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Abstract

Model selection approaches in phylogeography have allowed researchers to evaluate

the support for competing demographic histories, which provides a mode of infer-

ence and a measure of uncertainty in understanding climatic and spatial influences

on intraspecific diversity. Here, to rank all models in the comparison set and deter-

mine what proportion of the total support the top-ranked model garners, we con-

duct model selection using two analytical approaches—allele frequency-based,

implemented in FASTSIMCOAL2, and gene tree-based, implemented in PHRAPL. We then

expand this model selection framework by including an assessment of absolute fit

of the models to the data. For this, we utilize DNA isolated from existing natural

history collections that span the distribution of red alder (Alnus rubra) in the Pacific

Northwest of North America to generate genomic data for the evaluation of 13

demographic scenarios. The quality of DNA recovered from herbarium specimen leaf

tissue was assessed for its utility and effectiveness in demographic model selection,

specifically in the two approaches mentioned. We present strong support for the

use of herbarium tissue in the generation of genomic DNA, albeit with the inclusion

of additional quality control checks prior to library preparation and analyses with

multiple approaches that incorporate various data. Analyses with allele frequency

spectra and gene trees predominantly support A. rubra having experienced an

ancient vicariance event with intermittent and frequent gene flow between the dis-

junct populations. Additionally, the data consistently fit the most frequently selected

model, corroborating the model selection techniques. Finally, these results suggest

that the A. rubra disjunct populations do not represent separate species.
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1 | INTRODUCTION

Understanding how conspecific populations evolve is central for

identifying and quantifying diversity. Phylogeography aims to

increase our understanding of these historical processes (e.g., Avise

et al., 1987), and as the field has expanded, several approaches have

been used. While the earliest investigations derived their inferences

from qualitative interpretations of patterns evident in the genetic

and geographic data, later studies began to more explicitly test

hypotheses (e.g., Knowles, 2001; Sullivan, Arellano, & Rogers, 2000)

and estimate parameters under explicit analytical models, such as

isolation with migration in IMa2 (Hey, 2010) and Migrate-n (Beerli &

Received: 5 September 2017 | Revised: 7 December 2017 | Accepted: 8 December 2017

DOI: 10.1111/mec.14491

Molecular Ecology. 2018;1–13. wileyonlinelibrary.com/journal/mec © 2018 John Wiley & Sons Ltd | 1

http://orcid.org/0000-0003-1796-2719
http://orcid.org/0000-0003-1796-2719
http://orcid.org/0000-0003-1796-2719
http://orcid.org/0000-0001-9128-8836
http://orcid.org/0000-0001-9128-8836
http://orcid.org/0000-0001-9128-8836
http://orcid.org/0000-0002-1552-227X
http://orcid.org/0000-0002-1552-227X
http://orcid.org/0000-0002-1552-227X
http://wileyonlinelibrary.com/journal/MEC


Felsenstein, 2001). In hypothesis testing and model selection studies,

models representing historical demographic scenarios are evaluated

in a statistical framework, and the inferences are drawn from the

results of the test (Knowles & Maddison, 2002). Early examples used

parametric simulation and frequentist statistics (e.g., DeChaine &

Martin, 2005), whereas later examples utilized Bayesian (e.g., Fagun-

des et al., 2007) or information-theoretic (Carstens, Stoute, & Reid,

2009) approaches to consider and rank multiple models. Such

approaches allow historical knowledge of the species or complex of

study to be incorporated into the models that are assessed (Guten-

kunst, Hernandez, Williamson, & Bustamante, 2009a). Phylogeo-

graphic model selection can be implemented through a variety of

approaches and software, such as approximate Bayesian computa-

tion (ABC; Csill�ery, Franc�ois, & Blum, 2012), @a@I (Gutenkunst, Her-

nandez, Williamson, & Bustamante, 2009b), FASTSIMCOAL2 (Excoffier,

Dupanloup, Huerta-S�anchez, Sousa, & Foll, 2013; Excoffier & Foll,

2011) and PHRAPL (Jackson, Morales, Carstens, & O’Meara, 2015). All

incorporate coalescent theory (Kingman, 1982) to model evolution-

ary processes that occur at the population level, such as genetic

drift, migration and population expansion and/or contraction over

time. As opposed to hypothesis testing approaches that reject or fail

to reject individual models (and thus experience difficulties with mul-

tiple comparisons), model selection frameworks can be designed to

rank all models in the comparison set, and thus provide one measure

of confidence in the form of what proportion of the total support is

garnered by the top-ranked model. However, a potential shortcom-

ing of such a framework is that there is no guarantee that a model

that represents the true evolutionary history is included in the com-

parison set (Templeton, 2008).

Phylogeographic inference is ideally drawn from multiple sources,

including geographic information (e.g., Hugall, Moritz, Moussalli, &

Stanisic, 2002) and descriptive summaries of the data (e.g., Petit &

Grivet, 2002). Analytical models that incorporate the coalescent pro-

cess are valuable, particularly when they have a demonstrably good

fit to the empirical data. While assessments of model adequacy and

model fit have generally been lacking in phylogeographic research,

they are vital components of inferences that are derived from statis-

tical analysis (Gelman & Shalizi, 2013). Here, we expand a model

selection framework such that it includes an assessment of model

fit. We first conduct model selection using two analytical approaches

—allele frequency-based, implemented in FASTSIMCOAL2 (Excoffier

et al., 2013), and gene tree-based, implemented in PHRAPL (Jackson

et al., 2015)—and then assess the absolute fit of the models to the

data.

Phylogeographic analysis depends on comprehensive sampling

across the geographic range of a species or complex (Knowles &

Maddison, 2002; Pinceel, Jordaens, Pfenninger, & Backeljau, 2005).

Herbarium and other natural history museum specimens are impor-

tant sources for such sampling when specimens are available for

DNA extraction. Plant tissue dried and preserved in silica gel can be

used to recover high-quality genomic data (Varma, Padh, & Shrivas-

tava, 2007), even several years after collection (e.g., Eaton & Ree,

2013). However, there still remain a large number of herbarium

specimens without associated silica-dried tissue, which results in one

having to use tissue directly from the herbarium specimen sheet that

was not dried strategically for DNA preservation. The use of geno-

mic data in phylogeography has increased the resolution at which

we can discern competing hypotheses, and thus improved our over-

all understanding of phylogeographic processes (Carstens, Lemmon,

& Lemmon, 2012). However, it is unclear whether the DNA that can

be extracted from herbarium specimens is sufficiently intact to serve

as the source material for generating genome-scale data sets, partic-

ularly when systematically distributed missing data can result in

implicitly biased inferences (Andrews, Good, Miller, Luikart, &

Hohenlohe, 2016).

In this work, in addition to extending model-based phylogeo-

graphic inference to incorporate model fit, we also aim to under-

stand the quality of DNA needed to recover useful genomic data

from herbarium-sampled leaf tissue. We further ask whether such

genomic data are plagued with biased, or nonuniform, missing data.

Finally, using genomic data from herbarium specimens, descriptive

analyses and two model selection approaches, we aim to understand

the phylogeographic history of Alnus rubra Bong. in the disjunct

mesic forests of the Pacific Northwest of North America.

2 | MATERIALS AND METHODS

2.1 | Study system

The Pacific Northwest (PNW) temperate rainforests form a disjunct

ecosystem that ranges from the Cascade Mountain Range to the

Pacific coast, extending from northern California to southern Alaska,

and exists along the northern Rocky Mountains (NRM) in central to

northern Idaho. The range of mesic forests in the region was likely

continuous prior to the uplift of the Cascades (c. 5 MYA; Waring &

Franklin, 1979; Priest, 1990), which generated a rain shadow cast

across the Columbia Basin and forced inland forests to retreat to

suitable, wet habitat along the NRM. Because of this, the coastal

and inland NRM forests became isolated by ~300 km of unsuitable

habitat. The later onset of Pleistocene glaciations (c. 2.5 MYA) led to

the expansion of Cordilleran ice sheets, which covered much of the

inland rainforests, further reducing the available habitat for rainforest

species. As a consequence of these events, at least some rainforest

species were unable to persist in the inland NRM forest throughout

the Pleistocene (reviewed in Brunsfeld, Sullivan, Soltis, & Soltis,

2001).

Due to its disjunct nature, the PNW rainforest has been the

focus of several phylogeographic studies (Brunsfeld, Miller, & Car-

stens, 2007; Carstens, Stevenson, Degenhardt, & Sullivan, 2004;

Metzger, Esp�ındola, Waits, & Sullivan, 2015; Nielson, Lohman, & Sul-

livan, 2001; Steele, Carstens, Storfer, & Sullivan, 2005), indicating

that the history of the species was tightly associated with that of

the biome. Studies showed that while some species harbour cryptic

diversity (i.e., pre-Pleistocene divergences) across the disjunction,

others do not. This led to the definition of two principal phylogeo-

graphic hypotheses for the biome, which explain the presence or
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absence of cryptic diversity along the disjunction. The first hypothe-

sis explains the presence of cryptic diversity in a lineage and is

known as pre-Pleistocene vicariance or ancient vicariance (AV)

(Brunsfeld et al., 2001) (Figure 1a). The uplift of the Cascade Moun-

tain Range has been implicated as causing the disjunction. The AV

hypothesis posits that conspecific populations were continuously

present along the coast and in the inland NRM forests, but that the

two areas were genetically isolated from each other. Following the

end of the Pleistocene glacial cycles (~13 KYA), conspecific popula-

tions locally recolonized newly freed suitable areas. Because this

hypothesis posits that there has been no gene flow between the

inland and coastal populations since the initial vicariance event, the

lineages would have been evolving independently for c. 2 MY, lead-

ing to the presence of cryptic diversity.

The alternative hypothesis, post-Pleistocene dispersal or recent

dispersal (RD) (Figure 1b), explains the absence of cryptic diversity in

some taxa (Brunsfeld et al., 2001). This hypothesis posits local Pleis-

tocene extinction in the NRM. The current species presence in the

inland NRM forest is thus due to dispersal from coastal populations

to the inland following glacial retreat, although there is also evidence

of dispersal occurring from the inland NRM to the coast (e.g., Car-

stens et al., 2013). Ultimately, the RD hypothesis suggests absence

of significant genetic differentiation between inland and coastal pop-

ulations because dispersal to the inland happened after 13 KYA.

However, RD is not the only phylogeographic scenario that could

result in an absence of significant genetic differentiation between

the inland and coastal populations. Due to the regions being exposed

to cyclical glacial periods, there could also have been episodic,

repeated migration since the ancient vicariance event (Figure 1c). In

this case, there were still inland populations throughout the Pleis-

tocene, as in the AV hypothesis, but persistent gene flow prohibited

any deep divergence between the coastal and inland populations.

Likewise, secondary contact, where the inland and coastal lineages

underwent AV and only since the end of the Pleistocene came back

in contact, could also result in the lack of cryptic diversity (Figure 1d).

The primary distribution of Alnus rubra is west of the Cascades

in the coastal temperate rainforest from southeastern Alaska to cen-

tral California, with disjunct populations in the inland NRM temper-

ate rainforest of Idaho. Two studies have investigated the history of

A. rubra using genetic data (Brumble, 2008; Strenge, 1994) and sug-

gested recent dispersal to the inland rainforest. Strenge (1994; also

see Soltis, Gitzendanner, Strenge, & Soltis, 1997) characterized two

cpDNA genotypes, a coastal southern type and a coastal northern

type, and the inland individuals included were of the southern

coastal genotype. Brumble (2008) identified a 17-bp indel in the

chloroplast psbA-trnH spacer that was also present in some, but not

all, closely related Alnus sp. Thus, the genetic data in these two stud-

ies were limited, and the inferences were perhaps driven by a single

ancestral polymorphism. Recently, a predictive framework was devel-

oped to detect the presence of cryptic diversity from locality data

by assessing georeferenced climatic data and taxonomic ranks

(Esp�ındola et al., 2016). This predictive framework also predicts that

A. rubra should not contain cryptic diversity.

2.2 | ddRAD Sequencing

Leaf tissue from 49 A. rubra herbarium specimens (18 localities;

Table S1) were sampled from the Stillinger Herbarium at the

University of Idaho. The sampled specimens were collected from

the coastal and inland PNW rainforest between the years of 2000

and 2007 by various collectors (Table S1) and cover the complete

range of the species. DNA was extracted using a modified CTAB

protocol (Doyle & Doyle, 1987), purified using Sera-Mag Speed-

Beads (Thermo Fisher Scientific; Faircloth & Glenn, 2012; Rohland

& Reich, 2012) and quantified using a Qubit 2.0 Fluorometer (Life

Technologies). Genomic data were generated using double-digest

restriction site-associated DNA sequencing (ddRADseq) (Peterson,

Weber, Kay, Fisher, & Hoekstra, 2012), with the restriction

enzymes EcoRI and SbfI (New England Biolabs, USA), and size selec-

tion at a 650 (�50)-bp window on a BluePippin (Sage Science). All

digestion, ligation and PCR products were purified using Agencourt

AMPure XP purification system (Beckman Coulter). Sequences were

generated as 300-bp paired-end reads using an Illumina MiSeq in

the Institute for Bioinformatics and Evolutionary Studies (IBEST)

Genomics Resource Core at the University of Idaho. Raw

sequences were processed using PyRAD (Eaton, 2014) under a min-

imum coverage of 7 and clustering threshold of 85% (see Dryad

link for complete parameter file). PyRAD includes VSEARCH (Rog-

nes, Flouri, Nichols, Quince, & Mah�e, 2016) and Muscle (Edgar,

2004) for sequence clustering. To merge overlapping reads, Paired-

End reAd mergeR (PEAR) (Zhang, Kobert, Flouri, & Stamatakis,

2014) was used, and only sequences that merged with their paired

end were used in subsequent analyses.

2.3 | Data quality and effect on missing data

Before ddRADseq library preparation, DNA extracts from 13 of the

49 individuals were quantified using a Fragment Analyzer

(Advanced Analytical), which describes the distribution of fragment

sizes in a particular sample (Figure S1). The mode of the fragment

size distribution, concentration of the fragments in the distribution,

year of collection and each variable’s potential interactions

(Table S2) were used for linear regression to predict the total num-

ber of raw reads for the 13 samples. This allowed us to evaluate

our ability to predict data quality based on DNA quality and/or

quantity descriptors.

To confirm the presence of unbiased missing data across sam-

pled localities, missing data were quantified across all 49 samples

and organized by relatedness using population assignment probabili-

ties from STRUCTURE at K = 3 (Figure S2a). This ordered distribution

was compared to a uniform distribution of the same size using a

two-sided Kolmogorov–Smirnov (KS) test (Panchenko, 2006). The

uniform distribution was simulated in R using the runif function to

generate 49 random variables from a uniform distribution with a

maximum and minimum bound corresponding to the maximum and

minimum missing data value observed across all individuals (Fig-

ure S2b).
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2.4 | Population structure

STRUCTURE 2.3.4 (Pritchard, 2010) was used to estimate population

structure across all sampled localities. All unlinked SNPs from all

samples were used in the analyses. Following Pritchard (2010), all

parameters were kept as default, aside from the burn-in (set to

200,000 generations) and the MCMC length (set to 1,000,000 gen-

erations). The data were modelled assuming admixture and corre-

lated allele frequencies between populations (Falush, Stephens, &

Pritchard, 2003). We tested a range of K values from 1 to 10 and

repeated each run 10 times to capture variation in the likelihood

estimate of each K value. The individual- and population-level proba-

bilities of belonging to a particular cluster K were visualized using

STRUCTURE PLOT (Ramasamy, Ramasamy, Bindroo, & Naik, 2014).

2.5 | Species distribution models

To gather more information about the potential range extent of the

species during the last glacial maximum (LGM; ~21 KYA), we used a

species distribution modelling (SDM) approach (Peterson et al.,

2011). To do this, we gathered 772 unique observations of A. rubra

from the Global Biodiversity Information Facility (GBIF) and the Con-

sortium of Pacific Northwest Herbaria. We selected eight of the

least correlated bioclimatic variables from the 19 total WorldClim

bioclimatic variables (r2 < .7; i.e., bio1, bio2, bio3, bio5, bio7, bio12,

bio15 and bio17) at a resolution of 30 arc-seconds (Hijmans,

Cameron, Parra, Jones, & Jarvis, 2005) and used them to adjust

SDMs. To do this, we used the package biomod2 (Thuiller, Lafour-

cade, Engler, & Ara�ujo, 2009) and applied an ensemble approach in

R. For this, we adjusted the final ensemble model using the AUCs

(area under the curve) of nine modelling methods, including general-

ized linear model (GLM), generalized additive model (GAM), classifi-

cation tree analysis (CTA), artificial neural network (ANN), surface

range envelope (SRE), flexible discriminant analysis (FDA), multiple

adaptive regression splines (MARS), random forest (RF) and Maxent

as weighting units, and we selected 10,000 pseudo-absences from

the background area (a polygon encompassing the entire range of

the species and the totality of the PNW region). We then projected

the ensemble model into geographic space, using both current and

palaeoclimatic data obtained from WorldClim corresponding to

current and LGM climatic conditions.

2.6 | Demographic model selection

2.6.1 | Allele frequency approach

Alleles were grouped based on geography into two populations: a

coastal population and an inland population. Folded joint allele fre-

quency spectra (jAFS) were then constructed to summarize biallelic

frequencies across both populations. AFS is a commonly used statis-

tic for population genetic inference (Nielsen et al., 2009; Wakeley,

2008), and because of this, jAFS, as well as multidimensional AFS,

have been increasingly used for demographic inference (Gutenkunst,

Hernandez, et al., 2009b; Keinan, Mullikin, Patterson, & Reich, 2007;

Smith et al., 2017). An AFS cannot accommodate any missing data,

and RADseq data are commonly plagued with missing data due to

allelic dropout. Therefore, we constructed two sets of jAFS by sub-

sampling SNPs at two different missing data thresholds: 20% and

30%. The threshold value indicates the percentage of individuals

from each population that must contain a given SNP for it to be

included in the jAFS. To account for variation in the subsampling

technique, we constructed 20 jAFS in each subsampling category,

for a total of 40 observed jAFS. All jAFS were made using custom

Python scripts developed by J. Satler (https://github.com/jordansatle

r/SNPtoAFS). The first data set, subsampled at a 20% threshold,

included jAFS from ten inland and nine coastal alleles ranging in 65–

73 SNPs. The second data set, subsampled at a 30% threshold,

included jAFS from 15 inland alleles and 14 coastal alleles ranging in

26–34 SNPs.

Model selection was performed on each observed jAFS using

FASTSIMCOAL2 (Excoffier & Foll, 2011; Excoffier et al., 2013). Under

this approach, we estimated the composite likelihood of a jAFS

between two populations, given a particular demographic model, and

for each model parameter. The optimization of each parameter and

the composite likelihood was performed using the Expectation-Con-

ditional Maximization (ECM) algorithm (Meng & Rubin, 1993). In

ECM, the E-step consisted of 100,000 coalescent simulations to esti-

mate the expected jAFS under the current demographic parameters

to approximate the composite likelihood, as in Excoffier et al. (2013).

The CM-step consisted of a series of conditional maximizations

(Brent, 1974) corresponding to the number of parameters included

in the model being investigated. The minimum and maximum number

of ECM cycles were set to 10 and 30, respectively. The optimization

process ended when the maximum number of cycles was complete,

or when the difference in the composite likelihood under the current

parameters compared to the likelihood under the proposed parame-

ters was <0.001. Thirteen different demographic models were evalu-

ated (Figure 1) with 20 independent optimizations from different

starting parameters (Excoffier et al., 2013), and the maximum-likeli-

hood parameter estimates resulting from each independent optimiza-

tion were used as the starting parameters in a final maximization of

the composite likelihood. We then calculated Akaike Information Cri-

terion (AIC) values (Akaike, 1974) using the maximum composite

likelihood estimated from this run and compared the models using

Akaike weights, wAIC (Johnson & Omland, 2004). First, we com-

pared just the four principal demographic models (AV, RD, AVwM,

AVtS; Figure 1) using wAIC; then, we compared all 13 models using

wAIC. We assume that because the collection of unlinked SNPs are

randomly distributed across the genome (Excoffier et al., 2013), the

composite likelihood is a good approximation of the true maximum

likelihood and can thus be used in AIC calculations for model com-

parison.

For each model, we estimated sdiv as divergence time in genera-

tions, ssc as time of secondary contact in generations, m as various

probabilities of migration to and from coastal and inland populations,

Θ0 and Θ1, as Θ = 4Nel, where Ne is the number of genes in each
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deme and l is the mutation rate (the only parameter not shown in

model design; Figure 1) in substitutions/site/generation. The initial

values for parameters Θ0 and Θ1 were drawn from a log uniform dis-

tribution between 0.01 and 10, and the parameter space explored

was constrained only by the minimum bound of the prior distribu-

tion. The mutation rate, l, was estimated from a minimum bounded

log uniform distribution between 1e�9 and 1e�7. Divergence time,

sdiv, was drawn from a minimum bounded uniform prior distribution

with a minimum of 50,000 and maximum of 1,000,000 generations

for all models involving an AV event, whereas sdiv from recent dis-

persal models was drawn from a fully bounded, uniform distribution

with a minimum of 500 and a maximum 50,000 generations. Diver-

gence time estimates were converted from generations to years

using a generation length of 6–8 years per generation (Orwa, Mutua,

Kindt, Jamnadass, & Anthony, 2009). The secondary contact models

included the time of the gene exchange event (ssc) as a parameter.

The prior distribution for ssc was uniform with a minimum in 500

and maximum in 50,000 generations. Migration was defined as the

probability of a given lineage to move from one population to the

other and was drawn from a log uniform prior distribution with min

1e�10 and max 0.1. Migration was considered as either unidirectional

(only from the inland, or only from the coast), bidirectional (a sepa-

rate migration rate parameter was estimated for each direction), or

symmetrically bidirectional (only one migration rate parameter is esti-

mated; Figure 1).

To investigate model adequacy, we performed a goodness-of-fit

test, which evaluates whether the observed data fit a particular

model. The goodness-of-fit test is carried out using a likelihood ratio

G-statistic, CLR = log10(CL0/ClE), where CL0 is the observed maxi-

mum composite likelihood and CLE is the estimated maximum

composite likelihood (Excoffier et al., 2013). To represent the

expected distribution of data given the best model, we performed

parametric bootstrapping with the maximum-likelihood (ML) parame-

ter estimates of the selected model to generate 100 simulated jAFS

that had an equal number of alleles per population as the empirical

data. We then optimized the likelihood of each of these data sets

given the model and used these maximum likelihoods to calculate

the null distribution for the G-statistic. This process of parametric

bootstrapping using the ML parameter estimates was carried out in

FASTSIMCOAL2 and repeated for the three best models in each of the

subsampling threshold categories, 20% and 30%. The p-value for

each goodness-of-fit test was calculated as the proportion of simu-

lated G-values that were greater than the observed test statistic

over all the total number of G-values, in this case 100. These simu-

lated data also permitted calculating 95% confidence intervals for

parameters of interest under a model of interest.

2.6.2 | Gene tree approach

Phylogeographic inference using approximate likelihoods, or PHRAPL

(Jackson et al., 2015), is conducted using gene tree topologies with-

out branch lengths as input. While the gene trees can be con-

structed using either linked or unlinked SNPs, we opted for the

former because we were unable to use linked SNPs in the analysis

with allele frequency spectra. For this, all loci that were present in at

least four individuals from the coast and four individuals from the

inland were used to construct a total of 63 gene trees in PAUP*

(Swofford, 2003). Before constructing trees, we used DT-ModSel

(Minin, Abdo, Joyce, & Sullivan, 2003) to select an appropriate model

of sequence evolution for each locus. A total of 42 models were

Ancient Vicariance (AV)

Coast Inland

div

Anc

C I

Recent Dispersal

div

InlandCoast

C I

Anc

Θ

AV with Migration

Coast Inland

div

Anc

C I

Θ
AV then Secondary Contact

Coast Inland

sc

div

Anc

C I

(a) (b)

(c) (d)

F IGURE 1 Four major demographic models representing the hypothesized phylogeographic history of Alnus rubra in the PNW temperate
rainforest. In total, 13 demographic models were designed and evaluated for both data sets. Names and abbreviations of all models are listed
in the left panel. Parameters estimated include population size, ΘC and ΘI; migration probability, m; divergence time, sdiv; and time of
secondary contact, ssc. The only additional parameter estimated but not included in the model design was mutation rate
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evaluated, and the best model was selected using decision theory.

The model and corresponding parameter values were used to con-

struct a maximum-likelihood tree in PAUP*. A heuristic search started

with a neighbour-joining tree and performed tree-bisection–recon-

nection (TBR) as the branch swapping mechanism for a maximum

time limit of 5 min, at which time only the most optimal tree was

saved. Two data sets were assembled; in the first data set, only gene

trees produced with 20 or more SNPs were included, which resulted

in seven trees total. In the second data set, only gene trees made

with two or more SNPs were included, which resulted in 46 trees

total. We performed the same model selection procedure that is

described below, on both data sets.

All 13 models that were designed in FASTSIMCOAL2 were also

designed and evaluated in PHRAPL. All the PHRAPL models have one

less parameter than the models in FASTSIMCOAL2, because PHRAPL

does not estimate mutation rate. PHRAPL uses a grid search to inves-

tigate parameter space and optimize approximate likelihoods under

user-specified “grid values”. Runs begin with a broad range of grid

values for all parameters, and move towards specific values once

likelihood peaks are identified. We ran a total of four grid searches

on each data set of trees, with 6–8 grid values investigated for the

coalescent time parameter and the migration parameter(s) each, on

every grid search. The first two grid searches investigated broad

ranges in the coalescent time parameter, while the final two grid

searches narrowed these values considerably (Table S3). All sec-

ondary contact models included an additional parameter represent-

ing the timing of the secondary contact, and this event time was

set to occur prior to the coalescent event, at a relative time of

0.25 for all runs. We first compared only the four core models

(Figure 1) using wAIC and then compared all 13 models at once

using wAIC. All computational analyses were carried out using ser-

vers at the IBEST Computational Resources Core at the University

of Idaho.

3 | RESULTS

3.1 | ddRAD sequencing, data quality and effect on
missing data

We recovered 648 loci with 614 unlinked biallelic SNPs, 5,494 total

variable sites and 79% missing data. We expected to recover c.

6,000 loci, following approximate calculations (Peterson et al., 2012)

given a genome size of roughly 5 Mbp (Benentt, Cox, & Leitch,

2012), 8-cutter and 6-cutter restriction enzymes, 70% of a half

MiSeq lane (c. 6 million reads), and expected coverage of 209.

Recovery of fewer loci could be due to many reasons, a few of

which include protocol modifications, restriction enzyme selection,

suboptimal size selection window, or not enough sequencing power

(Peterson et al., 2012). Here, the quality of the genomic DNA, or

average fragment size, is a primary factor in explaining the variation

in the number of reads recovered (Figure 2). Our linear regression

analysis showed that the only significant predictor variable was the

mode of the fragment size distribution (Figure 2), explaining around

60% of the variation observed in the total number of raw sequence

reads.

The KS test reported a p-value of .465 at a = 0.05, indicating

there is not a significant difference between the simulated uniform

distribution and the observed distribution of missing data (Figure S2).

Thus, we can conclude that the missing data are uniformly dis-

tributed across all individuals; that is, there are no individuals that

have an extremely high amount of missing data relative to any other

individuals, which indicates the data can be subsampled (i.e., missing

data discarded) without biasing estimates (Wiuf, 2006).

3.2 | Population structure

Because the analyses of data with missing data can be suspected to

involve an overestimation of K (Pritchard, 2010), we visualized all

STRUCTURE results for K = 2–8. When K = 2 (Figure 3a), there was

apparent spatial genetic structure separating coastal from inland

populations. This result agrees with the expectations under an AV

scenario. When K = 3 (Figure 3b), two of the clusters were

restricted to either inland or coastal populations, and the third

included individuals from both areas, suggesting gene flow between

the disjunct populations. Results for K = 4, 5 and 8 showed no geo-

graphic population structure (Figures S3 and S4), additionally sug-

gesting the presence of gene flow between coastal and inland

populations.

3.3 | Species distribution models

Our ensemble SDM could successfully recover the current range of

the species (Figure 3c). Part of the projected range of the species at
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F IGURE 2 Number of raw reads recovered from ddRADseq
experiments in relation to the mode fragment length found in the
DNA extracts from 13 Alnus rubra individuals
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the LGM (Figure 3d) is substantially different from the current range.

Specifically, the coastal area appeared to display high habitat suit-

ability, while the suitable inland areas are more restricted than the

current inland range. This suggests that during the LGM, the coastal

area may have harboured large extents of continuous habitat for the

species, whereas inland populations were likely more restricted.

3.4 | Demographic model selection

When the four core models were compared, AVwM always had the

highest wAIC, on average, regardless of the downsampling technique

or whether FASTSIMCOAL2 or PHRAPL was used (Figure 4). AVwM was

consistently selected using FASTSIMCOAL2, with fairly high average AIC

values (Figure 4). In PHRAPL, with seven trees produced from loci with

20 or more SNPs, the AVwM model was selected 75% of the time

(Table S4) with an average wAIC of 0.389, and the RD model was

selected 25% of the time with an average wAIC also of 0.362 (Fig-

ure 4). In PHRAPL, with 46 trees produced from loci with two or more

SNPs, AVwM and RD were both selected 50% of the time

(Table S4) with an average wAIC of 0.484 and 0.414, respectively

(Figure 4).

When all 13 models were compared using wAIC from FASTSIM-

COAL2 estimated likelihoods, two models were selected consistently,

AVwCM and AVwIM. In the first data set (20% subsample thresh-

old), AVwCM was selected around 50% of the time, while AVwIM

was selected 43% of the time (Table S5). The remainder of selected

models includes AVwM, AVtSC and AVtSI, all of which were

selected c. 2.5% of the time. In the second FASTSIMCOAL2 data set

(30% subsample threshold), AVwIM was selected 56% of the time,

and AVwCM was selected 42% of the time. Only two other models

0 250 500125 Km
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750
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Suitability
985
500
10

0 250 500125 Km

Suitability

K = 2

0 250 500 km

(a)

(c) (d)

K = 3
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F IGURE 3 STRUCTURE results for K = 2 (a) and K = 3 (b) for 18 populations of Alnus rubra. Species distribution models for A. rubra in the
PNW rainforest under current (c) and last glacial maximum (LGM; d) conditions. The stippled area in the bottom right panel shows the extent
of the Cordilleran ice sheet at the LGM
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(AVwMsym and AVtSI) were selected, each at very low rates (1% of

the time). In both data sets, the three models with the highest aver-

age wAIC were AVwIM, AVwCM and AVwM (Figure 5a–b) and for

all three models, the mode divergence time estimate was between

5.8 and 6.9 MYA (mean 6.3 MYA) (Table S6).

Model adequacy was evaluated for the three best models for

both data sets assessed in FASTSIMCOAL2 (Figure 5c–d). In both data

sets, the p-values were nonsignificant, indicating that the data fit all

three models. In the first data set, the p-values for AVwM, AVwCM

and AVwIM were .69, .77 and .79, respectively (Figure 5c). In the

second data set, the p-values for AV with asymmetrical migration,

AV with Coastal Migration and AV with Inland Migration were .93

for each (Figure 5d).

In PHRAPL, there were a handful of models amongst the 13 com-

pared that carried a majority of wAIC support in any particular run.

In all of the runs, the average wAIC for the best model was 0.16 –

0.26 (Tables S7 and S8), indicating not particularly strong support for

any one model. In the data set with seven trees, the AVwIM model

was selected 100% of the time; however, the average wAIC for the

AVwIM model was only 0.167. In all four runs with the seven-tree

data set, there were at least five models that carried more than 10%

of the model weight (i.e., wAIC > 0.10) (Table S7). In the data set

with 46 trees, AVwMsym and RDsym were both selected 50% of

time with an average wAIC of 0.22 and 0.214 (Table S8). In all four

runs with the 46-tree data set, there were at least four models with

more than 10% of the model weight. In both PHRAPL data sets, the

RD models collectively occupied over a third of the model weight in

any given grid search.

4 | DISCUSSION

4.1 | Allele frequency and gene tree approaches

FASTSIMCOAL2 and PHRAPL each have unique properties that make them

useful in performing model selection. While FASTSIMCOAL2 is appealing

because it summarizes unlinked SNPs in an allele frequency spec-

trum, PHRAPL uses topologies that can be generated from SNP data or

entire loci. In this study, the number of unlinked SNPs that could be
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F IGURE 4 (a) Model selection results
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Contact. Notes: AV not shown; average
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used in FASTSIMCOAL2 was limited because AFS does not accommodate

missing data, and therefore, the unlinked SNPs must be downsam-

pled. Alternatively, PHRAPL accommodates missing data because not all

individuals need be present in each gene tree, only a minimum total

number of individuals from each population need be present.

Depending on the missing data and number of linked and unlinked

SNPs present in one’s data set, either approach could be viable.

FASTSIMCOAL2 results were more consistent than PHRAPL results in

selecting the same model with high support, especially when only

comparing the four core models (Figure 4). However, even when

comparing all 13 models in FASTSIMCOAL2, AVwCM and AVwIM main-

tained a majority of the wAIC support. Additionally, model adequacy

in FASTSIMCOAL2 supported that the data fit the three best models, all

of which support an ancient vicariance event with some intermittent

gene flow. When comparing the four core models in PHRAPL, there

was consistency in selecting the AVwM model, but with relatively

low support from wAIC. Because no single model had an over-

whelming majority of the model weight, there was overall less sup-

port in which model was selected when comparing all 13 models in

PHRAPL. We attribute this identifiability issue to the lack of resolution

in many of the gene trees.

As for the performance of each analytical approach, it is unrea-

sonable to conclude on which is more accurate given this study,

because each approach performs model selection differently, that is,
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uses a different approximate likelihood to evaluate model parame-

ters. Specifically, FASTSIMCOAL2 uses an observed AFS to optimize an

approximate likelihood based on an expected AFS under coalescent

simulations (Excoffier et al., 2013), while PHRAPL uses gene tree

topologies to optimize an approximate likelihood that is based on

concordant gene tree topologies under coalescent simulations (Jack-

son et al., 2015). Both incorporate coalescent theory, and whether

one approach is more accurate than the other may depend on

whether information in the available data is better captured in an

AFS or gene trees.

The 95% confidence intervals for parameter estimates for the

three best models are not particularly narrow (Tables S9-14), which

suggests that there is a lot of uncertainty associated with the esti-

mation of the parameters, and that the data may not be sufficient

for such estimation. However, here we are not specifically drawing

inferences from the parameter estimates, but rather, the overall

model selected. The power analysis performed (see supplemental

methods) shows that the correct model is actually selected a

majority of the time (86%, Table S15) when comparing the four

main models. Given these results, we feel that regardless of the

wide confidence intervals on parameter estimates, we still have con-

siderable power to distinguish between the four main classes of

models.

4.2 | Genomic data from herbarium specimens

While ddRADseq can be successful in recovering thousands of loci

and SNPs (Peterson et al., 2012), this was not the case in our study.

Our analyses (Figure 2) show that this is mostly due to lower quality

(mode fragment size) DNA used in the protocol. No other variable,

or interaction of variables, including year collected or concentration,

recovered any significant relationship with the number of reads

recovered. The ~10-year-old herbarium specimens used in this study

were presumably dried and stored in various ways that resulted in

some specimens having better-quality DNA. Our results indicate that

as long as high-quality DNA can be identified (e.g., with a Fragment

Analyzer or Bioanalyzer), the method used here is a cost-effective

approach for generating genomic data. Specifically, our results

strongly suggest that the mode of the distribution of fragment sizes

is a strong predictor of the number of reads that will be recovered

in the ddRAD approach. Examining the mode fragment length as an

additional step for standardization can identify degraded samples,

that is, samples with an average fragment length <5,000 bp, when

concentration alone cannot. Practically, we recommend verifying the

quality of individual samples with fragment length identification to

ensure that no highly degraded samples are used in library prepara-

tion. In addition, characterizing missing data as uniformly missing

was crucial for implementing our subsampling strategies for jAFS

construction. If the distribution of missing data were systematically

structured, subsampling could have drastically biased our likelihood

estimates. Taken together, these results suggest that generating

genomic data using DNA obtained from herbarium specimens is pos-

sible, but the average fragment size of resulting DNAs and the

distribution of missing data should be considered for both the exper-

imental and analytical approaches employed here.

Though we have investigated the use of herbarium tissue and

seen promising results, it remains unclear whether genomic data

generated from herbarium specimens can be combined with genomic

data generated from fresh tissue. Given what we have learned about

the influence of fragment size on the number of loci recovered, we

imagine that the disparity in allelic dropout between herbarium spe-

cimens and fresh tissue would be quite large, potentially making the

data unworkable together. Thus, we emphasize to proceed with cau-

tion if combining fresh tissue with herbarium tissue for studies using

RADseq family approaches for data collection.

4.3 | Phylogeographic history of red alder

Overall, the Ancient Vicariance with Migration (AVwM) model was

the strongest and most consistently supported model across data

sets and approaches. Although this model selection approach was

not intended to make inferences from the parameter estimates, but

rather from the overall model selected, the divergence times esti-

mated seem to indicate congruence with the PNW history of pre-

Pleistocene divergence. The divergence time estimates ranged 5.8–

6.9 MYA and are older than the Pacific Northwest rainforest disjunc-

tion (~3–5 MYA; but see the 95% CI in Table S8). Although we can-

not precisely determine divergence times, we can characterize the

timing of divergence as pre-Pleistocene.

The AVwM model involves four possible migration scenarios.

Two of these four scenarios are highly supported with allele fre-

quency data and include migration in only one direction, AVwIM and

AVwCM. When comparing all models, gene trees supported AVwIM

as the best model. These results suggest that migration has been

predominantly unidirectional, although the actual direction still

remains unclear in light of these results. Disentangling which direc-

tion is the most likely requires investigating recolonization and/or

specific migration route models, potentially, with the inclusion of

more genetic data. Due to the lack of genetic structure within the

coast or the inland, we do not think that expanding the geographic

breadth of our samples is necessary (Figures S3 and S4). That said,

model adequacy results suggest that more genetic data are required

to distinguish between the three best migration scenarios for the

AVwM model. These results also highlight the limit to the phylogeo-

graphic inference that we are able to make given these data, which

is something that we feel should always be identified.

The SDMs and population structure results provide further evi-

dence for the AVwM scenario. The climatic niche projections using

LGM conditions (Figure 3d) indicate that the expected inland range

of A. rubra shifted into southern Idaho. This is consistent with the

hypothesis that species ranges in this area were displaced south dur-

ing the Pleistocene (Sullivan et al., 2000). Although not apparent in

the SDM because of its later occurrence, pollen records indicate the

presence of Alnus in the NRM of Canada throughout the Holocene

(Gavin, Hu, Walker, & Westover, 2009). This could indicate surviving

populations of A. rubra in nunatak refugia as far north as Canada, or
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a rapid colonization of the area following glacial retreat. During the

Holocene, the climate was considerably warmer than today (Wagner,

Melles, Hahne, Niessen, & Hubberten, 2000), which could explain

why the inland forest extended much farther North than it does cur-

rently. Ultimately, the persistence of A. rubra in the inland during the

Pleistocene is supported by our results, although whether southern

inland populations, or migrants from the northern Cascades, or both,

colonized the inland forest remains unclear. The strong genetic

divide between the inland and coastal populations (Figure 3a–b) also

corroborate that inland populations of A. rubra likely persisted

through the Pleistocene.

Given the prominent role that gene flow has played in the phy-

logeographic history of A. rubra, we conclude, in agreement with

Esp�ındola et al.’s (2016) prediction, that coastal and inland popula-

tions of red alder do not harbour cryptic diversity and thus do not

represent incipient sister species. Previously, in this system, non-

cryptic taxa were often considered to be the result of recent disper-

sal. However, we show here that an alternative phylogeographic

hypothesis—specifically, ancient vicariance with periods of gene

flow—can also explain why some lineages in the disjunct mesic for-

ests of the PNW may not harbour cryptic diversity, despite evi-

dence of ancient population structure. We also show that the

inclusion of more intraspecific data, genetic and geographic, does in

fact increase our phylogeographic understanding of A. rubra, specifi-

cally because the AVwM and RD models could not have been dis-

tinguished using the cpDNA from Strenge (1994; Soltis et al., 1997)

or Brumble (2008). Finally, we acknowledge that the inclusion of

more data would allow for the evaluation of more complex models;

therefore, if in the future more A. rubra data are generated, we rec-

ommend the evaluation of more complex models that include popu-

lation expansion and contraction.

5 | CONCLUSIONS

In this study, we compared two approaches in phylogeographic

model selection, allele frequency-based (Excoffier et al., 2013) and

gene tree-based (Jackson et al., 2015), and used the results from

both to draw phylogeographic inference in an emerging model sys-

tem in comparative phylogeography. Importantly, both approaches

resulted in a ranking of models that was useful in gauging relative

support for all competing models. The most overwhelming indicator

of successful model selection comes from the review of model ade-

quacy, where we see the data consistently fit the models that were

most frequently selected. Because assessing model fit is a critical

component of any statistical inference, we feel that future phylogeo-

graphic studies should include explicit tests of model adequacy, as

performed here. Further, we also conclude that the mode fragment

length is an effective measure of sample quality that will help in

identifying samples that may be problematic for RAD-based genomic

reduction sequencing strategies – samples where the concentration

alone is not enough to indicate levels of degradation – early on in

library preparation. We also demonstrate that genomic data obtained

from DNA isolated from herbarium specimens do not necessarily

result in systematically missing amounts of data, which allows for

downsampling without the fear of drastically biasing the data. Finally,

we were successful in using DNA from herbarium specimens to

gather the genomic data necessary to make inferences regarding the

phylogeographic history of A. rubra, where the combination of

descriptive and model selection based tools was invaluable in recov-

ering a meaningful phylogeographic inference that is supported by

multiple, independent lines of evidence.
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