
Lecture 16 – Molecular Clocks 
I. Introduction 
 

Perhaps one of the most appealing, yet most abused, hypotheses in molecular evolution is the 
molecular clock – that the rate of molecular evolution is roughly constant across time.  
 
This was first postulated by Zuckerkandl & Pauling (1965), and it received support in 1983 
from Kimura’s neutral theory of molecular evolution. If the clock hypothesis holds, we have a 
chance to date divergence events.  
 
Because branch length = (rate) x (time), if we can come up with a good estimate of rates, by 
say reference to the fossil record, we can date branching events (although usually without 
reference to uncertainty in fossil dates). 

 
Here’s an example from Mammals. 

 
This study indicates that most orders of mammals diverged prior to the extinction of the 
dinosaurs, which contradicts the classical view (although not the view held by some current 
paleontologists), and this has been supported by subsequent work (dos Reis et al. 2014. Biol. 
Lett. 10:20131003; but see – O’Leary et al. 2013. Science. 339:662.). 

If you want to get a paper in a tabloid journal like Science or Nature, you can do so by estimating 
a date of divergence for a (charismatic) group from molecular data that differs from the fossil 
estimate. While there have been good studies, many high-profile papers have been shockingly 
bad (e.g., O’Leary et al. 2013). 
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(dos Reis et al. 2014. Biol. Lett. 10:20131003) 

This figure illustrates the influence of different approaches to fossil calibration. 
 
Up until fairly recently, studies such as this one relied on sequence evolution to behave in a 
clock-like fashion, with a uniform rate across the topology. 
 
So, there’s a really long history of inquiry into the notion of a molecular clock. Ho (2020) 
reviewed some of the landmarks in this history in his intro to the book The Molecular 
Evolutionary Clock, Theory and Practice (Ho, S., ed., Springer Nature, 249 pps.). 
 
Again, the idea goes back nearly 60 years. 

 
II. Tests of the Molecular Clock. 
 

So, lots of people have proposed tests of the clock hypothesis, and there are several approaches 
to doing so. Let’s introduce the idea of testing the clock hypothesis by looking at the following 
two trees. 
 
A. LRT of the Molecular Clock 
 
We have two identical topologies, and they differ in branch lengths.  

The tree on the left has branch (2n - 3) lengths: a – g.  
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These trees converge when the following conditions are met: 
 

1) a = b; c = d; a + f = g + c 
 
2) The root occurs along branch e, such that e’’ = e’ + g + c.  

 
Notice that, in the clock-like tree, we don't estimate the lengths of the 2n - 3 branches, but the 

times of the (n - 1) interior nodes w, x, y, & z of the rooted tree. 
 

This suggests a very natural and intuitive test of the clock hypothesis the LRT that 
Felsenstein (1988. Ann. Rev. Gen., 22:521) developed 35 years ago. 

 
Remember that LRTs are useful in testing the assumptions of restricted model relative to a 

more general model that relaxes those assumptions: that is, nested models. 
 
In LRTs of the clock, the clock tree represents the special case and the non-clock tree 

represents the general model. 
 
The test statistic is the standard LRT: d = 2 [ lnL(non-clock) – lnL(clock)] 
 
Remember also, we can use the asymptotic c2-approximation, where the degrees of freedom 

equal to the difference in the number of parameters between the two models (note that the 
convergence of the test statistic with the c2-distribution is asymptotic). 

 
So, in the non-clock tree there are 2n – 3 branch lengths that are estimated, whereas in the 

clock tree there are n – 1 node times to estimate.  
 
Thus, there are (2n – 3) – (n – 1) = n – 2 degrees of freedom. 

 
Because of the difficulties that may occur in relying on the asymptotic convergence of the 

test statistic to the c2-distribution, we may instead use a parametric bootstrap approach to 
generate the null distribution (like Goldman [1993] did). 

 
Here’s an example: 

P.boylii 1965

P.a.aztecus 2204

P.a.aztecus 235

P.a.evides 3407

P.a.oaxacensis 2117

P.hylocetes 2040

P.hylocetes 2781

P.hylocetes 2035

P.hylocetes 4229

P.hylocetes 2853

P.a.oaxacensis 34194

P.spicilegus 4217

P.spicilegus 3253

P.winkelmanni 3287

P.winkelmanni 3388
0.01 substitutions/site

Non-Clock Tree: lnL = -2001.77467

P.boylii 1965

P.a.aztecus 2204

P.a.aztecus 235

P.a.evides 3407

P.a.oaxacensis 2117

P.hylocetes 2040

P.hylocetes 2781

P.hylocetes 2035

P.hylocetes 4229

P.hylocetes 2853

P.a.oaxacensis 34194

P.spicilegus 4217

P.spicilegus 3253

P.winkelmanni 3287

P.winkelmanni 3388
0.01 substitutions/site

Clock Tree: lnL = -2017.94278



 
 
 The test statistic is: d = 32.34. With 13 d.f., the p-value from the c2-distribution is 0.0021. 

 
To conduct the parametric bootstrap, we would use the clock tree as the true tree and 

simulate data under a molecular clock. For each replicate, we find the likelihood score of 
the ML tree without the clock enforced (i.e., finding the optimum combination of the 28 
branch lengths) and find the maximum likelihood with the clock enforced. 

 
This is shown here: 
 
 
 
 
 
 
 
 
 
 
 
We would fail to reject the clock.  

 
This difference could be the result of either (or both) of two things. 1) It may be that in this 

case the asymptotic approximation of the c2-distribution doesn’t work very well. 
 
2) It also may be attributable to the fact that this data set mixes intraspecific and interspecific 

comparisons. 
 

B. Relative Rates Tests 
 
The oldest test of the clock hypothesis is that of Sarich and Wilson. It was originally a 
distance-based test  and examines the difference in branch lengths between two ingroup taxa 
relative to an outgroup taxon. Therefore, it uses triplets of taxa.  
 
If we go back to our example, the idea is to test the difference in length between branches a 
and b.  
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Wu & Li (1985. PNAS, 82:1741) placed these into a statistical context. They pointed out that 
we can calculate the approximate variance expected under the clock and therefore assess 
the significance of any deviations for any set of triplets. 

 
Tajima (1993. Genetics, 105:437) developed a test that really is based on parsimony, but 

works very well for closely related (i.e., intraspecific) sequences. If a clock holds, the 
number of sites that show the pattern yxx (m1) should equal the number of sites showing the 
pattern xyx (m2).  

 
He calculates the statistic 
      (m1 - m2)2 / (m1 + m2), 

 
and uses a c2 -distribution with one d.f. to assess its significance. This, for many years, was 
the most widely-used test. 

 
Muse and Weir (1992) developed a RRT that uses the LRT and a c2 -distribution with one 

d.f. (just as before, there are three branch lengths w/out a clock and two node times with a 
clock). 

 
Whichever manifestation of the RRT one chooses, a separate test is conducted for all triplets 

containing the outgroup and two ingroup taxa.  
 
So, for our initial example, one would test: 

Does d(A-E) –  d(C-E) = 0 ?  Does d(B-E) –  d(D-E) = 0 ? 
Does d(A-E) –  d(D-E) = 0 ?  Does d(C-E) –  d(D-E) = 0 ? 
Does d(B-E) –  d(C-E) = 0 ?  Does d(A-E) –  d(B-E) = 0 ? 

 
 
III. Estimating Divergence Times in the Absence of a Clock 
 

It’s fairly common to be able to reject the molecular clock for large data sets. There have been 
a number of approaches that have been designed to estimate divergence times in the face of 
clock violations. 

 
Other than ignoring the violation, there have been two approaches; identify offending lineages 

and eliminate them, and deal with rate variation among lineages by modeling the variation 
in rates.  

  
A. Linearized Trees 
 

Takezaki et al., (1985. Mol. Biol. Evol., 12:823) proposed a series of RRT’s to identify 
which species or a clade that is evolving at a rate different from the rest of the group being 
studied.  

 
The offending lineage can then be pruned from the data set and (if good fossil calibration is 

available), absolute rates can be applied to the remaining lineages to derive estimates of 
divergence times for them. 

 
B. Local Clocks 
 
A fair amount of work (e.g., Yoder & Yang, 2000. Mol. Biol. Evol. 17:1081), has focused on 

the notion that we might expect rate changes to be rare and that we should be able to 



localize them on a phylogeny and use a local clock, that is, one that only applies to a 
subtree of interest. 

 
So, here we have three local clocks and we would date divergences, say within the 4-taxon tree 

using rate 3 (Figure from Welch & Bromham, 2005. TREE, 20:320). 
 
Of course, this relies on being able to identify the points where rates change. 
 
Drummond & Suchard (2010. BMC Biol. 8:114) developed a Random Local Clock (RLC) 

model. 
 

The	rate	of	branch	k:		 r
k
	=	cr	x	r

pa(k)
	x	f

k
,		

	
Where cr is a scaling rate constant	

rpa(k)	is the rate of the parent branch of k 

and	fk	is the branch-specific rate multiplier.		

They use priors to restrict the number of changes (where	fk	≠	1)	and calculate the 
probability of a new clock being set at each branch; this places a significant portion of the 
prior distribution on the conditions that specify a clock (i.e., rate multipliers equal 1). 

With lots of data, we can identify the location of rate shifts on the tree. 

 

 

which builds on the work of Kishino and Hasegawa [25]
(see also [26,27]). In this method, a few rate classes are
assigned to portions of the whole rooted tree (Figure 1b).
The placement of these rate groups relies on the effective
identification of anomalous lineages or groups, for
example, by rate testing or the use of external (or prior)
knowledge [24,25]. Alternatively, rates can be placed after
informal examination of branch length estimates obtained
without assuming rate constancy. For example, in their
investigation of primate speciation dates, Yoder and Yang
[24] noticed that their marsupial outgroup taxa had
slower rates than did their eutherian ingroup, and so
assigned a local clock to each of these two groups.
A drawback of this approach, as Yoder and Yang point
out, is that using the data to assign rate placements
precludes the use of the same data to test formally the
adequacy of those placements.

Methods using many rates (rate smoothing)
Whereas local molecular clock methods rely on rate
changes being relatively infrequent, other methods have
been developed in which the rate can change many times
(Figure 1c). In these methods, the placement of (potential)
rate changes is fixed in advance, but because so many are
assigned, the difficulty of deciding where to place them is
largely avoided (there are, however, some relatively minor
differences in the placements between implementations
[22,28–30]). To avoid problems of nonidentifiability, these
methods must rely on strong a priori assumptions about
the way in which rates change over the tree. Sets of rates
that conform to these assumptions are then favoured
during the estimation procedure.

Within this broad class of methods, two general
approaches can be identified. The first approach was
introduced in a pioneering paper by Sanderson [6] where
it was termed ‘rate smoothing’. Here, the prior assumption
about rates is that small changes in rate are more likely
than are large changes. This assumption is embodied
in a penalty function that is minimized during the
estimation (Box 1). In a later implementation [31], the

rate-smoothing function is combined with a likelihood
model of branch lengths (Box 2), thus generating a
‘penalized likelihood’ estimate (Box 3).

The second approach, pioneered by Thorne et al. [32],
uses Bayesian statistics, a framework in which prior
beliefs about parameters are exploited in their estimation
[28,32–37]. In Bayesian methods, the prior assumptions
about rates are expressed in a formal probability distri-
bution, so patterns of rate change that depart from these
assumptions are assigned lower probability values.

These two approaches are based on different schools of
statistics, each of which has passionate advocates. How-
ever, in terms of their assumptions about rate change, the
methods are remarkably similar. Indeed, most Bayesian
studies to date have relied on the same basic assumption
as rate smoothing, namely that rates change gradually
over the tree. This assumption, however, can be embodied
in a variety of stochastic models of rate change, some of
which are considered in Box 1.

In addition to their similar assumptions, even on purely
formal grounds, the Bayesian and penalized likelihood
approaches are quite closely related (Box 3). Nonetheless,
there are important differences. A benefit of the Bayesian
approaches is that standard methods exist for choosing
between the different rate change models (although, in
practice, these are rarely applied) [36,38,39]. Within the
penalized likelihood framework, by contrast, the penalty
function tends to be viewed as a mere statistical expedi-
ency; as a result, the assumptions about rate change tend
to be less closely examined. However, the greater explicit-
ness of the Bayesian approach also brings with it addi-
tional problems. In particular, Bayesian statistics requires
that prior probabilities be specified for all divergence
dates, similar to those specified for the rates (Box 3). In
some studies, this ‘date prior’ seems to have been a major
determinant of the date estimates obtained, even though
its form cannot be adequately justified in terms of the
prior knowledge available [28,39–43]. The influence of the
prior diminishes, however, with the amount of sequence
data used [33,34,42].
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Figure 1. Examples of variable-rate molecular-dating methods. Each of (a–d) shows an example phylogeny to be dated, and indicates where different rates, denoted ri, have
been assigned to different branches. In the quartet method (a) [17], trees of four species are used, and both internal nodes must have external calibrations. The date of the
basal node is then estimated on the condition that a free-rate model (in which each external branch is assigned its own rate) is not preferred to the two-rate model shown.
With the local molecular clock method (b) [24], complete phylogenies are used, and placement of the additional rates, here r2 and r3, relies on the effective identification of
‘anomalous’ lineages. Methods allowing many different rates (c) [6,31,32,35] must specify prior expectations for the value of each rate, ri, as a function of the rate of its
parental branch rp(i) [in (c), for example, rp(4)Zr1]. According to the statistical framework used, these expectations are expressed either as a penalty function, or as a Bayesian
prior (Boxes 1 and 3). In Yang’s combined method (d) [44], the placement of a small number of rate classes (three in the example shown) is determined with the aid of prior
expectations, as in (c). The (three) rates are then estimated as in (b).
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C. Autocorrelation of Rates 
 

Other approaches have been developed where the rate of evolution is expected to change 
over a tree, but the rates along branches that are closely related (i.e., close in the tree) are 
expected to be more similar than rates along branches that are not. 

 
Sanderson (1997. Mol. Biol. Evol., 14:1218) developed a method of called non-parametric 

rate smoothing that attempts to minimize differences in rates across branches. 
 
It's the sum of squared differences in local rates that are minimized, as follows: 
 

The dependence of the rate at ancestral branch is indexed by the sum of squared differences 
in the rates at its daughter branches. 

 
Since rk = bk/tk, Sanderson originally used parsimony reconstructions as proxies for bk’s and 

found the combination of internal node times (t1, t2, t3, …) that minimizes W. ML branch 
lengths are now used. 

 
These are relative node times, and again, it takes a fossil calibration to convert them to 

absolute dates. It’s available in his package r8s (Sanderson. 2003. Bioinformatics, 19:301). 
 

A weakness of NPRS (as well as Sanderson’s [2002] penalized likelihood method) is that the 
tree and branch lengths are taken as given; uncertainty in their estimation is ignored. 

 
 
 
 
 
 
 
 
Jeff Thorne (Thorne et al., 1998. Mol. Biol. Evol., 15:1647.) has developed Bayesian 

methods to address autocorrelation of rates from an entirely parametric perspective using 
MCMC (e.g., Kishino et al., 2001. 18:352), and these approaches have been implemented 
in packages like BEAST (Drummond et al. 2006. PLoS Biology, 4:e88) and 
MULTIDIVTIME. 
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l and F are smoothing and roughness parameters that govern the autocorrelation of rates.  



 
Here, node times and the correlated rates are treated as parameters that are estimated during 

the MCMC. 
 

D. Uncorrelated Rates 
 
A group of approaches relax the assumption that rates are correlated across the tree 
 
Perhaps the most common approach is the Uncorrelated LogNormal (UCLN) approach of 

Drummond et al. (2006, PLoSBiology, 4:699.). 
 

 
Here, rates are not constrained to be auto-correlated, but instead are drawn from a discretized 

LogNormal Distribution: 

 
 
 

Again, node times and rates are treated as random variables that are estimated via MCMC.  
 
Other distributions have been proposed (Inverse Gaussian, Exponential, etc.) and Li & 

Drummond (2012. MB&E) developed an rjMCMC to treat the relaxed clock model as a 
random variable and assess posterior probabilities of each of these three models for 1056 
mammalian data sets. 

which builds on the work of Kishino and Hasegawa [25]
(see also [26,27]). In this method, a few rate classes are
assigned to portions of the whole rooted tree (Figure 1b).
The placement of these rate groups relies on the effective
identification of anomalous lineages or groups, for
example, by rate testing or the use of external (or prior)
knowledge [24,25]. Alternatively, rates can be placed after
informal examination of branch length estimates obtained
without assuming rate constancy. For example, in their
investigation of primate speciation dates, Yoder and Yang
[24] noticed that their marsupial outgroup taxa had
slower rates than did their eutherian ingroup, and so
assigned a local clock to each of these two groups.
A drawback of this approach, as Yoder and Yang point
out, is that using the data to assign rate placements
precludes the use of the same data to test formally the
adequacy of those placements.

Methods using many rates (rate smoothing)
Whereas local molecular clock methods rely on rate
changes being relatively infrequent, other methods have
been developed in which the rate can change many times
(Figure 1c). In these methods, the placement of (potential)
rate changes is fixed in advance, but because so many are
assigned, the difficulty of deciding where to place them is
largely avoided (there are, however, some relatively minor
differences in the placements between implementations
[22,28–30]). To avoid problems of nonidentifiability, these
methods must rely on strong a priori assumptions about
the way in which rates change over the tree. Sets of rates
that conform to these assumptions are then favoured
during the estimation procedure.

Within this broad class of methods, two general
approaches can be identified. The first approach was
introduced in a pioneering paper by Sanderson [6] where
it was termed ‘rate smoothing’. Here, the prior assumption
about rates is that small changes in rate are more likely
than are large changes. This assumption is embodied
in a penalty function that is minimized during the
estimation (Box 1). In a later implementation [31], the

rate-smoothing function is combined with a likelihood
model of branch lengths (Box 2), thus generating a
‘penalized likelihood’ estimate (Box 3).

The second approach, pioneered by Thorne et al. [32],
uses Bayesian statistics, a framework in which prior
beliefs about parameters are exploited in their estimation
[28,32–37]. In Bayesian methods, the prior assumptions
about rates are expressed in a formal probability distri-
bution, so patterns of rate change that depart from these
assumptions are assigned lower probability values.

These two approaches are based on different schools of
statistics, each of which has passionate advocates. How-
ever, in terms of their assumptions about rate change, the
methods are remarkably similar. Indeed, most Bayesian
studies to date have relied on the same basic assumption
as rate smoothing, namely that rates change gradually
over the tree. This assumption, however, can be embodied
in a variety of stochastic models of rate change, some of
which are considered in Box 1.

In addition to their similar assumptions, even on purely
formal grounds, the Bayesian and penalized likelihood
approaches are quite closely related (Box 3). Nonetheless,
there are important differences. A benefit of the Bayesian
approaches is that standard methods exist for choosing
between the different rate change models (although, in
practice, these are rarely applied) [36,38,39]. Within the
penalized likelihood framework, by contrast, the penalty
function tends to be viewed as a mere statistical expedi-
ency; as a result, the assumptions about rate change tend
to be less closely examined. However, the greater explicit-
ness of the Bayesian approach also brings with it addi-
tional problems. In particular, Bayesian statistics requires
that prior probabilities be specified for all divergence
dates, similar to those specified for the rates (Box 3). In
some studies, this ‘date prior’ seems to have been a major
determinant of the date estimates obtained, even though
its form cannot be adequately justified in terms of the
prior knowledge available [28,39–43]. The influence of the
prior diminishes, however, with the amount of sequence
data used [33,34,42].
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Figure 1. Examples of variable-rate molecular-dating methods. Each of (a–d) shows an example phylogeny to be dated, and indicates where different rates, denoted ri, have
been assigned to different branches. In the quartet method (a) [17], trees of four species are used, and both internal nodes must have external calibrations. The date of the
basal node is then estimated on the condition that a free-rate model (in which each external branch is assigned its own rate) is not preferred to the two-rate model shown.
With the local molecular clock method (b) [24], complete phylogenies are used, and placement of the additional rates, here r2 and r3, relies on the effective identification of
‘anomalous’ lineages. Methods allowing many different rates (c) [6,31,32,35] must specify prior expectations for the value of each rate, ri, as a function of the rate of its
parental branch rp(i) [in (c), for example, rp(4)Zr1]. According to the statistical framework used, these expectations are expressed either as a penalty function, or as a Bayesian
prior (Boxes 1 and 3). In Yang’s combined method (d) [44], the placement of a small number of rate classes (three in the example shown) is determined with the aid of prior
expectations, as in (c). The (three) rates are then estimated as in (b).
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Materials and Methods

The molecular clock assumption can be relaxed in a variety of ways
[13–15,17,49–52]. In Bayesian treatments of the relaxed clock, there is
a vector of rates R¼fr1,r2,. . .,r2n"1g and a corresponding vector of
node heights t¼ft1,t2,. . .,t2n"1g in units of time. The node height
vector, in conjunction with an edge graph, E, define an ancestral tree
g¼ fE,tg in units of time. To convert this tree from units of time to
molecular evolutionary units, the rates are either assigned to
branches [15,17] or to nodes [53,54]. In both types of models, the
prior probability of the rates fR(Rjg) can be calculated by the product
of the probability of each rate r2 in the tree given the ancestral rate
rA(i) and the time Dti between the ancestral and derived rate:

fRðRjgÞ ¼ P
i
f ðrijrAðiÞ;DtiÞ: ð1Þ

The first such model to be described [15] assigned rates to the
midpoints of branches and the assumed lognormal prior distribution
relating the midpoint of the ancestral branch to the midpoint of the
derived branch. Another interesting model is the exponential
distribution model of Aris-Brosou and Yang [17], which employed
an exponential prior distribution on rate r with a mean (and
therefore standard deviation) equal to the ancestral rate rA, and with
no dependence on the time between the two rates. This second model
represents a more punctuated view of change in evolutionary rate, so
that only the number of branching events, and not the length of time
between events, determines the amount of change in evolutionary
rate. In all autocorrelated relaxed-clock models, an additional
assumption must be made about the rate at the root. For models
that assign rates to nodes, it is necessary to treat the root node in a
special way, as it does not have a parent node [15]. For models that
assign rates to branches, a branch above the root is implied and must
be assigned a rate.

In the autocorrelated relaxed-clock models that have been
described, including the commonly used lognormal model
[15,17,55], it is also necessary to specify the degree of autocorrelation
as a prior. Other prior models of rate change, such as the gamma
distribution model and the Ornstein-Uhlenbeck process [55], require
more than one hyperparameter to be specified, so that selecting
suitable values for a particular dataset may be an even more difficult
exercise. The effects of varying these hyperparameters are poorly
understood [22], but there is likely to be a considerable impact on
posterior estimates of rates.

Uncorrelated relaxed clocks. We present an alternative to the
autocorrelated prior in which there is, a priori, no correlation of the
rates on adjacent branches of the tree. Instead we propose a model in
which the rate on each branch of the tree is drawn independently and
identically from an underlying rate distribution. We investigate two
candidates for the rate distribution among branches:

r;ExpðkÞ; ð2Þ

r;LogNormalðl;r2Þ: ð3Þ

These uncorrelated priors can be framed in a hierarchical Bayesian
framework, as with the autocorrelated priors. In this scenario the
exponential version of uncorrelated relaxed clock would have a prior
probability on the rate vector of:

fRðRjgÞ ¼ f ðRÞ ¼ P
i
ke"kri : ð4Þ

This model corresponds to an exponential prior distribution on
rate ri with a mean (and therefore standard deviation) equal to k"1

and no dependence on either the rate of the previous branch or the
time between the two rates. The parameter k is a hyperparameter
that is fixed and not estimated via MCMC, and represents a prior
statement about both the mean and the variance of branch rates. This
prior reflects a punctuated view of change in evolutionary rate, so
that the prior expectation of the rate at all branches is the same, with
no autocorrelation between adjacent branches. Notice that the
posterior distribution of rates among branches need not be the same
as the prior in this setup and that autocorrelation may exist in the
posterior, even though it is not specified in the prior.

Instead of framing Equations 2 and 3 as prior distributions in a
hierarchical Bayesian framework, they can instead be reformulated as
a full likelihood model. In this case, the branch rates are not
independent random variables with a prior distribution, but are
instead constrained so as to fit one of the distributions in Equations 2
and 3 exactly. The parameters of the rate distribution are no longer

hyperparameters of a prior distribution, but are instead parameters
of the likelihood model. This is closely analogous to the common way
in which rate heterogeneity among sites is treated [28].

Priors on phylogeny. A particular requirement of Bayesian
phylogenetic inference is the responsibility given to users to specify
a prior probability distribution on the shape of the phylogeny (node
ages and branching order). This can be either a benefit or a burden,
largely depending on whether an obvious prior distribution presents
itself for the data at hand. For example, the coalescent prior [56,57] is
a commonly used prior for population-level data and has been
extended to include various forms of demographic functions [58,59],
sub-divided populations [60], and other complexities. Traditional
speciation models such as the Yule process [61] and various birth–
death models [62,63] can also provide useful priors for species-level
data. Such models generally have a number of hyperparameters (for
example, effective population size, growth rate, or speciation and
extinction rates), which, under a Bayesian framework, can be sampled
to provide a posterior distribution of these potentially interesting
biological quantities.

In some cases, the choice of prior on the phylogenetic tree can
exert a strong influence on inferences made from a given dataset [64].
The sensitivity of inference results to the prior chosen will be largely
dependent on the data analyzed and few general recommendations
can be made. It is, however, good practice to perform the MCMC
analysis without any data in order to sample wholly from the prior
distribution. This distribution can be compared to the posterior
distribution for parameters of interest in order to examine the
relative influence of the data and the prior (Figure 3).

Bayesian inference. The full Bayesian sequence analysis with an
uncorrelated relaxed-clock model allows the co-estimation of
substitution parameters, relaxed-clock parameters, and the ancestral
phylogeny. The posterior distribution is of the following form:

f ðg;H;U;XjDÞ ¼ 1
Z
PrfDjg;U;XÞfGðgjHÞfHXUðH;X;UÞ: ð5Þ

The vector U contains the parameters of the relaxed-clock model
(e.g., l and r2 in the case of lognormally distributed rates among
branches). The term PrfDjg,U,Xg is the standard Felsenstein like-
lihood, where g is a tree with branch length measured in units of time.
For the purposes of calculating this likelihood, branch lengths are
converted to units of substitutions by multiplying the rates defined by
U with the internode distance between node i and parent node j in
tree g. The tree prior, fG(gjH), can either be a coalescent-based prior
[30,65] for within-population data or some other appropriate prior if
the sequences come from multiple populations/species [55]. The
vector H contains the hyperparameters of the tree prior. The vector
X contains the parameters of the substitution model (such as

Figure 5. A Lognormal Distribution Discretized into 12 Rate Categories

Each of the 12 categories has equal probability (p ¼ 1/12). The i th rate
category (numbered from left to right) corresponds to the (I " 0.5)/12
quantile of the lognormal distribution.
DOI: 10.1371/journal.pbio.0040088.g005
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Relaxed Phylogenetics



 
 
 

 
 
Many data sets do not voice a preference for any of the three models, so model averaging is 
potentially a good way to go.  
 
This approach has the advantage that phylogenetic uncertainty is also incorporated, because the 
implementation in BEAST includes the tree moves that we’ve discussed. In fact, Drummond et 
al. (2006) recommend that all phylogeny estimation be conducted this way.  
 
It also has an enormous advantage over all other approaches with respect to how it incorporates 
fossil calibration data.  
 
Node times of nodes for which there is fossil data are constrained using priors. This allows us to 
use a distribution to incorporate uncertainty in fossil dates in estimating divergence times.  
 
E. Inclusion of Fossils with Molecular Data  
 
In using fossil dates to set priors on node ages, we need some idea of the topology of the tree, 

and we need to know with some degree of certainty where in the tree the calibration points 
are. 

 
An emerging approach that circumvents this uses RevBayes (Hohna et al. 2016. Syst. Biol. 

65:726) to include fossil taxa in the character by taxon matrix. The data then include both 
morphological and molecular characters and separate models are applied to each data type in a 
single analysis.  

 
Tracey Heath gave an IBEST seminar on this approach using fossil and extant penguins last 

spring, and one of the huge advances is that the locations of the dated nodes in the phylogeny 
(i.e., the ones pertaining to the fossils) are estimated from the data, and the uncertainty in 
these placements is incorporated into divergence time estimates across the chronogram (i.e., 
dated phylogeny). 

 
From Gavryushkina et al. (2016. Syst. Biol. 66:57). 
 

of model misspecification, though the model misspecifica-
tion is not only limited to the molecular clock but also con-
tributed by misspecification of other aspects of the
evolutionary model. We would not expect the evolutionary
models used to capture all characteristics of the evolution-
ary process. Model averaging does not improve the estima-
tion of tree topology in this data set, when compared with
the better of the two models (MLN), but does significantly
improve performance of the point estimate when com-
pared with the ME model. This suggests that model aver-
aging can protect against poor inference when the correct
model is not known. Although MSC often chooses the cor-
rect true tree as the point estimate, it fails to contain the
true tree within the 95% credible set significantly more of-
ten (P value, 0.0001). WhenMSC contains the true tree in
the 95% credible set, the corresponding mean estimate of
the r parameter in MLN is 0.869, whereas its mean is 2.080
in the remainder. These two means are significantly differ-
ent (P , 0.0001; using a nonparametric test). This shows
that the MSC model is not robust to data that is not clock
like but probably performs well on the large fraction of rel-
atively clock-like alignments in this data set. The data an-
alyzed here contained only a small number of taxa, so
further empirical studies are needed to confirm these re-

sults and such studies should include specification of more
than two branch-rate distributions.

We further examined the biological relevance of differ-
ent parametric distributions as models of rate heterogene-
ity in real data. We observed the relative posterior
probabilities of each of the two distributions, LN and E, across
the analyses of themammalian genes. From figure 2A, we can
see that in a majority of the genes LN is preferred over E. The
mean posterior probability of the LNmodel was 0.701 (hence
mean posterior of E 5 0.299). In 150 of the 1002 genes we
compared, the MLN,E model had a posterior probability of
over 0.95 for one of the models; 149 of these genes showed
strong preference for the LN model, whereas only one
showed strong preference for the E model. Our results sug-
gest that on average, the LN better models the rates of
substitution across branches this in mammalian data set.

Figure 3 shows three gene trees that model averaging
shows, respectively, 1) strong support for rates that are
lognormally distributed, 2) exponentially distributed,
and 3) no support for either hypotheses. From the trees,
it can be seen that the rates vary substantially between
the trees that are supported by each model, thus
justifying the need of different models, even when the
same set of taxa are considered. Upon inspection,

Table 2. Statistics Related to the Estimation of Topology and Rate for the Mammalian Data Set.

MLN,E MLN ME MSC

Proportion of times true tree is point estimate 0.520 0.533 0.475 0.530
Average posterior probability of true tree 0.417 0.427 0.372 0.498
Average number of unique trees in 95% credible set 102.331 93.303 118.404 6.772
Proportion of times true tree appears in 95% credible set 0.850 0.852 0.847 0.729

NOTE.—Nine hundred and fifty-three genes were used for this analysis.

FIG. 2. Bar plots showing the distribution of posterior probabilities of each distribution when applying model-averaged models (A) MLN,E (n 5 1002)
and (B) MLN,IG,E (n 5 1008) on the mammalian data set. Data are sorted by the posterior probability of E.
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F. A final note of caution. 
 
A few studies (e.g., Schwartz & Mueller. 2010. PLoS One) have shown with simulated data that 
if data generated under a clock are subjected to these approaches, rates are usually not estimated 
to be equal.  

 
 
To me this suggests that one needs to do one of the clock tests we discussed earlier and not apply 
relaxed-clock models unless a clock is (resoundingly) rejected. I think this needs much more 
attention. 
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analyzed in a Bayesian framework [21] was, in all cases, less than
the erroneous variation in rate estimated for comparable clock-
like datasets (Figure 4). Additionally, estimated rates were not

significantly different between the two major plethodontid clades
in the empirical dataset (,1.2 fold difference).

Discussion

Error in estimated rate variation and potential impacts of
such error
We observed substantial variation in estimated rates of substitu-

tion, both in Bayesian and ML frameworks, when considering all
branches across trees simulated under an enforced molecular clock.
Simulations were conducted using a clock-like substitution process;
therefore, this observed rate variation must be due to error in rate
estimation, both as a result of the stochastic substitution process
producing different numbers of substitutions than expected along
lineages, and misestimation of rates due to uncounted substitutions.
This variation provides an example of the potential for error in
estimates of rate variation for empirical datasets. Levels of rate
variation observed for datasets simulated with realistic parameters
were even greater than those for simple 8-taxon simulations,
suggesting that the level of error in simple simulations provides a
minimum for potential error in empirical datasets.
Estimates of rate variation derived from empirical data in

plethodontid salamanders were less than those derived from
comparable datasets simulated under an enforced molecular clock,
suggesting that the empirically-estimated rate variation may reflect
error rather than true differences in the underlying biological
substitution process. In addition to the stochastic variation and
rate misestimation error that are the focus of this study, the node-
density effect can cause error in variation [32]. We tested for this
effect in plethodontids by regressing total path length (i.e. total
inferred substitutions from root to tip) against the number of
speciation events for each gene. However, the number of nodes
did not explain a significant portion of the estimated rates, and
thus, would not have contributed to estimated rate variation; this
likely reflects the fact that most branch lengths were outside the
range affected by systematic underestimation [30]. This result
suggests that the types of error we discuss in this study, rather than
the node density effect, explain the estimated rate variation in the
plethodontid dataset.
Our results suggest that some conclusions of other studies based

on apparent variation in substitution rates may be based, at least in
part, on error in rate estimation. For example, inferences based on
the estimated rate of a single lineage, such as an exceptionally high
rate [e.g. 1], may be based on error in rate estimation on that
lineage. Additionally, correlations observed between substitution
rate and variation in substitution rate [e.g. 21] may reflect greater
error in rate estimation for faster-evolving genes (Figures 2 and 3).
Error in rate estimation may also obscure actual correlations that
exist between substitution rate and variation in particular traits.
For example, Thomas et al. [36] found no evidence of a
correlation between body size and substitution rate in inverte-
brates; such negative results may, in fact, reflect rate estimation
error obscuring biological signal in the data. Furthermore, the
general consensus that the molecular clock is an overly simple
model of molecular evolution, based on the observation that most
datasets exhibit variation in substitution rates across lineages, may
be in part based on error in rate estimation such as we observed in
this study.
Error in estimating rate variation can significantly impact

phylogeny and divergence date estimation; thus, the observation of
rate variation in many datasets has led to the development of
substitution models attempting to accommodate such rate
variation [37,38,39,40]. However, if these models are fitting error
rather than true differences in the underlying substitution process,

Figure 4. Rate variation observed for datasets simulated on 27-
taxon trees and analyzed in a Bayesian framework. Data were
simulated with a molecular clock model using the model and model
parameters estimated for five mitochondrial genes for plethodontid
salamanders [21] (boxes). For comparison, rate variation observed for
empirical data from plethodontid salamanders from Mueller [21] is also
shown (filled circles).
doi:10.1371/journal.pone.0009649.g004

Figure 5. Rate variation observed for datasets simulated on 27-
taxon trees and analyzed in an ML framework. Data were
simulated with a molecular clock model using the model and model
parameters estimated for five mitochondrial genes for plethodontid
salamanders [21] (boxes). Up to five outliers were omitted for each gene
in order to view the center of the distribution more clearly. Variation
was #763-fold for atp6, #510-fold for cob, #777-fold for cox3, #257-
fold for nad1, and #723-fold for nad2.
doi:10.1371/journal.pone.0009649.g005

Error in Rate Variation
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