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A new method called the neighbor-joining method is proposed for reconstructing
phylogenetic trees from evolutionary distance data. The principle of this method
is to find pairs of operational taxonomic units (OTUs [=neighbors]) that minimize
the total branch length at each stage of clustering of OTUs starting with a starlike
tree. The branch lengths as well as the topology of a parsimonious tree can quickly
be obtained by using this method. Using computer simulation, we studied the
efficiency of this method in obtaining the correct unrooted tree in comparison with
that of five other tree-making methods: the unweighted pair group method of anal-
ysis, Farris’s method, Sattath and Tversky’s method, Li’s method, and Tateno et
al.’s modified Farris method. The new, neighbor-joining method and Sattath and
Tversky’s method are shown to be generally better than the other methods.

Introduction
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In the construction of phylogenetic trees, the principle of minimum evoluti®n
or maximum parsimony is often used. The standard algorithm of the tree-making
methods based on this principle is to examine all possible topologies (branching p§t-
terns) or a certain number of topologies that are likely to be close to the true tree agd
to choose one that shows the smallest amount of total evolutionary change as the fifial
tree. This method is quite time consuming, and, when the number of operatio@al
taxonomic units (OTUs) is large, only a small proportion of all possible topologie%is
examined. However, there are methods in which the process of searching for the
minimum evolution tree is built into the algorithm, so that a unique final topologyis
obtained automatically. Some examples are the distance Wagner (DW) method (Fargis
1972), modified Farris (MF) methods (Tateno et al. 1982; Faith 1985), and the nei@-‘n-
borliness methods of Sattath and Tversky (ST method; 1977) and Fitch (1981). These
methods are not guaranteed to produce the minimum-evolution tree, but their effi-
ciency in obtaining the correct tree is often better than that of the standard maximuin-
parsimony algorithm (Saitou and Nei 1986). In the following we would like to presgcgnt
a new method (the neighbor-joining [NJ] method) that produces a unique final t§ee
under the principle of minimum evolution. This method also does not necessarily
produce the minimum-evolution tree, but computer simulations have shown thafrit
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is quite efficient in obtaining the correct tree topology. It is applicable to any type of
evolutionary distance data.

Algorithm

The algorithm of the NJ method is similar to that of the ST method, whose
objective is to construct the topology of a tree. Unlike this method, however, the NJ
method provides not only the topology but also the branch lengths of the final tree.

Before discussing the algorithm of the present method, let us first define the tegm
“neighbors.” A pair of neighbors is a pair of OTUs connected through a single interdor
node in an unrooted, bifurcating tree. Thus, OTUs 1 and 2 in figure 1 are a pail§_0f
neighbors because they are connected through one interior node, A. There are t¥o
other pairs of neighbors in this tree (viz., [5, 6] and [7, 8]). The number of pairssof
neighbors in a tree depends on the tree topology. For a tree with N (=4) OTUs, ﬁle
minimum number is always two, whereas the maximum number is N/2 when Ig 1s
an even number and (N — 1)/2 when N is an odd number.

If we combine OTUs 1 and 2 in figure 1, this combined OTU (1-2) and OT@ 3
become a new pair of neighbors. It is possible to define the topology of a tree%y
successively joining pairs of neighbors and producing new pairs of neighbors. Eor
example, the topology of the tree in figure 1 can be described by the following pairs
of neighbors: [1, 2], [5, 6], [7, 8], [1-2, 3], and [1-2-3, 4]. Note that there is anot§er
pair of neighbors, [5-6, 7-8], that is complementary to [1-2-3, 4] in defining the topology.
In general, N — 2 pairs of neighbors can be produced from a bifurcating tree OEN
OTUs. By finding these pairs of neighbors successively, we can obtain the tree topolcgy

Our method of constructing a tree starts with a starlike tree, as given in figure
2(a), which is produced under the assumption that there is no clustering of OTUssln
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FIG. 1.—An unrooted tree of eight OTUs, 1-8. A-F are interior nodes, and italic numbers are branch
lengths.
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practice, some pairs of OTUs are more closely related to each other than other pairs
are. Consider a tree that is of the form given in figure 2(b). In this tree there is only
one interior branch, XY, which connects the paired OTUs (1 and 2) and the others
(3,4, ..., N) that are connected by a single node, Y. Any pair of OTUs can take the
positions of 1 and 2 in the tree, and there are N(N — 1)/2 ways of choosing them.
Among these possible pairs of OTUs, we choose the one that gives the smallest sum
of branch lengths. This pair of OTUs is then regarded as a single OTU, and the next
pair of OTUs that gives the smallest sum of branch lengths is again chosen. Tgis
procedure is continued until all N — 3 interior branches are found. 2
The sum of the branch lengths is computed as follows: Let us define D;; and Eab
as the distance between OTUs i and j and the branch length between nodes a ano‘;b
respectively. The sum of the branch lengths for the tree of figure 2(a) is then given by

N
So= ZL,-X N ZDur

i=1 I<j

Iwepeogy:sdiy

since each branch is counted N — 1 times when all distances are added. On the other
hand, the branch length between nodes X and Y (Lyy) in the tree of figure 2(bﬁls
given by

[ Z (Dix+ Do) —(N—2)(Lix+ Lax) — 2 Z Ly].

i=3

L
XY= (N 2)",

g V/PIPIHBRIW/WOD”

The first term within the brackets of equation (2) is the sum of all distances that
include Lyy, and the other two terms are for excluding irrelevant branch lengthsélf
we eliminate the interior branch (XY) from figure 2(b), two starlike topologies (one
for OTUs 1 and 2 and the other for the remaining N — 2 OTUs) appear. Thus, lé Pe
+ L,y and 2 ; L,y can be obtained by applying equation (1):

Lix+Loy=D,,

—~
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FIG. 2.—(a), A starlike tree with no hierarchical structure; and (b), a tree in which OTUs 1 and 2 are
clustered.
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Adding these branch lengths, we find that the sum (S),) of all branch lengths of the
tree in figure 2(b) becomes

N
Sia=Lyy+(LixtLx)+ 2 Liy
i=3

4)
1 N
= D
2(N_2)k23(D1k+ w)+ o D12+N 235$<,Du o
2

It can be shown that equation (4) is the sum of the least-squares estimates of bralgh
lengths (see Appendix A).
In general, we do not know which pairs of OTUs are true neighbors. Theref(ge
the sum of branch lengths (S;) is computed for all pairs of OTUs, and the pair tﬁat
shows the smallest value of S;; is chosen (inferred) as a pair of neighbors. In pract{ge
even this pair may not be a pair of true neighbors; but, for a purely additive tree vwih
no backward and parallel substitutions, this method is known to choose pairs of tﬁle
neighbors (see the following section—Criterion for Minimum-Evolution Tree
detail). At any rate, if S, is found to be smallest among all .S;; values, OTUs 1 and 2
are designated as a pair of neighbors, and these are joined to make a combined OQEU
(1-2). The distance between this combined OTU and another OTU j is given by

pap

Dy.yi=(Dy+Dy)/2  (3<j<N).
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Thus, the number of OTUs is reduced by one, and, for the new distance matrix, &13
above procedure is again applied to find the next pair of neighbors. This cycléis
repeated until the number of OTUs becomes three, where there is only one @1—
rooted tree.

The branch lengths of a tree can be estimated by using Fitch and MargohaSB s
(1967) method. Suppose that OTUs 1 and 2 are the first pair to be joined in the tgee

of figure 1. L,y and L,y are then estimated by g
C

Lix=(Dy+ D1z~ D27)/2, (&a)
g

2x = (D12 + Daz— Dy 2)/2, (gb)

where D, = (™3 Dy;)/(N — 2) and D,z = (23 D»)/(N — 2). Here, Z represaﬂts
a group of OTUs including all but 1 and 2, and D, and D, are the distances betwéen ,
1 and Z and 2 and Z, respectively (see Nei 1987, pp. 298-302, for an elementary
exposition of this method). L,y and L,y are the least-squares estimates for the treeﬂf
figure 2(b) (see Appendix A), and they are estimates of L,, and L,,, respectlvely,:,m
figure 1. Once L, and L,, are estimated, OTUs 1 and 2 are combined as a sn'@e
OTU (1-2), and the next neighbors are searched for. Suppose that (1-2) and 3 are ﬁae
next neighbors to be joined, as in figure 1. Branch lengths L, 55 and Lsp are @)—
tained by applying equations (6a) and (6b). Furthermore, L,; is estimated by
L2 — (D12)/2. The above procedure is applied repeatedly until all branch lengths
are estimated. If a tree is purely additive, this method gives the correct branch lengths
for all branches (see Appendix B).

The principle of the NJ method can be extended to character-state data such as
nucleotide or amino acid differences. In this case, one can use the total number of
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Table 1
Distance Matrix for the Tree in Figure 1
OTU

OTU 1 2 3 4 5 6 7

2. 7

3. 8 5 g

4 . 11 8 5 g

5 . 13 10 7 8 S

6 . 16 13 10 11 5 o

7 . 13 10 7 8 6 9 =

8 . 17 14 11 12 10 13 8 g
0
g

substitutions in place of the sum of branch lengths (S;;), though the actual proceé'ure
is a little more complicated than that given above (Saitou 1986, pp. 90-98). How%/er
since the algorithm turns out to be very similar to that of Hartigan (1973), we ﬁlall
not present it here. Note also that most character-state data can be converted dnto
distance data so that the above simpler algorithm applies. ‘0
An example: consider the distance matrix given in table 1. The distance 12,] in
this matrix is obtained by adding all relevant branch lengths between OTUs i @d J
in figure 1 under the assumption that there is no backward and parallel substitufion.
The result of application of the NJ method is presented in table 2 and figure 3. [gthe

Table 2
S;; Matrices for Two Cycles of the NJ Method for the Data in Table 1

A. Cycle 1: Neighbors = [1, 2]

Ausipapn(Ag $99620} 190% /1178l

OTU
OTU 1 2 3 4 5 6
2 . 36.67
3. 38.33 38.33 =3
4 . 39.00 39.00 38.67 oy
5. 40.33 40.33 40.00 39.67 3
6 . 40.33 40.33 40.00 39.67 37.00 S
7 . 40.17 40.17 39.83 39.50 38.83 38.83 .
8 . 40.17 40.17 39.83 39.50 38.83 38.83 33.67
B. Cycle 2: Neighbors = [5, 6] py
OTU 5
N
OTU 1-2 3 4 5 6 g
3. 31.50
4 . 32.30 32.30
5. 33.90 33.90 33.70
6 . 33.90 33.90 33.70 31.30
7 . 33.70 33.70 33.50 33.10 33.10
8 . 33.70 33.70 33.50 33.10 33.10 31.90
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@ (e) )

FI1G. 3.—Application of the neighbor-joining method to the distance matrix of table 1. Italic nu
are branch lengths, and branches with thicker lines indicate that their lengths have been determined.
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search for the first pair of neighbors (cycle 1), OTUs 1 and 2 are chosen because%Slz
is smallest among 28 S;’s (see table 2). S;, (= 36.67) is smaller than the sum%So
= 39.28) of branch lengths of the starting starlike topology, but, interestingly, sgéme
S;/’s are larger than Sp. D,z and D,z in equations (6a) and (6b) become 13 and310,
respectively. Thus, the branch lengths L, and L, , are obtained to be (7 + 13 — @0)/
2 = 5and (7 + 10 — 13)/2 = 2, respectively, which are identical with those o@he
true tree in figure 1 (fig. 3[a]). OTUs | and 2 are then combined, and the avefage
distances (D)5 = 3, . . . , 8) are computed by equation (5). In the next step (cycle
2 in table 2), OTUSs 5 and 6 are found to be a pair of neighbors, and Lsz and L¢gare
estimated to be 1 and 4, respectively, which are again identical with those of the Et_ue
tree (fig. 3[b]). In cycle 3, OTUs (1-2) and 3 are chosen as a pair of neighbors,%nd
the branch lengths for L3z and L33 become 1 and 5.5, respectively. Thus, the branch
length L,z is estimated to be 5.5 — 7, = 2. These are again the correct values %ﬁg.
3[c]). In cycle 4, [1-2-3, 4] is identified as a pair of neighbors (fig. 3{d]), and in cycle
5 [1-2-3-4, 5-6] is chosen. The choice of the latter pair of neighbors automaticgally ,
leads to the identification of the final pair of neighbors [7, 8]. The S; for [1-2-3-4, 5-
6] is identical with that for [7, 8]. The topology of the reconstructed tree is therefore
given by figure 3(e), which is identical with that of figure 1. The branch lengths%hp
(=L,z=2)and Lgr(=Lgz = 6) are obtained by using equations (6a) and (6b), whepeas
Lprbecomes L 2.3.4.5.6z — D2.3ays-6/2 = 2 (fig. 3[f]). It is thus clear that all brazach
lengths as well as the topology are correctly reconstructed in the present case. 3

Criterion for the Minimum-Evolution Tree

In this section, we first show that the algorithm developed above produces the
correct tree for a purely additive tree. We shall then discuss a criterion for the minimum-
evolution tree.
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Consider a tree for N (=4) OTUs and assume that OTUs 1 and 2 are a pair of
true neighbors. For an additive tree, we obviously have the following inequalities.

D12+D"j<D|,‘+D2j, D12+Dij<DU+D2,‘, (7)

where i and j are any OTUs (3 < i < j < N). Under this condition, it can be shown
that S, is smaller than .Sy, or Sy; (3 <j < N). To show this, let us consider the pairéjng
of OTUs 1 and 3 as an example. The total length of the tree with this pairing cansbe
written as

S ———I——ZD L %(D +D )+~MD a)
13 N_2i<j T N= 2)k , 1k 3k 2AN=2) 13
k#3

In a similar manner,

1 1 N—4
= SD,- D Dy.
Si2 N_zzj T 2)k23(D1k+ 2k)+2(N_2) 12
Hence,
N-3 1 v
Si3—S12= AN 2)(D13 D12)+2(_N_—2)'k§4(D2k—D3k)

\O
~

1
T2N-2),%,

2 [(D13+ Dyx) — (D12 + Dig)).
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If we note the inequalities in formula (7), D, + Dy < Dy + Dy (4 < k < &)).
Therefore, S;3 > S;,. The same inequality also holds for any other pairs involving
OTUs 1 and 2: Sy; > Sz and Sy > S12 (3 < j < N). Furthermore, in our algorithm
we search for a pair of OTUs that shows the smallest S;. Therefore, if OTUs 1! anﬁ 2
are such a pair, S;, must be smallest among all S;’s. However, this is not what<7We
need in our algorithm. Our algorithm requires that if S|, is smallest among all % S,
OTUs 1 and 2 are neighbors. Proof of this theorem is somewhat complicated, but it
can be done (see Appendix C). Therefore, our algorithm produces the correct unroc@ed
tree for a purely additive tree. S

Of course, actual data usually involve backward and parallel substitutionsgso
that there is no guarantee that the correct topology is obtained by the NJ methdd.
However, computer simulations, which will be discussed below, have shown tli\at
compared with other methods, the NJ method is efficient in obtaining the corgpct
topology.

In constructing the topology of a tree, Sattath and Tversky (1977) and Fltch
(1981) used the inequalities in formula (7). Their method is to count the numLBer
(neighborliness) of cases satisfying formula (7) for each pair of OTUSs and choose the
pair showing the largest number as neighbors. Since Sattath and Tversky’s (1977)
algorithm uses equation (5) for making the new distance matrix, their method is
expected to give a result similar to ours. Fitch (1981) uses interior-distance matrices
for constructing the topology, so that his algorithm is different from ours. Nevertheless,
these three methods as well as some other tree-making methods require the same
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condition for obtaining the correct topology for the case of four OTUs, as
shown below.

Let us consider the tree of four OTUs given in figure 4. Saitou and Nei (1986)
showed that the condition for obtaining the correct unrooted tree for four OTUs is
the same for the DW method (Farris 1972), the MF methods (Tateno et al. 1982;
Faith 1985), and the transformed-distance method (Farris 1977; Klotz and Blanken
1981; Li 1981). It is given by

D3+ D33 < D3+ Doy, D3+ D34 < D4+ Da3.

~_~
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The same condition is required for the NJ method. When N = 4, equation (4) redu
to

S12=(D13+ D14+ D3+ D2)/4 + (D12 + D34)/2.
We also have S35 = S),, and

S13 =824 =(D12+ D14+ Dy3+ D34)/4 +(Dy3+ D24)/2,

—~
p—
~

S14=823=(D12+ D3+ D2+ D34)/4+ (D14 + Dy3)/2.

~_
—
—

In figure 4, [1, 2] and [3, 4] are pairs of neighbors. Thus S;, < Sj3 and S, < S, 2is
the necessary condition to obtain the correct topology. From this condition and eqda-
tions (11), we obtain formula (10). The inequalities in formula (10) are also the cezn-
dition required for neighborliness methods (Sattath and Tversky 1977; Fitch 1981 Eto
produce the correct topology. The condition posited by formula (10) is similar to “gle
four-point condition” (Buneman 1971) or “relaxed additivity” (Fitch 1981). =
The condition posited by formula (10) may be used as a criterion for the mi§i-
mum-evolution tree (minimality test). If this condition holds for any group of fGur
OTUs of a reconstructed tree, the tree is likely to be the minimum-length tree (Fitch
1981). Furthermore, this condition can be extended to test each interior branch &a
tree. Let us consider the interior branch CD of the tree in figure 1 as an example3 If

this branch really exists, the following inequalities should be satisfied. Z
@]

D234+ Dis.6y7-8y < D(1:2-3y5-6) T Dar.8), (§2)
D334+ Dis.6y7-8y < D(1:2-3)7-8) T Dags.6)» %

where D(1.2.34 = (D14 + Das + D34)/3, Dis.exr-8) = (Ds7 + De7 + Dsg + Deg)/4, andsso
on. Numerical computation shows that this is indeed the case. If we conduct a simifar
test for the five remaining interior branches of the tree in figure 1, the existence of?all
branches is justified.

€z0z Atenug

2 3

FIG. 4.—An unrooted tree for four OTUs
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An example: applying his neighborliness method to Case’s (1978) data on im-
munological distance, Fitch (1981) constructed a phylogenetic tree of nine frog (Rana)
species. If we use the NJ method, a slightly different tree is obtained (fig. 5); that is,
while the closest species to the R. aurora-R. boylii group is R. cascadae in Fitch’s tree,
it is R. muscosa in our tree. The latter topology is also obtained by the ST method.
We can apply the minimality test in formula (10) to see which topology is more
reasonable. The test can be done if we consider the four OTU groups, i.e., the aurora
and boylii group, muscosa, cascadae, and the remaining five species. Apphcatlongof
the test supports the topology presented in figure 5 rather than Fitch’s. Comparisgn
of the sum of branch lengths between the two topologies also supports the topol@y
in figure 5. (This particular comparison was conducted under the condition that 1l
branch lengths are nonnegative and that each estimated [patristic] distance is greafer
than or equal to the corresponding observed distance, because Fitch’s tree was con-
structed under this condition.) We also note that the branch lengths estimated by the
NJ method are close to those estimated by a linear programming method ($ee
Fitch 1981).

no-oIWwape

Efficiency of the NJ Method in Recovering the Correct Topology

Since the exact evolutionary pathways of extant organisms are usually unknovgn,
it is not suitable to use real data for examining the efficiency of a tree-making methad.
Therefore, we employed a computer simulation, comparing reconstructed trees with
their model trees. In this study we compared the efficiency of the NJ method with
that of five other methods: UPGMA (Sokal and Sneath 1963), the DW method, fﬁe
ST method, Li’s (LI; 1981) method, and the MF method. The LI method is a tra@a
formed distance method (see Nei [1987, pp. 302-305] for the explanation of the trais-
formed distance method), and the MF method is a modification of Farris’s (19’§2)
method. All these methods produce a unique parsimonious tree from distance data.
We considered both cases of constant and varying (expected) rates of nucleotide s
stitution.

3 R. aurora

R. boylii

R. muscosa

R. cascadae
R. temporaria

24.0 R. pretiosa

ez0z Aenuga4 Lo uo Jasn oyep| jo Ayislenlun Aq 7@6
1

R. catesbeiana

R. pipiens

R. tarahumarae

FIG. 5.—Tree obtained by the NJ method from immunological distance data of Case (1978)
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Constant Rate of Nucleotide Substitution

To examine the effect of topological differences, we considered two different
model trees (trees [A] and [B] of fig. 6), both of which consist of eight OTUs. Model
tree (A) has two neighboring pairs ([1, 2] and [7, 8]), whereas model tree (B) has four
(1, 21, [3, 4], [5, 6], and [7, 8]). To make the effect of branch lengths comparable for
the two model trees, we assumed that the interior branch length (a) is the same for
both trees. We also tried to make the average (D) of all pairwise distances (Dy’s) neaéiy
the same for the two trees. Hence, we set ¢ = b + 3a or ¢ =~ b + 3a, where a, b, and
¢ are the expected branch lengths (expected numbers of nucleotide substitutions ﬁ’g:r
site) given in figure 6. In a computer simulation conducted with the same topol(fgy
as that of model tree (A), Tateno et al. (1982) set a = b. In the present study, we get
a < b in model tree (A) so that the differences between different D’s were relativgly
smaller. This makes it more difficult to reconstruct the correct tree than in the cRse
of Tateno et al.’s simulation. m

The scheme of the computer simulation used is as follows: The ancestral sequelﬁ’ce
of a given number of nucleotides was generated by using pseudorandom numb&s
and this sequence was assumed to evolve according to the predetermined branchmg
pattern of the model tree. Random nucleotide substitutions were introduced in eii:h
branch of the tree following a Poisson distribution with the mean equal to the expec%d
branch length. Although the expected rate of nucleotide substitution was the same for
all lineages, the actual number of substitutions varied considerably with lineage becatise
of stochastic errors. After the nucleotide sequences for eight OTUs were producéd,
nucleotide differences were counted for all pairs of sequences, and the evolutionéiry
distance (Jukes and Cantor 1969) was computed for each pair of OTUs. With the §ix
tree-making methods mentioned above, tree topologies were determined from déta
either on the proportion of different nucleotides between the two sequences compat@d
(p) or on the Jukes-Cantor distance (d). Note that p is a metric, whereas d is not. TSe
entire process of simulation was repeated 100 times. A

Two measures are used to quantify the efficiency of a tree-making methodén
recovering the topology of the model tree. One is the proportion (P,) of correct trees
(topologies) obtained. The other is the average distortion index (Tateno et al. 19%_2)
based on Robinson and Foulds’ (1981) metric on tree comparison. The distorti§n
index (dr) is twice the number of branch interchanges required for a reconstructed

tree to be converted to the true tree. Here, we consider only unrooted trees. ‘;:’
g E 1 a— 1 -
2 050 2 g
a+b 5 C 3 5
2a+b c N
4 4 S
3 a+ b 5 C 5 w

40+b ¢ c 6

50:’; 7 05dq C 7

(A) (B)

FIG. 6.—Model trees (A) and (B) under the assumption of constant rate of nucleotide substitution
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Table 3
P, and d; (in parentheses) for Six Tree-making Methods for
the Case of a = 0.01, b = 0.04, and ¢ = 0.07

MODEL TREE A* MODEL TREE B?*
METHOD 300 600 900 300 600 900
)
UPGMA e
.. 14 (3.18) 36 (1.72) 58 (0.98) 14 (4.54) 36 (2.74) 51 (1.@3)
e ....... 15 (3.18) 34(1.74) 56 (1.04) 13 (4.56) 35(2.70) 52 (1.60)
<
MF: -
D ........ 39 (1.76) 73 (0.58) 95 (0.10) 24 (2.86) 51 (1.30) 67 (O.Zg)
d........ 38 (1.92) 72 (0.62) 95 (0.10) 19 (2.94) 48 (1.42) 64 (0.86)
DW:. =i
P ... 42 (1.70) 75 (0.54) 96 (0.08) 26 (2.36) 55(1.12) 79 (0.?&'8)
d........ 37(1.74) 74 (0.58) 95 (0.10) 28 (2.36) 58 (1.06) 79 (0.49)
Q.
LL o
D 41 (1.58) 71 (0.70) 94 (0.12) 40 (2.04) 70 (0.78) 90 (0.%2)
d........ 36 (1.84) 66 (0.82) 89 (0.24) 39 (2.10) 70 (0.78) 90 (0._%)
ST: '8
)/, 48 (1.26) 75 (0.54) 97 (0.06) 45 (1.66) 75 (0.62) 91 (0.22)
d........ 44 (1.48) 70 (0.62) 96 (0.08) 43 (1.62) 74 (0.64) 91 (0.@)
NIJ: ;_%
D ... 48 (1.36) 76 (0.54) 97 (0.06) 46 (1.64) 76 (0.60) 91 (0.3_))
d........ 41 (1.60) 70 (0.62) 96 (0.08) 45 (1.62) 75 (0.60) 91 (0.;1;))
~
* As shown in fig. 6. 3
® Trees reconstructed from data on the proportion of different nucleotides between the sequences compared. %
¢ Trees reconstructed from the Jukes-Cantor distance. Q
b
&
N

Table 3 shows the results for the case of a = 0.01, b = 0.04, and ¢ = 0.07, where
the D for all OTUs is 0.16 for both model trees. It is clear that in all tree-making
methods P, increases as the number of nucleotides used (n) increases, whereas EI’T
decreases. This is of course due to the fact that the sampling error of the distarfce
between a pair of OTUSs decreases as » increases. The P. and dr values obtained by
using p and 4 are nearly the same, though p tends to show a better performanceg’,m
recovering the correct topology, particularly for model tree (A). 0

In the case of model tree (A) UPGMA shows the poorest performance in terms
of both criterion P, and criterion d7. Even when 900 nucleotides are used, the pgo—
portion of correct trees obtained is ~57%. The other five tree-making methods shaw
a much better performance than UPGMA, and when 900 nucleotides are used, Pglis
~95%. Interestingly, all of them show a similar performance for all #n’s examined.dn
the case of model tree (B), UPGMA again shows a poorer performance than any other
method. In this case, however, all the five methods do not show the same performange.
Rather, the NJ and the ST methods are better than the LI method, which is in tirn
better than the DW and MF methods.

The results for the case of a = 0.02, » = 0.13, and ¢ = 0.19 are presented in table
4. The D for this case is 0.42 for model tree (A) and 0.43 for model tree (B). For
model tree (A), UPGMA shows an improved performance compared with the case in
table 3. However, all other methods show a small value of P, and a larger value of d
than those in table 3. This is apparently due to the fact that there are more backward
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Table 4
P, and dr (in parentheses) for Six Tree-making Methods for
the Case of a = 0.02, b = 0.13, and ¢ = 0.19

MODEL TREE A? MobDEL TREE B?*
METHOD 300 600 900 300 600 900
)
UPGMA g
P ... 15 (3.24) 50 (1.32) 62 (0.82) 11 (4.62) 28 (2.94) 54 (1.@)
d........ 15 (3.28) 49 (1.34) 61(0.84) 13 (4.50) 30 (2.90) 57 (1.%)
MF: 9,.
P 34 (2.38) 65 (0.82) 79 (0.44) 10 (4.00) 25(2.22) 43 (1.48)
d........ 30 (2.70) 62 (1.02) 76 (0.54) 9(4.12) 22 (2.28) 43 (1.48)
Dw: g
P 27 (2.40) 66 (0.96) 77 (0.54) 17 (3.54) 39 (1.92) 54 (l.@)
d........ 27 (2.52) 62 (1.02) 70 (0.70) 18 (3.54) 36 (1.98) 53 (1.1%)
Q.
LI o
P 23 (2.60) 44 (1.34) 67 (0.80) 25(3.54) 50 (1.52) 81 (0.%)
d........ 20 (2.82) 33(1.78) 55(1.12) 20 (3.70) 49 (1.54) 81 (0.%))
ST: '8
pP........ 35 (2.06) 67 (0.74) 82 (0.38) 34 (2.40) 60 (1.08) 82 (0.38)
d........ 26 (2.42) 61 (0.96) 78 (0.48) 31 (2.50) 58 (1.16) 83 (0.@)
NIJ: %
D ... 36 (2.14) 64 (0.88) 83 (0.34) 34 (2.32) 63 (0.96) 82 (0.2%)
d........ 26 (2.38) 58 (1.08) 78 (0.48) 33 (2.56) 61 (1.04) 83 (0.3E)
N
NOTE.——Notations are as in table 3. E
* As shown in fig. 6. @
o
N
(]

and parallel substitutions involved in this case. Nevertheless, UPGMA still showga
poorer performance than all other methods except LI, which is less efficient than
UPGMA for the case of n = 600. The NJ, ST, DW, and MF methods give s1m1&ar
results, though the first two methods give slightly better results than the others fog n
= 900. We also note that p gives a better result than d for all methods but UPGMA,
for which both p and d give essentially the same results. In the case of model tree (E),
the P, values for UPGMA are not necessarily higher than those in table 3, but they
are higher than those for the MF method for the same case. The DW method aBo
shows a rather poor performance, though it is slightly better than the UPGMA a@d
MF methods. The NJ and ST methods again show the best performance, but theirch '
values are slightly lower than those for the case of table 3. The LI method is quﬁe
good but not as good as the NJ and ST methods. Interestingly, p and d give s1mﬁ;ar
results for all methods, unlike the case of model tree (A). g
Table 5 shows the results for the case of a = 0.03, b = 0.34, ¢ = 0.42, andzD
= 0.92 for tree (A) and 0.91 for tree (B). Compared with the two previous cases, the
frequency of backward and parallel substitutions is expected to be much higher because
of the larger D;; values used. Therefore, we used n = 500, 1,000, and 2,000 for this
case. Yet, the P, values are smaller than those for the two previous cases. The relative
merits of different tree-making methods for the case of model tree (A) are more or
less the same as those for the case of table 4, except that the LI method tends to show
a poorer performance than UPGMA. When n = 500, the MF and DW methods show
a slightly higher value of P, than the ST and NJ methods, but for the other two n
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Table 5

P, and dr (in parentheses) for Six Tree-making Methods for

the Case of a = 0.03, » = 0.34, and ¢ = 0.42

MODEL TREE A?

MODEL TREE B*

METHOD 500 1,000 2,000 500 1,000 2,000
W)
UPGMA g
D........ 9 (3.78) 27 (2.10) 62 (0.86) 10 (5.20) 18 (3.76) 54 (1.%2)
d........ 9 (3.78) 27 (2.10) 62 (0.88) 11(5.30) 18 (3.74) 55 (1.26)
MF: g
D........ 15 (4.02) 41 (1.82) 62 (0.92) 3(5.68) 17 (3.64) 28 (2.30)
d........ 13 (4.42) 34 (2.14) 55(1.14) 3(5.72) 13 (3.80) 26 (2.48)
DW: =
Do 16 (3.78) 46 (1.54) 63 (0.82) 4(5.42) 18 (3.28) 41 (1..8\.2)
d........ 15 (4.22) 40 (1.96) 58 (0.98) 5(5.50) 18 (3.48) 35 (1.§2)
LI 2
P 3(4.26) 37 (2.00) 53 (1.18) 15 (4.48) 28 (2.98) 70 (O.??@)
d........ 3(4.84) 25 (2.60) 39 (1.66) 12 (4.72) 27 (3.06) 66 (1.62)
ST: 2
D ........ 10 (3.56) 44 (1.62) 68 (0.76) 13 (4.00) 36 (2.34) 74 (OEZ)
d........ 6 (4.06) 40 (1.82) 56 (1.04) 10 (4.32) 34 (2.34) 71 (0.22)
NI . 3
P ... 11 (3.70) 44 (1.68) 67 (0.80) 13 (4.46) 34 (2.38) 75 (0.&2)
d...... .. 5(4.24) 38 (2.00) 57 (1.06) 14 (4.44) 32(2.42) 73 (O.Z{_Z)
NoOTE.—Notations are as in table 3. g
® As shown in fig. 6. §
S
@

values they show more or less the same performance. Data on p again give a beffer
result for the five methods (except for UPGMA) than do those on d. In the casegbf
model tree (B), the MF method shows a poorer performance than UPGMA, whwh
now gives results similar to the DW method. However, the P, values for the LI, &T
and NJ methods are substantially higher than those for UPGMA and the DW methqgis.

Although the above computer simulations were done for a limited numberZof
cases, the results obtained may be summarized as follows: (1) The efficiency of theiNJ
method in recovering the true unrooted tree is virtually the same as that of the ST
method. (2) The NJ and ST methods perform well for both model tree (A) and moael
tree (B), whereas the DW and MF methods are good only for tree (A) and the?LI
method is good only for tree (B). For both model trees, UPGMA is rather poorom
recovering the true unrooted tree. (3) In the case of model tree (A), data on p tencf—to
give slightly better results than those on d, except for UPGMA. For model tree (B),
however, both p and d give similar results.

Conclusion (3) above indicates that data on p are better than those on d %’or
constructing a topology, particularly when the OTUs used form a topology s1m11axgo
model tree (A). However, since p is not a linear function of nucleotide substitutioss,
it does not provide good estimates of branch lengths unless the p values are very small.
It is therefore advised that once a topology is obtained by using data on p, branch
lengths should be estimated by using data on d.

Tateno et al. (1982) and Sourdis and Krimbas (1987) conducted similar computer-
simulation studies, comparing the efficiency of the UPGMA and the DW and MF
methods as well as Fitch and Margoliash’s (1967) method for model tree (A). Although
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the parameter values used in their simulations are different from ours, their conclusions
with respect to unrooted trees are more or less the same as ours.

Varying Rate of Nucleotide Substitution

When the rate of nucleotide substitution varies from evolutionary lineage to
evolutionary lineage, the probability of obtaining the correct tree is expected to be
lower than that for the case of rate constancy. To see the effect of this factor on Ec,
we conducted another computer simulation.

In this simulation, we used the two model trees ([A] and [B]) given in ﬁgureQ7
The topologies of trees (A) and (B) in fig. 7 are identical, respectively, with those:of
trees (A) and (B) in figure 6. The value given for each branch of these trees is ﬂhe
expected branch length (the expected number of nucleotide substitutions per site). I%
expected branch lengths for tree (A) in figure 7 were obtained under the assumann
that b in figure 6(A) varies according to the gamma distribution with mean 0.04 agd
variance 0.08 (see Tateno et al. 1982 for the justification of this procedure). Simila
the expected branch lengths for tree (B) in figure 7 were obtained under the assumption
that ¢ in figure 6(B) varies according to the gamma distribution with mean 0.07 a@d
variance 0.14. The value of a and the expectation of D over all branches were 091
and 0.016, respectively. Therefore, the simulations for model trees (A) and (B) c§r-
respond, respectively, to those for trees (A) and (B) in table 3. Once the expected
length of a particular branch was determined, the actual number of nucleotide s@-
stitutions for that branch was obtained by using the Poisson distribution. The eight
nucleotide sequences thus obtained were used for the construction of phylogenefic
trees. This process was repeated 100 times. In this simulation, only the case of 680
nucleotides was examined, and the trees were constructed by using the p values. =

The results of this simulation are presented in table 6. One striking featureiin
this simulation is that the performance of UPGMA was very poor and that in noﬁe
of the 100 replications was the correct tree obtained for both model tree (A) and mogel
tree (B). This is in sharp contrast to the case of rate constancy (table 3), in which the
P_for UPGMA is 36% when n = 600. The effect of varying rate on the P, value is 1&ss
noticeable for the other tree-making methods. The P, values for the LI method gre
somewhat lower than those for the case of constant rate (see tables 3 and 6). In the
remaining four methods, the P, values are virtually the same for both cases of constgnt

eo|u
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(A) (B)

FiG. 7.—Maodel trees (A) and (B) under the assumption of varying rate of nucleotide substitution
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Table 6
P, and d; (in parentheses) for Six Tree-making Methods for
the Case of Varying Rate of Nucleotide Substitution

Method Model Tree A* Model Tree B*
UPGMA:p ... 0 (8.06) 0(9.74)
MFE:p ........ 77 (0.50) 57 (1.46)
DW:p ....... 69 (0.72) 59 (1.26)
LLp ......... 46 (1.30) 45 (1.68)
ST:p ........ 77 (0.50) 69 (0.82)
Nlp ........ 75 (0.56) 72 (0.78)

NoOTE.—Notations are as in table 3.
® As shown in fig. 7.

eoe//:sdny WoJ) peapeojuMo(]

and varying rates of nucleotide substitution. Therefore, the conclusions obtalne(ﬁfor
the case of constant rate also apply to the case of varying rate as far as the NJ, %T
MF, and DW methods are concerned.

Discussion

/eqLU/Luoo'dn

Unlike the standard algorithm for minimum-evolution trees, the NJ methiod
minimizes the sum of branch lengths at each stage of clustering of OTUs starting With
a starlike tree. Therefore, the final tree produced may not be the minimum-evolu@n
tree among all possible trees. However, it should be noted that the real minimgm-
evolution tree is not necessarily the true tree. Saitou and Nei (1986) have shown that
the minimum-evolution or maximum-parsimony tree often has an erroneous topo@gy
and that the maximum-parsimony method of tree making is not always the bes?é in
recovering the true topology. It seems to us that the relative efficiencies of different
tree-making methods should eventually be evaluated by computer simulation. Qur
computer simulation has shown that the NJ method is quite efficient compared sgnh
other tree-making methods that produce a single parsimonious tree.

We have shown that the estimates of branch lengths of the tree obtained byg,he
NJ method are least-squares estimates determined at each stage of clustering of OTs.
This does not mean that these estimates are identical with those that are obtainable
by the least-squares method for all branches of the final tree topology. Neveﬂhe@ss,
this property gives some assurance about the reliability of the estimates of bra§ch
lengths, Particularly when the number of OTUs is four or less, the branch lengthsare
exactly least-squares estimates, as is clear from equation (A4) below. o

Our procedure of estimating branch lengths is essentially the same as thag of
Fitch and Margoliash (1967). Some estimates of branch lengths may therefore becéme
negative. If one is reluctant to accept negative estimates, there are two ways to ehmlﬁte
them. One is to impose the condition that all branches be positive and then to reestiniate
the branch lengths. The other is to assume that negative estimates are due to sampling
error and that the real values are zero rather than negative. Under this assumption,
one may simply convert all negative estimates to zero. The second method is justified
if we note that the absolute values of negative estimates are usually very small.

A computer program for constructing a tree by using the NJ method is available
from the authors on request.
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APPENDIX A
Least-Squares Estimation of the Branch Lengths

MO

Let us consider the tree of figure 2(b). If we use matrix notation, the problem is
to obtain the least-squares solution of the linear equation Ax = d, where x is a colungl
vector of N + 1 branch lengths (x [Lix, Lax, Lsy, Lay, ..., Lyy, Lxy]), d is2a
column vector of N(N — 1)/2 pairwise distances (d’ = [D,,, D,;, Dy, Dis, ... D5,
D23, Dy, . D2Nr . D(N l)N]) and A is an [N(N - 1)/2] X (N+ 1) matrix. Tl%e
element of the ith row and the jth column of matrix A is given by

1 |:if the ith distance includes the jth branch

a;=
0

otherwise

An example of A for N = 5 is shown below:

O= OO —OO0O =0
—_0 = O = OO =00
—_—_ O~ OO0 =000

OO O st m m =m = O

S OO = = = OO0 —

COOOOOO = = m —

The least-squares solution of the equation Ax = d is given by solving the equau
A'Ax = Ald. It becomes x; = B™'A'd, where B = A’A. The general expressmns
symmetric matrices B and B™! are

yepj jo E @'Uﬂ Ad £996201/90%/¥/¥/o101HE/8qW /W00 dno"olwapese//:sdpy

CN-1 1 1 e N-2 3
1 N—-1 1 o 1 N-2 e
pg-| ! 1 N7l e 2, (AD)
. . . 3
1 1 1 -+ N-1 2 g
| N-2 N-2 2 ««« 2 2N-2)_ e
<
Ca b 0 0 O 0 e S
b a 0 0 O 0 e ©

0 0 ¢c d d d f
B'=| 0 0 d ¢ d d f|, (A2)

(=]
(=]

oy v

\&‘...
S~ e
~ 0

r
N
Q
SR e
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where a = N/J4(N — 2), b = (N — 4)/4(N — 2), c = 2N? — 11N + 16)/2(N — 2)(N
—3),d=—(N—4)/2(N—2XN—-3),e=—Y, f=—1/2(N— 2N —3),and g = (N
— 1)/4(N — 3). Therefore, x; becomes

1
Lix= D12+2(N 2)( -Q), (A3a)
1 5
Lox=5Dr Z(N 5@ P (Agsb)
1 1 N—4 ) =
L,-Y—N_zUi—(N_z)z(P-l-Q)—m f (B=<i<N) (%30)
i [
Lyxy= 2(N 2)(1" 0)— D12 mlf, (Pgd)
3

where P = ZX 3 Dy, 0 = ZIL3 Dy, U; = 351D (i = 3), and V = 25 < Dy Note
that equations (A3a) and (A3b) are equivalent to equatlons (6a) and (6b), respectlwly
Thus, the sum of branch lengths (S;,) for the topology in which OTUs 1 and 2?re
clustered becomes

N 1

S12=le+L2)(+i§3L,‘y+ny 2(N 2)(P+Q)+ D12+ 2V

ESN
-

Equation (A4) is equivalent to equation (4).

APPENDIX B
Branch Lengths for a Purely Additive Tree

A9 ¥996201/90v/v/v/oMBe/eqW/

Let us consider the tree given in figure 1. If the tree is purely additive, D, =§1 A
+ L4 and Dy; — Dy; = Ly — Ly, (3 < j < N). Substituting these equations fhto
equation (6a), we have

1 1
Lix= E(Lu +L24) +m[(N_ 2 L1a—Laa)l =Ly

Jesn @em Jo Ayis!
n
N’

The estimated branch length (L, ) is identical with the true one (L, ). The same thing
can be proven for L,y. Therefore, the node X is identical with the node 4 in the free
in figure 1. @

If OTUs 1 and 2 are neighbors, they are combined into a single OTU, (EZ)
Suppose that OTUs (1-2) and 3 are a new pair of neighbors. The estimates of branch
lengths for AB and 3B can then be obtained correctly, as shown below. Since the gee
is purely additive, o

D(123=(D13+ D23)/2=[(Lia+ La3)+(Loy+ L43)}/2=D5/2+(D13—Li4) (Aba)
and

Dy1.2)j~ D3j=D13/2+ (Dyj—L14)—(L3g+Lg))=D13/2+ Lyg— L3g (j=4). (A6b)
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Substituting these into equation (6a), we have

1

1 1 1
Lyayx=zDg.as+ Z [Di-2yj— D3j1==Dia+=(Dy3—Ly,4)
2 4 2

2IN-3),C (A7)
1

+ N—-3)D2/2+ Lg—Lig)l==D2+ Lyp.
2N—3) [ Y D12/ 48— Lag)] 5Dt Las .
o
2
Since L,x = Luayx — Di12/2, Lyx = L4p. On the other hand, as before, it easily can be
shown that L;y = L;g. Therefore, X = B. S
The above argument can be applied to any situation if the additivity of bran(,%
lengths is maintained. g
APPENDIX C %
The Smallest S; Gives the True Neighbors §

In the followmg, we show that for a purely additive tree OTUs 1 and 2 are trLE
neighbors when S, is smallest among all S;’s. We first show this for the case of fmg
OTUs and then use the principle of induction to prove that it is generally true.

Using the results presented in the Criterion for the Minimum-Evolution Trée
section, we can state that the condition for S|, to be smallest among the six S;/’s f6r
four OTUs is

[o)e]}

D3+ D3y <Di3+ Dy
and (A
D>+ D3y <Dyy+ Das.

90v/v/v/&QMe/aqu/w

Our task is to show that if S;, is smallest, OTUs 1 and 2 are true neighbors. In the
case of four OTUs, OTUs 3 and 4 are also neighbors if OTUs 1 and 2 are neighbois
(see fig. 4). We prove our assertion by showing that when .S}, is smallest, only OT

1 and 2 (and OTUs 3 and 4) are neighbors. To prove this, we first assume that OTUs
1 and 3 (and 2 and 4) are neighbors. We then should have

D3+ Dy = (b + b3) + (b, + by),

D12+D34=(b,+b2+a)+(b3+b4+a),

oyep| Jo AysieAlun

from formula (7), in which b; is the branch length between the ith OTU and its nearest
interior node and a is the length between two interior nodes. Since a > 0, (Dy; + Dzaz)
should be smaller than (D;; + Ds,). However, this contradicts formula (A8). Thereforg,
OTUs 1 and 3 cannot be neighbors. Similarly, it can be shown that OTUs 1 and4
are not neighbors. Therefore, only OTUs 1 and 2 (and OTUs 3 and 4) are the nleghboﬁs1

For the cases of more than four OTUs, we use the induction principle. Assumirig
that OTUs 1 and 2 are true neighbors when Sj, is smallest among all S;’s for the cae
of N — 1 OTUs, we prove that the same rule applies in the case of N OTUs. N

Suppose that S, is smallest among all S;’s when there are N OTUs. If we ignote
the Nth OTU, OTUs 1 and 2 are, by assumption, neighbors for the remaining N — 1
OTUs. Therefore, there are three possible pairs of neighbors when the Nth OTU is
added: OTUs 1 and 2, OTUs 1 and N, and OTUs 2 and N. From equation (9), we
have

N-1
Sin=S12= 2 [(Din+ Do) — D12+ Dm))/[2(N—-2)].

k=3
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[

FiG. A1.—A possible relationship for four OTUs (1, 2, N, and k). a, b,, b,, and c are branch len

sdny u%,u papeojumo(

If OTUs 1 and N are neighbors, Dyy = b, + by, Dy = b, + ¢, D1 = b, + b, + a, and
Dy = by + a + c (see fig. Al). Thus, (D\x + Dyi) — (D12 + Dyy) = —2a irrespediive
of k, and S1» — S|, should be negative. This is contradictory to our assumption ¢hat
S, is smallest. Therefore, OTUs ] and N are not neighbors. Similarly, it can be shewn
that OTUs 2 and N are not neighbors—and thus that OTUs 1 and 2 should begthe
neighbors. Since we know that our assertion is true for N = 4, it is true for @any
N (24).
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