
Lecture 17 - Multiple Data Sets: Partitions and Mixtures 
 

I. Introduction - As the phylogenomics era unfolds, it’s become commonplace to have data 
from multiple genes.   

 
Even before genomics, it was common situation where one had several sources of data. 

This may include: 
Sequence data from several different genes. 
Molecular and morphological data sets. 
Behavioral data, molecular data &/or morphological data.  

 
How we should use diverse data in phylogeny estimation has been controversial. There was 

a tremendously active and (not surprisingly) vehement debate over the best ways to 
proceed in deriving a phylogeny that incorporates all existing data. 

 
II. Combined vs. Separate Analyses. An issue that received perhaps the most historical 

attention is whether to take a total evidence approach. Opinions have been strongly 
divided, at least as far back as the early 90’s (there was a symposium at the 1994 
Evolution Meetings). 

 
So, let’s assume for a minute that we have data from two different genes for a set of taxa.  
 
The obvious question that arises is whether we should concatenate those two data sets into 

a single data set.  
 
There are three historic and one emerging answer to this question: 

a. “Of course, what an absurd question.” 
b. “No, we should analyze each separately.” 
c. “We should do both.” 
d. Use a multispecies coalescent approach (the topic of the next lecture). 
 

A. Total Evidence – One of the most strongly held positions is that data should always be 
combined, and the analysis based on all of the characters is always to be preferred.  

 



On the surface, this could be viewed as a simple extension of the idea that more data are 
better than fewer data. 

 
If we think back to our discussion of performance, it may take very many characters (i.e., 

long sequences) to have a high probability of inferring the true tree. 
 

 The idea of combining data from multiple genes makes intuitive sense, given that most 
genes are far shorter than the 8 –10 Kb length that can be required to have a high 
degree of confidence in our estimates (at least for short internal branches).  

 
Other (more reasonable) arguments favoring a total evidence approach focus on 

additivity of signal and hidden support (Gatesy et al., 1999. Cladistics, 15: 21).  
 
The idea here is that there may be signal for particular relationships that is too weak to be 

detected in analysis of a single gene that nevertheless contributes to support for that 
group when combined in a simultaneous analysis.  

 
 

B. Separate Analyses - A few systematists have historically argued against combining 
data. This is called the Taxonomic Congruence Approach.  

 
This is primarily derived from the idea that for molecular data, separate data sets are 

usually from different genes.  
 
Miyamoto and Fitch (1995. Syst. Biol., 44:64) argue that different data sets are more 

likely to consist of characters that are mutually independent.  
 
They discuss two reasons that separate data sets may disagree. 
 

1. One (or more) is subject to systematic error. They argue that systematic error should 
be restricted to a single data set and should not persist across data sets.  This may be 
the result of LBA, or perhaps selection. Thus, separate genes represent natural 
process partitions.  
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2. Different genes may actually have a different history. We’ll discuss the potential 
causes for this later, but if different genes have different histories, it makes little 
sense to combine them and thus force them to fit a single bifurcating tree. Only 
separate analyses (or analyses that permit cycles in the graph) will allow one to 
detect conflicting signal.  

 
  This can be caused by well-known processes such as incomplete lineage sorting 

(which we’ll address later) and introgression/horizontal gene transfer. 
 

If either of these phenomena occurs, a combined analysis will result in a poor estimate or 
a wildly inaccurate one.  

 
C. Conditional Combination. The intermediate position is the one with which most 

phylogeneticists agree. It’s sometime called the Prior Agreement Approach. 
 

This approach really owes its wide appeal to Bull et al., (1993. Syst. Biol. 42:384). They 
used simulations to demonstrate that the impact of combining data under several 
conditions. 

 
For example, if one data set has evolved under conditions where parsimony is both 

consistent and efficient in phylogeny estimation and another has evolved under 
conditions that lead to consistent but inefficient estimation, combining data can leads 
to intermediate efficiency.  

 

 
This is true even if the two data sets have the same history.  
 

When they simulated one gene under conditions where parsimony is inconsistent and 
another gene where it is consistent (i.e., the boundary of the Felsenstein Zone), the 
inconsistent characters can overwhelm the consistent characters. 
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This has led to the recognition that there may well be situations in which combining data 

can do more harm than good. Bull et al. used the term Process Partitions to describe 
this scenario. 

 
My take is that Bull et al. (1993) were right that we shouldn’t just blindly accept the total 

evidence tree as the best estimate of the true tree. We should always do separate 
analyses and combined analyses and evaluate how support for different groupings 
differs in these.  

 
 
III. Partitioned Models & Concatenated Data 
 
Perhaps because the attitude that more data are necessarily better than fewer data has long 

been present among phylogenticists, the most common way to treat multilocus data is to 
concatenate them into a single alignment. 

 
Further, perhaps because of the results like those of Bull et al. (1993), most folks doing so 

under a model-based perspective (at least ML or Bayesian perspectives) try to 
accommodate different processes in different genes. We saw this a bit when we discussed 
the SSR models. 

 
This makes a lot of intuitive sense, because different genes may be under very different 

evolutionary pressures (i.e. stabilizing versus divergent versus sexual selection), so 
branch lengths and substitution model may vary considerably from gene to gene. 

 
A. Influence of branch-length heterogeneity was assessed by a really poorly presented 

paper (Koloczkowski & Thornton, 2004. Nature, 431:980). These authors simulated data 
partitioned on two sets branch lengths of the same (F-Zone) tree, and with increasing 
internal branch length. Half the data were simulated on one set of branch lengths and the 
other half on the other. 
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Although not emphasized by the authors, ML and Bayesian estimation under partitioned 

models, estimated the phylogeny quite well, but ignoring the heterogeneous branches 
results in inconsistency. 

 

 

 
 

Studies like this have led to the well-established use of partitioned models in 
phylogenetics. 
 

B. Partitioned Models 
 
Recall that the basic form of the likelihood function is: 
 

. 
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incorrect tree under certain combinations of branch lengths,
whereas maximum likelihood is not3–6. All these evaluations
simulated sequences by a largely homogeneous evolutionary
process in which data are identically distributed. There is
ample evidence, however, that real-world gene sequences evolve
heterogeneously and are not identically distributed7–16. Here we
show that maximum likelihood and BMCMC can become
strongly biased and statistically inconsistent when the rates at
which sequence sites evolve change non-identically over time.
Maximum parsimony performs substantially better than current
parametric methods over a wide range of conditions tested,
including moderate heterogeneity and phylogenetic problems
not normally considered difficult.

Functional constraints on sites in a gene sequence often change
through time, causing shifts in site-specific evolutionary rates, a
phenomenon called heterotachy (meaning ‘different speeds’)7–16.
When an identically distributed evolutionary framework is imposed
on sequences that evolve heterogeneously, parameter estimates are
compromises over sites and lineages and are therefore incorrect for
many or all sites. Likelihood-based techniques are guaranteed to
recover the true phylogeny only when the correct model is used, and
nonparametric statistical methods are often applied when the
assumptions of parametric techniques are violated. On the other
hand, parametric methods, including maximum likelihood, are
generally more powerful than nonparametric techniques and can
be robust to certain violations17,18. We used an experimental
approach to evaluate the phylogenetic accuracy of parametric and
nonparametric methods under a simple form of heterotachy. We
simulated replicate DNA sequence alignments with two symmetri-
cal rate partitions along a four-taxon tree; each partition represents

a phylogenetically challenging problem—two clades, each consist-
ing of a long branch (length p) and a short branch (length q)—but
the sites with accelerated rates differ between partitions (Fig. 1a). To
reveal the specific impact of heterogeneity, we compared phylo-
genetic accuracy (the fraction of replicates from which the true tree
was recovered) on heterogeneous data with accuracy on control
sequences simulated under corresponding evolutionary conditions
without heterogeneity (see Methods).
Under conditions of strong heterotachy (p ¼ 0.75 substitutions

per site, q ¼ 0.05), the accuracy of both maximum likelihood and
BMCMC is dramatically reduced compared with homogeneous
controls (Fig. 1b). Both methods have zero accuracy when the
internal branch length r , 0.22, and they reach 100% accuracy only
when r . 0.34. Maximum parsimony is superior to the parametric
methods when 0.15 , r , 0.35, and it is never inferior. For each
method, we used nonlinear regression to estimate the internal
branch length at which 50% accuracy is achieved (BL50) and
found that maximum parsimony can reliably recover the true
topology at significantly shorter internal branch lengths
(BL50 ¼ 0.22) than the two likelihood-based methods
(BL50 ¼ 0.28, P , 0.001). Maximum parsimony’s performance is
worse than that of the parametric methods on single-partition data
(due to the well-known long branch attraction bias5), but it is not
additionally hampered by evolutionary heterogeneity (P ¼ 0.76).
Maximum parsimony retains its performance advantage over maxi-
mum likelihood and BMCMC on heterotachous data when strong
support is required to accept a tree as resolved (bootstrap or
posterior probability .95%, Supplementary Fig. S1). These results
indicate that heterotachy substantially reduces the accuracy of
maximum likelihood and BMCMC on phylogenetic problems

Figure 1 Likelihood-based methods are less accurate than maximum parsimony (MP)

under heterogeneous conditions. a, Trees on which heterogeneous and control
sequences were simulated. b, Heterotachy reduces the accuracy of likelihood methods.
Accuracy is plotted against internal branch length for sequences with and without strong

heterotachy. Dotted lines, BL50 for each method (asterisk: maximum

parsimony , maximum likelihood (ML) and BMCMC, P , 0.001). c, Likelihood methods
are inconsistent below the BL50 under strong heterotachy, recovering the incorrect tree

with increasing frequency as the amount of data increases.
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tree because the frequency of xxyy is greater than that of xyxy; the
patterns xxyz and xyxz, which taken together mislead MLhomo, are
not informative in a nonparametric context.

The bias of parametric methods arises due to heterogeneity in the
data and the resulting violation of the identical distribution
assumption, as predicted theoretically20. We implemented a novel
likelihood method using a mixed model (BMCMChetero) that
incorporates heterotachy by including two branch length sets for
each topology. For each sequence site, the likelihood is calculated for
each branch length set, weighted by the posterior probability of the
site being in that set and then summed to yield the total likelihood.
This model, which corresponds to the true evolutionary conditions
but assuming an identical data distribution, performs dramatically
better than both maximum parsimony and the standard maximum
likelihood or BMCMC algorithms (BL50 ¼ 0.045, P , 0.001) on
heterotachous data (Fig. 4c). It did not perform as well, however, as
a non-identically distributed method (BMCMCtrue) that uses the
true evolutionary model with a priori sorting of sites into their true
partitions. Furthermore, BMCMChetero remains statistically incon-
sistent, converging on the wrong tree as sequence length increases at
internal branch lengths r , BL50, (Supplementary Fig. S5).
BMCMCtrue is consistent under all conditions examined. These
results indicate that violating the identical distribution assumption
can cause inconsistency, even when the ‘true’ evolutionary model is
used.

The form of heterotachy studied here is only one way that
heterotachy can be distributed on a tree. Our additional work
(not shown) indicates that several other forms of heterotachy can
also impair the accuracy of parametric methods. The evolutionary
model used in our simulations is a simplified one; the extent to
which phylogenetic accuracy is impaired by the more complex
evolutionary dynamics likely to affect real-world sequences is
currently unknown. There are numerous sequence data sets from
which parametric methods have failed to infer otherwise well-
corroborated phylogenies21–24, including one in which heterotachy
has recently been implicated13.
There are two ways to avert the negative effects of heterogeneity

on parametric methods. One is to use maximum parsimony, which
is not affected by heterotachy because it does not assume an
identically distributed evolutionary process. The other is to develop
more complex parametric models. Our results indicate that a new
likelihood method using mixed branch length models may offer
substantially improved accuracy on heterotachous sequences, but
there are reasons for caution. The model that performed well in our
tests matched the true evolutionary process, whichwe knew a priori.
With real sequences, we do not know the true number of branch
length partitions, so imposed models will usually use either too
many or too few branch length parameters. Formany sequences, the
actual number of branch length categories may approach the
number of sites; under these conditions, the true one-category-
per-site likelihood model is formally equivalent to maximum
parsimony25. Finally, the computational burden of mixed-model
phylogenetic inference grows exponentially with the number of
branch length sets. With current algorithms and computing power,
incorporating heterotachy into a likelihood framework will often
require sacrifices in the number of sequences analysed or the rigor
with which tree and parameter space are searched, which may also
reduce phylogenetic accuracy1.
Our findings place those who infer and use phylogenetic trees in

an uncertain position. Previous research has shown that parametric
methods are superior or equal to nonparametric approaches when
evolutionary heterogeneity is not present, but our work shows that
maximum parsimony can substantially outperform current like-
lihood-based methods when it is. Worse still, heterotachy-induced
bias leaves no obvious signature because the inferred trees have
moderate branch lengths and strong support for erroneous nodes.
With no reliable a posteriori diagnostic for heterotachy-induced
phylogenetic error, how can we know which method to choose or,
when trees from different methods conflict, which one to favour?
The overall frequency and severity of the conditions that favour
likelihood as compared with those that favour parsimony is not yet
known for real-world sequences. At present, we recommend report-
ing nonparametric analyses along with parametric results and
interpreting likelihood-based inferences with the same caution
now applied to maximum parsimony trees. In the future, it is
possible that new mixed-model techniques may improve likeli-
hood’s performance to the point that it is consistently superior to
nonparametric methods. A

Methods
Simulations
We simulated sequences along a 4-taxon tree ((A,B),(C,D)) with two independent
partitions that were concatenated into one heterogeneous alignment. In one partition,
long terminal branches (p [ (0.3, 0.75)) lead to A and C, and short terminals (q [ (0.001,
0.4)) lead to B and D. In the other partition, terminal branches to B and D have length p,
whereas A and C have length q. The internal branch length (r [ (0.0, 0.5)) is equal in both
partitions. The two partitions were of equal size unless otherwise noted. Two-hundred
replicate alignments of 1,000, 5,000, 10,000 and 100,000 characters were simulated under
each set of conditions using the JC69 (DNA) or Poisson (protein) model. Average
homogeneous control data were simulated using the same internal branch length as in the
experimental condition and terminals with the mean length over the two partitions.
Single-partition homogeneous controls were simulated using conditions for one of the
experimental partitions (Fig. 1a). Sequences were also simulated on 8-taxon trees derived
from 4-taxon trees by bisecting each terminal branch at the halfway point.

Figure 4 Poor maximum likelihood performance is due to assuming homogeneous

branch lengths. a, Maximum likelihood error is caused primarily by overestimating short

terminal branch lengths due to heterogeneity. Accuracy on strongly heterotachous

sequences is shown as the internal branch length increases, using several likelihood

models that constrain all (MLtrue), some (MLterm, MLshort, MLlong) or no branches on the

tree (MLhomo) to their true lengths for all sites. b, Support for the true tree by specific
character state patterns is reduced due to strong heterogeneity when MLhomo is used. For

each character state pattern and model, net support is shown as the ratio of the likelihood

of the true topology to the likelihood of the incorrect ((AC),(BD)) tree, weighted by the

frequency of the pattern. Asterisks indicate parsimony-informative patterns.

c, Incorporating heterotachy improves the accuracy of parametric methods. Accuracy on
strongly heterotachous data are shown for the homogeneous model (BMCMChomo), a

model that allows two independent branch length sets and correct a priori paritioning of

sites (BMCMCtrue), and a novel model with two branch length sets and likelihoods

calculated on the basis of a posteriori weighting (BMCMChetero).
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Studies like this have led to the (now well-established) use of partitioned models in 
likelihood and Bayesian estimation. 
 

B. Partitioned Models 
 
Remember that the basic form of the likelihood function is: 
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This is the likelihood under a single partition. That is, a single model applies to all sites. 
 
We can partition the data and can use a separate mode for each of g genes: 
 

! 

P(D | ",M) = w jP(Di | ",M j )
j=1

g

#
i=1

s

$ , 

 
where wj is the probability that site i is in gene j, and the SSLs are the weighted-sums across 
genes.  
 
Here, we assume that sites are partitioned a priori, and all wj’s are either zero or one. The 
partitioned log likelihood becomes the sum of the sums. 
 
For a while there were only Bayesian implementations of partitioned models, but there now 
are likelihood approaches (P4, RAxML & GARLi all support partitioned models). 
 

C. Example from Lab Data Set  
 

Remember that this is a protein-coding gene, so one very intuitive partitioning scheme might 
be codon potions. However remember that SSR models assume a uniform rate within classes. 

 
We might be interested in applying an independent model to each of the positions. 
 
 
 
 

P(D |τ ,M ) = P(Di |τ ,M )
i=1

s

∏



 
This is the likelihood under a single partition, where a single model applies to all the sites. 
 
We can partition the data (say by gene) and use a separate model for each of g partitions: 
 

, 

 
where wj is he probability that site i is in partition g and the SSLs are weighted sums across 

partitions. 
 
 In conventional partitioned analyses, we assign sites a priori and all wj’s are either 0 or 1. 
 
For a while, there were only Bayesian implementations of partitioned models, but now 

GARLi, RAxML, IQTree, PhyML, and PAUP* all support partitioned models. 
C. Example from Lab Data Set 

First Positions   Second Positions   Third 
positions 
Tree 1     Tree 1    Tree 1 
------------------   ------------------  --------------- 
-ln L 1361.57931   -ln L 574.82758   -ln L 4014.14543 
Base frequencies:   Base frequencies:  Base frequencies 
A 0.297135    A 0.210392   A 0.435821 
C 0.223702     C 0.228875   C 0.324911 
G 0.235795    G 0.143413   G 0.030437 
T 0.243369    T 0.417320   T 0.208831 
Rate matrix R:    Rate matrix R:  Rate matrix R: 
AC 1.15219    AC 4.2179e+08   AC 5.2290e-10 
AG 3.38708    AG 2.7458e+08   AG 6506.44535 
AT 0.78766    AT 1.0059e+08  AT 77.76142 
CG 6.7725e-05    CG 9.0472e+07   CG 1.6437e-35 
CT 8.99814    CT 4.0779e+08   CT 3272.68748 
GT 1.00000    GT 1.00000   GT 1.00000 
P_inv 0.289087    P_inv 0.738767   P_inv 0.00804384 
Shape 0.336931   Shape 0.734197  Shape 0.464942 
 

There are a couple things to note here: 
 
First, look at the variation in base frequencies across codon positions. We can see that just 

by allowing each partition to have its own set of b.f. we’ll see a huge improvement in fit. 
 
Second, we can simply sum the lnLs for each partition to get the score for the partitioned 

model: 
(-1361.57931) + (-574.82758) + (-4014.14543) = -5950.55228 
 
A single-partition GTR+I+G is shown. 

 
Tree 1 

P(D |τ ,M ) =
i=1

s

∏ wjP(Di |τ ,M j )
j=1

g
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------------------ 
-ln L 6467.45222 
Base frequencies: 
A 0.385640 
C 0.329665 
G 0.056255 
T 0.228440 
Rate matrix R: 
AC 0.16037 
AG 4.56668 
AT 0.40618 
CG 0.16011 
CT 6.92991 
GT 1.00000 
P_inv 0.465785                           
Shape 0.489470 

 
So, the unpartitioned lnL is 516.8999 units worse that the model partitioned by codons. 

We’ve gone from 10 to 30 parameters and compare the LRT statistic to c2[20] and the p-
value is <<0.001. 

 
This certainly can influence phylogeny estimation: The figure below compares the support 

vales for all the nodes, and the results are mixed. For most of the well-supported nodes, 
they’re well supported regardless of codon-based of single model. However, there are a 
few nodes for which this is not the case. 

 
So, partitioning the likelihood model can make a difference for some nodes, and it’s 

difficult to say which analysis is correct. We’ll look at a more complex example in a 
minute. 

 
 
D. Selecting Partitioned Models - We can erect a huge number of alternative partitioning 

schemes, and just as is the case with selecting models, we need to select from among 
them. 

 
So since these two alternatives are nested, we can use a LRT to assess if the partitioned model 

fits better than a single model indicates a huge improvement: 
 

! = 2(lnL(General) – lnL(restricted)) = 2[(-5950.55232) – (-6467.45222)] = 1033.7998. 
 
Now, we’ve gone from 10 free parameters to 30, and since these models are nested, we can use 

an LRT and compare the test statistic to "2
[20] , we see  p << 0.001.  

 
So this is pretty strong evidence that we may improve the fit by partitioning the data among 

codon positions. 
 
We therefore can do Bayesian estimation under both a single GTR+I+! under the partitioned 

model. 
 
The figure below compares the support vales for all the nodes, and the results are mixed. For 

most of the well-supported nodes, they’re well supported regardless of codon-based of single 
model. However there are a few nodes for which this is not the case.   

 

 



 
Because most early implementations of partitioned models have been under a Bayesian 

framework, most early work on evaluating alternative partitioning schemes also 
focused on Bayesian model selection. 

 
As can be seen above, partitioning leads to dramatic improvements in likelihood scores, 

but this improved fit may not improve phylogeny estimation. 
 
We can use the same set of model selection approaches in we discussed earlier in the 

semester: LRT, AIC, BIC, DT. 
 
Among the first to actually do this were Castoe et al. (2004. Syst. Biol. 53:448), who had 

a 4-gene data set. 
 

 
They didn’t conduct formal model selection but indicated that the 4 partitioned models all 

have about the same lnL so they chose the simplest of these.  
 
McGuire et al. (2007) did a great job of assessing model-selection approaches to select 

among partitioning schemes. 

So partitioning the likelihood model can make a difference for some nodes, and it’s 
difficult to say which analysis is correct. We’ll look at a more complex example in a 
minute. 

 
D. Selecting Partitioned Models – We can erect a huge number of alternative partitioning 

schemes, and just as is the case with selecting models, we need to select from among them. 
 

Because most implementations of partitioned models have been under a Bayesian 
framework, most work on evaluating alternative partitioning schemes have also focused on 
Bayesian model selection.  

 
As can be seen above, partitioning leads to dramatic improvements in likelihood scores, but 

this improved fit may not improve phylogeny estimation.  
 
We can use the same set of model selection approaches in we discussed earlier in the 

semester: LRT, AIC, BIC, DT. 
 
One of the first papers to do this was Castoe et al. (2004. Syst. Biol. 53:448). 
 

 
 
They actually didn’t use formal model selection, but argued that, since there are 4 models 

that visually fit the data similarly, they should favor the simplest of these.  
 
I think the best example of selecting among partitioned models was provided by McGuire et 

al. (2007. Syst. Biol. 56:837) a few years ago. They evaluated nine alternative partitioning 
schemes using AIC, BIC & DT, under both ML and Bayesian frameworks. 

 



 
 
 

As is usually the case, the AIC favored the most complex model evaluated, the BIC favored 
simpler partitioned models and the asterisks indicate the even simpler models favored by 
decision theory (DT). 

 
E. Erecting Partitioning Schemes to Evaluate 
 
One can envision a huge array of potential ways to partition data: by gene, by codon 

position, or even some combination of both. 
 
For, say 20 genes, there would be 60 partitions (3 codon positions per gene) and ~9.8x1059 

possible partitioning schemes. 
 
Many folks choose a few of these a priori to examine but Li et al. (2008. Syst. Biol. 

57:519) proposed to cluster blocks hierarchically based on similarity of model 
parameters.  

 
They had 10 genes, each split into codon positions, for a maximum of 30 partitions, and 

estimated parameters of GTR+G for each. 
 
They then subjected these parameter estimates to centroid clustering to cluster partitions by 

similarity of parameter estimates. 
 
This dendrogram represents that similarity and suggests a hierarchical array of partitioning 

schemes to examine. 
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TABLE 4. Data partition statistics including number of partitions, number of parameters per partitioning scheme, and model-selection criteria.
Values in bold indicate the preferred partitioning strategy according to that model-selection criterion. Asterisks denote the model selected using
the decision-theoretic approach. Complete descriptions of the partitions are provided in Table 2. In the matrix below, values above the diagonal
are twice the difference in the HML;S for the alternative partitioning strategies, with values in bold highly significant according to Kass and
Raftery (1995) conventions (2 In Bayes factors >10). The numbers below the diagonal are twice the difference in the ML values under alternative
partitioning strategies, with those in italics indicating non-nested models and those in bold significant according to the x -square distribution (a
= 0.05).

Bayesian analyses
No. partitions
1
2
4
5A
5B
6A
6B
8
9

ML analyses
No. partitions
1
2
4
5A
5B
6A
6B
8
9

PI
P2
P4
P5A
P5B
P6A
P6B
P8
P9

No. parameters
11
24
48
58
60
72
70
96

108

No. parameters
10
20
40
48
50
60
58
80
90
P9.
7027.0
3168.4
727.8
617.6
427.0
496.4
364.6
85.4
—

-HML,
94,809.5
92,880.2
91,659.9
91,604.8
91,509.5
91,544.2
91,478.3
91,338.7
91,296.0

- L i

95,175.2
93,559.5
91,649.0
91,602.7
91,577.7
91,546.9
91,542.4
91,468.7
91,422.9

P8.
6941.6
3083.0
642.4
532.2
341.6
411.0
279.2
—
91.6

AICC

189,641.1
185,808.7
183,417.0
183,327.3
183,140.8
183,235.1
183,099.1
182,874.1
182,814.0

AICC

190,370.5
187,159.2
183,378.8
183,302.6
183,256.7
183,215.6
183,202.5
183,100.7
183,030.0

P6B.

6662.4
2803.8
363.2
253.0
62.4
131.8
—
147.4
239.0

BIC
192,408.3
188,657.3
186,416.3
186,389.1
186,215.1
186,384.1
186,235.7*
186,172.3
186,186.6

BIC

193,131.4
190,066.0
186,328.1
186,301.9
186,268.5*
186,289.9
186,264.3
186,299.5
186,290.9

P6A

6530.6
2672.0
231.4
253.0
-69.4

—
9.0
156.4
248.0

P5B
6600.0
2741.4
300.8
190.6

—
61.6
70.6
218.0
309.6

P5A

6409.4
2550.8
110.2

—
50.0
111.6
120.6
268.0
359.6

P4

6299.2
2440.6
—

92.6
142.6
204.2
213.2
360.6
452.2

P2

3858.6
—

3821.0
3913.6
3963.6
4025.2
4034.2
4181.6
4273.2

PI

3231.4
7052.4
7145.0
7195.0
7256.6
7265.6
7413.0
7504.6

between 0.90 and 0.95 (Fig. 2). Most of these strongly sup-
ported nodes (120 of 123) received posterior probabilities
>0.95 under all nine alternative partitioning strategies
(see Figs. 3, 4). Of the 124 strongly supported ingroup
nodes, six received posterior probability values >0.95 in
independent analyses of all five gene regions (i.e., tRNA,
ND2, ND4, BFib, AK1; note that only 14 nodes were
strongly supported by tRNA data alone), 23 were sig-
nificantly supported in analyses of four gene regions, 20
were significantly supported in analyses of three gene re-
gions, 37 were significantly supported in analyses of two
gene regions, 28 were significantly supported in analy-
ses of one gene region, and 9 were not significantly sup-
ported in analyses of individual gene regions but were
nevertheless strongly supported in analyses of the com-
bined data. Finally, 66 strongly supported nodes in the
nine-partition analysis were significantly supported by
at least two independent genetic loci.

The ML analysis under partitioning regime 5B (the
model selected by DT in an ML framework) resulted in a
topology highly similar to that recovered in the Bayesian
analysis under regime 6B (146 of 151 ingroup nodes
shared), with 115 ingroup nodes receiving bootstrap

proportions equal to or greater than 0.70 (see supple-
mental materials at www.systematicbiology.org). Seven
nodes that received posterior probability values >0.95
in the Bayesian analysis received bootstrap proportions
between 0.63 and 0.68. One node (subtending Campy-
lopterus villaviscensio and C. hyperythrus) was well sup-
ported in the ML analysis (BP = 0.71) but not in the
Bayesian analysis (posterior probability = 0.85).

DISCUSSION

Given their remarkable diversity and the ease with
which they can be manipulated both in the field and
in the laboratory, we believe that hummingbirds have
the potential to be the most important model system
for avian comparative biology. However, to fulfill this
potential, a densely sampled, well-resolved, and well-
supported phylogenetic estimate for this group that can
serve as the historical framework for evolutionary analy-
ses is essential. The present study represents a step in this
direction by providing a highly resolved and strongly
supported multilocus phylogenetic estimate for a sub-
stantial component of hummingbird diversity (i.e., 151
of ~331 species and 73 of ~104 genera).
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This provides a logical way of generating 30 partitioning schemes. Note that when the 
blocks are lumped into 3 partitions, those correspond to codon positions. 
 

 
BIC suggests use of 3-28 partition and partitioning just by gene doesn’t seem very helpful. 
 
Rob Lanfear (Lanfear et al. 2012. MB&E. 29:1695; Lanfear et al. 2014. BMCEvolBiol.; 
Lanfear et al. 2016) automates and enhances this approach with PartitionFinder. 
 
PartitionFinder offers the option of doing a greedy search through partition schemes, and this 
is a very widely used approach (cited ~9000 times).  
 

While it’s an important advance, I’m convinced it’s prone to over-partitioning; I’ve seen 
it erect partitions with few variable sites (say 15) but apply a GTR+I+G (with its 10 
parameters) model to it.  
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FIGURE 1. Clustering diagrams showing overall similarity among 30 data blocks of the full data set (10 genes × 3 codon positions). Each
block is indicated at the tip of terminal branches by gene name (see Table 1 and Materials and Methods) and codon position. The shifting of some
nodes (e.g., the node joining zic1-2 and tbr1-2) is the result of centroid method. (a) Cluster analysis of model parameters estimated using ML.
(b) Cluster analysis of model parameters estimated using a Bayesian approach.
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It also (implicitly) promotes this notion that there is a “correct” partitioning scheme. 

 
 

F. Mixture Models. 
 
Remember that for partitioned models, the likelihood function is this: 
 

 

 
where the wj’s are the probability that site i evolved under model j (i.e., belong to partition 

j), and, when we assign sites to partitions, these are either 0 or 1. 
 
We’ve already introduced mixture models when we discussed Γ-distributed rates models of 

A-SRV and the approach is similar here. 
 
Pagel & Mead (2004. Syst. Biol., 53:571) first applied mixture-models to the Q-matrix in 

phylogenetics. 
 

Just as in Γ-distributed rates, this mixture model relaxes the requirement of assigning sites 
to partitions, and the wj’s are treated as random variables that are estimated for each site. 

 
So now we have multiple Q-matrices, all of which are unrestricted (that is, each model is a 

full GTR with six rate transformation rate parameters). 
 
They used simulation to test the ability of their mixture model to detect partitions. They 

simulated data from two different models. 
 

 

P(D |τ ,M ) =
i=1

s

∏ wjP(Di |τ ,M j )
j=1

g

∑



 
 
They simulated 1200 bp with the first R-matrix (assuming equal b.f.) and 800 bp with the 

second. 
 
When they ran their MCMC under a GTR-2Q mixture model, they were able to identify 

precisely the point in the concatenation where the generating model changed. 
 

 
 
 
So, these results (and others from analyses of real data) are pretty promising and suggest 

that use of mixture models may result in better phylogeny estimation. 
 
One question we’ve not addressed is how to determine the degree of the mixture; that is 

how many distinct GTR models should we include. 
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FIGURE 1. Random tree of 50 tips used in the simulations. Tips are arbitrarily numbered. Branch lengths were chosen randomly from a
uniform distribution on the interval 0–1. The box shows the two R matrices of instantaneous rates used in the simulations. These were generated
at random by choosing from a uniform distribution on the interval of 0–5, with G ↔ T transitions fixed at 1.0. Matrix R1 was used to simulate
the homogeneous rates model, matrix R2 was used to simulate the gamma rate-heterogeneity (using a gamma shape parameter of 1.0), and R1
and R2 were combined to generate the pattern-heterogeneity data set.

The 2Q model performs slightly worse than the GTR+!
model on the simulated gamma data, but the 4Q model
returns an approximately 23 log-unit improvement over
the GTR+! model when both are applied to the simu-
lated gamma data.

This result for the 4Q model confirms our expecta-
tion that the mixture model can always be made to con-

TABLE 1. Log-likelihoods of four different models applied to simulated gene-sequence data.

Analysis modela

Pattern-heterogeneity
Simulation

modelb
No. of

parameters GTR GTR +!(4)c 2Q 4Q 2Q+!

GTR 5 −98192 (6.94)d −98193 (8.44) −98187 (6.59) −98191 (5.52) −98225 (7.09)
GTR+! 6 −88051 (7.60) −82905 (6.32) −83782 (9.05) −82882 (7.81) −82874 (7.89)
2Q 12 −100864 (7.79) −100857 (7.36) −100295 (7.80) −100294 (7.21) −100319 (9.20)
2Q+! 13 −87576 (6.68) −82556 (7.00) −83375 (8.40) −82506 (7.48) −82256 (6.56)

aGTR = general time reversible model (see text). The notation for the pattern-heterogeneity model signifies that the data were analyzed using two or four
independent rate matrices (see text) or two matrices plus gamma rate heterogeneity.

bData were simulated from general time reversible models (GTR) with or without gamma and using pattern-heterogeneity with two rate matrices or two rate
matrices plus gamma.

cThe notation for the gamma model signifies that we used four discrete rate categories to analyze the data.
dMeans are calculated from 100 independent MCMC trees, standard deviation in parentheses. Bold type signifies that the analysis model matches the simulation

model.

form to a gamma model if sufficient rate matrices are
used. However, the 4Q model requires 26 parameters,
compared to just 6 for the GTR+! model. The log-Bayes
factor comparing these two models is <0, indicating that
the 23 log-unit improvement of the 4Q model is expected
given its greater number of parameters. The same conclu-
sion holds for the 31 log-unit improvement of the 2Q+!
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TABLE 2. Input and obtained rate parameters from simulated data.

Input and obtained rate parametersa

A ↔ C A ↔ G A ↔ T C ↔ G C ↔ T G ↔ T Q-weight

Rate matrix 2.11, 4.97 3.13, 3.41 0.34, 0.82 3.87, 0.35 1.49, 2.82 1, 1 0.4, 0.6
Q1 1.96 (0.14) 2.98 (0.2) 0.4 (0.04) 3.64 (0.26) 1.54 (0.09) 0.92 (0.09) 0.43 (0.02)
Q2 4.2 (0.27) 3.01 (0.19) 0.71 (0.07) 0.22 (0.05) 2.52 (0.15) 1 (na)b 0.57 (0.02)

aValues in italics are the transition rate parameters from the R matrix of the GTR model used to generate the simulated data. Equal base frequencies of 0.25 were
assumed. Values in the main body of the table are those obtained from the 2Q pattern-heterogeneity mixture model, standard deviations in parentheses.

bThis transition rate is fixed at 1.0.

model over the GTR+! model when both are applied to
the simulated gamma data. By comparison the 2Q model
improves upon the homogeneous and GTR+! models
by about 560 log-units (log-Bayes factors of > 500) for
data generated from a 2Q model. The 2Q+! model ap-
plied to the simulated 2Q+! data substantially outper-
forms all the other models.

Parameter and Branch Length Estimation in Simulated Data
The 2Q mixture model accurately estimates the in-

put transition rate parameters for the simulated 2Q
data (Table 2), and returns the correct tree length (in-
put tree length = 22.46, average obtained tree length =
23.04 ± 0.21). Figure 2 shows that the 2Q model also

FIGURE 2. Site by site differences in the goodness of fit (log-likelihood) between the two rate matrices of the 2Q model as applied to the
simulated pattern-heterogeneity data. Positive values indicate that rate matrix 1 fitted the data better than matrix 2, and vice versa. As these are
logs, their difference indicates the ratio of the goodness of fit. The pattern changes at the boundary between the two simulated genes indicating
that the 2Q model detects qualitatively different patterns without prior partitioning, or knowledge of the patterns in the data.

recovers the two different substitutional patterns on a
site by site basis. The figure plots for each of the 2000
simulated sites, the difference in the log-likelihoods at-
tributable to the two rate matrices. Positive values in-
dicate sites for which the first rate matrix fitted the site
better and vice versa. The crossover at site 1200 is where
the sites began to be simulated from the second rate
matrix.

We expect the 4Q model to recover transition rates
from the simulated gamma data that conform to gamma
expectations (Equation 2). Figure 3 plots the 24 transition
rate parameters we obtained from the 4Q model against
the values expected from the gamma model. The latter
are obtained by multiplying the input transition rates by
the four gamma scaling factors obtained from a discrete
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There are a couple papers that have applied rjMCMC to mixture models an let the degree 
of the mixture be estimated directly from the data. 

 
Venditti et al. (2008. Syst. Biol., 57:286) was the first to do this, and they maintained the 

requirement of a single set of b.f. and that each R-matrix be unconstrained. 
 
Evans and Sullivan (2012. Syst. Biol., 61:12-21) have generalized this so that each model 

can have its own b.f. and can take on any of the 203 restrictions of the R-matrix. This is 
probably over parameterized for most data sets, but is may be required when we have lots 
of phylogenomic data. 

 
Caveat – Use of mixture models and their special cases of partitioned models and assume 

all partitions evolved on the same tree; that is, this ignores coalescent stochasticity and 
hybridization. 


