
 Lecture 13 – Consensus Trees & Nodal Support 
 

I. Introduction: There are a number of methods that can be used to assess how strongly a data 
set supports a particular relationship.  

 
These make use of consensus trees, so we need to spend a little time describing them 
 

II. Consensus Trees – Chapter 30 in Felsenstein’s book 
 
Any time you have more than a single data set, you may wish to compare the trees that 

analyses of the separate data produce. This has long been done using consensus trees.  
 
These are best treated as visual summaries of the agreement and disagreement between 

(among) source trees, and consensus trees can be generated from any number of trees (> 1).   
 
These source trees may come from analyses of multiple data sets, they may be trees produced 

by analyzing the same data set with different methods, or they may be equally optimal trees 
(i.e., there may be many trees of the same length or with the same likelihood score). 
Critically, they’re used to summarize distributions of trees (generated via MCMC or 
bootstrap). 

 
There are several types of consensus trees: 

 
A. Strict Consensus Trees. 
 

A strict consensus tree contains only groups that are exactly represented in all the input trees. 
Thus, this is the most conservative consensus method. Computing these by hand is simple to 
do by using Venn Diagrams. 
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The ellipses of the Venn diagrams represent the groupings on the trees we’re comparing.  
 
Only the ellipses in bold are present on both the trees, so only the groupings that those 

ellipses encompass are present in the strict consensus tree; strict consensus trees are the 
least resolved consensus trees. 

 
B. Adams Consensus Trees 
 

At the other end of the spectrum are the Adams consensus trees, which are designed to 
maximize resolution in the consensus. 
 
They essentially work by congruence of three-taxon statements and simply relocate 
offending taxa. This is why they have more resolution than strict consensus trees.  
 

 
 
So, the strict consensus of these two trees is completely unresolved, whereas the Adams 
consensus has two nodes. Both these nodes unite groups {A, B, C} and {B, C} that are not 
present in both the initial trees.  
 
Adams consensus trees can only be used for rooted trees. 
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C. Majority Rule Consensus Trees 
 

These are exactly what their name implies. Nodes that occur in the majority of the trees being 
compared are left resolved in the majority rule consensus tree. 
 
Below is the majority rule consensus tree of the NJTree (LogDet distances), MP trees (2), 

and the ML tree for the data set from lab. So, all four trees have the nodes indicated by the 
100’s, etc. 

 
These are pretty meaningless as nodal support values if they’re derived from a collection of 

MP trees or trees produced by different methods. 
 
Again, we end up accepting groups that do not occur on all the trees being compared. 
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However, majority rule consensus tree do serve a critical function in estimating nodal support 
using two common measures. 

 
D. Before we discuss how majority rule consensus tree are used in estimating nodal support, I 

want to make a remark regarding consensus trees. 
 
These do not represent phylogenies. As such, they should never be shown with branch lengths, 

and characters should not be optimized on them. 
 
To see why, let’s use a parsimony example and look at this data matrix: 
 

A  0 0 0 1 0 0 
B  1 0 1 0 0 0 
C  0 1 0 1 1 1 
D  0 1 0 1 1 1 
E  1 1 1 1 1 0 

 
There are two MP trees for this matrix: 

        Characters 2 & 5 are homoplasious.             Characters 1 & 3 are homoplasious. 
 

 
If we do the wrong thing, by treating the consensus tree as a phylogeny and map the 

characters onto it, all four of those characters are homoplasious and the ConTree is 10 
steps. This extends to likelihood, as well. 
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Therefore, one should never show branch lengths on a consensus tree. You should demonstrate 

this to yourselves and I’ll put this in the problem set (with its answer). 
 

 
III. Nodal Support – Most often, the question of greatest interest has to do with how well 

supported are the various groups that are present in the optimal topology.  
 

Again, methods that have been developed to assess this are explicitly statistical. 
 

A. Decay Index (a.k.a., Bremer Support) 
 

Bremer (1988. Evolution, 42:795) developed a parsimony approach to assess nodal support 
from a non-statistical perspective. The idea is that if an MP tree is, say 996 steps, and group 
(A, B, C) is found on that tree, we may wish to know how much longer is the best tree that 
doesn’t contain group (A, B, C). This is the decay index for that group. 

 
So, for the primate mtDNA data set (Hayasaka et al., 1988. Mol. Biol. Evol., 5:626) that is 

often used as a sample data set there are two MP trees, each of length 996 steps. 
 
On one tree, Homo & Pan are sister taxa whereas on the other Pan and Gorilla are sisters. 
 

 
 

Therefore, the each of these two groups has a decay index of 0.  
 
The group (Homo, Pan, Gorilla) occurs on both. The shortest tree that doesn’t contain this 

group is 1012 steps. Therefore, the Homo/Pan/Gorilla node has a decay index of 16. 
 
There are a couple ways to do this, and it can be done for each node, to give the following: 
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Each node has a decay index associated with it that indicates how much longer the shortest tree 

is that doesn’t contain that particular node. 
 
This certainly is an advantage over the other methods that we’ve been discussing in that we 

now have an assessment of how strongly our data supports each particular hypothesis of 
relationships. Those that have higher decay indices are more strongly supported.  

 
However, these are just numbers, and it’s very difficult to decide how large a decay index is 

meaningful. Perhaps the best way to think about this is that the decay index for a node 
indicates how many new, conflicting synapomorphies would need to be discovered to 
overturn this hypothesis of monophyly. 

 
B. Bootstrap Support. 

 
Felsenstein (1985. Evolution, 39:783) was the first to suggest using the bootstrap approach to 
assessing nodal support in phylogenies.  
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For those unfamiliar with it, there’s an excellent introduction to it from a general perspective 
on pages 345 & 346 in the text.  

 
The method was developed by Efron in 1979 to develop confidence intervals in cases where 
the true underlying distribution of a variable can’t be assessed. The idea is that the 
distribution of the original sample (if it’s large enough) will convey much about the nature 
of the underlying true distribution.  

 
So, we can treat our original sample as if it were the true distribution (it certainly estimates 
the true distribution) and take repeated samples of our original sample to mimic the 
variability we would see if we could resample from the true distribution.  

 
In the case of phylogenies, we are interested in resampling characters from the original 
sample (i.e., the data) that we have collected.  We then treat that sample of characters as 
estimating some underlying true distribution of characters. 

 
The columns (characters) are re-sampled with replacement, and usually each pseudo-
replicate is the same size as the original data set. 
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We then generate some large number (usually between 100 & 2000) of pseudo-replicate data 
sets by randomly selecting characters with replacement from the original sample. 

 
We estimate the phylogeny for each of these pseudo-replicate data sets to generate a 
collection of trees. These can be generated under any of the optimality criteria we’ve 
discussed, and the variation among these trees provides a measure of uncertainty in our 
original phylogenetic estimate.  

 
A majority-rule consensus tree is used to show the percentage of bootstrap replicates in 
which any particular node is found in the ML, MP or ME tree for that replicate. 

 
This percentage is the bootstrap value for that node.  
 
This is one of the two MP trees for the primate data, with MP bootstrap values indicated 
below each branch, and decay indices above the branch. There’s a pretty good correlation 
between DI and bootstrap values. 

 

 
There are several things we need to point out: 
 
1) The size of the original sample is a critical factor in the performance of the bootstrap. 

This makes intuitive sense. The original sample is taken as a proxy for the underlying 
parametric distribution; it must be large enough to reflect relevant features of the 
distribution. 
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2) For large data sets, bootstraps can take a very long time. Felsenstein (1993 Phylip 

Manual) has suggested that the uncertainty captured by bootstrap resampling is much 
larger than the error associated with extensive branch swapping in estimating optimum 
tree for each bootstrap replicate.  

 
At one extreme, one may conduct a full heuristic search for each bootstrap replicate 
(including stepwise addition with multiple random addition sequences and TBR branch 
swapping). 

 
An intermediate strategy that has been shown to work well for parsimony (DeBry & 
Olmstead, 2000. Syst. Biol., 49:171) is doing a greedy search on each bootstrap replicate 
that involves retaining only a single optimal tree in memory (i.e., MAXTREES = 1). This 
was explored for ML analyses empirically by Ripplinger et al. (2010. MP&E. 56:642) 
who found the same result (i.e., no need to worry about model selection/parameter 
optimization for each pseudoreplicate; cursory branch swapping should be done). 

 
One could do a FastBoot analysis, in which only a stepwise-addition tree is built for each 
bootstrap replicate. This is analogous to a neighbor-joining bootstrap. 

 
IQ-TREE does UltraFastBoot. This uses the RELL bootstrap and doesn’t do any tree 
searching on bootstrap replicates. I’ll teach about RELL later and we’ll address this then. 

 
3) As long as we’re using a consistent estimator of phylogeny, bootstrap values on nodes 

tend to be conservative as confidence intervals (Hillis & Bull, 1993. Syst. Biol., 42:182). 
If we’re using an inconsistent estimator, of course bootstrap analysis may give us high 
confidence in incorrect nodes (i.e., if we’re in the Felsenstein Zone), or they may give us 
too much confidence in a correct node that is actually poorly supported (i.e., if the true 
tree is in the inverse Felsenstein zone).  

 
Lots of work has been done on how to interpret the bootstrap values, and Joe does an 

excellent job summarizing that work on pages 335 – 345. 
 
My take is that they can be taken as estimates of the statistical confidence we can place in a 

node (or anything else we may be estimating using the phylogeny), but that in some cases 
they’re conservative and in other cases they’re too liberal. As such, we need to treat them 
cautiously, and think about conditions that lead to each type of bias. 

 
Next, we’ll discuss an alternative to the bootstrap in estimating nodal support, Bayesian 
Posterior Probabilities and we’ll use that to introduce Bayesian statistics. 

 
C. Bayesian Estimation of Nodal Support 

 
Just in the last twenty or so years, Bayesian statistics have become mainstream in 

phylogenetics. I’ll just give a brief introduction to Bayesian statistics for those of you who 
are not familiar with the approach. 



 
The idea of Bayesian analysis is intuitively very appealing. Given some data, a likelihood 

model, a quantification of prior our knowledge, we can calculate the probability of that 
some hypothesis is true.  

 
The formalization of this is provided by Bayes’ Theorem: 
 
 

, 

 
where P (Hi | D) is the posterior probability of hypothesis i, given the data, D. 
 
P (Hi) is the prior probability of hypothesis i, (this is the quantification of prior knowledge). 
 
P (D | Hi) is the probability of the data, given hypothesis i. This is the regular likelihood 

function we’ve been using this semester. 
 
The denominator is the product of these summed across all s competing hypotheses. 
 
For phylogeny estimation, we can describe Bayes’ Theorem as: 
 
 

 

 
The P (ti), the prior probability of tree i, is usually set to 1/s, where s is the number of possible 

trees. This represents an admission of ignorance and is called a flat prior or a uniform 
prior (or an uninformative prior). 

 
The summation in the denominator then is across all s topologies. 
 
Before we move on any further, I want to insert a comment as to why this is such an intuitively 

appealing approach. 
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First, it is literally the issue of actual interest for which we’re calculating posterior 
probabilities: the (conditional) probability that a hypothesis is correct. This is in contrast 
to the frequentist probability of observing the data, given the hypothesis is true. 

 
Second, this really captures the process that our minds go through when we read a scientific 

paper. We come to the paper with some background knowledge about the topic, which is 
analogous to the prior.  

 
Maybe we have a great deal of expertise in the issue, in which case we would have an 
(informal) informative prior that may have a large impact on our belief after reading the 
paper (i.e., is the paper b.s., considering the data and our background knowledge?).  

 
Conversely, we may have very little expertise on the topic, in which case our (informal) 
prior would not be very informative (i.e., flat) and have very little impact on our belief 
after reading the paper. So, every time we read a scientific paper, our minds conduct an 
informal Bayesian analysis. 

 
Let’s go back to Bayes’ Theorem as it applies to phylogenies. The denominator is impossible 

to compute. In order to calculate it, we need to calculate the likelihood of all possible 
trees. This rendered fully Bayesian analysis impossible for the 25 years between the 
advent of computational phylogenetics and the paper by Ranala and Yang (1996. J. Mol. 
Evol., 43:304) and Mau’s dissertation (1996) that led to the current ascendency of 
Bayesian estimation. 

 
This is due to the application of Markov Chain Monte Carlo to Bayesian estimation.  
 
MCMC is an approach that allows one to derive a sample from an unknown distribution by 

growing a chain of states that are sampled from this distribution. This is accomplished by 
proposing a change to the current state and accepting that proposal following a set of 
rules.  

 
For phylogenies, we start the mcmc with some tree (ti), let’s say it’s a random tree. This is 

the state of the chain in the first generation.  
 
We then propose a change in the tree (generate ti+1) by proposing a random NNI (or some 

other type of tree rearrangement - see below). 
 
If the new tree has a higher posterior probability than the first, we accept the new tree.  
 
This decision is made by calculating the ratio of the posterior probability of the new to 

previous state (tree): 
 



 

 
So, if R > 1, we accept the new tree (it has a higher posterior probability than the previous 

tree). 
 
If R < 1, we draw a random probability (between 0 & 1). If this is > R, we accept the change, 

if not, we return to the previous state (tree). We’ll accept slightly worse trees more often 
than we’ll accept much worse trees. This builds down-slope movement into MCMC. 

 
By examining the acceptance ratio, we can see a couple of simple things. 
 
First, the impossible denominators for each state cancel; we never have to compute the 

impossible denominator. 
 
Second, if the priors are the same across all topologies, that is, 
 

P (ti+1) = P (ti) = 1/s, 
 
The priors cancel and the likelihood function determines the shape of the posterior 

probability distribution. 
 
Using these rules, and starting anywhere in tree space, if we run the chain long enough, 

eventually the frequencies of states in the chain (i.e., trees), will converge to their 
frequencies in the posterior probability distribution.  

 
Another way of saying this is that once the chain reaches equilibrium, it samples trees 

proportionally to their posterior probability, and the sample provides a representation of 
the posterior distribution. 

 
Now we need to make a few points.  
 
First, we have to discard early generations of the chain, because it takes a while for the chain 

to traverse solution space and converge to the target distribution. This is called the burn-
in, and a first-approximation of the burn-in usually entails a plot of the likelihood of the 
current tree across generations. 

€ 

R =

P(τ i+1)P(D | τ i+1)

P(τ i)P(D | τ i)
i=1

s

∑
P(τ i)P(D | τ i)

P(τ i)P(D | τ i)
i=1

s

∑



 

 
Here, once we’ve run the chain for ca. 100K generations, we seem to have converged, at least 

with respect to the likelihood. 
 
Second, all that matters in theory is that all the potential manifestations of the states (i.e., all 

trees) can be reached by a series of single steps of our proposal mechanism (e.g., SPR 
branch swaps). As long as this is the case, the MCMC will converge on the stationary 
probability distribution if it’s run long enough. That is, MCMC will be ergodic. 

 
Nevertheless, convergence properties depend on proposal mechanisms. Proposal 
smechanisms that change the state very little will take very (very, very….) long chains to 
provide an adequate sample because solution space will be explored too narrowly. 
Conversely, proposal mechanisms that change the state too dramatically will result in most 
proposals being rejected and the chain sticking on a state for a long time. 

 
Too little has been published on the effect of proposal mechanisms on Bayesian estimation 
of phylogenies, but Lakner et al. (2008. Syst. Biol. 57:86) is a great start.  

 
They evaluated seven types of topology proposals for several empirical data sets. These 
included local branch changes that collapse branch lengths, and variations on NNI, SPR, 
and TBR swaps. 
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The restrictions focus reattachment points close to the original location. Internal branch va is 

broken and subtree A is attached on either side of its initial attachment point with probability 
of 0.5. It will be attached farther along with probability 0.5pe, where pe is the extension 
probability. 

 
eTBR works the same way except the subtree A can be rotated to reconnect it at any point within 

it, with a higher probability of reconnecting the subtree at branches close to va. 
 
These restricted versions of branch swapping don’t suffer from proposing changes that are so 

different that they’re never accepted (which tends to happen with the non-restricted versions), 
nor do they suffer from proposing changes that are so small that solution space is traversed too 
slowly. 

 
Proposal mechanisms that combine eTBR or eSPR with the local, small-scale changes seem to 

converge most rapidly. 
 
Third, convergence diagnostics must address the parameter of interest. For example, in the plot 

above, the likelihood seems to have converged, but that tells us nothing about convergence 
with respect to topology.  

 
Nylander et al. (2008. Bioinformatics, 24:581) have produced Are We There Yet (AWTY), to 

focus convergence diagnostics on a number of potential parameters of interest. 
 
 

 
Specifically, they introduced restrictions on SPR & TBR swapping called extending, or 
eTBR & eSPR. 

 
The restrictions focus reattachment points close to the original location. Internal branch va is 

broken and subtree A is attached on either side if its initial attachment point with 
probability of 0.5. It will be attached farther along with probability 0.5pe, where pe is the 
extension probability.  

 
eTBR works the same way except the subtree A can be rotated to reconnect it at any point 

within it, with a higher probability of reconnecting the subtree at branches close to va. 
 
These restricted versions of branch swapping don’t suffer from proposing changes that are so 

different that they’re never accepted (which tends to happen with the non-restricted 
versions), nor do they suffer from proposing changes that are so small that solution space is 
traversed too slowly. 

 
Proposal mechanisms that combine eTBR or eSPR with the local, small-scale changes seem 

to converge most rapidly. 
 
Third, convergence diagnostics must be address the parameter of interest. Foe example in 

the plot above, the likelihood seems to have converged, but that tells us nothing about 
convergence with respect to topology. For example Nylander et al. (2008. Bioinformatics, 
24:581). 

 



 
 
These pretty sophisticated convergence diagnostics do not demonstrate convergence, but are at 

least consistent with the hypothesis that independent runs are sampling from the same 
distribution, and we hope that this is the actual target posterior distribution of (in this case) 
topologies. 

 
So, we can sample the tree every so often from this chain to generate a collection of trees (say 

10,000 of them). Ideally, each topology will be present in the sample at a frequency that’s 
proportional to its posterior probability. 

 
Summarizing the posterior distribution of trees. 
 
This generates a sample from the posterior distribution of trees, and the frequency of each tree in 

the sample is that tree’s posterior probability. 
 
There are several ways to summarize the posterior distribution of trees. 
 
We can compute the majority-rule consensus tree from this distribution of trees to see how 

frequent each node (say on the ML tree) is in the sample. This becomes our posterior 
probability that the node is correct, conditional on the data, the priors, and likelihood model. 

 
An example of this is shown below. Good & Sullivan (2001. Mol. Ecol., 10:2683): 
 
 
So, as is commonly seen, there are nodes for which all three methods indicate strong support, 

and there are nodes for which the Bayesian posterior nodal probabilities are much higher than 
either the MP or ML bootstraps. 
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probability that the node is correct, conditional on the data, the priors, and 
likelihood model. 
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So, we can assess if the higher nodal support values are actually meaningful, and a fair amount 
of work has been done on it. For example, Erixon et al. (2003. Syst Biol. 52:665) suggest (as 
do other studies - Alfaro et al. 2003. Mol. Biol. Evol. 20:255) that under best-case scenario 
(correct model), both ML bootstrap values and BPP are conservative, but BPP are less so. 

 

 
 
 
 

 
 
So, as is commonly seen, there are nodes for which all three methods indicate strong support, 

and there are nodes for which the Bayesian posterior nodal probabilities are much higher 
than either the MP or ML bootstraps.  

 



 
 

There are other ways to summarize the posterior distribution of trees, such as the MAP 
(Maximum posteriori) tree. 

 
I actually think a far better use of the posterior distribution of trees is to use them to test 

hypotheses (more later) or sample from the posterior for a second-order analysis. 
 

 
There are lots of other issues to deal with regarding Bayesian estimation. 
 
First, the phylogeny problem is a terribly complex one. Remember that the likelihood of a 

particular tree topology includes a vector of branch lengths, each of which is estimated 
with uncertainty and a vector of model parameters, each of which is estimated with 
uncertainty.  

 
So, we can take our model, start the mcmc with initial states for model parameters, and 

include proposals to change each of those as well as topology in our mcmc. 
 
This means that we need to place priors on each of these parameters as well. Typically, 

MrBayes does something like this: 
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Parameters 
      ------------------ 
      Revmat           1 
      Statefreq        2 
      Shape            3 
      Pinvar           4 
      Topology         5 
      Brlens           6 
      ------------------ 
 
      1 --  Parameter  = Revmat 
            Prior      = Dirichlet(1.00,1.00,1.00,1.00,1.00,1.00) 
      2 --  Parameter  = Statefreq 
            Prior      = Dirichlet 
      3 --  Parameter  = Shape 
            Prior      = Uniform(0.05,50.00) 
      4 --  Parameter  = Pinvar 
            Prior      = Uniform(0.00,1.00) 
      5 --  Parameter  = Topology 
            Prior      = All topologies equally probable a priori 
      6 --  Parameter  = Brlens 
            Prior      = Branch lengths are unconstrained: 

Exponential(10.0) 
 
Proposed changes to these parameters are usually as follows:  
The chain will use the following moves: 
      With prob.  Chain will change 
        3.57 %   param. 1 (revmat) with multiplier 
        3.57 %   param. 2 (state frequencies) with Dirichlet proposal 
        3.57 %   param. 3 (gamma shape) with multiplier 
        3.57 %   param. 4 (prop. invariants) with beta proposal 
       53.57 %   param. 5 (topology and branch lengths) with LOCAL 
       10.71 %   param. 5 (topology and branch lengths) with extending TBR 
       10.71 %   param. 6 (branch lengths) with multiplier 
       10.71 %   param. 6 (branch lengths) with nodeslider 

 
The advantage of this is that we’re estimating nodal probabilities that actually account for 
uncertainty in all the other parameters (i.e., integrate across uncertainty in estimating them).  
 
In contrast in ML analysis, we’re using point estimates (the ML values) of each parameter 
(jointly estimated) and use of marginal probabilities incorporate this uncertainty intelligently. 
Holder and Lewis (2003. Nature Rev. Gen. 4:275) provide a great discussion of joint versus 
marginal estimation: 
 
 
 
 
 



 
 
 
 
 
The disadvantage is that now we’re generating an even more complex parameter space through 
which to traverse. 
 
This will make it more difficult to converge and increase the chance that we have false 
stationarity by being trapped on local optima for longer.  
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FIGURE 1b presents a concern about marginalizing over all
parameters. In this example, the value of x seems to be
<10 (this region has much higher likelihood/posterior
for both trees). Tree B would be chosen by a Bayesian
analysis because it has higher posterior probability for
large values of x. It seems troubling that tree B is pre-
ferred on the basis of higher support in a clearly sub-
optimal region of parameter space. The Bayesian
approach is not really misbehaving, even if the results
seem counter-intuitive. If the data had strongly rejected
values of x >10, both trees would have had likelihoods
near zero for that region of parameter space and there
would have been no apparent problem. The example
underscores the fact that every part of the surface
affects the results, so careful consideration must be
given to the prior distribution over the entire range of
the parameter values.

When there are few parameters and a large amount of
data, the debate between marginal and joint estimation is
largely academic; the likelihood and posterior landscapes
become steep thin spires and the height of the peak is a
good predictor of the integral over the whole surface.
Marginalizing becomes increasingly helpful as the
amount of data decreases relative to the number of para-
meters (for example, when complex models are used). In
these cases, the likelihood surface resembles rolling hills,
and consideration of the substantial uncertainty in the
values of parameters is necessary. This is also a situation
in which the prior can strongly influence the analysis.

Markov chain Monte Carlo. As the previous discus-
sion indicates, Bayesian analysis involves specifying a
model and a prior distribution and then integrating
the product of these quantities over all possible para-
meter values to determine the posterior probability
for each tree. The likelihood functions for phylo-
genetic models are too complex to integrate analytically,
so Bayesian approaches rely on MCMC43,44 — a
remarkable algorithm that is used for approximating
probability distributions in a wide variety of contexts.

MCMC works by taking a series of steps that form a
conceptual chain. At each step, a new location in para-
meter space is proposed as the next link in the chain.
This proposed location is usually similar to the present
one because it is generated by the random perturbation
of a few of the parameters in the present state of the
chain. The relative posterior-probability density at the
new location is calculated. If the new location has a
higher posterior-probability density than that of the pre-
sent location of the chain, the move is accepted — the
proposed location becomes the next link in the chain
and the cycle is repeated. If the proposed location has a
lower posterior-probability density, the move will be
accepted only a proportion (p) of the time, where p is the
ratio of the posterior of the proposed location compared
with the posterior of the present location (in short, small
steps downward are accepted often, whereas big leaps
downward are discouraged). If the proposed location is
rejected, the present location is added as the next link 
in the chain (so, the last two links in the chain will be
identical) and the cycle is repeated. If the method for

FIGURE 1a presents a case in which Bayesian analysis
seems superior: tree A has a slightly higher peak, but tree
B has good support over a wide range of values of the
nuisance parameter. Marginalizing over nuisance para-
meters is preferable, because the estimation of parame-
ters is imperfect; so, it is inappropriate to treat the ML
estimates of parameters as the only points in parameter
space that matter.

If integrating out parameters is preferable, why not
marginalize over all parameters? The answer is that we
integrate out parameters by weighting them according to
their posterior probability, and this requires a prior prob-
ability in addition to the likelihood.Advocates of ML are
uncomfortable with specifying prior distributions
(which they regard as too subjective) for all parameters.

a

b

0.0 5 10 15 20 25
X

0.0 0.2 0.4 0.6 0.8 1.0
X

Y

Y

Tree A Tree B

Figure 1 | Contrast between marginal and joint estimation.
Panels a and b depict the likelihood profile for two trees versus a
hypothetical parameter x. The x axis represents some nuisance
parameter (for example, the ratio of the rate of transitions to the
rate of transversions). The y axis represents the likelihood in the
case of ML, or the posterior-probability density in a Bayesian
approach. The area under the likelihood curve for tree A is shown
in light blue, the area for tree B is shown in orange. Mauve
regions are under the curve for both trees. In both cases, jointly
estimating x and the tree favours tree A (that is, the highest peak
is blue in both cases), but marginalizing over x favours tree B
(that is, the orange area is greater than the blue area).



We can (as I’ve mentioned earlier) treat the model as a nuisance variable and propose model 
jumps in the MCMC (via rjMCMC), and this makes the space even more complex. 
 
The complexity of the space can be dealt with to some degree by running several chains 
simultaneously (Metropolis-Coupled MCMC, or MC3), and every now and then proposing a state 
from a different chain and trying to switch states in the cold chain for states the other chains.  
 
Typically, the Metropolis-coupled chains are proposing more radical proposals. This is called 
heating the chains, because we’re trying larger steps in the heated chain and every now and then, 
trying to update the cold chain. This actually permits traversal away from local optima. 
 
 
In addition, we have the problem of truncating priors. 
 
Say we have a parameter such as the gamma distribution shape parameter, which is unbounded. 
 
If we want to use a flat prior for this parameter, we need to truncate it. In the example above, it’s 
truncated at the lower end by 0.05 and at the upper end by 50. This certainly seems reasonable, 
but it creates a bias.  
 
Joe gives an example on page 305 where different truncations of a flat prior on a branch length 
leads to Bayesian estimate that excludes the ML estimate.  
 

 


