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Abstract

In order to have confidence in model-based phylogenetic methods, such as maximum likelihood (ML) and Bayesian
analyses, one must use an appropriate model of molecular evolution identified using statistically rigorous criteria. Although
model selection methods such as the likelihood ratio test and Akaike information criterion are widely used in the
phylogenetic literature, model selection methods lack the ability to reject all models if they provide an inadequate fit to
the data. There are two methods, however, that assess absolute model adequacy, the frequentist Goldman–Cox (GC) test
and Bayesian posterior predictive simulations (PPSs), which are commonly used in conjunction with the multinomial log
likelihood test statistic. In this study, we use empirical and simulated data to evaluate the adequacy of common
substitution models using both frequentist and Bayesian methods and compare the results with those obtained with
model selection methods. In addition, we investigate the relationship between model adequacy and performance in ML
and Bayesian analyses in terms of topology, branch lengths, and bipartition support. We show that tests of model
adequacy based on the multinomial likelihood often fail to reject simple substitution models, especially when the models
incorporate among-site rate variation (ASRV), and normally fail to reject less complex models than those chosen by model
selection methods. In addition, we find that PPSs often fail to reject simpler models than the GC test. Use of the simplest
substitution models not rejected based on fit normally results in similar but divergent estimates of tree topology and
branch lengths. In addition, use of the simplest adequate substitution models can affect estimates of bipartition support,
although these differences are often small with the largest differences confined to poorly supported nodes. We also find
that alternative assumptions about ASRV can affect tree topology, tree length, and bipartition support. Our results suggest
that using the simplest substitution models not rejected based on fit may be a valid alternative to implementing more
complex models identified by model selection methods. However, all common substitution models may fail to recover the
correct topology and assign appropriate bipartition support if the true tree shape is difficult to estimate regardless of
model adequacy.

Key words: Bayesian, Goldman–Cox, maximum likelihood, model adequacy, parametric bootstrap, posterior predictive
simulation.

Introduction
Statistical methods of phylogenetic inference, such as max-
imum likelihood (ML) and Bayesian estimation, utilize an
explicit model of molecular evolution, normally selected
from a group of nucleotide substitution models referred
to as the general time reversible (GTR; Tavaré 1986) family.
Model choice is critical because use of an underparameter-
ized model can mislead an analysis by failing to account
fully for multiple substitutions at the same site while inclu-
sion of superfluous parameters can increase the variance in
parameter estimates (e.g., Gaut and Lewis 1995; Sullivan
and Swofford 1997, 2001; Lemmon and Moriarty 2004).
Consequently, model selection methods such as the hier-
archical implementation of the likelihood ratio test (hLRT;
Frati et al. 1997; Sullivan et al. 1997; Posada and Crandall
1998), Akaike information criterion (AIC; Akaike 1973),
Bayesian information criterion (BIC; Schwarz 1978), and de-
cision theory (DT) approach (Minin et al. 2003; Abdo et al.
2004) identify substitution models that optimize the trade

off between bias and variance according to their respective
statistical criteria (see Posada and Buckley 2004 and Sullivan
and Joyce 2005 for reviews of model selection methods).
Although use of any model selection method is preferable
to choosing a model arbitrarily (Ripplinger and Sullivan
2008), these are relative fit methods that lack the ability
to reject all models if none provides an adequate fit to
the data. That is, none of the typical model selection meth-
ods actually assess goodness of fit in an absolute sense.

There are two methods that assess the absolute fit be-
tween a substitution model and the data: the Goldman–
Cox (GC) test (also known as the parametric bootstrap
goodness-of-fit test; Reeves 1992; Goldman 1993; Whelan
et al. 2001) and posterior predictive simulation (PPS; Rubin
1984; Gelman et al. 1996; Huelsenbeck et al. 2001; Bollback
2002, 2005). Both tests normally utilize the multinomial log
likelihood test statistic, which is calculated as the weighted
sumof site pattern log likelihoods. The GC test is a frequent-
ist method used to evaluate the hypothesis of a perfect fit
between the model and data using a null distribution
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generated with the parametric bootstrap. To conduct a GC
test, one first performs a ML analysis and calculates the
value of the realized test statistic

d5 ðlnLmultinomial � lnLconstrainedÞ;

where the first component is the multinomial log likeli-
hood and the second component is the log likelihood con-
strained to a particular substitution model. Data for the
null distribution are simulated using maximum likelihood
estimates (MLEs) of the tree topology, branch lengths, and
substitution model parameters and subsequently analyzed
in the same manner as the original data. Test statistics
are then calculated for each replicate and used to form
the null distribution; a P value is calculated by determining
the rank of the realized test statistic in relation to the null
distribution.

PPS (e.g., Bollback 2002) is a Bayesian method for assess-
ing model adequacy that utilizes parameter estimates
drawn from their respective posterior distributions rather
than MLEs, which eliminates the reliance on point esti-
mates associated with the GC test. In order to conduct
PPSs, one first calculates the realized test statistic (the mul-
tinomial likelihood) and conducts a Bayesian analysis to
produce posterior distributions for the tree topology,
branch lengths, and substitution model parameters. Data
for the null, or predictive, distribution are generated in
a manner similar to the parametric bootstrap except sim-
ulation parameters are sampled from the posterior distri-
bution independently for each replicate. A multinomial
test statistic is subsequently calculated for each replicate
and used to form the null distribution; the realized test sta-
tistic is evaluated against this distribution.

Because tests of model adequacy are computationally
intensive, they are rarely used as model selection strategies
and have instead been used to investigate the fit of partic-
ular substitution models. Goldman (1993) used the para-
metric bootstrap to evaluate the fit of three relatively
simple GTR family models [Jukes–Cantor (JC; Jukes and
Cantor 1969), Felsenstein 81 (F81; Felsenstein 1981), and
Hasegawa–Kishino–Yano (HKY; Hasegawa et al. 1985)]
to primate wg-globin pseudogene and tree-of-life small
subunit rRNA data sets and was able to reject both the
JC and the F81 models, as well as the HKY model when
applied to the rRNA data set. Similarly, Whelan et al.
(2001) used the GC test to reject the GTR model (Tavaré
1986) for a primate mitochondrial data set. Conversely,
Bollback (2002) used PPSs to evaluate the fit between
the JC, HKY, and GTR models and the primate wg-globin
pseudogene data set analyzed by Goldman (1993) and was
unable to reject any of the models. Furthermore, several
authors have been unable to reject the adequacy of sub-
stitution models using the GC test when the models ac-
counted for among-site rate variation (ASRV). For
example, Carstens et al. (2005) were unable to reject the
HKY þ C model for a salamander cytochrome b (cyt b)
data set, and Demboski and Sullivan (2003) were unable
to reject the GTR þ C model for chipmunk cyt b data.

Despite instances where model adequacy methods have
failed to reject GTR family models, there has been specu-
lation that this set of models is insufficient (e.g., Sanderson
and Kim 2000; Revell et al. 2005; Kelchner and Thomas
2007) and, consequently, several authors have suggested
a need for rigorous analysis of model adequacy using the
GC test and PPSs (Sullivan and Joyce 2005; Gatesy 2007).
However, Waddell et al. (2009) have shown that the GC
test can lack power. They could not reject the GTR þ
I þ C model as inadequate using the GC test for a single
data set but demonstrated that sets of taxa exhibited data
patterns that deviated significantly from those expected
under the model using pairwise tests of symmetry.

Here, we extend the examination of the adequacy of the
GTR family models on an array of data using both the GC
test and the PPSs. We first evaluate the fit of 56 common
substitution models on each of 25 empirical data sets and
compare the results with those obtained with model selec-
tion methods. We then test whether or not use of the sim-
plest models not rejected based on absolute goodness of
fit produces significantly different estimates of topology,
branch lengths, and bipartition support than models cho-
sen by model selection. Last, we evaluate the adequacy of
GTR family models on simulated data sets and investigate
the performance of both adequate and insufficient models
in recovering the true tree, estimating branch lengths, and
assigning support to appropriate bipartitions.

Methods

Data Collection
In order to assess the performance of model adequacy
methods under a variety of conditions, we downloaded
25 diverse data sets from the phylogenetic database Tree-
BASE (http://www.treebase.org). The culled data included
2 arthropod, 1 sponge, 2 vertebrate, 7 flowering plant, 1 red
algae, 4 club fungus, 6 sac fungus, 1 slime net, and 1 water
mold data set, which comprised 2 mitochondrial, 3 chlo-
roplast, and 20 nuclear gene sequence alignments. We first
imported the data sets into PAUP*4.0b10 (Swofford 2002)
and removed alignment regions the original authors had
labeled as poor or ambiguous. We then removed redun-
dant haplotypes using Collapse 1.2 (available from
http://darwin.uvigo.es) while treating gaps as fifth charac-
ter states. Because inclusion of gaps and ambiguous char-
acters causes difficulty in calculating the multinomial
likelihood, these characters were removed; nonetheless,
the resulting pool of data sets exhibited a large amount
of diversity (fig. 1). Citations for each data set, as well as
data collected as part of this study, are provided in supple-
mentary material, Supplementary Material online.

Frequentist Analysis
We began our analysis by identifying optimal models ac-
cording to the hLRT, corrected AIC (AICc), BIC, and DT
model selection methods; models were selected from
among the 56 GTR family models implemented in Modelt-
est3.7 (Posada and Crandall 1998) and DT-ModSel (Minin
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et al. 2003). In order to identify best-fit models under the
various relative criteria, we first used PAUP* to calculate ML
scores for each candidate model and then used Modeltest
to select optimal models according to the hLRT, AICc, and
BIC. Similarly, we recalculated ML scores and used DT-
ModSel to identify models with the lowest expected risk.
Branch lengths were not included during model selection,
and sequence length was used to approximate sample size
in the AICc, BIC, and DT calculations (e.g., Posada and Buckley
2004; Ripplinger and Sullivan 2008).

After conducting model selection, we performed GC
tests for all 56 substitution models to determine which
models exhibited an adequate fit to the data. We first con-
ducted ML analyses in PAUP* to obtain realized test sta-
tistics and estimates of the topology, branch lengths,
and substitution model parameters. Model parameters
were initially estimated from a neighbor joining (NJ) tree
constructed with LogDet distance (Lockhart et al. 1994)
and used as starting values for a heuristic ML search using
ten random addition starting trees and tree-bisection-
reconnection (TBR) branch swapping. We then generated
100 data replicates for the null distribution using Seq-Gen
(Rambaut and Grassly 1997), which utilizes simulation to
produce a sequence alignment given a tree, branch lengths,
and substitutionmodel parameters. Each replicate was sub-
sequently analyzed in the same manner as the original data
and the difference between the multinomial and con-
strained likelihoods was calculated to form the null distri-
bution. Last, we calculated a P value by evaluating the test
statistic against the null distribution and assessed the out-
come at a 5 0.05.

In order to assess the relative performance of statistically
supported models, we performed additional ML analyses
using substitution models chosen by model selection
methods and the simplest models not rejected by the
GC test. For each analysis, we estimated initial model pa-
rameters from a NJ starting tree constructed with LogDet
distance, which were used as starting values for a ML heu-
ristic search with ten random addition starting trees and
TBR branch swapping. We subsequently reoptimized pa-
rameter estimates and performed additional search itera-
tions until the tree topology stabilized (Sullivan et al. 2005).
In order to quantify differences among models chosen with
alternative methods, we calculated symmetric distance dif-
ferences (SDDs; Robinson and Foulds 1981) and sum of
branch lengths for ML trees constructed with models cho-
sen by model selection methods as well as the simplest
models not rejected by the GC test. Last, we conducted
ML nonparametric bootstrap analyses for each supported
model using 1,000 replicates, substitution model parame-
ters optimized on the preceding ML analysis, ten random
addition starting trees, and TBR branch swapping. In cases
where the C-shape parameter exceeded the limit of 300,
the parameter was optimized on the limit instead of the
empirical value.

Bayesian Analysis
Because only 24 GTR family models can be implemented
in MrBayes3.1.2 (Huelsenbeck et al. 2001; Ronquist and
Huelsenbeck 2003), we repeated model selection according
to the hLRT, AICc , and BIC using a version of MrModeltest
(Nylander 2004) we adapted to include BIC scores. In

FIG. 1. Summary statistics for the 25 empirical data sets analyzed as part of this study. The data sets contained (a) 5–44 haplotypes (�x 5 21)
and 203–2,279 (�x5 736) nucleotides, (b) a maximum p distance of 4.0–36.5% (�x5 16.8%), (c) a weighted average tree length of 0.08–3.32 (�x5
0.74%), and (d) a weighted average stemminess index of 0.02–0.93 (�x 5 0.26%). Tree lengths and stemminess indices were calculated as BIC
weighted averages across all ML trees constructed with the 56 nucleotide models implemented in Modeltest and DT-ModSel.
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addition, we identified substitution models with minimum
posterior risk using a version of DT-ModSel we modified to
select among pertinent models. We subsequently employed
MrBayes to perform Bayesian Markov chain Monte Carlo
analyses for each data set using all 24 applicable models.
For each analysis, we performed two independent runs from
random starting trees, each with three heated and one cold
chain, for 5� 106 generations; trees and substitution model
parameters were sampled every 100 generations. We con-
firmed that the chains had converged upon the stationary
distribution by analyzing both log likelihood plots and the
standard deviation of split frequencies. We discarded the
first 500,000 generations (10%) of each analysis as burn-
in. We then conducted PPSs using MAPPS (Bollback
2002), which calculate the realized test statistic (multino-
mial likelihood) from the sequence alignment, produces
data replicates by sampling 1,000 joint tree and model pa-
rameter posterior probabilities and constructs the null dis-
tribution by calculating test statistics for each data replicate.
Finally, we calculated average posterior tree lengths using
substitution models chosen by model selection methods
as well as the simplest models not rejected by PPSs.

Simulation Analysis
Although use of empirical data allows us to investigate the
effects of substitution model adequacy on a range of real
world scenarios, it would also be useful to utilize simulated
data to explore the relationship between the model ade-
quacy and the accuracy of phylogenetic inference. Conse-
quently, we performed simulations based on shrew
mitochondrial DNA (Brandli et al. 2005) and water mold
nuclear DNA (Mirabolfathy et al. 2001) data sets, both
of which elicited unusual behavior from model adequacy
methods. In order to obtain a tree topology for simulation,
we conducted ML analyses for each data set using the
GTRþ Iþ Cmodel. For each analysis, initial model param-
eters were estimated based on a NJ tree constructed with
LogDet distance and used as starting values for a ML
heuristic search with ten random addition starting trees
and TBR branch swapping; the ML search was reiterated
until the tree topologies converged. We partitioned the
shrew data set into three parts consisting of the cyt b gene,
control region, and cytochrome oxidase II (COXII) gene; the
cyt b and COXII genes were further divided by codon
position to produce a total of seven data partitions.
Similarly, the water mold data set was divided into three
subsets representing the internal transcribed spacer (ITS)
1 region, the 5.8S rRNA gene, and the ITS2 region. For each
partition, we obtained MLEs of GTRþ Iþ Cmodel param-
eters from a ML analysis constrained to the true tree
topology and used Seq-Gen to simulate ten replicates.
We then concatenated the simulated data to form ten sets
of partitioned replicates for each data set. We subsequently
analyzed the replicates in the samemanner as the empirical
data except that phylogenetic analyses were conducted
using all applicable models instead of limiting the analysis
to models identified by model selection methods and the
simplest models not rejected based on fit.

Results

Empirical Analysis
The GC test often failed to reject simple substitution mod-
els as long as they incorporated ASRV [invariable sites (I),
C-distributed rates (C), or a combination of the two (I þ
C); fig. 2a]. Although the simple JC model, which assumes
both equal base frequencies and substitution rates, was re-
jected for all data sets, JCþ I could not be rejected for 68%
of the data and both JC þ C and JC þ I þ C could not be
rejected for 72% of the data. The GC test identified the F81
model, which incorporates unequal base frequencies and
equal substitution rates, as the simplest adequate model
for one data set, whereas F81 þ I and F81 þ C were
the simplest models not rejected for another data set. Sim-
ilarly, the Kimura 2-parameter model (K2P; Kimura 1980)
with C-distributed rate variation, which assumes equal
base frequencies and unequal transition/transversion rates,
was the simplest model not rejected for one data set,
whereas HKY þ I and HKY þ C, which incorporate both
unequal base frequencies and transition/transversion rates,
were identified as the simplest nonrejectable models for an
additional two data sets. Only two data sets required com-
plex models; the transversional model (TVM) with invari-
able sites or C-distributed rates was needed to capture
adequately the signal from a small geranium data set (p
distance 5 14.1%, BIC-weighted tree length 5 0.19, and
BIC-weighted stemminess index5 0.02), whereas the most
complex GTRþ Iþ Cmodel, which assumes unequal base
frequencies and independent substitution rates, was re-
quired to fit the 32 shrew sequences used for simulation
(p distance 5 13.8%, BIC-weighted tree length 5 0.49,
and BIC-weighted stemminess index 5 0.22).

Similarly, PPSs often failed to reject simple models, es-
pecially when those models incorporated ASRV (fig. 2b).
The JC model without ASRV was the simplest nonreject-
able model for 16% of the data sets, whereas JC þ I,
JC þ C, and JC þ I þ C could not be rejected for 40%,
52%, and 60% of the data, respectively. PPSs identified
F81 þ I as the simplest adequate model for one data
set, K2P þ C as the simplest nonrejectable model for an
additional data set, and K2P þ I þ C as the simplest ad-
equate model for two data sets. All models were rejected
for an additional two data sets, including the water mold
data used for simulation (p distance 5 17.8% and 15.6%,
BIC-weighted tree length 5 0.91 and 0.63, and BIC-
weighted stemminess index 5 0.21 for both data sets),
but neither of these data sets were the ones that required
complex models when evaluated with the GC test.

In most cases, both the GC test and the PPSs failed to
reject models that were much less complex than those
identified by model selection methods (fig. 3). There was
a significant difference in complexity among substitution
models chosen by model selection methods and the sim-
plest models not rejected by the GC test [median (M)5 4.0
(hLRT), 8.0 (AICc), 5.0 (BIC), 5.0 (DT), and 1.0 (GC) param-
eters; Friedman rank sum test adjusted for ties, P , 0.01,
df 5 4] due to both the large number of parameters
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inferred by the AICc and relatively simple models not re-
jected by the GC test (evaluated using pairwise Wilcoxon
signed rank tests adjusted for ties with the Bonferroni
multiple-test correction). Consequently, optimal models

identified by model selection methods were normally
supported as adequate by the GC test (84%, 96%, 80%,
and 84% of the models chosen by the hLRT, AICc, BIC,
and DT methods, respectively). Similarly, there was

FIG. 2. Frequency with which common substitution models are not rejected by (a) GC tests and (b) PPSs for 25 empirical data sets. Simple
models such as JC, which assumes equal base frequencies and substitution rates, normally cannot be rejected as long as they incorporate
a proportion of invariable sites (I), C-distributed rates (C), or a combination of the two (I þ C). Assessed models include JC, F81, which
assumes unequal base frequencies and equal substitution rates, K2P, which incorporates equal base frequencies and separate transition and
transversion rates, HKY, which assumes unequal base frequencies and separate transition and transversion rates, K3P, which incorporates equal
base frequencies, two transversion rates, and equal transition rates, K3Puf with unequal base frequencies, Tamura–Nei, which assumes unequal
base frequencies, one transversion rate, and independent transition rates, TrNef with equal base frequencies, transitional (TIM), which
incorporates unequal base frequencies, two transversion, and independent transition rates, TIMef with equal base frequencies, transversional
(TVM), which incorporates unequal base frequencies, independent transversion rates, and one transition rate, TVMef with equal base
frequencies, symmetrical (SYM), which assumes equal base frequencies and independent substitution rates, and GTR, which incorporates
unequal base frequencies and independent substitution rates. Overall, PPSs failed to reject somewhat simpler models than the GC test.
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a significant difference in the number of parameters incor-
porated by substitution models chosen by model selection
methods from the reduced set of models implemented in
MrBayes and the simplest models not rejected by PPSs

[M 5 6.0 (hLRT), 9.0 (AICc), 5.0 (BIC), 5.0 (DT), and 1.0
(PPS); Friedman test, P , 0.01, df 5 4] due primarily to
the complex models chosen by the AICc and the simple
models not rejected by PPSs (evaluated with Wilcoxon

FIG. 3. Difference in number of parameters between the simplest models not rejected by GC tests or PPSs and best-fit models identified using
the hLRT, corrected AIC (AICc), BIC, and DT approach for 25 empirical data sets. Both tests of model adequacy often failed to reject models
that were simpler than those chosen by model selection methods, especially the AICc.
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signed rank tests). Substitution models selected by model
selection methods were normally supported by PPSs but at
a lower rate than the GC test (72% of models selected using
the hLRT, AICc, and BIC and 68% of models selected by DT
were supported by PPSs).

The use of alternative substitution models chosen by
model selection methods, as well as use of the simplest
models not rejected by the GC test, resulted in similar
but statistically significant differences in SDDs among
ML tree topologies [M 5 0.34 (hLRT), 0.34 (AICc), 0.31
(BIC), 0.31 (DT), and 0.31 (GC); Friedman test, P 5 0.04,
df 5 4]. However, no significant differences among treat-
ments could be detected using pairwise Wilcoxon signed
rank tests with a multiple-test correction. Furthermore, al-
though use of statistically supported models resulted in ML
trees with similar length, there was a statistically significant
difference in the sum of branch lengths [M 5 0.49 (hLRT),
0.49 (AICc), 0.49 (BIC), 0.49 (DT), and 0.48 (GC); Friedman
test, P , 0.01, df 5 4] due to shorter trees inferred using
the simplest models not rejected by the GC test (evaluated
usingWilcoxon signed rank tests). Median bootstrap values
calculated using models selected by model selection meth-
ods and the GC test tended to be fairly similar [M 5 82%
(hLRT), 80% (AICc), 79% (BIC), 79% (DT), and 81% (GC)].
However, Friedman’s test cannot be applied to this data
because bootstrap values calculated for bipartitions on
the same tree are not independent from one and other.
Although the median difference in bootstrap support be-
tween models chosen by model selection methods and the
simplest models not rejected by the GC test was only 2%
(for all model selection methods), the maximum difference
ranged from 34% (AICc vs. GC) to 47% (hLRT, BIC, and DT
vs. GC), with the largest differences typically confined to
more poorly supported bipartitions. Similarly, the use of
substitution models chosen by model selection methods
from the reduced set of models implemented in MrBayes,
as well as use of the simplest models not rejected by PPSs,
resulted in a significant difference in SDDs among average
posterior tree lengths [M 5 0.69 (hLRT), 0.66 (AICc), 0.58
(BIC), 0.58 (DT), and 0.95 (PPS); Friedman, P 5 0.01, df 5
4], although no significant pairwise differences could be
identified using Wilcoxon signed rank tests with the Bon-
ferroni correction. Median posterior probabilities were
more similar than bootstrap values [M 5 96% (hLRT),
96% (AICc), 96% (BIC), 96% (DT), and 97% (PPS)]. Although
the median difference in bipartition posterior probabilities
was small (M 5 1% for hLRT and DT vs. PPS and 2% for
AICc and BIC vs. PPS), the maximum difference in posterior
probabilities was much larger than the maximum differ-
ence in bootstrap values, ranging from 72% (hLRT, BIC,
and DT vs. PPS) to 74% (AICc vs. PPS).

Simulation Analysis
Although the GC test and PPSs both failed to reject rela-
tively simple substitution models for replicates generated
from the shrew data set, PPSs typically supported less com-
plex models than the GC test (fig. 4). The GC test rejected
the JC model with and without ASRV for all replicates.

K2P þ C was the simplest nonrejectable model for two
replicates, whereas the GC test identified HKY þ I and
HKY þ C as the simplest adequate models for two addi-
tional replicates and HKY þ C alone as the simplest ade-
quate model for three replicates. The more complex
Kimura 3-parameter (K3P; Kimura 1981) model with C-dis-
tributed rate variation, which assumes unequal base fre-
quencies and two transversion rates, was the simplest
nonrejectable model for one replicate, whereas the equal
base frequency Tamura–Nei model (TrNef; Tamura and
Nei 1993) with C-distributed rates was the simplest non-
rejectable model for an additional replicate. The GC test
identified both K3P þ C and TrNef þ C as the simplest
adequate models for the remaining replicate. Conversely,
PPSs identified JCþ C as the simplest nonrejectable model
for eight replicates and K2P þ C as the simplest substitu-
tion model for the remaining two replicates.

Both the GC test and the PPSs failed to reject less com-
plex substitution models than those identified by model
selection methods (fig. 5). There was a significant difference
in model complexity among substitution models identified
by model selection methods and the simplest models not
rejected by the GC test [M 5 6.5 (hLRT), 9.5 (AICc), 5.0
(BIC), 5.0 (DT), and 4.0 (GC) parameters; Friedman test,
P. 0.01, df5 4] due primarily to the parameter-rich mod-
els chosen by the AICc and the simple models not rejected
by the GC test (evaluated with pairwise Wilcoxon signed
rank tests). Similarly, there was also a significant difference
in complexity among models chosen by model selection
methods from the reduced set of models implemented
in MrBayes and the simplest models not rejected by PPSs
[M 5 9.0 (hLRT), 10.0 (AICc), 5.0 (BIC), 5.0 (DT), and 1.0
(PPS) parameters; Friedman test, P . 0.01, df 5 4] due to
differences among the complex models chosen by the hLRT
and AICc, simpler models selected by the BIC and DT, and
least complex models identified as adequate by PPSs (eval-
uated with Wilcoxon signed rank tests).

Use of all 56 substitution models lead to the recovery of
an incorrect ML tree for all ten replicates, with standardized
SDDs from the true tree ranging from 0.38 to 0.72. Al-
though there was no significant difference in SDDs among
ML tree topologies when using the substitution models
identified by model selection methods or the simplest
models not rejected by the GC test [M 5 0.49 (hLRT),
0.50 (AICc), 0.49 (BIC), 0.49 (DT), and 0.50 (GC); Friedman
test, P 5 0.93, df 5 4], there was a significant difference in
SDDs amongML trees when using substitution models that
made alternative assumptions about ASRV [M 5 0.47
(equal rates, eq), 0.50 (I), 0.50 (C), and 0.50 (I þ C); Fried-
man test, P. 0.01, df5 3]. The use alternative statistically
supported models resulted in similar but statistically signif-
icantly different tree lengths [M5 0.45 (hLRT), 0.45 (AICc),
0.45 (BIC), 0.45 (DT), and 0.44 (GC); Friedman test, P ,

0.01, df 5 4], although no significant pairwise differences
could be detected using Wilcoxon signed rank tests with
the Bonferroni correction. Similarly, there was a significant
difference in branch lengths among models that made dif-
ferent assumptions about ASRV [M 5 0.34 (eq), 0.42 (I),
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0.43 (C), and 0.44 (I þ C); Friedman test, P, 0.01, df5 3]
due to significant differences among all treatment pairs
(evaluated with Wilcoxon signed rank tests). Although
all models tended to underestimate the true tree length
(0.49), equal rates models performed worse than those that
incorporated ASRV. There was a significant difference in
SDDs among average posterior tree lengths between sub-
stitution models chosen by model selection methods and
the simplest models not rejected by PPSs [M5 0.50 (hLRT),
0.50 (AICc), 0.50 (BIC), 0.50 (DT), and 0.42 (GC); Friedman
test, P , 0.01, df 5 4] due to significantly shorter trees
inferred using the simplest substitution models not re-
jected by PPS (evaluated with Wilcoxon signed rank tests).

Furthermore, there was significant difference among mod-
els that made alternative assumptions about ASRV [M 5

0.36 (eq), 0.45 (I), 0.47 (C), and 0.47 (I þ C); Friedman test,
P , 0.01, df 5 3] due to models that assume equal sub-
stitution rates or a proportion of invariable sites. The re-
sults were similar to those obtained under ML; equal
rates models underestimated tree length more than mod-
els that incorporated ASRV (especially, the C-distribution).

Concordant with previous results, tests of model ade-
quacy failed to reject simple models for replicates gener-
ated from a water mold data set (fig. 6). The GC test
again rejected JC with and without ASRV for all replicates.
F81 þ I, F81 þ C, K2P þ I þ C, and K3P þ C were the

FIG. 4. Rate with which substitution models are not rejected by (a) GC tests and (b) PPSs for ten replicates generated by simulating stochastic
evolution using a partitioned GTR þ I þ C model constrained to the ML topology identified for a shrew mitochondrial data set. GC tests
typically did not reject models that incorporated both unequal base frequencies and transition/transversion substitution rates, especially when
the models also included C. Conversely, PPSs often failed to reject even the simplest models as long as they incorporated C.
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simplest nonrejectable models for one replicate apiece. The
GC test identified K2P þ I and K2P þ C as the simplest
adequate models for one replicate; HKY þ I and HKY þ
C were the simplest models not rejected for an additional
replicate. The equal rates HKY model and K2P þ C model
were identified as the simplest adequate models for two
replicates apiece. Conversely, PPSs identified the equal rates
JC model as the simplest adequate model for six replicates

and JC þ I, JC þ C, and equal rates K2P as the simplest
nonrejectable models for the remaining four replicates.

Both tests of model adequacy failed to reject simpler
models than those selected by model selection methods
(fig. 7), which is similar to results obtained from the em-
pirical and shrew simulation data. There was a significant
difference in the number of parameters incorporated by
models chosen by model selection methods and the

FIG. 5. Disparity in number of parameters between the simplest model(s) not rejected by GC tests or the PPSs and optimal models identified by
the hLRT, AICc, BIC, and DT methods for ten replicates from a shrew data set. Both tests of model adequacy often failed to reject models that
were simpler than those chosen by model selection methods.
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simplest models not rejected by the GC test [M 5 4.5
(hLRT), 6.0 (AICc), 4.5 (BIC), 5.0 (DT), and 3.5 (GC); Fried-
man test, P , 0.01, df 5 4] due to the difference between
the complex models chosen by the AICc and the relatively
simple models not rejected by the GC test (evaluated with
Wilcoxon signed rank tests). Similarly, there was a signifi-
cant difference in model complexity among models se-
lected by model selection methods from the reduced set
of models implemented in MrBayes and the least complex
models not rejected by PPSs [M 5 4.0 (hLRT), 7.0 (AICc),
4.0 (BIC), 4.0 (DT), and 0.0 (PPS) parameters; Friedman
test, P , 0.01, df 5 4] due to the simple models not re-
jected by PPSs (evaluated with pairwise Wilcoxon signed
rank tests).

All 56 substitution models inferred the sameML topology
for nine of the ten replicates despite the rejection of several
simple models using the GC test. Use of all substitution
models resulted in the recovery of the true tree for eight
replicates and the recovery of the same incorrect tree for an
additional replicate, whereas models that incorporated the
least complex rate matrix outperformed parameter-rich
models for the remaining replicate. Consequently, there
was no significant difference in SDDs among ML tree
topologies generated using substitution models identified
by model selection methods and the least complex
models not rejected by the GC test (M5 0 for all methods;
Friedman test, P , 0.99, df 5 4) or among models that
made different assumptions about ASRV (M 5 0 for all

FIG. 6. Frequency with which common substitution models are not rejected by (a) GC tests and (b) PPSs for ten replicates generated using
a gene partitioned GTR þ I þ C model and ML topology for a water mold data set. Although both methods failed to reject relatively simple
models, PPSs normally failed to reject less complex models (including JC without ASRV) than the GC test.
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methods; Friedman test, P, 0.99, df5 3). Although use of
alternative models chosen by model selection methods, as
well as the simplest models deemed adequate by the GC
test, did not result in statistically significant differences in
SDDs [M 5 0.13 (hLRT), 0.13 (AICc), 0.12 (BIC), 0.13 (DT),
and 0.13 (GC); Friedman test, P 5 0.25, df 5 4], there was
a significant difference in the sum of branch lengths among
models that made alternative assumptions about ASRV [M
5 0.12 (eq), 0.13 (I), 0.13 (C), and 0.13 (I þ C); Friedman
test, P , 0.01, df 5 3] due to significantly shorter trees

inferred using equal rates models (evaluated withWilcoxon
signed rank tests). Median bootstrap values calculated us-
ing models selected by model selection methods and the
GC test were quite similar [M 5 95% (hLRT), 94% (AICc),
95% (BIC), 94% (DT), and 94% (GC)]. Even though the me-
dian difference in bootstrap support between models cho-
sen by model selection methods and the simplest models
not rejected by the GC test was only 1% (for all methods),
the maximum difference ranged from 8% (hLRT and BIC vs.
GC) to 54% (DT vs. GC) with the largest difference (54%)

FIG. 7. Difference in number of parameters between the simplest model(s) not rejected by GC tests or PPSs and best-fit models identified using
hLRT, AICc, BIC, and DT for ten replicates generated from a water mold data set. Both tests of model adequacy normally failed to reject simpler
models than those chosen by model selection methods, especially the AICc.
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due to a bipartition with low bootstrap support. Similarly,
the median difference in bootstrap support between mod-
els that made alternative assumptions about ASRV was 1%,
with the maximum difference in bipartition support rang-
ing from 14% to 55%, with the largest differences confined
to more poorly supported nodes. There was a significant
difference in SDDs among average posterior tree lengths
generated using substitution models chosen by model se-
lection methods and PPSs [M 5 0.14 (hLRT), 0.15 (AICc),
0.14 (BIC), 0.14 (DT), and 0.14 (PPS); Friedman test, P ,

0.01, df 5 4], although no significant differences could
be detected among treatment pairs (evaluated with Wil-
coxon signed rank tests). Similarly, there was a significant
difference among models that made alternative assump-
tions about ASRV [M 5 0.14 (eq), 0.15 (I), 0.14 (C), and
0.14 (Iþ C); Friedman test, P, 0.01, df5 3], with all mod-
els, especially those containing a proportion of invariable
sites, overestimating the true tree length (0.13). Median
posterior probabilities calculated using models selected
by model selection methods and PPSs were quite similar
(M 5 100% for all methods). Even though the median dif-
ference in posterior probabilities between models chosen
by model selection methods and the simplest models not
rejected by PPSs was less than 1% (for all methods), the
maximum difference ranged from 15% (hLRT vs. PPS) to
24% (AICc vs. PPS) with the larger differences due to poorly
supported bipartitions. Similarly, the median difference in
posterior probabilities between models that made alterna-
tive assumptions about ASRV was less than 1%, with the
maximum difference in bipartition support ranging from
1% to 15%.

Discussion
Although model selection methods such as the hLRT and
AIC are widely used in the phylogenetic literature, these
methods choose the best substitution model from a set
of possible alternatives based on relative fits and conse-
quently cannot evaluate the adequacy of fit between
the model and data. We have found that two methods that
assess absolute model adequacy, the frequentist GC test
and Bayesian PPSs, in conjunction with the multinomial
log likelihood test statistic, normally fail to reject less com-
plex substitution models than those chosen by model se-
lection methods. Although the multinomial likelihood,
which describes site pattern frequencies, is more general
than substitution models implemented in phylogenetic
analysis, it fulfills the requirement by both the GC test
and PPSs for a test statistic that provides a perfect fit be-
tween the model and sequence data.

One interpretation of our results is that the current set
of substitution models provides an adequate fit to the ma-
jority of phylogenetic data sets, a result that is surprising and
in direct contradiction with speculation that the current set
of substitution models is inadequate (e.g., Sanderson and
Kim 2000). Our finding that ASRV, especially the C-shape
parameter, is an important component of common sub-
stitution models has been reached in a number of other

studies (e.g., Buckley et al. 2001; Lemmon and Moriarty
2004; Kelchner and Thomas 2007). We have also demon-
strated that PPSs often fail to reject simpler models than
the GC test, a result that is concordant with that obtained
by Bollback (2001) for a primate wg-globin pseudogene
data set. This result can be explained by the fact that PPSs
incorporate more uncertainty by sampling from relevant
posterior distributions rather than relying on MLEs
(Huelsenbeck et al. 2000).

An alternative explanation for our results is that data set
wide tests that assess deviations from the expected multi-
nomial likelihoods may only be sufficiently powerful to de-
tect large deviations from the expectations of the GTR
family of models (e.g., lack of ASRV or equal vs. unequal
base frequencies). Interpreted in conjunction with recent
work by Waddell et al. (2009), it may be the case that these
tests essentially average deviations from the model across
taxa and that marginalization to subsets of the character-
by-taxon matrix will yield more powerful tests of absolute
model fit.

In addition, we found that although using the simplest
models not rejected based on fit often leads to divergent
tree topologies and branch lengths, they were not signifi-
cantly different from those estimated using more complex
models. However, use of the simplest models not rejected
by model adequacy methods affected bipartition support
in some instances, although these differences were often
confined to poorly supported bipartitions. Nevertheless, al-
though use of substitution models that made alternative
assumptions about ASRV did not affect tree topology, it
did influence branch lengths and bipartition support. This
result is similar to that obtained by Buckley et al. (2001).

As expected, we found no correlation between substitu-
tion model adequacy and phylogenetic performance; in-
stead model performance depended strongly on the
underlying tree shape. Although all substitution models
tend to perform well when the true tree contains long in-
ternal branches (i.e., the tree has a high stemminess index;
Fiala and Sokal 1985), use of an appropriate model becomes
paramount when the tree contains long external branches
separated by a short internal branch, a situation known
as the Felsenstein zone (Felsenstein 1978; Sullivan and
Swofford 2001; Swofford et al. 2001). Model selection is also
important in the inverse-Felsenstein zone, where the mis-
interpretation of convergent evolution along two adjacent
long external branches can favor underparameterized
models (Sullivan and Swofford 2001; Swofford et al.
2001). Consequently, we would expect optimal trees in-
ferred for data sets where all models recovered the same
tree topology to have a higher stemminess index than trees
calculated for data sets where models inferred different to-
pologies (Sullivan and Joyce 2005). We calculated stemmi-
ness indexes for our data using the BioPerl module
Bio::Phylo::Forest::Trees (available at http://www.cpan.org)
and found that data sets for which all models recovered the
same tree topology had a significantly higher stemminess
index than other data sets (ML: Wilcoxon rank sum test,
P , 0.01; Bayesian: Wilcoxon, P , 0.01).
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Although simple substitution models (such as JC with
ASRV) may perform adequately for many empirical data
sets, even the most complex GTR þ I þC model may fail
to recover the correct tree when the underlying tree shape
has a low stemminess index (i.e., contains many short
internal branches), suggesting that one cannot always im-
prove phylogenetic performance by further parameterizing
the rate matrix of GTR family models.

Consequently, the use of alternative models, generated
by partitioning the common set of substitution models,
proposing gene-specific models, or adding novel param-
eters to these models, may be necessary to correctly infer
difficult-to-estimate tree shapes. Data sets are often par-
titioned by gene or codon position, a strategy that may
increase phylogenetic performance (e.g., Castoe et al.
2004; Brown and Lemmon 2007). Ribosomal RNA genes,
often utilized in phylogenetic analysis, can be partitioned
into stem and loop regions or one may use an explicit
RNA model such as the doublet model implemented
in MrBayes (Schoniger and von Haeseler 1994), which
accounts for correlation among substitutions in stem
regions. Similarly, one may use codon models that
utilize the genetic code to account for synonymous/
nonsynonymous substitution bias in protein-coding genes
(Goldman and Yang 1994; Yang et al. 2000), even though
codon-partitioned models that account for ASRV may per-
form as well as codon models without the computational
burden (Ren et al. 2005). Although common substitution
models assume the evolutionary process is homogeneous
across the tree, this assumption is based more on compu-
tational tractability than biological realism. Nonstationary
models have been developed that incorporate composi-
tional heterogeneity (Foster 2004) as well as nonstationary
substitution rates due to covarion-like evolution (Tuffley
and Steel 1998; Huelsenbeck 2002). Because use of com-
mon substitution models does not necessarily lead to
the recovery of the true tree, even if these models have
an adequate fit to the data (using data set wide tests),
it would be useful to expand current model selection
methods and automated software to incorporate alterna-
tive sets of substitution models.

Supplementary Material
Supplementary Material is available at Molecular Biology
and Evolution online (http://www.mbe.oxfordjournals
.org/).
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