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A1. THE NEED FOR THOUGHTFUL MODEL SELECTION 

There’s a huge literature on model selection in other fields, and this highlights the need for 

thoughtful model choice. To always assume that the most complex model available has the best 

predictive ability is logically flawed, as illustrated by a simple example from linear regression. In 

the scatter plot in Figure A1a, eleven points were simulated using the equation 3 2y x ε= + + , 

where ε is a normally distributed random error with mean 0 and variance 2. The input variable x  

ranges from 0 - 5 and points are equally spaced at one-half unit apart. Using standard linear 

regression, the best- fit line to the data is ˆ 2.86 1.92y x= + , and prediction of y when 5.5x =  

using the fitted model would yield y = 17.65, which is well within the predicted margin of error 

of the expected value of y  [given by ( ) 3(5.5) 2 18.5E y = + = ]. A researcher ignorant of the true 

model may be uncomfortable with such a simple explanation, so instead might fit the data to a 

quadratic model. The best-fit quadratic model is 2ˆ .01 2.91 1.88y x x= − + + . While the quadratic 

model fits slightly better, the quadratic term (-.01 2x ) is quite small and the quadratic model 

provides nearly the same results as the linear model, and one might argue to use the more 

complex model since it recovers the simple model when the simple model is true. If we take this 

argument to its logical conclusion then we should consider the most parameter-rich complex 

model available to describe the relationship between the response variable y and the predictor x .  

For these data, this would be an 11-degree polynomial with equation: 

 

ŷ = 1.991 - 4.768 x  - 41.974 2x + 214.873 3x  - 352.932 4x  + 301.407 5x - 151.477 6x  + 46.391 7x  

+  6.391 8x  -8.508 9x  + 0.858 10x  - 0.037 11x . 

 

The above model fits the scatter plot data exactly, without error (Fig. A1b). However, since the 

number of parameters matches the size of the data (both are 11), there are no degrees of freedom 

available to assess the error and the model has no predictive power.  For example, substituting 

5.5x =  into the above equations gives a predicted value of y = -382.40, a nonsensical result that 

is nowhere near the correct prediction of 18.5.   
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As computer power increase, more complex parameter-rich models can be considered in 

phylogenetics and this might be expected to necessarily lead to better inferences. We disagree; 

one must, at the very least, consider the trade-off between degrees of freedom and model fit. 

Given the ability to partition data extremely finely and apply complex models to each partition 

independently, the number of parameters in the global model may begin to approach the number 

of independent data points. It may therefore be appropriate to choose the simpler model because 

we may reach a point where the improvement in fit of the complex model no longer compensates 

for the loss of degrees of freedom. Model-selection approach should address this trade-off. 
 
 
A2. DECISION THEORY UNIFYING MODEL SELECTION 

Although decision theory (DT) is often viewed in the context of Bayesian statistics, it also 

provides a unified framework for statistical inference that can accommodate both the Bayesian 

and frequentist statistical philosophies. Furthermore, the well-established model-selection criteria 

described in the text (AIC, BIC, LRT) naturally arise in a decision theoretic context.  We can 

demonstrate DT by the following; suppose one is playing a game, the object of which is to 

choose an evolutionary model. At the end of the game the true state of nature will be revealed 
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Figure A1. An example of overfitting. The 11 data points in the scatter plots were generated 
under a linear model (a). However, an 11th order polymonial fits the data perfectly (b), although 
this model has no predictive ability; there are as many parameters as data points. 
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and penalties will be assessed according to how far off one’s guess is from the truth. Fortunately, 

the game is not played in complete ignorance because the data provide information that may lead 

to a reasonable choice that receives a low penalty. This penalty is referred to as the loss function. 

More precisely, if there are 1 2, , , KM M ML  evolutionary scenarios (or models) under review, we 

can denote the true state of nature (i.e., the true model) by TM . Then if one chooses model i , the 

loss or penalty assessed at the end of the game will be denoted by ( , )i Tl M M . Now we can 

develop a data based decision rule for model choice, ( )d D , for a data set denoted by D . If we 

observe D , which leads to model choice ( )d D , then our penalty will be ( ( ), )Tl d D M . For some 

data sets, ( )d D  may choose models with a small penalty, but for other data sets the penalty may 

be larger. In order to assess the overall effectiveness of a proposed decision rule, we calculate the 

risk, which is defined to be the expected loss under the true model, denoted by 

( )( ) ( ( ), )d T T TR M E l d D M M= . Note that ( )d TR M  can never be directly calculated without 

knowing the true state of nature and the true model is never actually revealed. The best we can 

do is use the data to estimate the risk function, (or in some cases, a portion of the risk function), 

and then choose the model with low estimated risk. Therefore, there are two relevant aspects of 

decision theory that will determine the model-selection strategy. 

1. The form of the loss function.  Since we argue that hidden in the background of any 

model-selection criterion is a loss function, one can argue for or against a particular 

method based on the relative merits of the different loss functions. 

2. The method for estimating risk.  Bayesians and frequentists will have different 

approaches to estimating risk, and it’s here that the differences in the two 

philosophies toward statistical inference will be elucidate most clearly. 

 
A2A. LRT & MINIMUM RISK 

Under the LRT approach, where the simple model is denoted by sM and the more complex 

model by cM , we can consider a simple binary loss function, where we lose one point for 

choosing sM  when cM is true and one point for choosing cM  when sM  is true. There is no loss 

for correct choice. Note that for any decision rule d under this loss function, the risk associated 

with d when sM  is assumed to be the true model is ( ) ( ( ) | )d s c sR M pr d D M M= =  which is 

commonly referred to as the probability of a type I error. Similarly, the risk associated with the 

d when the complex model is the true model is the probability of a type II error.  We must first 
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acknowledge that there is no uniformly optimal decision strategy, even in this simple case. The 

reason for this is simple; the naïve strategy of always choosing the simple model (regardless of 

the data) will be the best strategy when the simple model is correct, so it is impossible to devise a 

data based strategy that performs best in all circumstances. Neyman & Pearson (cited in Bickel 

and Doksum 2001), who invented the LRT, recognized this dilemma and decided to restrict their 

decision rules to a subclass and use the decision rule that is optimal among that class. The 

Neyman-Pearson rule is to fix the risk when the simple model is assumed to be true (i.e., fix the 

Type I error) and use the decision rule within this class that minimizes the risk when the complex 

model is true (i.e., minimizes the Type II error); they proved that the LRT is the optimal decision 

rule for this restrictive class. Note that by requiring the risk associated with the simple model to 

be low, the procedure is biased toward simple models; we therefore fail to reject the simple 

model unless there is substantial evidence to the contrary. However, the LRT will assess that 

evidence in the most efficient manner possible and should therefore be best at detecting 

departures from the null hypothesis (or evidence against the simple model) among all decision 

rules in this class. 

Unfortunately, extending this optimality criterion beyond the two-model case is not obvious.  

However, by viewing likelihood ratio in a decision theoretic context we gain a better 

appreciation for the rationale behind the use of LRTs. Its optimality property derives from 

assuming that one of the models under review is true and the chance of incorrectly picking the 

simple model is set in advance and is small. The LRT detects departures from the null optimally 

among this set of conservative decision rules, and thus fits well into the decision theoretic 

framework. 
 
A2B. THE AIC APPROACH TO MINIMIZING RISK 

Rather than compare several models where we assume that the true model is among the 

models being considered, the AIC assumes that the data were generated via a stochastic 

mechanism under a complex model denoted by TM , where TM  is outside the candidate set. The 

AIC is based on the Kullback-Leibler (K-L) Information function.  We view this as a loss 

function and define the loss of choosing iM when TM is correct as 

 

 ( | )( , ) ln
( | )

T
i T T

i

pr D Ml M M E M
pr D M

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. 
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This loss function comes from information theory and is viewed as the amount of information 

lost when iM  is used to approximate TM  (Burnham and Anderson 2002).  We can rewrite the K-

L loss function by 

 
( ) ( )( , ) ln ( | ) ln ( | )i T T T i Tl M M E pr D M M E pr D M M= −  

and note that, in order to minimize loss associated with the decision rule, we need only consider 

minimizing ( )ln ( | )i TE pr D M M− .  To recognize explicitly the fact that each model under 

review contains a set of unknown parameters 1 2( , , , )
ii i i k iθ θ θ=θ L , we will now write ( | )ipr D M  

as ( | , )i ipr D M θ . For a sufficiently large sample and under the assumption that all models under 

review are sufficiently ‘close’ to the true model TM , we can further approximate 

( )ln ( | , )i i TE pr D M M− θ  by ( )ln ( | , ) ,i i i iE pr D M M− θ θ , which can be further approximated 

by ˆln( ( | , )i i ipr D M k− +θ , where ik is the number of parameters in the model and ˆ
iθ is the 

maximum likelihood estimate of iθ .  For historical reasons we multiply by 2 to get the AIC score 

as 
ˆ2 ln( ( | , ) 2i i i iAIC pr D M k= − +θ . 

Thus, the AIC conforms quite precisely to decision theory, with the risk function assessing the 

loss in KL information. 
 

A2C. BAYESIAN MODEL SELECTION AND RISK 

The Bayesian perspective provides much more flexibility for developing model-selection 

criteria. Because the risk associated with any decision rule depends on true state of nature, it’s 

impossible to develop an optimality criterion without either restricting the class of decision rules 

allowed (as in LRTs) or making certain approximations about the closeness of the models under 

review to the true model (as in AIC).  In the Bayesian framework, we place priors on each of the 

models under review 1 2( ), ( ), ( )kpr M pr M pr ML , and then calculate the average risk associated 

with a decision rule d .  This leads to the Bayes risk ( )B d defined by 

 

 ( )
( )

1 1

|

|

( ) ( ) ( ) ( ) ( )

( ( ( ), ) | )

( ( ( ), ) | )

d d K k

M D M

D M D

B d R M pr M R M pr M

E E l d D M M

E E l d D M D

= + +

=

=

L
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The Bayes decision rule is the rule d  that makes ( )B d minimum.  For each data set, D , we 

see from the above equations that if we choose d so as to minimize | ( ( ( ), ) | )M D iE l d D M D , then 

this will be the rule that minimizes the Bayes risk. We refer to | ( ( ( ), ) | )M DE l d D M D  as the 

posterior loss. For example, if the loss function is binary, that is ( , ) 1i jl M M =  if model j is 

correct and model i is chosen and ( , ) 0i il M M = , then the posterior loss of the decision to choose 

model i  ( ( ) id D M= ) is given by 1 ( | )ipr M D− . Thus, minimizing the posterior loss is the same 

as maximizing the posterior probability; Bayesian model selection is a DT approach, with a 

binary loss function. 

Under such a binary loss function, the Bayes rule is defined by calculating the posterior 

probability of the model (given the data) and choosing the model with the maximum posterior 

probability. Each model is given a weight in light of the data and the model is chosen based on 

which is most likely in light of the data. However, each model has a number of parameters. If we 

assume that q( iθ ) is the prior distribution on the parameters associated with model iM then, 

following Bayes Theorem 

 

 
( | , ) ( ) ( )

( | )
( | , ) ( ) ( )

i i i i i
i

i i i i i
i

pr D M q d pr M
pr M D

pr D M q d pr M
= ∫
∑∫

θ θ θ

θ θ θ
. 

Note that the denominator is a fixed constant and the Bayes decision rule requires only that the 

numerator be maximized. If we assume a uniform prior on models, that is ( ) 1/i ipr M k= , then 

the above reduces to maximizing ( | , ) ( )i i i ipr D M q d∫ θ θ θ . The approach suggested by  

Huelsenbeck et.al. (2004) estimates this posterior probability by using an MCMC sampler, and 

this approach can be viewed as a Bayesian model selection rule under a 0-1 loss function. Using 

a different approximation technique, Laplace’s method (Raftery 1995), one can approximate  

 
 ˆln ( | , ) ( ) ln ( | , ) ( / 2) lni i i i i i ipr D M q d pr D M k n≈ −∫ θ θ θ θ , 

where ˆ
iθ is the maximum likelihood under iM  and n  is the sample size. If the above 

approximation holds, then the Bayes decision rule under a binary loss function can be 

approximated by minimizing the BIC score where the BIC score is defined as above: 
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ˆ2 ln ( | , ) ( ) 2 ln ( | , ) 2( / 2) lni i i i i i iBIC pr D M q d pr D M k n≈ − = − +∫ θ θ θ θ . 

As long as the Laplace approximation is sufficient, Baysian model selection using MCMC and 

using the BIC should be equivalent, and both represent the special case of the DT approach with 

a binary loss function.   

Note that the BIC approximation does not depend on the prior probability distribution.  

Schwarz (1978) showed for a large class of models that if the true model is among those under 

review, the BIC will choose the true model in the limit as the size of the data increases with 

probability approaching 1 (i.e., BIC is consistent if the true model is in the candidate pool). It is 

somewhat ironic that the BIC, derived from Bayesian principles, is the only method that has been 

proven to be consistent, a distinctly frequentist property. Because Schwarz (1978) illustrated this 

frequentist property of the BIC, it is sometimes referred to as the Schwarz Information Criteria 

(SIC).  This property does not mean, however, that BIC assumes that the true model be in the 

candidate set. In real applications, the BIC will select the quasi-true model: the model in the 

candidate pool that best approximates the true model. 

Both BIC and AIC score models according to how well the model fits the data with a penalty 

for over fitting. Both methods were derived as approximately optimal under different decision 

theoretic criteria, and the approximations require the use of asymptotic theory. As was noted in 

the text, asymptotic theory may often fail to produce appropriate approximations in phylogenetic 

contexts; therefore the critical tests for how well various model-selection criteria work 

necessarily involve simulations under more complex models than any being evaluated.  

 

A2D. DECISION THEORY INCORPORATING PERFORMANCE 

For a phylogeny described by an unrooted binary tree with k terminal nodes, there are 2k-3 

branches. The branch lengths can be denoted by vector B = (B1, B2,….,B2k-3), and ˆ
iB  is the 

estimated branch lengths under the assumptions of model Mi.  That is, ˆ
iB  is a function of the 

data D, the model Mi, and the maximum-likelihood estimates of the parameters ˆ
iθ  under model 

Mi. Instead of the 0 or 1 loss function described above, a DT approach may penalize models 

according to their performance with regard to branch-length estimation. 

Consider the estimated vector of branch lengths under model Mi and Mj. The squared 

Euclidean distance between the branch length estimates is given by 
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and the posterior loss of choosing model Mi is given by 
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This is the risk factor that incorporates the non-binary loss function developed by Minin et al. 

(2003), and iR can be calculated for each model. That model with the minimum posterior risk, 

iR , is chosen under this model-selection criterion. Thus, use of the BIC described above is 

precisely analogous to a special case of the DT method developed by Minin et al. (2003), one 

with the loss function in that case assumed to be binary. 

The following theoretical comparisons point out the advantages to this approach.  Each 

model is weighted according to the posterior probability of the model conditional on the data. 

Since any model of evolution is only a crude approximation to reality, rather than focus attention 

on trying to find the ‘correct model’, we have a measure of how plausible a model is given the 

data.  In addition, the decision theoretic framework allows for much flexibility. One can decide 

based on biologically relevant criteria, what makes a model useful and use this criterion to assess 

a higher penalty to models that do not meet the criterion than to those that do.  
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