
Lecture 6B – Optimality Criteria: Maximum Likelihood & Minimum Evolution 
 

II. Optimality Criteria – Continued 
 

B. Maximum Likelihood – Chapter 16 
 

ML estimation, in general, is a standard and incredibly useful statistical procedure. There is an 
excellent introduction to it in the text, on pages 248-251.  

 
1) The approach focuses on calculating the likelihood (L), which is the probability of the data 

given a particular hypothesis: 
L = Pr (data | hypothesis). 

 
Typically, several hypotheses are evaluated, and the one that maximizes the probability of 
having generated the observed data is the ML estimate. 
 
2) Calculation of these probabilities requires an explicit model, so really (although it’s rarely 

done) we should write the expression as such:  
 

L = Pr (data | hypothesis, model). 
 
Historically, this limited its application in phylogenetics to molecular data, however the 

application of likelihood to morphology has been increasing and is now pretty common. 
 
3) So, the application of ML as an optimality criterion in phylogeny estimation is as follows: 
 

L(t) = Pr(D | t, m). 
 
This is simply the probability of the data (the set of aligned sequences), given the tree, assuming 
some model of character evolution (much more on this later). 
 
Just as in parsimony, we make the assumption that characters are independent so that we can 
treat likelihoods for each site separately. If we have s sites, the likelihood of a tree is: 
 

, 

 
 

€ 

L(τ ) = Pr(Di | τ ) = Li(τ)
i=1

s

∏
i=1

s

∏



where Pr(Di | t) is the probability of site i given tree t. This is the single-site likelihood and is 
analogous to the single-character length in parsimony. 
 

So, just as the parsimony score for a tree across an entire data set is the sum of the 
character lengths, the likelihood of a tree across an entire data set is the product of the 
site likelihoods, and just as in parsimony, we do this because we assume independence of 
sites. 
 
Let’s demonstrate how single-site likelihoods are calculated with the same (arbitrarily 
rooted) tree we just used to demonstrate parsimony optimizations. 

 
Note that we’re now paying attention to the branches that and we’re incorporate their 
lengths, which are labeled vx,y. The units are expected number of substitutions per site and 
they are a function of rate of evolution times the duration of branch (rate x time).  
 
So, to calculate the single-site likelihood for this site, we sum the probabilities for all 
possible character-state reconstructions. Since there are n – 1 = 3 internal nodes (for a 
rooted tree) and 4 possible character states at each node, there are 4n-1 = 43 = 64 possible 
reconstructions. So: 
 

 
Or,  

G A C C

1 2

3

w x y z

v3,1

v1,w v1,x

v3,2

v2,y v2,z

G A C C
A A

A
( )Li(τ) = Prob + Prob

G A C C
A A

C
)(

+ Prob
G A C C

A A

G
)( + Prob

G A C C
T T

T
)(



 

 
Of course, many reconstructions are extremely unlikely, so they’ll contribute very little to 
the single-site likelihood, but we still consider them as possibilities and account for them. 
 
So now the issue is how one calculates the probabilities of a particular reconstruction. 
 
Let’s index reconstruction r (Rr) such that  m is the state at node 3,  

 k is the state at node 1, and  
	l is the state at node 2. 

 
We know (from our data) that nodes w, x, y, & z (the terminals) have states G, A, C & C, 
respectively. 

 

Pr(Rr | t) = pm x Pm,k(v3,1) x Pk,G(v1,w) x Pk,A(v1,x) x Pm,l(v3,2) 
x Pl,C(v2,y) x Pl,C(v2,z) 

 
where: 

 pm is the frequency of the nucleotide m. This provides an estimate of the probability of 
observing state m at the root node. 

 
Pi,j  is the probability of substitution between states i & j. This is derived the model of 

sequence evolution that we assume (much more on those in a few weeks). This is in 
some sense analogous to the step matrix that determines costs for transformations 
between states in the Sankoff algorithm in parsimony. 

 
So, this can be calculated from all 4n-1 reconstructions and summed to calculate the 
single-site likelihoods.  
 
However, there’s a more efficient way to calculate the same value. 
 

 

 
Each summation is across all four nucleotides. 

Li(τ ) = Pr(Rr
i

r

4n−1

∑ |τ )

€ 

L(τ )
i = πm × Pm,k (v3,1)Pk,G (v1,w )Pk,A (v1,x )

k
∑
& 

' 
( 

) 

* 
+ 

m
∑ × Pm,l (v3,2)Pl,C (v2,y )Pl,C (v2,z)

l
∑
& 

' 
( 

) 

* 
+ 



 
Notice that the structure of the parentheses conforms to the subtrees that comprise the 
tree we’re evaluating. This is the essence of Felsenstein’s pruning algorithm, which 
you may have heard of. 
 
Also note that branch lengths are parameters that can be optimized. That is, we take an 

initial set of branch lengths and try to improve them numerically using, say, the 
Newton-Raphson algorithm. It turns out that this is also very computationally 
expensive, so different approaches (programs) spend varying amounts of 
computational resources to do this. 

 
 

Almost all applications you’ll see, rather than deal with a series of products, we typically 
take the natural logs and sum them: 

 

 
Another level of efficiency can be achieved by realizing that multiple sites may have the 
same site pattern. 
 
  1      A G T A C A . . . . . . . . . . . . . . . 
  2      A G T A . . . . . . . . . . . . . . . . . 
  3      A G T A . . . . . . . . . . . . . . . . . 
  .      . . . . . . . . . . . . . . . . . . . . . 
  .      . . . . . . . . . . . . . . . . . . . . .  
  n      A G T A . . . . . . . . . . . . . . . . . 
Pattern  1 2 3 1 . . . . . . . . . . . . . . . .(a) 
 
There are 4n possible site patterns. Rather than recalculate the single-site likelihood for 
sites with the same pattern, the frequency of each pattern is stored. Thus, 
 

 

 
 
Yet a third level of efficiency was developed years ago by Kosokovsky-Pond & Muse 
(2004. Syst. Bio. 53:658).  It’s called column sorting and takes advantage of our 
assumption of independence of sites in the matrix (this assumption is made for most 

€ 

lnL(τ ) = lnLi(τ )
i=1

s

∑

€ 

lnL(τ ) = fa (lnL
a (τ ))

a=1

4 n

∑



models typically used – more later). This means that the order of sites is arbitrary and that 
sites can be taken in any order we find convenient.  
 
These authors place columns (sites) that are have states distributed similarly near each 
other in the matrix and retain computations that are redundant. This requires overhead in 
determining the best order in which to take sites, but that’s more than recovered by 
reducing the redundancy of computation and time-savings range from 15% to 50%. 
We’ll discuss faster strategies to estimate the likelihood of a tree when we discuss 
searching tree space. 

 
C. Minimum Evolution (Chapter 11). 

 
If data are either inherently distance-based, or are converted to a series of pairwise 
distances, one may choose to evaluate trees under the Minimum-Evolution criterion.   
 
 Remember that this matrix has (n2-n)/2 cells (pair-wise comparisons). 
 
Consider the following unrooted 4-taxon tree: 

 
Note that, again, we’re paying attention to branch lengths. 
 
The optimality criterion in the original formulation is the sum of the absolute value of the 

branch lengths (Kidd & Sgaramella-Zonta, 1971. Amer. J. Hum. Gen. 23:235).  
 

 

 
Or, in a subsequent formulation (Rhezetsky and Nei, 1992. Mol.Biol.Evol., 9:945), it is the 

sum of branch lengths. 

€ 

ME(τ ) = | vk |
k=1

2n−3

∑

A

B

C

D

v1

v2

v3
v4

v5



 

So, given a matrix of pairwise distances and a tree, how does one find the branch lengths? 
 
Let’s think for a minute about the data (pairwise distance matrix). If we can erect a distance 

that perfectly captures the actual amount of evolution that has occurred since the two taxa 
last shared a common ancestor, the distances will exhibit the property of tree additivity, 
such that on the tree: 
 
dAB = pAB = v1  + v2 , 
dAC = pAC = v1  + v3 + v4 , 
dAD = pAD = v1  + v3 + v5 , 
dBC = pBC = v2  + v3 + v4 , 
dBD = pBD = v2  + v3 + v5 , 
dCD = pCD = v4  + v5  

 
Where pxy is the patristic distance between taxa x & y, or the distance calculated from tee. 
Another property of additive distances (that Saitou and Nei discussed) is the four-point 

metric condition. 
 

DA,B + DC,D < DA,C + DB,D 

 

   & 
 

DA,B + DC,D < DA,D + DB,C 

 
The point is, if we could come up with such error-free distance measures, and therefore 

analyze perfectly additive distances, there would be a perfect fit between the observed 
distance matrix and the patristic distance matrix.  

 
 So, for any combination of branch lengths, we can measure the distortion associated with 

fitting the distance matrix to the tree: 

 

 

€ 

ME(τ ) = vk
k=1

2n−3

∑

€ 

E(τ ) =
i=1

n

∑ wij | dij − pij |
α

j=1

n

∑

A

B

C

D

v1

v2

v3
v4

v5



a is usually 2 (it may be 1 in some cases – if you suspect some distances are really poor 
estimates but don’t know which ones), so this is usually a least-squares method. 

 
wij allows weighting of the pairwise error terms.  
wij = 1 assumes that the errors are identical across all dij. 
wij = 1/dij assumes that errors are proportional to dij. 
wij = 1/d2

ij assumes that errors are proportional to the square root of dij. 
wij = 1/s2

ij weights by the expected variance in the dij (which may not be known). 
 
So, optimum branch lengths for a particular tree are found by the least-squares criterion but 

remember that the Minimum-Evolution criterion operates on the sum of branch lengths. 
 

Another point is that the optimization of branch lengths may actually result in negative 
branches, which have no biological meaning.  

 
Probably the best way to deal with them is to set them to zero when summing branch 

lengths to estimate the ME score. 
 
III. Relationships among optimality criteria. 

 
Lots of the controversy in phylogenetics revolves around choice of optimality criteria, and lots 

of work (including some of my own) has been focussed on performance of the various 
criteria. 

 
Certainly, these differences are important, but often lost in the debate are the various 

fundamental conceptual similarities that are common to certain sets of them. 
 

Both MP and ML are character based (whereas ME is not). 
 
Both ME and MP minimize the amount of evolution (i.e., sum of branch lengths). 
 
Both ME and ML rely on an explicit model of sequence evolution. 
 
So certainly, we should expect there to be a broad range of conditions across which the 
methods perform similarly, and that certainly has been shown to be the case. 
 
Nevertheless, the differences among them are real, and it’s incredibly informative to study the 
conditions under which the methods perform differently.  
 
We’ll do that later in the semester. 

 


