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As maximum-likelihood approaches to the study of molecular systematics and evolution become both more flexible
and more accessible, the importance of understanding the statistical properties of parameter estimation becomes
critical. Using variation in NADH-2 sequences for 40 species of requiem sharks, we illustrate that estimates of rate
heterogeneity parameters are highly sensitive to taxon sampling when the data are best explained by a mixed-
distribution model of among-site rate variation (invariable sites plus gamma distribution [I1G]). Using computer
simulation, we attempt to differentiate two possible causes of this sensitivity. While the possibility of nonstationarity
cannot be definitively rejected, our results suggest that sampling error alone provides an adequate explanation for
the pattern of uncertainty observed in estimates from the real data. Furthermore, we illustrate that two parameters
estimated under the I1G model (the proportion of sites not free to change and the gamma distribution shape
parameter) are highly correlated and that the likelihood surface across the rate heterogeneity parameter space can
be poorly behaved when only a small number of sequences (taxa) are considered.

Introduction

The use of maximum-likelihood approaches in the
study of molecular evolution and phylogeny has in-
creased dramatically in recent years. This is attributable,
at least in part, to the development of increasingly re-
alistic models of sequence evolution and their imple-
mentation in widely available software for phylogenetic
analysis. These models permit a great deal of flexibility
in tailoring the assumptions made in phylogenetic in-
ference to a particular data set, including the ability to
allow for unequal base frequencies (e.g., Felsenstein
1981), different rates of change among pairs of nucle-
otides (e.g., Yang 1994a) or between nucleotide classes
(such as transitions and transversions; Kimura 1980;
Hasegawa, Kishino, and Yano 1985), and rate hetero-
geneity across nucleotide sites (e.g., Yang 1993, 1994b;
Gu, Fu, and Li 1995; Waddell and Penny 1996).

Although the existence of rate heterogeneity across
sites has been known for some time (Fitch and Margo-
liash 1967; Uzzell and Corbin 1971), its importance in
evolutionary studies has received considerable attention
recently (reviewed in Yang 1996a). The two most com-
monly used methods for explicitly dealing with among-
site rate variation are the invariable-sites model (e.g.,
Fitch and Margoliash 1967; Hasegawa, Kishino, and
Yano 1985), in which some proportion of sites (pinv) is
assumed to be completely resistant to change, with all
variable sites assumed to evolve at the same rate, and
the gamma-distributed-rates model, in which the distri-
bution of relative rates over sites is assumed to follow
a gamma distribution (Uzzell and Corbin 1971; Yang
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1994b) whose shape parameter (a) determines the
strength of rate heterogeneity. Recently, Gu, Fu, and Li
(1995) and Waddell and Penny (1996) have suggested
combining these models such that some sites are as-
sumed to be invariable and rates at the remaining sites
follow a gamma distribution. This has been called the
invariable-sites-plus-gamma (I1G) model and is a mix-
ture of a discrete distribution and a continuous distri-
bution. In the example provided by Gu, Fu, and Li
(1995), the application of this mixed-distribution model
to real data did not lead to a significant improvement in
fit relative to a gamma-distributed-rates model alone.
Nevertheless, the I1G model is intuitively very appeal-
ing (e.g., Tourasse and Gouy 1997), and we have ex-
amined several data sets (see, e.g., Sullivan and Swof-
ford 1997) in which use of this mixed-distribution model
does significantly improve the fit (as assessed by a like-
lihood ratio test) relative to either invariable sites or
gamma-distributed rates alone.

Several studies have demonstrated the importance
of incorporating rate heterogeneity into phylogenetic
models. The advantages of this approach include in-
creased accuracy in estimation of branch lengths (e.g.,
Gu, Fu, and Li 1995), consistency of phylogenetic es-
timation under a greater range of conditions than is
achievable if heterogeneity is ignored (e.g., Gaut and
Lewis 1995; Huelsenbeck 1995a), and improved accu-
racy in the estimation of reliability of phylogenetic in-
ferences (Yang 1996b; Sullivan, Markert, and Kilpatrick
1997). However, the use of realistic models is not with-
out its cost, as complex models suffer from an inflation
of variance relative to simpler models because more pa-
rameters must be estimated from the same amount of
data. In addition, computational intensity rises with in-
creasing model complexity. The high computational de-
mand of maximum-likelihood analyses renders imprac-
tical the ideal strategy of simultaneously optimizing all
substitution model parameters, in addition to branch
lengths, for every tree examined during a tree search for
data sets with many taxa. Thus, as for parsimony analy-
ses, effective heuristic methods are required for model-
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Table 1
Evaluation of Models of Sequence Evolution for the
Mitochondrial NADH-2 Genes from 40 Species of
Requiem Sharks

Model ln Likelihood df x2

JC. . . . . . . . . . . . . . . . . . . . . .
JC 1 G . . . . . . . . . . . . . . . .
JC 1 I. . . . . . . . . . . . . . . . .
JC 1 I 1 G . . . . . . . . . . .
K2P. . . . . . . . . . . . . . . . . . . .
K2P 1 G . . . . . . . . . . . . . .
K2P 1 I. . . . . . . . . . . . . . .
K2P 1 I 1 G . . . . . . . . .
HKY85 . . . . . . . . . . . . . . . .
HKY85 1 G . . . . . . . . . .
HKY85 1 I . . . . . . . . . . .
HKY85 1 I 1 G . . . . .
GTR . . . . . . . . . . . . . . . . . . .
GTR 1 G . . . . . . . . . . . . .
GTR 1 I . . . . . . . . . . . . . .
GTR 1 I 1 G . . . . . . . .

214,386.90334
212,749.95859
213,035.09740
212,743.06606
212,888.96174
211,133.08083
211,469.28651
211,113.34975
212,451.66573
210,822.65716
211,075.53078
210,794.92486
212,245.82493
210,765.24546
210,978.32540
210,724.63955

7
6
6
5
6
5
5
4
6
5
5
4
2
1
1
—

7,324.52758
4,050.63808
4,620.91570
4,036.85302
4,328.64438

816.88256
1,489.29329

777.42040
3,454.05236

196.03522
701.76246
140.57062

3,042.37076
81.21182

507.37170
—

NOTE.—Models were evaluated on the minimum-evolution tree generated
from LogDet distances. All of these are special cases of GTR 1 I 1 G, and all
fit the data significantly worse than this model (P K 0.001). All relevant param-
eters for each model were simultaneously optimized, except that for models not
assuming equal base frequencies (the HKY85 and GTR models), the base fre-
quencies were fixed to mean values from the data (pA 5 0.321, pC 5 0.288,
pG 5 0.100, pT 5 0.291).

based analyses (e.g., Rogers and Swofford 1999). Yang
(1994b) has suggested that the computational demands
of maximum-likelihood analyses can be reduced by es-
timating model parameters with an initial analysis that
includes only a small set of the taxa under study. How-
ever, during an examination of the effect of topology on
estimates of rate heterogeneity parameters, Sullivan,
Holsinger, and Simon (1996) observed that several es-
timates of the gamma distribution shape parameter de-
rived from subsets of four taxa were significantly dif-
ferent from the value estimated from the entire (10-tax-
on) data set; a similar effect was also observed by
Hershkovitz and Lewis (1996). In this paper, we explore
the uncertainty of maximum-likelihood estimates of rate
heterogeneity parameters associated with taxon sam-
pling using analyses of both real and simulated data sets
for a moderately large number (40) of taxa.

Analyses of Real Data

The data set we examine consists of 1,307 aligned
nucleotides from the mitochondrial NADH-2 gene
(1,047 nt) and flanking tRNA sequences (260 nt) from
40 species of requiem sharks (unpublished data). We
restricted our attention to the single topology produced
by a heuristic search under the minimum-evolution cri-
terion using log determinant (LogDet, paralinear) dis-
tances (Lake 1994; Lockhart et al. 1994). This tree (see
appendix) is characterized by many short internal
branches. Our analyses of the real data, however, do not
assume that this LogDet tree is the true tree. Work by
Yang (1994b) and Sullivan, Holsinger, and Simon
(1996), as well as our own experience with many other
data sets, has demonstrated that for any given sample of
taxa, the dependence of model parameter estimates on
topology is minor as long as strongly supported groups
are maintained. (These sequences, as well as the LogDet
tree, are available on request from G.J.P.N.) All analyses
were conducted using test versions of the PAUP* phy-
logenetic inference program (v4.0d45-d61, written by
D.L.S.). For each combination of substitution model pa-
rameters (i.e., all parameters other than branch lengths)
and tree topology, PAUP* searches for an optimal set
of branch lengths by making multiple passes over the
tree, adjusting one branch length at a time using stan-
dard Newton-Raphson iteration (e.g., Edwards 1972),
until convergence is achieved. As noted by Steele
(1994), this strategy may not be effective if there are
multiple optima on the likelihood surface. However,
Rogers and Swofford (1999) have provided evidence
that multiple peaks in branch length space are unlikely
to occur on trees that rank highly according to the like-
lihood criterion. To search for optimal substitution mod-
el parameter values, PAUP* uses Brent’s (1973) modi-
fication of Powell’s (1964) conjugate-direction-set meth-
od. Like other multidimensional optimization methods,
Powell’s algorithm does not guarantee that a final so-
lution will be globally optimal. For many problems, this
derivative-free method performs well in comparison
with other available approaches (e.g., the variable-metric
and conjugate-gradient methods) for which derivatives

would need to be approximated numerically, although
we have not performed a rigorous evaluation of other
possible optimization strategies.

In order to identify an appropriate model for these
data, we calculated the likelihood scores for the LogDet
tree under four substitution matrices: the Jukes-Cantor
(JC; Jukes and Cantor 1969), Kimura two-parameter
(K2P; Kimura 1980), Hasegawa-Kishino-Yano
(HKY85; Hasegawa, Kishino, and Yano 1985), and gen-
eral time-reversible (GTR; equals REV of Yang 1994a).
In addition, four rate heterogeneity models were exam-
ined: (1) equal rates; 2) a proportion of sites assumed
to be invariable (pinv), with equal rates assumed at var-
iable sites (I; Hasegawa, Kishino, and Yano 1985); (3)
rates at all sites assumed to follow a gamma distribution
(G; Yang 1994b); and (4) a mixture of invariable sites
plus gamma-distributed rates (I1G; Gu, Fu, and Li
1995; Waddell and Penny 1996). Thus, 16 models were
evaluated, each of which is a special case of the most
general parameter-rich GTR1I1G model. (Likelihoods
for models incorporating gamma-distributed rates were
calculated using the discrete gamma approximation of
Yang [1994b] with four rate categories.) All of the sim-
pler models could be rejected for this data set using a
likelihood ratio test with x2-approximation of the null
distribution (table 1). Although the test statistic is only
asymptotically x2-distributed, this approximation has
been shown through simulation to be very useful in dis-
criminating among nested models of nucleotide substi-
tution (Yang, Goldman, and Friday 1995). The most ap-
propriate substitution model for these data therefore ap-
pears to be the GTR1I1G model with the following
parameters (cf. Yang 1994a):
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FIG. 1.—The sensitivity of rate heterogeneity parameters to taxon sampling in the shark NADH-2 data set. Rate heterogeneity parameters
were simultaneously estimated for each of the subtrees listed in the appendix. Diamonds represent estimates of pinv, and circles represent estimates
of a. The dashed and dotted lines represent 95% confidence intervals for pinv and a, respectively, estimated by the parametric bootstrap for the
40-taxon LogDet tree. For one five-taxon subtree, the estimate of a diverged toward infinity; this point was omitted for graphical purposes.

base frequency parameters:

p 5 0.321A

p 5 0.288C

p 5 0.100G

p 5 0.291T

relative-substitution-rate parameters:

r 5 5.852AC

r 5 42.154AG

r 5 4.967AT

r 5 3.864CG

r 5 145.473CT

r 5 1.000GT

rate-heterogeneity parameters:

p 5 0.49inv

a 5 0.924.

All subsequent analyses of the shark data use this model.
To examine the reliability of the estimates of rate

heterogeneity parameters derived from the entire set of
taxa, we used the parametric bootstrap (Efron and Tib-
shirani 1993; Huelsenbeck, Hillis, and Jones 1996) to
estimate confidence intervals. One hundred 40-taxon
data sets with the same sequence length as the original
data (1,307 bp) were generated using LogDet topology
(with branch lengths estimated from the original data
via maximum likelihood) under the above model. We

then optimized all parameters for each simulated data
set on the model tree. The resulting 95% confidence
intervals for rate heterogeneity parameters are rather
small (0.4314 , pinv , 0.5380; 0.6668 , a , 1.1666)
and indicate that these parameters can be estimated quite
reliably for this moderately large number of taxa with
moderately long sequences (1,307 bp).

To examine the sensitivity of estimates of rate het-
erogeneity to taxon sampling, we estimated a and pinv
on 40 subtrees of the original LogDet tree containing 5–
39 of the original 40 taxa. These subtrees are listed in
the appendix; they were chosen to represent both
clumped and stratified sampling of taxa, such that in
some instances only the most recently diverged taxa
were included, and in other instances the included taxa
covered the deepest divergence in the tree. The distri-
bution of the rate heterogeneity parameters estimated
across the subtrees is illustrated in figure 1. For the most
part, subtrees containing .20 taxa yield reliable esti-
mates of the rate heterogeneity parameters. However,
subtrees containing 20 or fewer taxa yield highly vari-
able estimates of a and pinv. Even with as few as five
taxa, the estimates from some of the subtrees were quite
good (within the confidence interval estimated from the
entire data set), but even with as many as 22 taxa in the
analysis, the estimate of pinv may be outside the confi-
dence interval estimated for the full data set. Further-
more, with five taxa, pinv is sometimes estimated as the
limiting value equal to the proportion of sites that are
observed to be constant. The effect of taxon sampling
on estimates of a are quite similar. Stable estimates
(within the 40-taxon confidence interval derived above)
are obtained in analyses of .20 taxa, and highly vari-
able estimates are obtained in analyses involving 20 or
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FIG. 2.—The sensitivity of rate heterogeneity parameters to taxon sampling in a representative replicate of the simulated data. Diamonds
represent estimates of pinv, and circles represent estimates of a. Sequences were simulated on the LogDet tree under the model with the best fit
to the original data. Stationarity of parameters has been enforced for these data so that the observed scatter can only be attributed to sampling
error. The same set of subtrees as in figure 1 was used. The dashed and dotted lines represent the true values of pinv and a across the tree.
Estimates of a that diverged toward infinity were omitted.

fewer taxa; the estimate of a goes to infinity (identical
to equal rates at all variable sites) for one of the five-
taxon analyses (point not plotted).

Two possible explanations can account for the ob-
served sensitivity of estimates of rate heterogeneity pa-
rameters to taxon sampling. The first is that this sensi-
tivity simply reflects increased susceptibility to stochas-
tic error due to small sample effects. The second is that
the data violate the assumption that the rate heteroge-
neity parameters are stationary, as is expected under a
time-reversible homogeneous Markov substitution pro-
cess. That is, the true value may actually vary in dif-
ferent parts of the tree, as might be the case, for ex-
ample, if the covarion hypothesis (Fitch and Markowitz
1970) is operating in the evolution of these sequences.
We used simulations to attempt to discriminate between
these possibilities.

Taxon-Sampling Simulations

These simulations also follow the protocol for the
parametric bootstrap (Efron and Tibshirani 1993; Huel-
senbeck, Hillis, and Jones 1996), in that the model used
for simulation was estimated from the original data (via
maximum likelihood). Again, because none of the sim-
pler models could be accepted as an adequate approxi-
mation of the most general model for the real data (table
1), sequences were simulated on the LogDet topology
with maximum-likelihood branch length estimates under
the GTR1I1G model defined as above. For each of 10
replicate data sets, the same set of subtrees used in the
analyses of the real data set (see appendix) was used to
assess the sensitivity of rate heterogeneity parameters to
taxon sampling when those parameters were known to
be stationary.

If the sensitivity of rate heterogeneity parameters
observed in the real data (fig. 1) were the result of non-
stationarity and not simply an effect of sampling error,
we would expect much less scatter in the distribution of
parameter estimates across the subtrees in the simula-
tions in which stationarity is imposed. However, this
was not the case; the patterns in sensitivity of estimates
of rate heterogeneity parameters to taxon sampling in
each replicate of the simulation analyses are quite sim-
ilar to those of the analyses of real data (compare figs.
1 and 2). Estimates close to the true values of the gen-
erating model were obtained consistently only with rel-
atively large numbers of taxa (.20). In addition, esti-
mates of pinv range up to the observed proportion of
constant sites, and in almost all replicates, some subtrees
containing fewer than 10 taxa yield estimates of infinity
for a (not plotted in fig. 2 for graphical convenience).
Therefore, it seems unlikely that the observed sensitivity
to taxon sampling in rate heterogeneity parameter values
estimated from the real data (fig. 1) is due primarily to
nonstationarity, because very similar patterns of sensi-
tivity to taxon sampling are observed in the simulations
(e.g., fig. 2), in which stationarity has been imposed.

We examined the issue of stationarity further by an
additional set of simulations. In analyses of both real
(fig. 1) and simulated data (e.g., fig. 2), the widest var-
iation in parameter estimates occurs when five-taxon
subtrees are used. Thus, we would expect the effect of
any nonstationarity to be manifest most strongly in the
five-taxon analyses. Therefore, we again used a para-
metric bootstrap to estimate confidence intervals of rate
heterogeneity parameters for each of the six subtrees
containing just five taxa. In all six cases, the estimates
from the real data are inside the 95% confidence interval
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Table 2
Comparison of Parameter Estimates from Five-taxon
Subtrees of the Real Data, with Confidence Intervals
Derived via the Parametric Bootstrap Under the Null
Model of Stationarity

Five-Taxon Subtree
pinv

(confidence interval)
c.v.a

(confidence interval)

14 . . . . . . . . . . . . . . . . . . .
32 . . . . . . . . . . . . . . . . . . .
33 . . . . . . . . . . . . . . . . . . .
34 . . . . . . . . . . . . . . . . . . .
35 . . . . . . . . . . . . . . . . . . .
36 . . . . . . . . . . . . . . . . . . .

0.5445 (0.1391–0.8968)
0.5623 (0.1497–0.8435)
0.7363 (0.1167–0.9061)
0.6690 (0.1536–0.8576)
0.5861 (0.0441–0.7955)
0.6387 (0.1361–0.8142)

0.0000 (0–2.0802)
1.0733 (0–2.2828)
0.0801 (0–3.4434)
1.0041 (0–2.0350)
0.5296 (0–2.3873)
0.6896 (0–2.1380)

a Because for many of the replicates, estimates of alpha diverged toward
infinity, this value was converted to the coefficient of variation (c.v. 5 1/a½).

FIG. 3.—The same set of data as in figure 2, plotted to illustrate the correlation in the paired rate heterogeneity parameters. In almost all
cases, the error in pinv is in the same direction as the error in a.

generated under the null model of stationarity (table 2).
We therefore cannot reject the null hypothesis of sta-
tionarity of rate heterogeneity parameters; sampling er-
ror is a sufficient explanation for the pattern observed
in the real data (fig. 1).

Correlation of Error in Parameter Estimates

An interesting pattern emerges if the results of the
taxon sampling simulations are plotted another way. In
figure 3, the paired rate heterogeneity parameters (a and
pinv) from each subtree are kept separate; estimates from
analyses with the same number of taxa are not pooled
into one category as in figures 1 and 2. A strong cor-
relation is apparent in the estimates of the two rate het-
erogeneity parameters, even though the true values re-
main constant across all subtrees. Whenever pinv is un-
derestimated, a is also underestimated. Likewise, when
either parameter is overestimated, the other is also over-
estimated. Statistical testing of this correlation is com-
plicated because the data points are not independent due
to shared lineages in the subtrees used to estimate the

parameters; however, in all pairs of estimates derived
from 6 of the 40 subtrees with nonoverlapping branches
(60 pairs of parameters, 6 subtrees for each of 10 rep-
licates), the directions of the errors were identical.

This pattern of errors in the rate heterogeneity pa-
rameter estimates is easily explained by examining the
behavior of the rate heterogeneity parameters in each of
their respective single-distribution models. Under both
of the single-distribution models (G alone or I alone),
some sites are not expected to have experienced any
substitutions. Under the G model, all sites are potentially
variable, but some have a sufficiently slow rate of evo-
lution (probability of substitution) to be essentially in-
variable; as the shape parameter (a) gets more extreme
(smaller), the proportion of such sites increases. Under
the I model alone, some sites are not free to vary (pre-
sumably as a result of structural/functional constraints),
and the size of this class of sites is determined by pinv.
Therefore, in the I1G model, a high proportion of the
sites observed to be constant could be accommodated
by a large value of pinv, with the gamma distribution left
to account primarily for rate heterogeneity at sites ob-
served to vary; a will then assume an artificially high
value. Thus, when pinv is overestimated, a is also over-
estimated because pinv accounts for the low-rate sites of
the gamma distribution. Similarly, a large proportion of
sites observed to be constant could be accounted for by
an underestimation of a, such that a preponderance of
the truly invariable sites are assigned a very low rate
(but still are potentially variable under the model), and
pinv will be underestimated accordingly. Thus, the ob-
served correlation for the two rate heterogeneity param-
eters of the I1G model is attributable to difficulty in
appropriately differentiating between truly invariable
sites and extremely slowly evolving sites, many of
which are expected (under a gamma distribution) to
have remained constant in the sequences. The conflation
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FIG. 4.—A, Tree used to simulate sequence evolution under the HKY1I1G model of evolution for examination of the likelihood surface
across the rate heterogeneity parameter space. B–D, The likelihood surface when rate heterogeneity is (B) extreme (pinv 5 0.5, a 5 0.5), (C)
strong (pinv 5 0.5, a 5 1.0), and (D) moderate (pinv 5 0.2, a 5 1.0).

of these parameters is difficult to overcome, but inclu-
sion of many taxa (.20 for this set of 1,307-bp se-
quences) leads to reliable estimates.

This correlation of a and pinv can be further illus-
trated by examining the likelihood surface across the
rate heterogeneity parameter space. In this analysis, the
four-taxon tree shown in figure 4A was used to generate
sequences of 2,000 bp under the HKY85 model with the
I1G model of rate heterogeneity, with the following pa-
rameters: pA 5 0.2, pC 5 0.3, pG 5 0.3, pT 5 0.2, and
k 5 8; these parameter settings are similar to those used
by Gu, Fu, and Li (1995). Three combinations of rate
heterogeneity parameters were simulated: extreme (pinv
5 0.5; a 5 0.5; fig. 4B), strong (pinv 5 0.5; a 5 1.0;
fig. 4C), and moderate (pinv 5 0.2; a 5 1.0; fig. 4D).
Likelihood scores were calculated across the rate het-
erogeneity parameter space by fixing the parameters to
165 different combinations of a and pinv. For each of
the three rate heterogeneity conditions simulated, there
is a plateau on the likelihood surface. These plots illus-

trate graphically that error in one parameter (pinv, for
example) can be compensated by a change in the other
(a) such that the likelihood score changes very little.
Interestingly, in figure 4B and C, there appear to be mul-
tiple peaks in the likelihood surface, and in figure 4B,
the higher peak does not correspond to the parameter
values used for the simulation. However, when 40-taxon
trees are simulated using the best model for the real data,
the likelihood surface is much better behaved, with a
single well-defined peak (fig. 5). An examination of the
nature of the likelihood surface for the rate heteroge-
neity parameter space under a wider variety of simulated
conditions would be useful.

Discussion

Our taxon-sampling simulations (e.g., fig. 2), as
well as examination of confidence intervals for five-tax-
on subtrees (table 2), suggest that the sensitivity of rate
heterogeneity parameter estimates to taxon sampling ob-
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FIG. 5.—The likelihood surface across rate heterogeneity parameter space for a simulation with 40 taxa. The data were generated using the
LogDet tree and model parameters estimated from the shark NADH-2 data.

served in the real data (fig. 1) can be attributed to sam-
pling error rather than nonstationarity of those parame-
ters. Similar patterns of sensitivity to taxon sampling
were exhibited both by the real data, where nonstation-
arity may apply, and simulated data, where stationarity
was imposed. This does not guarantee that the parame-
ters have remained constant throughout the evolution of
these shark species; it is possible that the effect of any
deviation from stationarity may simply be masked by
the large sampling error. Differentiating between com-
plex stochastic models of sequence evolution, such as a
stationary GTR1I1G versus a covarion-like model (in
which rate heterogeneity parameters may change in the
tree) is extremely difficult even for relatively large data
sets.

Gu, Fu, and Li (1995) reported large sampling error
in the estimation of a and pinv (their u) in simulations
of four taxa under a restricted HKY1I1G model. Our
results corroborate and extend theirs to a wider array of
sample sizes (number of sequences) and to a more gen-
eral model of sequence evolution. For the conditions we
examined, this large sampling error persists when many
more than four taxa are included in the analyses. Al-
though reliable estimates of the rate heterogeneity pa-
rameters were consistently attainable only when .20
sequences were included in our analyses, there is no
assurance that this represents a general threshold above
which parameters will always be estimated accurately
and below which estimates will always be highly vari-
able. It is clear, however, that when a model as complex
as the GTR1I1G model is required (as for the shark
NADH-2 data), relatively large numbers of sequences
will be necessary to estimate rate heterogeneity param-

eters accurately, at least with sequence lengths com-
monly obtained.

Further, we have been able to explore the nature of
this error by considering the correlation in the pairs of
rate heterogeneity parameter estimates. When one pa-
rameter (e.g., pinv) is estimated with error, a simulta-
neous error occurs in the other parameter estimate (a),
and together these erroneous estimates may fit the data
rather well as judged by the likelihood score. This effect
is manifested as plateaus, or even multiple peaks, in the
likelihood surface across the rate heterogeneity param-
eter space (fig. 3) and results from the difficulty in dis-
tinguishing between truly invariable sites and very slow-
ly evolving but potentially variable sites in the gamma
distribution. Tourasse and Gouy (1997) recently attempt-
ed to circumvent this difficulty with a minimum-evo-
lution (parsimony-based) approach to a mixed-distribu-
tion model of rate heterogeneity across sites. These au-
thors proposed fitting the parsimony-inferred distribu-
tion of observed number of substitutions per site to an
invariable-sites-plus-truncated-negative-binomial distri-
bution. In order to avoid the difficulty caused by very
slowly evolving, yet potentially variable, sites, Tourasse
and Gouy (1997) fixed pinv to the proportion of sites
observed to be constant in the data and used a truncated
negative-binomial distribution in which no sites are al-
lowed to be so slowly evolving that they have a high
probability of stasis. Estimates of both rate heteroge-
neity parameters, however, are expected to be biased for
this method; the proportion of sites observed to be con-
stant is usually an overestimate of pinv (the proportion
of sites that are truly invariable), whereas estimates of
the gamma distribution shape parameter obtained by fit-
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ting the parsimony-inferred distribution of observed
substitutions per site to a negative-binomial distribution
have repeatedly been shown to underestimate the
strength of rate heterogeneity (overestimate a; Wakeley
1993; Sullivan, Holsinger, and Simon 1995; Yang and
Kumar 1996). Because these biases are expected to de-
crease with an increasing number of sequences, the
method of Tourasse and Gouy (1997) may provide an
adequate approximate description of rate heterogeneity
when the number of sequences under examination ex-
ceeds the practical limitations of full maximum-likeli-
hood estimation. Currently, however, maximum-likeli-
hood estimation of model parameters is feasible for
around 100 sequences, and this limit is likely to expand
rapidly in the near future as parallel processing strate-
gies are incorporated into phylogenetic analyses.

Finally, we emphasize that the difficulty observed
in estimating the rate heterogeneity parameters under the
mixed-distribution model should not be taken as an in-
dictment of the use of maximum likelihood for inferring
evolutionary trees. Estimation of substitution model pa-
rameters and estimation of the tree topology are differ-
ent, albeit related, problems (Yang 1997). Our study
highlights the difficulty in obtaining accurate estimates

of the true rate heterogeneity parameters, but accurate
estimation of these parameters is not necessarily prereq-
uisite to reliable estimation of phylogeny. In particular,
for choosing a tree topology, it may not be important to
differentiate between a high proportion of invariable
sites, a gamma distribution with a small shape parame-
ter, or a mixture of these, as long as the low-rate sites
are accounted for in some way (unpublished data).
These considerations, coupled with the general robust-
ness of maximum-likelihood tree inference to model vi-
olations (e.g., Huelsenbeck 1995b), suggest that the
problems outlined in this paper are more relevant to in-
vestigations of the effect of structural and functional
constraints on sequence evolution than to the estimation
of the tree topology itself.
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