
Lecture 13 – Performance of Methods 
 
I. Introduction: We’ve spent a fair amount of time describing the some of the various methods 

for phylogeny estimation. As we have experienced, there is a huge array of methods to choose 
from, and there are various criteria by which one might guide one’s choice.  
 
As the statistical view has become prevalent and has come to dominate phylogenetic research, 
performance has been acknowledged as relevant in choice of methods and this has led to a 
huge body of literature that assesses the performance of various methods.  
 
The term “reliability” is often used, but without a very clear definition of what it is. Here, we’ll 
address several criteria for evaluating the performance of methods and discuss three methods 
that have been used to assess performance using these criteria. 
 

 
Criteria Methods 

Accuracy Simulation 
Consistency Congruence Analysis 
Efficiency Experimental Phylogenies 
Robustness  

 
 
II. Methods of assessing performance. 
 

A. Simulation studies – One of the most widely used approaches to assessing phylogenetic 
performance is to simulate data and assess how well various methods estimate the true 
phylogeny (that was used to generate the data). 

 
Simulations have the enormous advantage that a large number of replicates can be examined, 

and this allows us to account for stochasticity.  
 
There are a couple different approaches to simulation studies. The first is prospective 

simulations, in which a set of conditions is specified a priori, and this defines the 
conditions under which data are simulated. 

 
The second is retrospective simulations, in which simulation conditions are defined by 

analysis of a particular data set that’s relevant to some question.  
 
Both are very useful and have contributed enormously to our understanding of the 

performance of methods.  
 
Prospective simulations have been particularly important, but they can certainly be abused.  
 
The power of prospective simulations is that a variety of conditions may be examined, and 

the performance of methods can be compared across these conditions. The first paper to do 
really extensive prospective simulations of phylogenetic performance was Huelsenbeck & 



Hillis (1993. Syst. Biol., 42:247). This paper led to a host of prospective simulation studies 
that have tremendously advanced our understanding of the conditions across which 
phylogenetic estimation methods perform well.  This paper also defined the Felsenstein 
Zone. 

 
 

	  
 
 
The danger of prospective simulations, however, is that it’s very easy to stack the deck. 

There are lots of examples of this in the phylogenetics literature. One of the first I became 
aware of these was Tateno et al. (1994. Mol. Biol. Evol. 11:261-277).  

 
They simulated data under an F84+G model of sequence evolution. They then compared how 

well NJ on G-corrected distances did at estimating the tree with ML under an equal-rates 
model. Of course, they concluded that the NJ method with gamma-corrected distances 
outperforms ML under these conditions, but that was simply because they made 
inappropriate comparisons. They matched the model perfectly in NJ, but not in ML. 

 
One major weakness of simulation studies is that the models that are used to simulate data 

are clearly overly simplistic. Thus, simulation studies, while very important and 
informative, have limitations and are subject to investigator bias. 

 
 
B. Congruence Analysis – Use of well-corroborated phylogenies. 
 

For real data, there’s no such thing as a “known phylogeny.”  However, there are a few 
groups of organisms for which congruence among a large array of diverse data sets has 
resulted in the next best thing (Miyamoto and Fitch, 1995. Syst. Biol. 44:64-76). “Trees of 
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squares method (Kidd and Sgaramella-
Zonta, 1971; Olsen, 1988; Swofford and Ol-
sen, 1990). In this study, patristic distances
were calculated using the equations from
Kidd and Sgaramella-Zonta (1971), and
negative branch lengths were set to 0. One
trial set of simulations was performed that
allowed negative branch lengths, and the
performance of the least-squares methods
was considerably worse than when these
branch lengths were set to 0.

RESULTS
The results from the consistency and

simulated analyses were plotted with
length 1 (=three-branch length) as the abs-
cissal value and length 2 (=two-branch
length) as the ordinal value. Figure 4 shows,
in a general sense, the branch lengths in
different parts of the graph space. The di-
agonal across Figure 4 represents equal
branch lengths.

Consistency Analysis
Figure 5 shows the results from the con-

sistency examinations of the tree-making
methods, i.e., how different estimation
methods (A-P) perform under three dif-
ferent models of evolution (I—III). White
areas represent areas in which the methods
are consistent, whereas black areas repre-
sent areas of the graph space in which the
methods are inconsistent. A method is con-
sistent if it converges on the correct answer
as more data are added. In Figure 5, areas
of consistency represent combinations of
branch lengths that result in the correct
tree and areas of inconsistency represent
combinations of branch lengths that result
in an incorrect tree (tree 2 from Fig. 1 is
chosen). Felsenstein (1978) first showed
that the parsimony method is inconsistent
under a Camin-Sokal model of evolution
(Camin and Sokal, 1965) even if a Camin-
Sokal model of evolution is used as a de-
scription of character change on the tree.
Felsenstein (1978) predicted that parsi-
mony would be positively misleading
when the internal branch and two oppos-
ing peripheral branches are very small and
the other two branches are very long. We
refer to this area where methods perform

FIGURE 4. The results of the simulations were plot-
ted with the three-branch length on the abscissa and
the two-branch length on the ordinate. Different ar-
eas of the graph space represent trees with different
branch lengths. Change along branches was varied
from 1% internodal difference in 1% increments to
the maximum length possible (=75% for four-char-
acter states). These axes apply to Figures 5-8.

inconsistently as the Felsenstein zone.
DeBry (1992) extended consistency analy-
ses by examining the consistency of four
phylogenetic methods for the five-taxon
case.

Figure 5 shows that parsimony, trans-
version parsimony, and weighted parsi-
mony all have regions of inconsistency.
However, when transitions are evolving at
a higher rate than transversions and trans-
versions are weighted more heavily (i.e.,
transitions are completely discounted or
given a reduced weight, as is the case with
transversion parsimony or weighted par-
simony, respectively), the area of incon-
sistency becomes slightly smaller. Lake's
method of invariants is consistent over all
of the graph space examined in this study
when the model of evolution matches the
assumptions of the invariants method: (1)
substitutions are independent, (2) evolu-
tion occurs only by substitution, and (3) a
balance exists among specific classes of
transversions and classes of transitions
(Swofford and Olsen, 1990). When the as-
sumptions of balance between specific
classes of transitions and transversions is
violated, Lake's method of invariants be-
comes inconsistent over a portion of the
graph space.

Figure 5 also shows the performance of
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natural taxa, well supported by many independent lines of evidence, should be used in the 
same way as the known phylogenies of simulations and of certain laboratory and 
domesticated groups, i.e., as standards for evaluating the accuracy of different phylogenetic 
methods.”  These usually include model organisms, such as particular groups of deer mice, 
Drosophila, or something like that.  

 
Sequence data are then collected and phylogeny estimated with a variety of methods and 

those that yield the well-corroborated relationships with greatest certainty are deemed to be 
best performing.  

 
This has the advantage that the data have been produced by the actual complex evolutionary 

process that has led to the diversity of the group being used, circumventing the weakness of 
simulation.  

 
There are several weaknesses, though.  

The history of the group can’t be manipulated to explore different combinations of branch 
lengths and properties of the data. 

Replication is non-existent. 
Assumes gene tree equals species tree (coalescent stochasticity is ignored as is 

HGT/hybridization). 
 
C. Experimental Phylogenetics – Building known phylogenies in the lab. 

 
This approach combines the advantage of congruence analysis that DNA sequences evolve 

via more or less natural processes with the advantage of simulation studies that the tree 
topology can be anything the investigator chooses. In addition, the ancestors can be 
archived and used to assess other issues like accuracy of reconstructing ancestral states.  

 

A True Experimental Phylogeny 
We can also do things like expose experimental populations to various selective regimes to 
assess the effects of all kinds of evolutionary paradigms on phylogeny reconstruction. 
 



 
 
 
So, we can adjust the true tree in any way we wish, and to some extent, we can alter the 
evolutionary process. 
 
However, ability to replicate is quite low, usually limited to a couple or a few replicates. 

 
II. Criteria.  
 

There are a number of properties that are desirable in statistical estimation, and these can be 
used as criteria in assessing performance. Of interest may be the performance of any one 
method across a variety of conditions, the performance of a variety of methods under a 
particularly relevant set of condition, or, perhaps most importantly, the performance of 
several methods across a range of conditions.  

 
A. Consistency – This term has a very explicit statistical definition. A statistically consistent 

estimator is one that converges to the true value of the parameter being estimated as the 
amount of data increases. With sufficient data, an estimate that is consistent will be equal to 
the true value with certainty.  

 
In terms of phylogeny, this means that the true tree will be found with increasing probability 

as more data are acquired (i.e., longer sequences are analyzed). This is exemplified above. 
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So, under the conditions simulated here (FZ tree, GTR+I+G, moderate ASRV), six of the 

methods examined are consistent and three are inconsistent. 
 
This certainly is an important and desirable property, and it has been used heavily as an 

indicator of performance. However, given that consistency is an infinite data property, it 
has been criticized as a criterion for choosing a method to analyze a finite data set. 

 
A typical gene length is 500 – 5000 nucleotides. 

 
B. Efficiency – This also has a specific statistical interpretation. A consistent estimator is an 

efficient one if it converges to the true value quickly, that is, without a lot of data.  
 

This certainly is a relevant criterion for evaluating performance, but it’s been pointed out, for 
example by Sanderson and Kim (2000), that it’s rarely addressed. While they’re correct that 
a large amount of work has been done on consistency, the efficiency of various methods can 
be examined at the same time as consistency. So, look at the consistency figure above, 
although ML estimation with both GTR+I+G and JC+G are consistent (for these conditions), 
estimation with GTR+I+G is more efficient.  

 
Conversely, if we look at different conditions (i.e., a different tree), we see a different 
situation.   
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Parsimony and the equal-rates methods are much more efficient than are any of the other 
methods under these conditions 

 
C. Robustness – A third criterion for evaluating the performance of a method is robustness.  

This assesses how well a method performs in the face of violations of its assumptions.  
   
  This is particularly important because all methods make assumptions, either explicitly or 

implicitly.  
 

This really can be assessed via any of the three methods but is perhaps best addressed via 
simulation because we can control the exact nature of assumption violation. Again, we can 
use the same approach as before. 

 
In this case, the sequences were simulated with the GTR+I+G and when we violate various 

assumptions in the model that we use to analyze the data consistency is not compromised, 
at least for the non-equal rates models.  

 
So, in this case, ML estimation is robust to violation of some of its assumptions – as long as 

we do something to account for ASRV, we don’t need to model it precisely. However, 
violating these assumptions does influence efficiency. 

 
One of the real advantages of simulations is that we can look for interactions between tree 

topology and each of these.  
 

The figure above represents data simulated on a Felsenstein Zone tree. This, of course, stacks 
the deck against parsimony and the conclusions about robustness are restricted to trees 
with similar properties.  
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To be fair, we really need to assess the issues of consistency, efficiency and robustness 
across a variety of tree shapes. 

 
From Sullivan & Swofford (2001. Syst. Biol. 50:723-729). 50:723-729 
 
 

 
The effect of tree shape needs to be considered, when assessing these measures of 
performance.  
 
The top row represents Felsenstein-zone trees, with long branches separated by a short 

internal branch; the middle row represents equal rates trees (what I like to call the Goldman 
Zone); and the bottom row represents inverse Felsenstein trees, with long branches on the 
same side of a short internal branch. 

 
The columns represent different rate heterogeneity conditions. In all cases the data were 

simulated with a GTR+I+G model. 
 
So, the effect of violating model assumptions varies across the shapes of the underlying true 

trees.  
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All methods appear to be robust to violations of assumptions when the underlying tree has 
equal branch lengths. They’re all consistent and they all are quite efficient. 

 
If the true tree is a Felsenstein-zone tree, the match between model and data becomes more 

important.  
 
If the true tree is in the inverse Felsenstein zone, the most strongly violated models appear to 

be behaving the best.  
 
Let’s look at this situation more closely, because some have suggested that we may be able to 

use this phenomenon to our advantage.  
 
Swofford et al. (2001. Syst. Biol., 50:525-539) examined the situation in detail. 
 
So, for the following tree, we can calculate the probability that a site shared by the long 

branch taxa actually evolved on the internal branch and changed nowhere else. 
 
 
 

 
 
 
 
This essentially represents the probability that any site pattern of the for xxyy (across the four 
taxa starting in the top right and moving clockwise) is the result of a true synapomorphy. 

 
This is calculated under a JC model, which is what Sowfford et al. used.  

 

1.72 1.72

a = 0.167a
a a

Pr [True Synapormorphy] = Pr [No chane on long branches]

    X Pr [No change on short terminals]

    X Pr [Single change on internal branch]

 0.0032~~



Conversely, the probability of the site pattern xxyy being seen in the data under any scenario 
is 0.1172 (This is the sum of the single-site likelihoods for all possible site patterns of the 
form xxyy). 

 
Thus, ca. 97% of all sites that exhibit the pattern xxyy will be the result of multiple hits, not 

true synapomorphy. Analyses involving strong model violations will incorrectly interpret 
these (to a greater or lesser extent) as evidence favoring grouping the long-branch taxa. 

 
It’s probably better to use methods that fairly assess the support for a group than hoping that the 
bias inherent in your method that favors the true tree and not some alternative. 
 
 
So, we can think about choice of methods in the same sense as we think about the importance of 
models. There are tree shapes that are easy to estimate (those with long internal branches) and 
tree shapes that are difficult to estimate. Thus, the choice of methods can be of trivial or critical 
importance, depending on the underlying shape of the true tree. 
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a variety of tree shapes and demonstrated that accurate estimation of phylogenies
is difficult, regardless of method, under the conditions that Felsenstein (1978) had
described. This conclusion led them to dub that region of tree space (where two
long branches are separated by a short internal branch) the Felsenstein zone. In
subsequent studies, investigators have demonstrated via simulations that the un-
derestimation of nucleotide substitutions associated with overly simplified models
leads to LBA and inconsistent estimation in the Felsenstien zone, even when ML
is used (e.g., Gaut & Lewis 1995, Sullivan & Swofford 2001). Furthermore, a few
studies have demonstrated that use of inadequate lik elihood models can lead to
LBA in real data sets (e.g., Anderson & Swofford 2004, Sullivan & Swofford 1997).

The large body of simulation studies show that the shape of the underlying
true tree has an enormous impact on the importance of model choice. In the ideal
case (Figure 2), the underlying tree shape is such that all existing methods estimate
phylogeny accurately; ML estimation is very robust to violations of model assump-
tions, and model choice is not critical (e.g., Sullivan & Swofford 2001). However,
model choice is critical in the Felsenstein zone (Figure 2), and that observation is
widely accepted.

Although perhaps not a widely appreciated, biases associated with violation of
model assumption may favor the true tree. Specifically, if long terminal branches
are adjacent to a short internal branch [termed the Farris zone by Siddall (1998)
and the inverse Felsenstein zone by Swofford et al. (2001)] (Figure 2), the un-
derestimation of long terminal branches will result in overestimation of the short
internal branch and cause the most biased methods (such as parsimony and ML
under an oversimplified model) to recover the true tree with high confidence and
with very little data (Bruno & Halpern 1999, Siddall 1998, Sullivan & Swofford
2001, Swofford et al. 2001, Yang 1997). In fact, the most overly simplified method
of phylogenetic estimation will be the most efficient (Sullivan & Swofford 2001).
Some have suggested that this bias might be a useful attribute of methods such as
parsimony and ML under simplistic models (Siddall 1998, Yang 1997). However,
others have suggested that this bias is caused by misinterpretation of convergent
substitutions as synapomorphies and should be avoided (Bruno & Halpern 1999,
Sullivan & Swofford 2001, Swofford et al. 2001). Model choice is therefore critical
here as well.

Figure 2 The effect of topology on robustness. At the center of the continuum,
phylogenetics signal is strong and model choice is not critical (i.e., maximum lik elihood
is robust to violations of model assumptions). In the Felsenstein zone (left), model
selection is critical, as is also the case for the inverse Felsenstein zone (right).
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