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SUMMARY
During the day, flying animals exploit the environmental energy landscape by seeking out thermal or
orographic uplift, or extracting energy from wind gradients.1–6 However, most of these energy sources are
not thought to be available at night because of the lower thermal potential in the nocturnal atmosphere, as
well as the difficulty of locating features that generate uplift. Despite this, several bat species have been
observed hundreds to thousands of meters above the ground.7–9 Individuals make repeated, energetically
costly high-altitude ascents,10–13 and others fly at some of the fastest speeds observed for powered verte-
brate flight.14 We hypothesized that bats use orographic uplift to reach high altitudes,9,15–17 and that both
this uplift and bat high-altitude ascents would be highly predictable.18 By superimposing detailed three-
dimensional GPS tracking of European free-tailed bats (Tadarida teniotis) on high-resolution regional wind
data, we show that bats do indeed use the energy of orographic uplift to climb to over 1,600 m, and also
that they reach maximum sustained self-powered airspeeds of 135 km h�1. We show that wind and topog-
raphy can predict areas of the landscape able to support high-altitude ascents, and that bats use these lo-
cations to reach high altitudes while reducing airspeeds. Bats then integrate wind conditions to guide
high-altitude ascents, deftly exploiting vertical wind energy in the nocturnal landscape.
RESULTS AND DISCUSSION

We fit European free-tailed bats with GPS loggers that recorded

their three-dimensional location every 30 s and tracked them for

1–3 days during 5.9 ± 1.9 h per night (Table S1). Flight trajectories

of eight European free-tailed bats near Santa Comba de Vilariça

(41.3605� N, 7.0660� W) in northeastern Portugal revealed that

bats emerged from their common roost site 47 ± 16 min (mean)

after sunset and flew constantly throughout the night until return-

ing to the roost or stopping at one of several alternative roosts

65 km from the primary roost on an east-west axis (Figure 1).

European free-tailed bats reached high altitudes during their

commuting flights. Their flights typically followed the rugged

terrain, but on some occasions, individuals ascended over

1,680 m above ground level (AGL) in less than 20 min (Figure 2A).

We used k-means clustering on the height AGL (Figure 2B) to

categorize the ascending flight segments into two classes.

High-altitude ascents (n = 48) reached an average maximum

height of 563.5 ± 214.1 m AGL (mean ± SD) up to maximum
Current
1,680.1 m, and moderate ascents (n = 335) reached an average

maximum height of 115.2 ± 77.9 m AGL (mean ± SD) up to

maximum 333.8 m (Figure 2B). During high-altitude ascents,

bats climbed faster, longer, and had a lower airspeed than mod-

erate ascents. Bats made high-altitude ascents at vertical climb

rates of 0.72 ± 0.66 m s�1 (range: 0.05–4.5 m s�1) and moderate

ascents at 0.47± 0.51ms�1 (range: 0.01–6.34ms�1; permutation

test of mean differences [5,000 iterations]: mean difference =

�0.25; p = 0.002), and within-ascent variance did not differ be-

tween these categories (permutation test of mean differences

[5,000 iterations]: mean difference = �8.38; p = 0.105). High-alti-

tude ascents lasted longer (high-altitude: 5.0 ± 0.58 min, moder-

ate: 3.7 ± 0.13 min; permutation test of mean differences [5,000

iterations]: mean difference =�63.0; p = 0.005), and three-dimen-

sional airspeeds (hereafter airspeeds) were lower than during

moderate ascents (high-altitude: 5.34 ± 4.89 m s�1; moderate:

7.95 ± 6.42 m s�1; permutation test of mean differences [5,000 it-

erations]: mean difference = 2.61; p = 0.004) (Figure 2D). When

bats make high-altitude ascents, they have higher vertical climb
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Figure 1. Tracking site and 3D flight trajectories of European free-tailed bats in northeastern Portugal

Each bat is indicated with its own color. The underlying digital elevation model (DEM) is derived from 30 m Advanced Spaceborne Thermal Emission and

Reflection Radiometer) ASTER imagery and ranges from 36 m ASL to 1,411 m ASL. The insets show the capture site in relation to Portugal and Spain and also

shows a top-down visualization of the study area.

See also Table S1. All data are available from the Movebank Data Repository at DOI: 10.5441/001/1.52nn82r9.
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rates with lower total air speeds that are supported by orographic

uplift (generalized linearmixed effectsmodel (GLMM)with individ-

ual as a random intercept: orographic uplift: slope: 0.188 ± 0.087

SE; X2
1 = 10.99; p < 0.001). Most bats descended quickly after

reaching a peak altitude and returned to fly within 100 m AGL.

Some individuals remained 350mAGL or higher for extended pe-

riods of time (8.63 ± 12.88 min; maximum = 58.07 min) and above

1,000 m AGL for 7.68 ± 7.60 min (maximum = 19.5 min).

We then investigated the spatial distribution of high-altitude

ascents versus moderate ascents to identify whether there

were environmental features that produced the wind support

needed to reach high altitudes and in which areas of the land-

scape these conditions are more likely to occur. We predicted

the occurrence of high-altitude versus moderate ascents as a

function of either topographic variables (elevation, slope, and

aspect) or wind components (U, zonal or toward east; V, merid-

ional or toward north; W: vertical) by using two binomial general-

ized additive models (Table S4). The model including wind

variables captured more of the variation in the frequency of as-

cents than the model based on topography only (0.734 ± 0.007

versus 0.137 ± 0.002) (Table S4) and was highly accurate in pre-

dicting the occurrence of high-altitude ascents (Figures 3 and

S4). Uplifting, south-easterly winds blowing across steep, south-

and west-facing slopes, positively affected the probability of
1312 Current Biology 31, 1311–1316, March 22, 2021
high-altitude ascents, whereas elevation negatively affected

their probability (Figure 3A; Table S4). This indicates that

nocturnal bats, like diurnal birds, use orographic lift to facilitate

ascending flight and save energy.

We then used the wind and topographic models to extrapolate

the predicted probability of high-altitude ascents for the entire

study area by using the available topography and wind layers

(the latter at 140 m AGL, averaged for the first night of tracking,

8th of August 2017). The model extrapolation was done sepa-

rately for the two models and then ensembled on the basis of

the accuracy of the two models (Figure 3B). The wind pattern

in the study area is closely linked to the topography, and

because the horizontal component of wind slows and is forced

upward on the ridges, wind speeds increase on the leeward

side of the ridges because of the complex terrain. Correspond-

ingly, the ensemble prediction (area under the curve [AUC] =

0.975) shows that high-altitude ascents are more likely to occur

in the valleys (low terrain elevations) as bats flew up and along

windward slopes where orographic uplift would be highest and

the vertical component of the wind stronger (Figure 3B). Thus,

specific combinations of wind and landscape features produce

enough uplift support to allow the bats to reach high altitudes,

and we can use them to predict areas where high-elevation as-

cents are possible. The high predictability of these ascents
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Figure 2. Bat ascent over the terrain

(A) The height profile of a portion of bat 4’s flight on 2017-08-08 over the terrain (black line derived from ASTER 30 m DEM). The bat’s vertical movement was

clustered into segments where the bat was moving in descent, moderate ascent, high-altitude ascent, or not classified.

(B–D) Across all segments, bats in the high-altitude ascents (B) reached higher elevation above ground and gained altitude faster (C) while decreasing their overall

airspeed (D).

See also Figure S3 and Tables S3 and S4.
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based on environmental variables alone suggest that bats might

be able to locate and use the same environmental cues to find

areas of uplifting winds, or build a cognitive map of these loca-

tions.19,20 Although exciting, the navigation and the cognitive

aspects of this high-altitude flight behavior go beyond the possi-

bility of our analyses but suggest future avenues of study.

We also were interested in quantifying flight speeds, given that

Brazilian free-tailed bats (Tadarida brasiliensis) have been found

to achieve ground speeds up to 44.5 m s�1 (160 km h�1) for short

intervals and over 20m s�1 regularly, with only brief bouts of inter-

mittent gliding.14 Furthermore, their airspeeds, i.e., flight speed in

relation to the column of moving air, are far beyond expectations

for a 10–12 g animal on the basis of muscle power alone.19,20 Eu-

ropean free-tailed bats are 2–4 times larger (20–40 g), and should

have the potential to attain even higher speeds that can be

measured through high-resolution GPS tracking.14,21 We com-

bined the three-dimensional GPS locations with the three-dimen-

sional wind values to calculate self-powered airspeed in three

dimensions and measure how bats moved within the full space

of the air column. These three-dimensional airspeeds confirmed

exceptionally high flight speeds for European free-tailed bats,

which had peak airspeeds of 135 km h�1 (37.5 ms�1) and ground

speeds (two-dimensional) of 149 km h�1 (41.2 m s�1). Fifteen

percent of our observations were higher than the predicted opti-

mum speed for fast, economical, long-range movements

(maximum range speed = 8.97 m s�1), and flight segments with

continuous airspeeds over 12 m s�1 lasted for 12.9 ± 10.0 min.

We observed airspeeds greater than 20m s�1 in segments where

speeds of at least 12 m s�1 had been maintained for 12.7 ±

11.10 min. These fastest speeds were rare but part of a
continuous distribution of high airspeeds (Figure 4). Analysis of

the error distribution and location displacement shows that tag

location error has its largest effects at slow speeds (Figure S3),

and that the high speeds we observe occurred under ideal GPS

conditions (Figure S1). In contrast, mean (± SD) airspeed over

all individuals and nights was 4.68 ± 3.79, which is slightly lower

than the estimated minimum power airspeed (5.54 m s�1) that al-

lows bats to minimize their flight costs, and mean ground speed

was 5.63 ± 3.66 m s�1 (Figure 4). The lower airspeed in relation

to ground speed in our data reflects positive mean tailwind sup-

port for most of the bat trajectories (1.06 ± 1.47 m s�1).

We demonstrate that (1) bats reduced airspeed with

increasing tailwind support, (2) increased airspeed with cross

winds, and (3) tended to fly faster at higher altitudes (generalized

additive mixed effects model [GAMM]) results in Table S2). The

higher airspeeds we observed at higher elevations are due

largely to the steep decline in wind speed at higher altitudes

(e.g., Figure S3). Bats also increased airspeed slightly as they de-

scended (GAMM height change slope: �0.002 ± 0.0002) (Table

S2), but the fastest airspeeds were not observed during steep

descents. Importantly, there was no effect of altitude change

for flights at airspeeds greater than 15 m s�1 (n = 130). The fast-

est speeds we observed in European free-tailed bats were dur-

ing level and moderately descending, not stooping, flight, and

in sections of flight that appear to be commuting. It is unclear

why these extreme, but rare, speeds are used by European

free-tailed bats when the majority of their self-powered air-

speeds are much lower. Their moth prey fly considerably slower,

making foraging the unlikely cause, but their foraging and roost-

ing areas are separated by sometimes 65 km (Figure 1). There
Current Biology 31, 1311–1316, March 22, 2021 1313



Figure 3. Probability of high-altitude ascents versus moderate ascents across the study area

(A) Probability of high-altitude ascents as predicted by the vertical component of the wind vector.

(B) Probability of high-altitude ascents across the study area, extrapolated from the ensembled predictions of wind and topographic models. The predicted

probability of high ascent is not homogeneously distributed across the landscape: south- and east-facing slopes, particularly those adjacent to ravines that can

funnel the localized winds blowing from the southeast into orographic uplift, have the highest probability of generating high-altitude ascents.

See also Figure S4 and Table S4.
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could be substantial pressure to minimize travel time instead of

travel costs, in which case high speeds would be beneficial.

Additionally, the fastest speeds of common swifts (31.1 m s�1)

occur during mating displays.22 This raises the possibility that

the tracked bats are engaging in other behaviors beyond

foraging when flying at speeds over 20 m s�1, and suggests

future work to understand this rare flight behavior.

We find that small differences in the underlying topography can

dramatically change the aerial energy landscape even for

nocturnalanimalsandpresent enormousopportunities for individ-

uals that can exploit them.3,6,23 The European free-tailed bat diet

primarily comprises migratory moths9 that often occur in large

numbers at altitudes of 200–600 m during spring and autumn

when insects accumulate in layers and exploit transport opportu-

nities in low-level nocturnal jets.24,25 Our studywas in August dur-

ing the fallmigration season, andhighestwindspeedsandconsid-

erable activity of bats (23% of GPS locations) was observed at

altitudes where aggregations of migratory moths are expected.

Batsmight actively exploit fine-scale updraft components to carry

out otherwise costly exploratory flights in searchof richpatches of

migratory insects. Insects might also aggregate in eddies on the

lee side of slopes where waves or rotors of descending winds

concentrate migrating insects into dense patches.26 Bats would

then simply need to ride the wind currents, which would bring

them directly to these eddies and rich foraging patches without

the risk of extensive searching. By following the wind, bats could

both lower their overall costs of flight and find dense patches of

prey with low searching costs. Because migratory moths are un-

likely to occur in appreciable numbers at altitudes above 1,000

m,25–27 foraging is an unlikely explanation for the flights of bats

to the highest altitudes observed. These flights might serve other

purposes. For example, Egyptian fruit bats that find their food on

the ground use high-altitude flights to view distant landmarks and

better navigate long distances.13
1314 Current Biology 31, 1311–1316, March 22, 2021
One would expect bats to repeatedly use areas where wind

conditions allow them to simultaneously minimize the costs of

commutes and access higher altitudes. Most bats we observed

moved along a regular route but did not appear constrained by

corridors in the landscape. Because the wind generally blew to-

ward thewest andmost of the higher terrain was oriented along a

north-south axis, air currents provided predictable uplift that

could reduce energetic cost of ascents. Non-exclusively, bats

might have employed low-cost, direct paths and passively ride

ascending columns of air until they descended when winds

slowed, be it intentional or not (Figure S3). Environmental data

at resolution similar to that of the behaviors of interest allow us

to make powerful inferences into how animals use their environ-

ments. As technological advances allow tracking of body accel-

erations, wing motions, and muscle activation patterns,27 the

resulting insights concerning body and wing posture and power

output will allow us to test this hypothesis and further reveal how

these animals behave at finer scales, including within the moving

air column.

The high-altitude ascents of European free-tailed bats are

particularly impressive comparedwith thoseof other bat species.

Free-tailedbatsascendat similar or lower speeds thanbird flocks

tracked by radar that can climb at rates over 1 m s�1 to reach

migration altitudes.28 However, European free-tailed bat tracks

closely resemble those of migrating individual Swainson’s

thrushes that climb at 0.4 m s�1 in an undulating pattern.29

Foraging mouse-tailed bats in Israel11 and Theobald’s tomb

bats in Thailand12 also employ high-altitude ascents periodically

andmight use energy provided by the landscape in similar ways.

In contrast, the short foraging ascents of over 300 m and highly

variable migration altitudes of European common noctule bats

have not been explained by changing weather conditions or

apparent foraging success.10,30 Our results suggest that many

bat species take advantage of fine-scale interactions of the
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Figure 4. European free-tailed bat flight speeds
(A and B) Airspeed (A) and ground speed (B) are shown with the cumulative frequency distribution for all bats, and each individual bat’s kernel density normalized

to a sum of one.

See also Figures S1, S2, and S4 and Tables S1 and S2.
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landscape and wind resulting in the observed roller-coaster

flights. This pushes these small mammals to extraordinary

heights, by using the landscapemuch like gulls surfing urban air-

flows,6 and is an important step forward to describe how

nocturnal animals move in three-dimensional space. This builds

a foundation for future work investigating the mechanics not

only of how bats exploit ascending columns of air efficiently,

but also how they achieve these astonishing horizontal speeds.

This will help to understand more generally how adaptation in

bat flight, which differs dramatically from birds, has been shaped

by the distinctive energy landscape of the night sky.
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Other
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Teague O’Mara

(teague.omara@selu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The datasets used generated in this study are available at the Movebank Data Repository (DOI 10.5441/001/1.52nn82r9). R code

used in analysis is available from the Lead Contact. Raw GPS, environmentally annotated data, and three-dimensional interactive

versions of Figure 1 and Figure S1 are available at the Movebank Data Repository (DOI 10.5441/001/1.52nn82r9).

EXPERIMENTAL MODEL AND SUBJECTS DETAIL

European free-tailed bats (Tadarida teniotis) were captured at evening emergence using mist nets set at the roost exits near Santa

Comba de Vilariça (41.36� N, 7.07� W) in northeastern Portugal. All methods were approved by ICNF - Instituto de Conservação da

Natureza e Florestas, Portugal (665/2017/CAPT).

METHOD DETAILS

GPS Attachment and Data Collection
We fit 33 lactating females (33.92 ± 1.63 g) with Gipsy5 GPS tags (Technosmart Europe srl) that were encased in a balloon. GPS tags

were deployed either on collars31 or glued to the bat’s back by applying Permatype surgical cement directly to the fur and to the

balloon (Table S1). Total tagweight (3.59 ± 0.21 g) was 10.59%± 0.49%of bodymass. TheGPS tags hadminimal measurable effects

on bat body condition (body mass / forearm length). Tagged bats generally maintained or improved their body condition (mean ± SD

of the change in individual body condition: 0.135 ± 0.374, range = �0.036 – 0.072, permutation test of mean differences (5,000 iter-

ations:10 mean difference = 0.0175, p = 0.108). Overall, the body condition of bats that wore a GPS tag, both before and after tagging,

was higher than for bats that did not receive a GPS tag and were captured on the same night (F2, 236 = 40.47, p < 0.001). Tags were

either recovered by recapturing bats at the same location or locating the tags on the ground under the roost. Based on the mean

weight of our tagged bats and mean wingspan from bats from a different study that were photographed on graph paper with a fully

outstretched wing (370 mm, Amorim, unpublished data), we calculated a mean power curve32 for an unladen T. teniotis, and esti-

mated a minimum power speed (Vmp) of 5.54 m s�1 and maximum range speed (Vmr) of 8.97 m s�1.

GPS tagswere programmed to record one location (latitude, longitude, height above sea level) every 30 s.We recovered 11 tags, of

which 8 had recorded data for 1–3 nights and a total of 10,336 GPS locations (Table S1). We took a conservative approach to obtain

the highest quality and most reliable dataset possible. We removed by hand, points that were obviously error in the tracks due to

unreasonably large displacement (N = 45) and limited the dataset to consecutive points with a 20–40 s time lag. This reduced the

dataset from the full 10,336 points to 9873 (3.4% loss) to yield a dataset with high temporal and spatial resolution with a regular
Current Biology 31, 1311–1316.e1–e4, March 22, 2021 e1
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sampling regime. All data, including those marked as outliers and removed from analysis, and a fully annotated dataset, are available

at the Movebank data repository (DOI 10.5441/001/1.52nn82r9).

Speed Calculations and Wind Conditions
We calculated segment speed as the speed between two consecutive points in three dimensions (analogous to ground speed). We

then calculated three-dimensional self-powered airspeed (hereafter airspeed) from these segments by first calculating wind support

based on wind data derived from a numerical weather prediction (NWP) model. NWPmodels can provide valuable weather forecasts

at regional scales and are commonly used to describe and forecast atmospheric motions. Thesemodels can provide long time series

of atmospheric data, like wind speed and direction, with very high resolution both horizontally and vertically in a given study region in

a short period of time.33 We use the high-resolution numerical weather model Weather Research and Forecasting (WRF).34 TheWRF

is a next generation mesoscale forecast and assimilation system that has advanced both the understanding and prediction of meso-

scale systems. It is designed for a wide range of applications, from research to operational forecasting, with a priority emphasis on

horizontal resolutions below 10 km. Here theWRFmodel was used in hindcast modewith initial and boundary conditions provided by

the ECMWF ERA-Interim Reanalysis.35 The model used a 4 nested grid setup, with the highest horizontal resolution of 1 km and the

simulation spans from August 8th to August 17th 2017, with output every 5 min.

The wind conditions at our study site were highly variable among tracking nights and elevation. The WRFmodel provided regional

weather information at 1 km resolution every 5 min and at 68 terrain—following levels that range from the ground to nearly 20,000 m

AGL. For this study, we chose 23 levels to encompass bat flight with a maximum of 2,156 m AGL. The weather variables provided by

the WRF model included temperature, air pressure, and three components of the wind vector (U: zonal or toward east, V: meridional

or toward north, W: vertical). We used U, V andWwind components to derive time-weighted three-dimensional wind support, which

is the length of the wind vector at the location of the bat in the bat’s travel direction toward the next location. Positive wind support

values represent tailwind and negative values headwind. Cross wind is the length of the wind vector perpendicular to the bat’s di-

rection of travel irrespective of the side and was expressed as absolute value. We calculated the airspeed of the bat (segment speed

relative to air) following,36 adjusting themethod to incorporate wind support in three dimensions and the absolute value of cross wind.

Wind and Altitude Effects on Airspeed
Bat airspeeds are likely dependent on wind support and the direction of flight. Bats should decrease their airspeed with increasing

wind support, and it is possible that speeds increase with descending flights. We used generalized additive mixed effect models (R

packagemgcv37) to test how airspeed responds to wind support, the absolute value of crosswinds, and height above ground (Table

S2). Smoothing terms of time in seconds since the first observation of the night and geographic location were included to account for

spatial and temporal autocorrelation, and individual bat ID and date were included as random intercepts. Airspeed +1 was trans-

formed on the natural log and the model fitted using a Gaussian error distribution. The best fit model (lowest AICc) included all terms

(Table S2).

Data Quality, GPS Error, and Filtering Methods
There are several sources of error that could influence GPS position data and the resulting ground speed and airspeed calculation.

First, location error can influence the recorded position of the data and subsequent ground speeds. This is most likely due to poor

satellite coverage (number of satellites) and weak signal strength or satellite configurations that can alter the distribution of error

around a location, the horizontal dilution of precision (hdop). Hdop reflects the ratio of error distribution across a major and minor

axis. When the error is evenly distributed, hdop = 1, and increasing hdop values indicate an increase in the unreliability of the error

probability distribution around a recorded GPS location. If this influences the likelihood of speed errors, then one would expect faster

speeds to occur in more error-prone regions of satellite coverage. However, we tended to see faster ground speeds at lower hdop

values (Figure S1A), and at mid-range satellite counts (Figure S1B). As expected, GPS hdop and the number of satellites used to

calculate a location were negatively correlated, which indicates an increase in the quality of fixes with more satellites used.

We sought to only include the highest quality GPS positions possible. To test if there was speed-dependent difference in location

error in the GPS, we first established the distribution of location error and the horizontal dilution of position (hdop) measured by the

GPS using four stationary tags under open sky that recorded locations every 30 s for 3 h (Figure S2). We then used a bootstrapping

procedure that shifted each observed three-dimensional GPS position in a random direction by a random distance drawn from the

95% confidence interval of the observed horizontal error (14.22 ± 12.05) and vertical error (20.86 ± 21.79 m) at each hdop value,

binned to the nearest integer. Speed was then re-calculated for each segment and the process repeated 1000 times. Our random-

ization showed that the addition of error derived from stationary tags to our locations had the largest effect at low flight speeds, with

changes in the calculated speed of approximately 1–1.5 m s�1 in the most extreme cases (Figures S2B–S2D). We are confident that

this is a conservative estimate of location error as stationary devices will overestimate location error due to the increased precision of

GPS with increasing speed.38 Fast (or slow) speeds are then not a consequence of three-dimensional position measurement error.

The sampling interval between successive GPS locations can also influence error through an over-estimate of distance traveled

when sampling frequencies are sufficiently coarse due to a decrease in spatial and temporal autocorrelation.38 At sampling fre-

quencies of 150 s, the overestimation of distance tends to converge at 1.5 m (a speed change of 0.01 m s�1), and with sampling fre-

quencies close to 0 s, the overestimation of distance is approximately 0.25 m.38 This should result in the largest distances covered or

fastest speeds at the slowest sampling rates. When we examined our data for a speed-sampling interval relationship, we did not see
e2 Current Biology 31, 1311–1316.e1–e4, March 22, 2021
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this pattern, as the fastest ground speeds were not at longer sampling intervals but tended to be found near the mean sampling in-

terval of 30 s (Figure S1D).

Second, the wind data could be a source of error. Airspeeds are calculated as the sum of ground speed and wind support (positive

and negative). If the interpolated wind speed is incorrect, then our speed calculations would also be erroneous. TheWRFmodel pro-

vided wind information at 1 km resolution every 5 min. There could then be spatial and temporal mismatch between locations

sampled every 20–40 s and the interpolated wind values that obscures the magnitude and direction of the wind, particularly if

wind gusts are present. If this has a substantial effect on airspeeds, then we would expect that periods with high wind gusts to

be associated with high speeds. Likewise, if there are unmeasured tailwind effects that result from interactions between the wind

and topography at small scales, then we would expect that rougher terrain, with more opportunity for localized wind changes, to

be associated with high speeds. We calculated the terrain ruggedness index from the 30 m DEM to compare the relative elevation

of each location to the surrounding pixels. We did not find a relationship between airspeed and the terrain ruggedness index or the

speed of wind gusts (Figure S1F). The fastest airspeeds were generally found during periods with low wind gusts and at relatively flat

locations with a low terrain ruggedness index.

Predicting High-altitude Ascents
Bats typically flew following the rugged terrain of our study area, but occasionally they ascended to over 1,680 m AGL (Figures 2 and

S3). In this part of the analysis we (1) identified the occurrence of these events, (2) investigated if the bats can take advantage of the

energy available in the landscape to perform these high-altitude flights and ultimately (3) predicted their probability of occurrence

across the study area.

We characterized the altitudinal behavior of the bats in two steps. First, we applied a simple threshold to the vertical speed to sepa-

rate ascending (vertical speed > 0 m s�1) versus descending (vertical speed % 0 m s�1) segments. For the second phase we only

considered ascending segments and we applied a k-means clustering algorithm with 2 clusters (k = 2) to the variable ‘‘height above

ground’’ based on inspecting the distribution of the heights achieved during each ascent. This would then cluster ascending flights

into high-altitude ascents or more typical ascents (moderate ascents). We then inspected the accuracy of the behavioral segmen-

tation using two and three-dimensional plots (Figures 1 and S3), and tested higher number of clusters. Three clusters fit the data

marginally better, but only by subdividing the moderate ascents into two groups; therefore, we chose to use k = 2 as a more conser-

vative estimate. High-altitude ascents were characterized by an average maximum height 563.5 ± 214.1 m AGL (mean ± SD) up to a

maximum 1,680.1 m, whereas moderate ascents reached an average maximum height of 115.2 ± 77.9 m AGL (mean ± SD) up to a

maximum 333.8 m.

Environmental Predictors
We used both static and dynamic predictors to describe the environment experienced by the bats in the study area. The static pre-

dictors included variables describing the topography of the region; the terrain elevation was extracted from the digital elevation

model EU-DEM 2013, with 30 m spatial granularity. We then used the DEM to compute slope and aspect (direction faced by the

slope, in degrees from North). The dynamic predictors included three wind components (U, V and W) provided by the WRF model.

To annotate the GPS locations with each environmental information we first performed a bilinear interpolation considering the two

closest points in time. In the second step, we calculated the weighted mean of the environmental components considering both

the closest values in time and height.

Models for High-Altitude Ascents
We used binomial generalized additive models (GAMs) to determine if specific environmental conditions would favor the occurrence

of high-altitude ascents versus moderate ascents. We limited the model dataset to nights in which more than one individual was

tracked (8th–9th August 2017) andwe only considered ascending segments with a duration of at least 90 s (about 3 fixes). Each behav-

ioral segment was assigned a unique ID. Two segments were considered as two different behavioral units when separated by > 60 s

(about 2 fixes). We calculated the mean of each environmental predictor’s values along each segment, and we considered the

centroid of the segment (mean latitude and longitude) as the location of occurrence of the segment. The final dataset contained

48 high ascent segments and 335 moderate ascent segments, distributed across two nights and seven individuals (Table S3).

The environmental predictors were divided in two groups: topographic variables and wind variables. Topographic variables

included terrain elevation from the DEM, slope and aspect. Wind variables included U (zonal, toward east), V (meridional, toward

north), and W (vertical) component of the wind. We used these two groups of predictors to run two different models, one only based

onwind and one only based on topography, to separately evaluate the effect of the two groups of predictors. W, DEM and slopewere

included in the models as parametric predictors, whereas U and V components were included together as a thin plate regression

spline smooth term, given their nonlinear relationship with the response variable. Aspect is a circular variable and was included

as cyclic cubic regression spline smooth term.

To validate the models, we used a leave-one-out cross validation approach: each model was run as many times as the number of

observations in the dataset (383 times in the specific case). At each run, the model was trained with all but one observation and was

used to predict the excluded observation. Therefore, at the end of the procedure we obtained a predicted vector of probability of high

ascent with 383 observations (same length as the complete dataset), where each observationwas predicted by themodel fromwhich

this observation was excluded. Excluding one observation at a time allowed us to calculate the accuracy of the models, in terms of
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area under the curve (AUC), without drastically reducing the already small sample size in the training set (as required by other cross

validation approaches). The deviance explained by the two models was averaged across the 383 runs, whose consistency should

reflect the absence of strong outliers among the observations. Inferences were drawn from the complete wind and topographic

models (including all observations), whose results are shown in Table S4.

The weather model, including U, V, and W, explained 0.734 ± 0.007 (mean ± SD) of the deviance, with probability of high-altitude

ascents significantly increased by uplifting (high W values) and southeasterly winds (positive V and negative U values). The topo-

graphicmodel, explained 0.137 ± 0.002 of the deviance. All variables significantly contributed to the prediction; south andwest facing

slopes positively affected the probability of high-altitude ascents (Figure S4). Among the parametric coefficients, elevation negatively

affected the probability of high ascents, whereas slope had a positive effect (Table S4). Both the wind and the topographic models

performed really well in predicting the test dataset, with an AUC of 0.955 for the wind model and of 0.728 for the topographic model

(Figure S4).

Lastly, we used the complete models to extrapolate the predicted probability of high-altitude ascents across the study area, using

the topographic layers and the wind layers available for the region. To simplify the predictions based on dynamic predictors (weather

model), the wind layers refer to the first night of tracking (8th of August 2017) at vertical level 5, corresponding to 140 m above ground

(close to the mean flight altitude of the bats). The U, V andW values available for the night were averaged. The predictions of the wind

and the topographic models were ensembled: eachmodel was assigned aweight based on their accuracy in predicting the test data-

set (AUC), and the values predicted by each model were multiplied by its weight and then added to each other to obtain a final en-

sembled prediction (Figure 4). The ensembled prediction showed the highest accuracy in predicting the test dataset (AUC = 0.975).

Effect of sample size on model performance
The dataset used in the complete models, from which inferences were drawn, contained 335 moderate ascents and 48 high ascents

andwas therefore unbalanced towardmoderate ascents. Here we tested if the uneven sample size of the two types of ascents had an

effect on the output and interpretation of the wind and topographic models. We ran the same two models 50 times, each time

including all high-altitude ascents (48 observations) and randomly sub-sampling an equal number of moderate ascents, resulting

in a total of 96 observations at each run of the models. The average output of the 100 models, 50 wind models and 50 topographic

models, is comparable to the results obtained from the complete models in terms of estimates of the parametric coefficients, effec-

tive degrees of freedom of the smooth terms and deviance explained.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical tests were conducted using R 4.0.2 unless otherwise noted. K-means clustering was used to identify high or moderate

ascents, and a permutation test of mean differences (5,000 iterations) was used to examine differences in ascent rates, speeds, and

wind support. Binomial generalized additive models (GAMs) were used to determine if specific environmental conditions would favor

the occurrence of high-altitude ascents versus moderate ascents. Generalized additive mixed effects models (GAMMS) evaluated

contributing factors to bat airspeeds and included smoothing terms of time in seconds since the first observation of the night and

geographic location, individual bat ID and date were included as random intercepts.
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