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Almost all studies that estimate phylogenies from DNA sequence data under the maximum-likelihood (ML) criterion
employ an approximate approach. Most commonly, model parameters are estimated on some initial phylogenetic estimate
derived using a rapid method (neighbor-joining or parsimony). Parameters are then held constant during a tree search, and
ideally, the procedure is repeated until convergence is achieved. However, the effectiveness of this approximation has not
been formally assessed, in part because doing so requires computationally intensive, full-optimization analyses. Here, we
report both indirect and direct evaluations of the effectiveness of successive approximations. We obtained an indirect
evaluation by comparing the results of replicate runs on real data that use random trees to provide initial parameter esti-
mates. For six real data sets taken from the literature, all replicate iterative searches converged to the same joint estimates of
topology and model parameters, suggesting that the approximation is not starting-point dependent, as long as the heuristic
searches of tree space are rigorous. We conducted a more direct assessment using simulations in which we compared the
accuracy of phylogenies estimated using full optimization of all model parameters on each tree evaluated to the accuracy of
trees estimated via successive approximations. There is no significant difference between the accuracy of the approxima-
tion searches relative to full-optimization searches. Our results demonstrate that successive approximation is reliable and
provide reassurance that this much faster approach is safe to use for ML estimation of topology.

Introduction

The importance of incorporating information on the
process of nucleotide substitution into comparative analy-
ses of molecular sequences has been acknowledged since
the inception of the discipline (e.g., Jukes and Cantor
1969). The reason is well known; multiple substitutions
at a site obscure the historical pattern of nucleotide substi-
tutions. Because there are only four possible character states
for DNA sequence data, molecular systematists are unable
to reassess putative character homologies through the
detailed character examination that is available to morpho-
logical systematists. Thus, the accurate estimation of homo-
plasy induced by multiple substitutions is particularly
critical to molecular systematics studies and is usually
achieved through use of probabilistic models of nucleotide
substitution (see Felsenstein 2004 for a recent review). As
molecular systematists have begun to understand the influ-
ence of such processes as unequal nucleotide composition
(Felsenstein 1981), transformation bias (e.g., transition
bias; Kimura 1980), and among-site rate variation (e.g.,
Yang 1994) on phylogenetic analyses of DNA sequence
data, models describing the process of nucleotide substitu-
tion have become increasingly complex.

Nevertheless, a potential limitation is that maximum
likelihood (ML) estimates of substitution-model parameters
vary across tree topologies (e.g., Sullivan, Holsinger, and
Simon 1996), which usually is the ‘‘parameter’’ of greatest
interest. This realization implies that all model param-
eters (including the rate matrix, base frequencies, rate-
heterogeneity parameters, and branch lengths) must be
optimized for each topology examined during a tree search
(see e.g. Yang, Goldman, and Friday 1995). Thus, it is

theoretically possible to identify the combination of topol-
ogy, branch lengths, and parameters of the substitution
model that optimizes the likelihood.

In practice, however, the situation is somewhat differ-
ent. Because of both the computational burden of optimizing
model parameters on each tree and the astronomical number
of possible candidate trees for even a modest number of taxa,
simultaneous optimization of all model parameters for every
tree that is examined during a search is not practical for most
data sets. One strategy that has been widely used to circum-
vent this problem takes advantage of what has been learned
from studies of the nature of the variation in estimates of
model parameters across topologies (Yang 1994; Sullivan,
Holsinger, and Simon 1996; Swofford et al. 1996). The early
conclusion of Yang (1994), that estimates of model param-
eters were highly stable across topologies, now appears not
to be entirely true (Sullivan, Holsinger, and Simon 1996).
However, the nature of the dependence of parameter esti-
mates on topology is fairly well understood. Yang (1994)
suggested that accurate estimates of model parameters
may be obtained using any topology that is not ‘‘too wrong.’’
Sullivan, Holsinger, and Simon (1996) explored the nature
of variation in estimates of two parameters, the gamma dis-
tribution shape parameter and the ratio of transition rate to
transversion rate, across topologies more thoroughly. They
demonstrated that accurate estimates can be obtained by any
topology that maintains bipartitions of taxa that the data
strongly support (i.e., long internal branches). That is,
strongly biased estimates of model parameters are typically
obtained only when trees used to estimate these parameters
incorrectly break up long internal branches. This point can be
illustrated by comparing parameter estimates optimized on
100 random trees versus those optimized on the ML tree and
the 100 best-parsimony trees (fig. 1). The estimates from the
100 MP trees form a cloud around the estimates from the
optimum topology (fig. 1A), whereas the estimates derived
from 100 random trees exhibit much a larger range of
variation (fig. 1B).
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Based on these and similar observations, Sullivan,
Holsinger, and Simon (1996) suggested that parameters
should be estimated on topologies produced by initial
simple searches of tree space and Swofford et al. (1996)
proposed a search strategy explicitly based on a succes-
sive-approximations approach. The logic of this strategy
is as follows. First, a set of topologies that will provide rea-
sonable estimates of model parameters is identified through
an initial tree search conducted using an approximate
approach such as neighbor-joining or parsimony. This
set of initial topologies is then used to select a model, usu-
ally using some statistical evaluation of a set of candidates
using likelihood-ratio tests (e.g., Modeltest, Posada and
Crandall 1998) or some alternative (e.g., decision theory;
Minin et al. 2003). The process of model selection also pro-
vides initial estimates of the parameters of the selected
models, and a second tree search is conducted using like-
lihood as the optimality criterion with a fully defined model
of substitution (i.e., parameters of the substitution model are
fixed to the previously estimated values). If the ML tree is
not a subset of the trees found by the initial search, the new
tree should be used as the starting tree for a subsequent iter-
ation. Model parameters are then reoptimized on the new
tree, and a second search is conducted; the process contin-
ues until the same tree is found in two successive iterations.

Thus, any study that uses automated model-selection
procedures (e.g., Modeltest, Posada and Crandall 1998;
DT-ModSel, Minin et al. 2003) employs successive approx-
imation, even if it is an abbreviated version. Although
this approach has perhaps become the most widely used
strategy for estimating ML trees (although very few studies
iterate sufficiently), there are unanswered questions about
its behavior. Unlike many applications of successive
approximations in numerical optimization, it is not guaran-
teed either to converge to an optimal solution or to provide

an indication that convergence will not occur. Some satis-
faction that the procedure actually works would be derived
by an empirical demonstration that the iterative approach
consistently arrives at the same combination of substitu-
tion-model parameter values, branch lengths, and topology
as those obtained under full optimization on all trees exam-
ined during a tree search. Sullivan and Swofford (1997)
used the successive-approximations approach on a 16-
taxon data set containing mitochondrial DNA (mtDNA)
genomes of several mammalian orders (D’Erchia et al.
1996) and demonstrated that the method is able to escape
the long-branch attraction problems that plagued parsimony
analyses (and likelihood under equal rates models) of that
data set. This suggests that the approach may be relatively
insensitive to the initial topology used for estimating model
parameters. If such starting-point insensitivity applies gen-
erally, the iterative approach should provide a very useful
speedup for ML estimation of phylogeny. Here, we address
the performance of the iterative search strategy in two ways.
First, we address the issue indirectly by examining the
degree to which the approach is starting-point dependent
for several real data sets. We then use one of the data sets
to address the issue directly by conducting full, simultane-
ous-optimization runs, both on real data and on data simu-
lated using conditions estimated from the real data. These
analyses demonstrate that the successive-approximation
search strategy performs quite well and can be expected
to yield results identical to full-optimization searches in
most cases.

Data Sets

We examined several data sets in order to assess the
starting-point dependence of the successive-approxima-
tions approach. These are summarized in table 1 and were

FIG. 1.—The variation in estimates of parameters of the HKY1I1c model across topologies for the grass waxy data set (each line corresponds to the
parameter estimates for one tree). (A) Parameter estimates derived from the ML tree (bold black line) and from the 100 most parsimonious trees (colored
lines). (B) Parameter estimates derived from 100 random trees. The axes are scaled identically in both plots, with the minimum value for each parameter
on any tree at the center and the maximum value at the tip. There is substantial variation in parameter estimates across random topologies, but all the 100
MP trees provide quite similar estimates as does the ML tree.
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chosen to represent a range of divergence times, taxonomic
groups, genes, sizes, and sequence characteristics (as indi-
cated by best-fit model). Thus, we have included the Col-
lembola (Insecta) COII data set (mtDNA) of Frati et al.
(1997; this was one of the first studies to use the iterative
approach); a harvest mouse Cyt b data set (mtDNA) of
Sullivan, Arellano, and Rogers (2000); the vertebrate
combined 18S and 28S rRNA data (nuclear) of Mallatt
and Sullivan (1998); a grass waxy data of Mason-Gamer,
Weil, and Kellogg (1998); the mammalian mtDNA data of
D’Erchia et al. (1996); and a 22-taxon sigmodontine rodent
Cyt b data set (Rinehart et al. unpublished; GenBank acces-
sion number AY041185–AY041206) that has been used in
exploring novel model-selection methods (Minin et al.
2003; Abdo et al. 2005). This last data set is particularly in-
teresting because it has many suboptimal peaks across tree
space, and we therefore also conducted full-optimization
searches on it (see below).

Starting-Point Dependence

For each data set, iterative searches were conducted
with PAUP* (Swofford 1998), either using the model
selected by the original authors or a model that we chose
using DT-ModSel (Minin et al. 2003; Abdo et al. 2005).
In the initial runs, we used an MP tree as the tree from which
to derive initial estimates of model parameters. We then
conducted 104 replicate successive approximations per data
set. Each replicate used a different random tree to initiate
estimation of model parameters. A minimum of four and
a maximum of six iterations were needed to achieve con-
vergence to a single topology. (A perl script that automates
the successive approximations is available at http://www.
webpages.uidaho.edu/;jacks/DTModSel.html.) We exam-
ined three approaches for the heuristic searches that varied
in degree of rigor. For most of the analyses, we used
the moderately rigorous implementation (table 2) in which
heuristic searches involved construction of a starting tree by
stepwise addition of taxa in the order they were found in the
data matrix, followed by tree bisection-reconnection (TBR)
branch swapping. For the grass waxy data set and the sig-
modontine Cyt b data sets, we also used the more rigorous
strategy (table 2) in which heuristic searches were started
from 10 stepwise-addition trees obtained using random-
addition sequences, followed by TBR branch swapping.
In addition, we applied the very approximate method (table
2) in which we replaced construction of the stepwise-
addition starting trees with the tree that was estimated during

the immediately previous iteration. By avoiding the step-
wise addition prior to branch swapping in each iteration,
substantial time savings that are useful or even necessary
for the analysis of very large data sets may be achieved.
However, not recomputing the starting tree after parameter
reoptimization may increase susceptibility to entrapment in
local nonglobal optima. In order to address this possibility,
we reran the iterative searches on the grass waxy data using
this third more approximate approach.

Somewhat surprisingly even to us, for each of the six
data sets, all the replicate iterative searches converged to the
same topology; there appears to be no starting-point
dependence for these data sets (fig. 2). Furthermore, in each
of these data sets, the chosen tree is identical to the one
found when the iteration is started from a better nonrandom
tree (e.g., neighbor-joining or parsimony). It is worth noting
that the polytomy in the harvest mouse Cyt b data set (fig.
2C) represents a zero-length internal branch (i.e., a hard
polytomy under the chosen model: HKY 1 I 1 C) rather
than different trees being found across replicates. This poly-
tomy was also found by Sullivan, Arellano, and Rogers
(2000) in their analysis using parsimony trees to initiate
searches. Also noteworthy is the result for the mammalian
mtDNA data set. Sullivan and Swofford (1997) demonstra-
ted that parsimony analyses of this data set is plagued by
long-branch attraction that is overcome by ML estimation
under an adequate model, even when the parsimony tree is
used to derive initial parameter estimates. Long-branch
attraction is also avoided by the iterative search strategy
when initial parameter estimates are derived using random
trees (although more iterations are usually required to
achieve convergence).

We did, however, see apparent starting-point depen-
dence in the grass waxy data set when we used a single
addition sequence to construct a stepwise-addition starting
tree during the starting-point dependence analyses. Each
analysis using stepwise-addition trees constructed with

Table 1
Data Sets Used to Assess Starting-Point Dependence of the Iterative Search Strategy

Taxonomic Group Gene Genome Length (bp) NTax Referencesa Model

Harvest mice Cyt b mtDNA 1,140 29 1 GTR1I1C
Sigmodontine rodents Cyt b mtDNA 720 22 2 HKI1I1C
Collembola (Insecta) COII mtDNA 456 19 3 HKY1C
Basal vertebrates rRNA Nucleus 4,155 9 4 GTR1I1C
Mammals Protein genes mtDNA 11,571 16 5 GTR1I1C
Grass waxy Nucleus 773 34 6 GTR1C

a References are as follows: 1, Sullivan, Arellano, and Rogers (2000); 2, Rinehart et al. (unpublished; GenBank accession

numbers AY041185–AY041206); 3, Frati et al. (1997); 4, Mallatt and Sullivan (1998); 5, D’Erchia et al. (1996) and Sullivan and

Swofford (1997); and 6, Mason-Gamer, Weil, and Kellogg (1998).

Table 2
Three Implementations of the Successive-Approximation
Strategies Employed Here

Rigor Starting Tree Addition Sequence Data Sets

High Stepwise addition Random: nreps 5 10 2 and 6
Moderate Stepwise addition As is All
Low Previous search N/A 6

N/A, not applicable.
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‘‘as is’’ addition sequence in the heuristic searches
converged to one of two different trees (not shown). This
data set exhibits tree islands; a parsimony search with 100
replicate addition sequences found three islands that con-
tain equally parsimonious trees, whereas there appear to be
two islands across the tree space under the likelihood
criterion. However, when the starting-point dependence
runs involved heuristic searches with 10 random addition
sequences, the failure to converge on a single topology
regardless of what tree was used to derive initial estimates
of model parameters disappeared (fig. 2E). Thus, just as for
any search strategy, multiple peaks across tree space can
trap the successive approximation if the heuristic searches
of tree space are not sufficiently rigorous. A similar pattern
occurred in the starting-point dependence replicates of the

sigmodontine Cyt b data set; when the heuristic searches
used a single (as is) addition sequence to construct step-
wise-addition trees, not all the replicates converged to
the same tree. However, the more rigorous analyses (10
random-addition sequences) showed 100% convergence
to the same tree, regardless of what tree was used to initiate
the successive searches.

When we used trees from previous searches for branch
swapping, the convergence properties of the successive
approximation deteriorated further. The results indicate
that, although most of the replicate starting-point depend-
ence runs converged to the same topology (the best estimate
of the ML tree), a few of the replicates with no stepwise-
addition/random-addition sequence became trapped in local
optima (fig. 3). The searches converged to one of six trees.

FIG. 2.—Results of starting-point dependence runs for six data sets. For each data set, the majority rule consensus tree is shown. The trees were
produced by 104 replicates of the successive-approximation strategy, each started with a different random topology to provide initial estimates of model
parameters. We have not been able to find starting-point dependence when the runs involve rigorous heuristic searches of tree space (i.e., stepwise-addition
starting trees with 10 random-addition sequences).
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This indicates that successive approximations should be run
with the most rigorous heuristic searches possible (i.e.,
stepwise-addition with random-addition sequences) for
each tree search in the iteration.

Therefore, the approximation appears to be robust
to starting points. Even when there are islands in tree
space, as in the grass waxy data set and sigmodontine Cyt
b data, the successive-approximations strategy can avoid be-
coming trapped on suboptimal peaks, as long as each of the
iterative heuristic searches is rigorous. Given the large
amount of variation in parameter estimates across random
trees (e.g., fig. 1), it is quite remarkable that successive-
approximation ML searches under such initially misspeci-
fied models exhibit such excellent convergence properties.

Simultaneous Optimization Versus Successive
Approximation

In the simultaneous-optimization search on the sigmo-
dontine Cyt b data, we used 10 random-addition sequence
replicates and constructed a starting trees stepwise addition
under the HKY 1 I 1C model (selected using DT-ModSel,
Minin et al. 2003). We conducted full TBR branch swap-

ping, and because likelihood settings in PAUP* were set
to estimate all parameters, all substitution-model parame-
ters and branch lengths were optimized on each tree exam-
ined, both during construction of starting trees and during
branch swapping. We limited TBR branch swapping to a
maximum of 10 trees (i.e., MAXTREES 5 10). We then
compared the simultaneous-optimization tree to that found
using the most rigorous implementation of the successive-
approximations strategy (table 2). The simultaneous-
optimization run took 776 h of CPU time on a 750-MHz
Sun Workstation and found a single ML tree, with a like-
lihood score of ln L 5 �6,448.7137. This is apparently a
difficult tree to find because TBR branch swapping was able
to find this tree in only one of the 10 random-addition
sequence replicates. In comparison, the most rigorous suc-
cessive-approximations approach was able to find the same
tree in just 92 min of CPU time on the same processor.

We also used this data set to establish conditions for
simulation of 1,000 replicate data sets. In this simulation,
our approach was to use a much more complex model to
generate the data than we used for analysis. This was
accomplished by applying a distinct GTR1I1C model
to each codon position in the real data, with branch lengths
for each codon position estimated independently. We then
simulated each codon position separately, using the codon-
position–specific GTR1I1C, and concatenated the
positions into single replicate. Simulated data were thus
generated with a nucleotide substitution model with 30
parameters (9 independent base frequencies, 15 transforma-
tions rates, 3 gamma shape parameters, and 3 invariable
sites parameters). We then selected a model for each rep-
licate using DT-ModSel (Minin et al. 2003) and ran both
successive-approximation and full-optimization searches
for each replicate data set. The simulations were run on
a 100-node Beowulf cluster housed at the University of
Idaho Bioinformatics Core Facility (each node has four
2.0-GHz Xeon processors). We evaluated the accuracy
of estimation using full optimization to that of estimation
using the approximate strategy using the distribution of
symmetric difference distances (SDDs; Robinson and
Foulds 1982) between the ML estimates and the true tree
that was used to simulate the data.

The two approaches are extremely similar in their
accuracy (fig. 4). The distribution of SDDs for the full opti-
mization had a mean of 5.66 (variance 5 12.69), and in
7.6% of replicates the full-optimization searches succeeded
in finding the true tree. For the successive approximations,
the distribution of SDDs had a mean of 5.59 (variance 5
12.32), and in 7.9% of the replicates the iterative searches
were able to identify the true tree. There is no evidence that
the distributions of SDDs are different (P 5 0.66). While
neither of these approaches succeeded frequently in identi-
fying precisely the true tree, this is an extremely difficult
phylogenetic problem, and phylogeny estimation is not hin-
dered by using successive approximation rather than full
optimization.

Conclusions

The analyses we present here are extremely encourag-
ing. The successive approach has become the default

FIG. 3.—The starting-point dependence runs on the grass waxy data
set with the least rigorous tree searches. During the heuristic searches, the
tree found in the previous iteration was used as a starting tree for TBR
branch swapping. There is starting-point dependence when this approxi-
mation is used.
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method for estimating phylogenies under likelihood, but
this is the first study that actually examines how well the
method approximates the exact approach of optimizing
all model parameters on all trees examined during a search
of tree space. Under a wide variety of conditions (repre-
sented by six disparate data sets), there appears to be no
starting-point dependence to successive approximation,
as long as the heuristic searches of tree space are sufficiently
rigorous. Even more encouraging, the comparison of accu-
racy of approximation versus full-optimization searches in
the simulation indicates that successive approximations are
equally accurate to the full-optimization searches. There are
several novel approaches to generating a good approxima-
tion to the ML tree, including PHYML (Guindon and
Gascuel 2003) and IQPNNI (Vinh and von Haeseler
2004). These are especially useful for large data sets,
and in many cases a good approximation will be sufficient.
However, if one is interested in statistical tests of phyloge-
netic hypotheses from a frequentist framework, a good esti-
mate of optimal trees (both constrained and unconstrained)
assumes much greater importance. While the results
reported here may not be universal because we simulated
sequences on a single tree shape (albeit a very difficult
one), they are sufficiently general to provide confidence that
use of the common approximate strategy will not unaccept-
ably compromise ML estimation of phylogeny.
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