating model i relative to the information in the 
(unknown) true model, T. 

 
 
 

B. Bayesian Information Criterion (BIC). 
 

A similar measure also includes information on the sequence length (at least when it’s 
applied to molecular phylogenetics). 

 
BICi   = -2 lnLi+ diln(n), 

 
where n = the number of observations (usually the number of sites, but this is approximate). 
 
The BIC, like the AIC, includes a measure of fit (the likelihood score of the model) and a 

penalty for over-parameterization, and the BIC penalizes over-parameterization more than 
does the AIC.  

 
This actually approximates the probability of the model given the data and tree.  
 
Again, the BIC can be calculated for all models being considered and the one with the 

minimum BIC is equivalent to model that has the highest probability under certain 
assumptions. 

 
1. A uniform, or at least “sufficiently vague” distribution of priors across models. 
 
2. The Taylor approximation holds; the joint likelihood is a good approximation of the 

marginal likelihood. 
 
Evans and Sullivan (2011. MBE. 28:343) demonstrated that this is the case as long as there is 

a lot of information in the data regarding model preference (i.e., there are few models in the 
95% credibility interval of the posterior). 

 
 
 
 



C. Hierarchical Likelihood Ratio Tests (LRTs) 
 

LRT’s are a general statistical method designed for testing model assumptions. In general, 
they are restricted to comparisons of a pair of nested models.  

 
They were the first model-comparison tests used in molecular phylogenetics.  
 
The test statistic is: 

d = 2(lnL0 – lnL1) 
  
where lnL0 is the likelihood score under the more general model and lnL1 is the score of the 

restricted model.  
 
The test statistic is asymptotically c2-distributed, with degrees of freedom equal to the 

difference in number of parameters between the models being compared.  
 

This was the first approach used in model selection for phylogenetics, and the first two 
papers that actually implemented it are shown below. 

 
Frati et al. (1997. J.Mol.Evol. 44:145) 

 

 
Sullivan et al. (1997. Syst. Biol. 46:426) 

sequence of a fragment of the large nuclear rDNA gene
(Carapelli et al. 1995b) suggest a sister-species relation-
ship with I. unifasciatus. Within the genus Orchesella,
O. dallaii and O. villosa are consistently sister species,
O. ranzii appears to be the sister species to those, and O.
cincta is basal. The basal position of O. cincta is also
suggested by allozyme data (Frati et al. 1992).
Although the parsimony and minimum-evolution

analyses suggest a relationship between Orchesella and
Isotomurus, there is little support for the relationship in
the ML bootstrap analysis. All three analyses provide
strong to moderate support for the relationship between
Thaumanura and Tetrodontophora. It now appears that
the COII gene is quite useful for resolving closely related
taxa, but it seems too variable to give unequivocal infor-
mation at the family level in the taxa we studied. This
conclusion is similar to that of Liu and Beckenbach
(1992), who found that the COII gene did not help in
resolving phylogenetic relationships among orders of
pterygote insects.

Patterns of Nucleotide Substitution

Excessive among-site rate variation can exert a major
impact on the estimation of relationships among taxa in
that ignoring it causes all methods of phylogenetic analy-
sis to become biased due to the failure to adequately
correct for superimposed substitutions (e.g., Kuhner and
Felsenstein 1994; Yang et al. 1994). In addition, data sets
with much rate heterogeneity can be more susceptible to
the misleading effects of nonrandom noise than data sets
with less rate heterogeneity (Sullivan et al. 1995). There
is strong among-site rate variation in the data when all
sites are examined together, when first and second sites
are examined together, and when each of these is exam-
ined separately (a � 0.321, 0.329, 0.416, 0.301, respec-

tivley). There is no evidence for rate variation among
third-position sites (a > 300; Table 8), however this
shape parameter must be interpreted cautiously because
third codon positions violate the assumption of station-
arity of nucleotide composition.
Consistent with theoretical predictions (e.g., Wakeley

1996), many previous studies (reviewed in Simon et al.
1994) have shown that the observed TI/TV ratio changes
with respect to the evolutionary distance of the taxa com-
pared, with more transitions than transversions usually
observed in comparisons among closely related taxa. In
comparisons between more distantly related taxa, how-
ever, transversions tend to outnumber transitions due to
multiple substitutions. Not surprisingly, this phenom-
enon is also evident in Collembola (Fig. 5). The bias
toward transitions is most evident in comparisons be-
tween conspecific populations and is weaker between
congeneric species. As the sequences become more ran-
domized due to multiple substitutions between more dis-
tantly related taxa, transversions tend to outnumber tran-
sitions because there are twice as many kinds of
transversions.
In addition to the transition bias, a pyrimidine bias

Table 8. Likelihood-ratio test for among-site rate variation in various
partitions of the COII data. x2 � 2(lnLGamma − lnLSingle-Rate)

Subset

ln likelihood

x2SingleRate Gamma alpha

All data −7,144.315 −6,552.353 0.312 1,183.924*
1st & 2nd −2,800.354 −2,650.261 0.329 300.186*
1st −1,705.446 −1,618.676 0.416 171.540*
2nd −1,034.455 −991.299 0.301 86.321*
3rd −3,546.822 −3,546.822 >300 0.000 NS

* P < 0.001

Fig. 4. Model choice. Likelihood scores for sixteen models were evaluated on parsimony tree [6. The HKY85 + G model seems to be the best
compromise between goodness of fit and parameter economization.
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FIGURE 4. Comparison and selection of models. Likelihood scores were calculated for each model using the

tree that consistently had the highest or tied for the highest likelihood scores across models (parsimony tree 6;
Table 1). See text for model abbreviations. The HKY85+F model provides the best compromise between good-
ness of fit (as indicated by likelihood score) and parameter economization.

that has occurred on long branches (es-
pecially terminal branches), a phenomenon
that is attributable to the inability of par-
simony methods to optimize branch
lengths in evaluating trees and that is ex-
acerbated by the presence of among-site
rate variation. This underestimation in
turn may lead to overestimates of the
length of internal branches (Waddell, 1995;
Yang, 1996) and hence to erroneous esti-

TABLE 2. Parameter estimates3 derived using eight
equally parsimonious topologies found using equal
weights.

Topology

1
2
3
4
5
6
7
8

a

0.1418
0.1418
0.1392
0.1392
0.1458
0.1457
0.1433
0.1432

Ti/Tv

9.154
9.154
9.147
9.147
9.564
9.564
9.556
9.558

' The HKY85 + F model of evolution was assumed, and pa-
rameters were optimized simultaneously with branch
lengths. Ti/Tv = transition/transversion rate.

mation of support for internal nodes.
Choice of optimization strategy under par-
simony (i.e., ACCTRAN vs. DELTRAN)
will not influence this error because par-
simony cannot estimate unobserved sub-
stitutions (multiple substitutions along a
branch) regardless of optimization strate-
gy. The conclusions of Waddell (1995) and
Yang (1996) were based on simulations and
are supported by our results for P. aztecus
group cyt b data, the observations of Frati
et al. (1997) for collembolan (Insecta) cy-
tochrome oxidase II data, and those of
DeBry and Abele (1995) for three 18S ri-
bosomal RNA data sets.

Phylogeographic Implications
The effect of Pleistocene climatic fluctu-

ations on the distribution of the floral
zones of Middle America, including the
conifer belt, was apparently quite dramat-
ic. Toledo (1982) suggested that Mexican
lowlands were occupied by pine/oak and
cloud forests during dry and wet Pleisto-
cene cold periods, respectively. This hy-
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We should point out that there are problems with using the c2-distributed with boundary 

values that are usually ignored.  
 
Here’s what I mean by this. The GTRer is a special case of GTR+I; pinvar is constrained to 

zero, which is one of the bounds of the values that pinvar can possibly assume.  
 
This has the effect of bunching the distribution of the test statistic at its left end, so if we 

ignore the boundary value problem, we’re going to risk rejecting an adequate simpler 
model too often.   

 
This is dealt with by using a mixed 50/50 mixture of c2-distributions with zero and one d.f. as 

the null distribution. 
 
Note that LRTs are restricted to pairwise comparisons. This means that we must traverse 

model space via a series of pairwise comparisons.  
 
So how should we traverse model space? If we look at our cloverleaf diagram for the 

GTR+I+G family, two alternatives immediately become obvious. Bottom up or top down. 
 

Either way we go, it’s obvious that we need to make decisions about how we traverse this 
model space. 

 
If we start at the bottom, with the JC model, we have to decide if we want to first relax the 

assumption of a single substitution type, the assumption of equal base frequencies, or the 
assumption of equal rates among sites. 

 
In the first case, we would test JC vs. K2P with a c2 and 1 d.f. 
In the second, we would test JC vs. F81 with a c2 and 3 d.f. 
In the third, we would test JC vs. JC+I or perhaps JC+G, in either case with the mixed c2. 
 
Say we decided on the first option and reject JC in favor of K2P. We now can relax the 

assumptions of K2P, by say allowing 3 substitution types, maybe allowing each transition 
to have its own relative rate parameter in the R matrix. 

 
Usually, one stops adding parameters as soon as there’s a step in the traversal of model space 

at which one can’t reject the simpler model in favor of its more general companion. 
 
This often results in not considering models that lie in a large portion of the model space, and 

it’s common that if you take different pathways through model space, you’ll end up with 
different models. 

 
Joe gives an example of this on pages 327 & 328. A well-known example is Cunningham et 

al. (1998. Evolution, 52:978). 
 



An alternative to the bottom-up approach is a top-down approach in which you start at the 
most general and parameter rich model you’re considering, say the GTR+I+G model and 
try to simplify it. 

 
You still have decisions to make regarding which aspect of the model you want to try to 

simplify first, and again, you can get to different models if you simplify differently.  
 
One way around this is to look at the parameter estimates themselves, and let their values 

suggest how to proceed in simplifying. 
 
Bayes Factors are Bayesian analogues of hLRT’s, but they can be built into Bayesian MCMC. 

 
IV. Novel Approaches 
 

A. Performance Based Model Selection – Can we remove the exclusive reliance on fit? 
 

We’ve developed a method that uses Decision Theory to incorporate estimates of branch length 
error along with a BIC in selecting models (Minin et al., 2003. Syst. Biol. 52:674).  

 
Assume we are faced with a choice between, say, A or B and there are multiple possible 

outcomes of each choice. 
 
There are a possible outcomes if choice A is made (A1, A2,,,,,Aa ).  
 
And there are b possible outcomes if choice B is made (B1, B2,…Bb). 
 
We need to quantify the cost associated with each potential outcome (i.e., CA1, CA2,…CAa and 

CB1, CB2,…CBb). 
 
Further, the approach requires that we determine the probabilities of each potential outcome, 

given each choice. That is, we must be able to calculate the following: P(A1|A), 
P(A2|A),…P(Aa|A) and P(B1|B), P(B2|B),…P(Bb|B). 

 
We then calculate the expected cost (i.e., the risk) associated with each choice. 

 

 

 

 
We choose the model with the minimum risk. 

RA = CAi
P(Ai | A)

i=1

a

∑

RB = CBi
P(Bi | B)

i=1

b

∑



 
We assume an unrooted phylogeny with k terminal nodes. Therefore, there will be 2k-3 

branches. 
 
B = (B1, B2,….,B2k-3) is the vector of branch lengths and  is the vector of estimated branch 

lengths under the assumptions of model Mi. 
 
If we have two models, Mi and Mj, the Euclidean distance between the branch length estimates 

is given by:  
 

 

 
 

and the risk of choosing model Mi is given by: 
 

 

 
Recall that the BICj is related to the posterior probability of model j. Thus, 

 

 

 
As detailed earlier, we can use an approximate (e.g., NJ) tree. 
 
DT method incorporates fit (as measured by the likelihood score in calculation of the BIC), a 

penalty for over-parameterization, and expected branch-length error in selecting a model 
from among a set of candidates. 

 
This method also compares all models simultaneously, so avoids the necessity to traverse 

model space with a series of pairwise comparisons.  
 
In many instances the same model is chosen by this method as by other methods, but when 

they differ, the DT method chooses simpler models that nevertheless perform as well or 
better than models chosen by other methods.  

B̂i

B̂i − B̂ j

2
= (B̂i,l − B̂ j,l )

2

l=1

2k−3

∑

Ri = B̂i − B̂ j

2

j=1

m

∑ P(M j |D)

Ri ≈ B̂i − B̂ j

2 e−BICj

e−BICj

j=1

m
∑j=1

m

∑



 
B. Model Averaging  

 
Since model selection represents a choice that is made with uncertainty, one view is that we 

should incorporate this uncertainty into our phylogeny estimation à Multimodel Inferences. 
 
Although the ideal of model averaging in phylogenetics has been around for a while, there are 

just a few papers on it. 
 
Posada & Buckley (2004. Syst. Biol. 53:793) reviewed model selection and recommend the 

use of AIC weighting in model averaging. 
 
Here, the weights are based on the following: 
 

Di = AICi – AICmin, 

which is the difference in AIC score between Mi and the best AIC score in your set of 
candidates. 

 
 indicates substantial support for Mi. 

 indicates weak support for Mi. 
 indicates no support for Mi. 

 
Inferences are made under each model with  and the weighted average (of the tree or 

nodal support values, etc.) is derived. 
 
Perhaps a better approach is to automate model averaging via reversible jump MCMC. 
 
Reversible jump MCMC allows estimation of the models and accounting for model uncertainty 

directly and simultaneously to tree estimation.  
 
Huelsenbeck et al. (2003. Mol. Biol. Evol. 21:1123) developed ModelJumper to do account for 

the 203 special cases of the GTR family, and Evans and Sullivan (2010. Mol. Biol. Evol., 
28:343) have generalized the approach to permit evaluation of the equal base-frequency 
analogues as well (so all 403 special cases of GTR - actually both papers include a G-shape 
parameter as well, but ours also allows removal of gamma distributions, so includes 806 
possible models). 

 
Here, the frequency of each model in the posterior distribution permits an evaluation of  

P(Mi | D). The figure below is from Huelsenbeck et al. (2003). 

Δi ≤ 2
4 ≤ Δi ≤10
Δi ≥10

Δi ≤ 2



 
 
This is probably a better approach to model averaging than using the AIC weights, it’s likely 
that the future of phylogenetics (at least Bayesian approaches) will use rjMCMC to integrate 
uncertainty in model choice into phylogeny estimation. 

 
V. Does it matter how we select models? 
 
So, we have this array of model-selection approaches that differ in their philosophy and 
formulation?  
 
How different are: 
 1) Models selected using the various approaches? 
 2) Inferences made using models selected with different approaches? 
 
Jennifer Ripplinger (Ripplinger and Sullivan. 2008. Syst. Biol 57:76) addressed this in the first 
chapter of her dissertation by downloading 250 phylogenetic data sets from TreeBASE and 
selecting model using hLRT, AIC, BIC and DT. 
 

All four picked same model in 51 data sets. 
Two models were selected in 123 data sets. 
Three were selected in 70 data sets. 
All picked different models in 6 data sets. 

Fig 1.—The posterior probability of K, the number of substitution types, for each DNA sequence
alignment. The first figure shows the prior probability distribution of K, calculated as the number of models
with K substitution parameters divided by the total number of substitution models (203).
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The most commonly-used approach, AIC, tended to pick more complex and parameter rich 
models. 
 

 
 
Model selected with different approaches often were quite different from each other with>half 
the cases differing by 3 or more parameters. 
 
Furthermore, when models differed, ML trees differed ~50 % of time. 
 
However, those topological differences were usually restricted to poorly supported nodes, so 
model selection is critical only under some conditions.  
 
Sullivan and Joyce (2005) concluded that these conditions can arise because of extreme branch-
length disparity.  

 

hLTR*	 		 																6.9	±	2.2 
AIC	 	 	 			8.4	±	1.8 
BIC	 	 	 			6.7	±	1.7 
DT	 	 	 			6.7	±	1.4 

Approach																			avg	#	param	 



The conclusions of a recent paper (Abadi et al. 2019. Nature Communications) are due to the fact 
that they set up their simulations in the middle of this continuum. 
 
V. A Diversion into No Common Mechanism 
 
Since Nick Goldman first published a formal description of parsimony in terms of a likelihood 
function (Goldman. 1990. Syst. Zool. 39:345), we’ve had a single mathematical framework for 
interpreting the two approaches.  
 
Specifically, he showed that if all 2n-3 branch lengths are equal, ML under a JC model is 
equivalent to a parsimony model (i.e., under these conditions, parsimony is an ML estimator). 
 
Of course, however, there’s no reason to expect that all branches in a phylogeny have the same 
lengths, but the formulation of a likelihood model for parsimony does allow us to compare the 
two approaches directly. 
 
Tuffley & Steel (1997. Bull. Math. Biol. 59:581) generalized this to a No Common Mechanism 
model (NCM). Here, they use a JC substitution process, but apply a separate JC to each branch 
for each site. Further, they indicated that this is also equivalent to a parsimony model. 
 
This can be seen in this 2008 paper by Huelsenbeck et al. (Syst. Biol. 57:306). 
 

 
Thus, for the Tuffley-Steel version of NCM, we’ll have (2n-3) x l parameters for an analysis with 
n taxa and l nucleotides. 
 
Huelsenbeck et al. (2011. Syst. Biol. 60:1) developed two elaborations of this involving the GTR 
model.  

 
First, they allowed a single Q-matrix to allow for non-equal base frequencies and six 
substitution types, with Q being applied across all sites and across all branches, but with a 
variable length for each branch and site combination. 
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FIGURE 5. The relationship between the parsimony score and the log likelihood of a tree under the no-common-mechanism model of Tuffley
and Steel (1997) for (a) the vertebrate β-globin alignment (Yang et al., 2000); (b) the Astragalus ITS alignment (Sanderson and Wojciechowski,
2000); (c) the Angiosperm rbcL and (d) atpB alignments (Savolainen et al., 2000); and (e) the alignment of rbcL gene sequences for green plants
(Chase et al., 1993). Each plot contains the 20,000 trees sampled using the stochastic NNI tree proposal mechanism.

Note that site 1 has two states (C and T) and requires
two changes on the tree shown in Figure 6. Site 5 re-
quires no changes, and site 66 requires a minimum of four
changes. Moreover, the assignment of nucleotides to an-
cestral nodes of the tree is ambiguous for site 66. Figure 7
shows the marginal posterior probability density of the
branch lengths ( f (vk j | x j , τ, α, λ), where j = (1, 5, 66))
for the three sites. The main points to note are (1) the prob-
ability density of the branch lengths closely follows the
prior when no change is reconstructed along the branch
by the parsimony method; (2) that the probability den-
sity of the branch length has a well-defined mode, with
little probability density for small branch lengths, when a
change is unambiguously reconstructed along a branch;
and (3) that the probability density is intermediate in
shape when the changes are ambiguously reconstructed
along the branch.

The Bayesian implementation of the no-common-
mechanism model performs well when the assumptions
of the method are satisfied (i.e., the process generat-
ing the observations matches the assumptions of the
method). Figure 8 shows the relationship between the
posterior probability of a clade and the probability that
the clade is correct for simulated data. The simulations
were performed using the protocol described in Huelsen-
beck and Rannala (2004); parameters were picked from
the prior probability distribution, and then sequences
were simulated on the tree under the Jukes and Cantor

(1969) model of DNA substitution. In this case, a four-
taxon tree was first picked from the prior probability
distribution of trees (i.e., a tree was picked at random)
and a length was picked from the branch-length prior
for each branch and site. Here, branch lengths were
assumed to be exponentially distributed with parame-
ter 10. Once the tree and branch lengths were chosen,
sequences 25 sites in length were simulated along the
tree under the Jukes and Cantor (1969) model of sub-
stitution. The simulated alignment was then analyzed
under the no-common-mechanism model. The proce-
dure was repeated 10,000 times to produce the results
shown in Figure 8. Bayes’ theorem ensures that the rela-
tionship between the posterior probability of a tree and
the probability that the tree is correct is linear. In this
sense, the results shown in Figure 8 are reassuring in
that they suggest the our implementation of the MCMC
algorithm for the no-common-mechanism model is
correct.

The results depicted in Figure 8 should not be taken
as evidence that a Bayesian implementation of the no-
common-mechanism model ensures that the estimated
tree is accurate. The Bayesian implementation of the
no-common-mechanism model is susceptible to long-
branch attraction, just as is the maximum parsimony
method (Felsenstein, 1978). Figure 9 shows the probabil-
ity of a correct estimate of phylogeny for the four-taxon
case. Sequences were simulated assuming a common
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Second, they took the rational of NCM to its logical conclusion and allowed a separate GTR 
for each branch and site combinations. 
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NCMGTR	-	(2n	-3)	x	l	+	8	parameters 



 
 
 
A couple papers have evaluated the NCM models from a model-selection perspective. 
 
1) Holder et al. (2010. Syst. Biol. 59:477) demonstrated that the AIC will never favor the original 

(JC) variant of the NCM model over any of the common mechanism models. 
 
2) Hulesenbeck et al. (2011. Syst. Biol.) evaluated the marginal likelihoods of several GTR+G 

special cases relative to the various NCM variants. 

 

2011 POINT OF VIEW 5

FIGURE 1. The marginal likelihoods for various submodels of the no common mechanism model and several common parametric models
used in phylogenetic analysis. The graphs depict the results for the sequence alignments of a) gophers, b) fish of the family Labridae, c) seed
plants of the family Ericales, d) primates, e) vertebrate ATPase8 gene, and f) vertebrate ND4L gene.

mechanism model are not as severely overparameterized
and merit considerable interest. As expected, the
marginal likelihood is largest for a degree intermediate

between the two extremes of the parameter-rich no
commonmechanism model and the oversimplified
model where all branch/site elements share a single
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NCMGTRC	-	(2n-3)	x	l	x	8	
parameters! 


