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[39] Maximum Likelihood Methods for
Phylogeny Estimation

By Jack Sullivan

Abstract

Maximum likelihood (ML)estimation of phylogenies has reached a
rather high level of sophistication because of algorithmic advances, im-
provements in models of sequence evolution, and improvements in statisti-
cal approaches and application of cluster computing. Here, I provide a
brief basic background in application of the general principle of ML
estimation to phylogenetics and provide an example of selecting among
a nested set of ML models using a dynamic approach to hierarchical
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likelihood ratio tests. I focus attention on PAUP* because it provides
unique ease of switching among alternative optimality criteria (e.g., mini-
mum evolution, parsimony, and ML). Further, examples of parametric
bootstrap tests are provided that demonstrate statistical tests of phyloge-
netic hypotheses and model adequacy, in an absolute rather than relative
sense. The increasing availability of clustered, parallelized computation
makes use of such parametric approaches feasible.

Application of ML as an Optimality Criterion in Phylogeny Estimation

Maximum-likelihood (ML) estimation is a standard and useful statisti-
cal procedure that has become widely applied to phylogenetic analysis.
Although this application of ML presents some unique issues, the general
idea is the same in phylogeny as in any other application. One calculates
the likelihood of an observed dataset given a particular hypothesis and
some assumed probabilistic model.

L ¼ ProbðdatajhypothesisÞ (1)

We evaluate several hypotheses and select the one that maximizes the
probability of generating the observed data. When applied to phylogeny
estimation, the hypotheses that are examined represent alternative phylo-
genies and the data are the set of aligned sequences. The likelihood of a
tree (�) is

Lð�Þ ¼ ProbðDj�Þ (2)

simply the probability of the data (the set of aligned sequences), given the
tree (and some assumed model of character evolution). Just as the length of
a tree can be calculated as its optimality score in parsimony analyses, the
likelihood of a tree can be used as its optimality score in ML estimation.
We make the assumption that characters are independent (just as in
parsimony) so that we may treat likelihoods for each site separately:

Lð�Þ ¼
Ys

i¼1

ProbðDij�Þ ¼
Ys

i¼1

Lið�Þ (3)

where s is the number of sites (characters) and Prob(Di j �) is the probabil-
ity of site i (character i), given tree � . This value is the single-site likelihood,
and just as the parsimony score for a tree across an entire dataset is the
sum of the character lengths, the likelihood of a tree across an entire
dataset is the product of the single-site likelihoods. The single-site likeli-
hood is, therefore, analogous to the length of a most parsimonious
character reconstruction in MP estimation.
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The calculation of single-site likelihoods is accomplished as follows. Let
us assume the following rooted, four-taxon tree:

This example is somewhat modified from that provided by Swofford et al.
(1996), and in this tree, taxa w, x, y, and z have nucleotides G, A, C, and C,
respectively, at the first position in the alignment. The branches, which are
labeled vx,y, and their lengths (in units of expected number of substitutions
per site—a function of rate of evolution times the temporal duration of
branch) are parameters that need to be estimated. So to calculate the
single-site likelihood for this character, we must sum the probabilities for
all possible character-state reconstructions. Because there are n � 1 ¼ 3
internal nodes (for a rooted tree) and four possible character states at each
node, there are 4n�1 ¼ 43 ¼ 64 possible reconstructions. So

Lið�Þ ¼
X4n�1

r

ProbðRi
rj�Þ

or

Of course many reconstructions are extremely unlikely (such as the last
one shown, with T at all internal nodes), and they will contribute very little
to the single-site likelihood; nevertheless, we consider them as possibilities.
So now the issue is how one calculates the probabilities of a particular
reconstruction. Let us assume that in reconstruction r, m is the state at the
root node 3, k is the state at node 1, and l is the state at node 2. We know
from our data that nodes w, x, y, and z have states A, G, C, and C,
respectively. So the probability of reconstruction r at site i is

PðRi
rj�Þ ¼ 	m 
 Pm;kðv3;1Þ 
 Pk;Aðv1;wÞ 
 Pk;Gðv1;xÞ 
 Pm;lðv3;2Þ


Pl;Cðv2;yÞ 
 Pl;Cðv2;zÞ; (5)
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where 	m is the frequency of the nucleotide A (which provides an estimate
of the probability of observing state m at the root node). Pi,j is the proba-
bility of substitution between states i and j, which is derived from the model
of sequence evolution that we assume (see below). This can be calculated
for all 4n�1 reconstructions, and these are then summed across reconstruc-
tions to calculate the single-site likelihoods. However, Felsenstein (1973)
developed a more efficient way to calculate the same value, which uses
the structure of the tree, so that the single-site likelihood for character i is
as follows:

Lið�Þ ¼
X

m

	m x
X

k

Pm;kðv3;1ÞPk;Aðv1;wÞPk;Gðv1;xÞ
 !

x
X

l

Pm;lðv3;2ÞPl;Cðv2;yÞPl;Cðv2;zÞ
 !

(6)

and each summation is across all four nucleotides. The improvements in
efficiency achieved here are attributable to the fact that we can calculate
the contributions of various subtrees (indicated by the structure of the
parentheses) just once and use the subtree values as they are needed. In
almost all applications of ML estimation, rather than dealing with the
product of extremely small numbers (the single-site likelihoods), their
natural logarithms are usually taken and summed. The overall log likeli-
hood of a tree is, therefore,

InLð�Þ ¼
Xs

i¼1

InLið�Þ (7)

An additional efficiency is achievable by realizing that if more than one
site has the same distribution of character states (i.e., has the same site
pattern), we only have to calculate Li(�) once. So, if we consider the
following dataset:

1 A G T A C A : : : : : : : : : : : : : : :

2 A G T A : : : : : : : : : : : : : : : : :

3 A G T A : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : :

n A G T A : : : : : : : : : : : : : : : : :

Pattern 1 2 3 1 : : : : : : : : : : : : : : : : ðaÞ

The first and fourth sites have the same site pattern, and with n
sequences, there are 4n possible site patterns (because there are four
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possible nucleotides). Rather than recalculating the single-site likelihood
for sites with the same pattern, their values are stored and the frequency of
each site pattern is tallied. The overall likelihood score for a particular tree
therefore is as follows:

InLð�Þ ¼
X4n

a¼1

faðInLað�ÞÞ (8)

Here, fa is the frequency of the ath site pattern and lnLa(�) is the single-
site log likelihood of tree � for all sites with pattern a. This value represents
a measure of fit between the tree and the data (assuming a model of
sequence evolution), and lnL(�) is calculated for every tree that is
examined during a tree search.

Generating ML Estimates of Phylogeny

Justification for Iterative Approach

In principle, searching trees under the likelihood criterion is no differ-
ent than doing so under parsimony. However, one qualification is that the
optimality score for a given tree under likelihood lnLi(�) is computational-
ly more difficult than the corresponding value (tree length) under parsimo-
ny. Furthermore, the Pi,j values used in calculating lnLi(�) represent
instantaneous rates of substitution from nucleotide i to nucleotide j; these
are specified by the model of sequence evolution, and a model must be
chosen that makes explicit assumptions. One difficulty is that the optimum
values of these parameters are conflated both with each other (i.e., non-
independent) and with topology. The ideal solution is to simultaneously
optimize all parameters on every tree that one examines during a tree
search, an approach that is not feasible for most empirical studies. Fortu-
nately, this problem can be circumvented by adopting an iterative
approach (Sullivan et al., 1996; Sullivan and Swofford, 1997; Swofford
et al., 1996), in which one uses a rapid approximate method to find a
reasonable initial tree. This initial tree is used both to evaluate alternative
models (Frati et al., 1997; Sullivan et al., 1997) and to derive initial esti-
mates of model parameters (such as Pi,j parameters). In the next step, the
model parameters are held constant and alternative trees are evaluated
(usually using some heuristic search). This process is repeated until the
same tree (or set of trees) is found in successive iterations. Sullivan and
Swofford (in preparation) have demonstrated that the iterative method is a
useful approximation to the ideal analytical approach.

Au_C39_1
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Starting the Iteration: Selecting a Model

As is true for many statistical methods, there are a number of ap-
proaches to model selection, and theory is continually being developed
and tested by statisticians. With respect to ML models for phylogeny
estimation, the most commonly employed approach is likelihood ratio tests
(LRTs) and there are a number of ways to implement LRTs. Model selec-
tion via LRTs can be accomplished in an automated fashion, with programs
such as ModelTest (Posada and Crandall, 1998), or it can be conducted in a
more interactive fashion (sometimes called dynamic model selection).
Regardless of how one chooses to proceed, LRTs require that the models
being examined form a nested family of models, whereby every model in the

Fig. 1.
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collection is a special case of some parameter-rich general model. In most
phylogenetic analyses, attention has focused on the GTRþIþ� family of
models. One visualization of that family is shown above (Fig. 1).

Here, the most general and parameter-rich model, the GTRþIþ� has
10 free parameters: three free base frequencies, 5 free relative instanta-
neous transformation rates (rAC, rAG, rAT, rCG, and rCT; rGT is arbitrarily set
to 1), a proportion of the sites that are invariable ( pinv), and the gamma
distribution shape parameter (�, which describes rate variation across the
potentially variable sites). I focus on describing the steps one takes in using
PAUP* (Swofford, 1998) to implement the iterative search strategy, be-
cause no other package allows one to switch optimality criteria in the same
run as easily as PAUP* (Swofford and Sullivan, 2003). The initial step in
implementing the iterative searches is to generate an initial tree. Usually,
this is accomplished with a very rapid method such as neighbor joining
(NJ), typically applied to a distance matrix generated with LogDet dis-
tances. Below, I go through a dynamic, top-down approach to model
selection (i.e., starting with the most general and parameter-rich model,
GTRþIþ�) for a dataset containing 22 cytochrome b sequences from
sigmodontine rodents (Rinehart et al., unpublished). Once the dataset is
loaded, the commands are as follows:

dset dist ¼ logdet;
nj;

lset nst ¼ 6 rmat ¼ est basefreq ¼ est pinv ¼ est rates ¼ gamma
shape ¼ est; ½This sets the likelihood model to GTRþ Iþ��

lscore;

This generates the following output:

Tree 1

�������������� ��
�ln L 6449:72254

Base frequencies:

A 0:360254

C 0:316726

G 0:099847

T 0:223173

Rate matrix R:

AC 1:29169

AG 5:43624

AT 3:14761

CG 0:13416

CT 35:49652

GT 1:00000

P inv 0:446391

Shape 0:596201

Au_C39_2

Au_C39_3
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Just by looking at these parameter estimates, rAC � rGT, we should be able
to equate rAC with rGT using the rclass command. One would type the
following command:

lscore = rclass ¼ ða b c d e aÞ;

And the output is

Tree 1

�������������� ��
�ln L 6450:04916

Base frequencies:

A 0:379897

C 0:324175

G 0:066497

T 0:229431

Rate matrix R:

AC 1:00000

AG 10:62273

AT 1:95152

CG 0:44845

CT 28:84545

GT 1:00000

P inv 0:456866

Shape 0:517319

So by eliminating one parameter, we have decreased the likelihood score
by 0.326 lnL units. The LRT statistic is � ¼ 2(lnLgeneral � lnLrestricted), so �
¼ 0.652 and, making assumptions regarding asymptotic properties, we can
use the 
2 distribution with d.f. equal to the difference in number of
parameters between the two models (one in this case). Thus, p ¼ .419
and we accept the null hypothesis that there is no significant difference in
fit between the two models; that is, we accept the simpler model. Now let us
see if we can simplify further. The next most similar relative rate parameter
is perhaps the rCG, so we can restrict the matrix further.

lscore = rclass ¼ ða b c a d aÞ;

And the output is

Tree 1

�������������� ��
�ln L 6450:32915

Base frequencies:

A 0:383239

C 0:324820

G 0:062259

T 0:229682

764 phylogenetic analysis [39]
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Rate matrix R:

AC 1:00000

AG 14:46313

AT 2:18638

CG 1:00000

CT 32:44806

GT 1:00000

P inv 0:459870

Shape 0:512830

Again, we see just a slight deterioration in the likelihood score of 0.28
lnL units, so � ¼ 0.560 and p ¼ .454, so again we can accept the simpler
model. Let us continue by setting rAT equal as well:

lscore = rclass ¼ ð a b a a c aÞ;

And the output is

Tree 1

�������������� ��
�ln L 6452:67603

Base frequencies:

A 0:383349

C 0:323744

G 0:059190

T 0:233717

Rate matrix R:

AC 1:00000

AG 12:37828

AT 1:00000

CG 1:00000

CT 23:66113

GT 1:00000

P inv 0:459595

Shape 0:499518

Now we have a deterioration in likelihood score of 2.38 lnL units and
a � ¼ 4.772. This corresponds to a p value of .028926, and we can reject
the simpler model. It is unlikely that any further simplifications of the R
matrix would be acceptable, so let us try to simplify the rate heterogeneity
among sites by looking at � ¼ infinity (this is equivalent to an equal
rates model):

lscore = rates ¼ equal;

[39] ML estimation of phylogeny 765
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Again, the output is

Tree 1

�������������� ��
�ln L 6673:98739

Base frequencies:

A 0:305462

C 0:335057

G 0:097600

T 0:261880

Rate matrix R:

AC 1:00000

AG 4:12118

AT 1:95195

CG 1:00000

CT 6:94868

GT 1:00000

P inv 0:525604

This represents a huge deterioration of the likelihood score of about 223.7,
for a single parameter, so clearly we cannot use an invariable-sites model
alone (and in this case, it really does not matter which null distribution we
use: The mixed 
2 [following Goldman and Whelan, 2000] or the 
2 with 1
d.f.). The base frequencies are so wildly different that it is pointless to even
try restricting basefreq ¼ equal. So now we are at a point at which we have
three free base frequencies, three free relative-rate parameters (two transi-
tions and two transversions, one of which is set to one), and two rate
heterogeneity parameters. This actually is not a named model, and inci-
dentally, it is not a model that any automated model selection method, such
as ModelTest (Posada and Crandall, 1998), would choose. This is not to say
that the model chosen here is correct, and an alternative that may be
chosen by an alternative implementation of an LRT (or some other criteri-
on) is incorrect. All models are approximations of the true underlying
process, and the model selected above is a slightly different approximation
of the unknown true model.

Nevertheless, one disadvantage of using automated model selection
programs is that one is restricting the outcome of model selection to those
cases that are hard-coded into the programs. Another advantage of the
dynamic approach shown above is that the act of simplifying models
manually generates a much better understanding of one’s data (and indeed
of the relationships among alternative models) than can be achieved by
relying on an automated model-selection approach. Note that there are

766 phylogenetic analysis [39]
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model-selection approaches other than LRTs, such as Akaike Information
Content (AIC), Bayesian Information Criterion (BIC), and a new method
based on decision theory (DT-ModSel; Minin et al., 2003). The ability of
different model-selection approaches to select an adequate approximation
to the unknown true generating process is a question that is being ad-
dressed by a number of groups. At this point, there is evidence that at least
one of these, DT-ModSel (Minin et al., 2003), will outperform the LRT (as
commonly implemented by ModelTest) with respect to accuracy of branch
length estimated under the selected models (Minin et al., 2003).

Searching Tree Space Using the Chosen Model

Now that we have selected a model, we can begin the process of
searching tree space. The following set of commands implements an ML
heuristic search, under the fully defined model we have chosen, with 10
replicate searches, each started with a starting tree generated from random
addition sequence and using TBR branch swapping.

dset dist ¼ logdet;
nj;

lset nst ¼ 6 rclass ¼ ðabcadaÞ rmat ¼ est basefreq ¼ est pinv ¼ est
rates ¼ gamma shape ¼ est;

lscore;

lset rmat ¼ prev basefreq ¼ prev pinv ¼ prev shape ¼ prev;
set criterion ¼ like;
hs addseq ¼ random nrep ¼ 10;

Although most systematists who employ this approach stop there, the
process really should be iterated. One would use the ML tree just gener-
ated to reoptimize model parameters (unless the NJ tree from LogDet
distances is identical to the ML tree, which it almost never is), and then
conduct another ML search with the refined parameter estimates. This
iteration should continue until the same tree or set of trees is generated
in successive iterations.

One potential pitfall that can occur when there is a strong rate hetero-
geneity among sites is that the default number of rate categories (ncat ¼ 4)
may overly discretize the gamma distribution (which is a continuous func-
tion). This default was selected following Yang (1993), but it is definitely
worth assessing the influence of varying the number of rate categories. The
indication of such a problem is an estimate of the shape parameter � that is
diverging toward zero; the PAUP* output is

Shape < 0:001

[39] ML estimation of phylogeny 767
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If this occurs, more than four rate categories are required, and usually
eight (ncat ¼ 8) are sufficient. The ncat setting is an option under the lset

command. This problem is restricted to models in which all sites are
assumed to be potentially variable (i.e., pinv ¼ 0).

Assessing Phylogenetic Uncertainty

Again, just as is true for parsimony, non-parametric bootstrap analysis
(Felsenstein, 1985) can be used to assess nodal support in ML analyses.
Two issues need to be confronted in conducting ML bootstrap analyses.
The first of these is that, ideally, one would reevaluate the relative fit of
alternative models of sequence evolution and reoptimize model para-
meters for each pseudo-replicate. This is almost never done because of
the computational limits involved. Instead, ML bootstraps are almost
always conducted with the model fully defined and fixed to that which
was selected in the analyses of the real data. The effect that use of an
incorrectly defined model in analyzing each pseudo-replicate dataset will
have on bootstrap values has not been directly studied. However, phyloge-
netic theory (Waddell, 1995) predicts that bootstrap values for nodes that
are poorly supported (i.e., are defined by a short internal branch or a long
one defined only by change at high-rate sites) will be underestimated,
whereas bootstrap values for well-supported nodes should be relatively
unaffected.

The second issue is also related to computational time. In any applica-
tion of a bootstrap analysis, one would ideally analyze the pseudo-replicate
datasets identically to how the original dataset was analyzed. Thus, one
would ideally conduct a multiple random addition heuristic searches with
TBR branch swapping on each pseudo-replicate. Such an approach is
particularly problematic for datasets where divergence is relatively low
because of the chance of constructing a pseudo-replicate that has little or
no phylogenetic information. In such cases, the bootstrap analysis will
become bogged down by swapping interminably on a particularly informa-
tion-poor replicate. The most extreme approximation that can be taken is
to omit branch swapping altogether and simply use the stepwise-addition
tree as the estimate for each pseudo-replicate. In PAUP*, this is ac-
complished as follows (assuming the optimality criterion has been set to
likelihood and the model has been fully defined previously):

bootstrap nrep ¼ 1000 search ¼ faststep;

A much less extreme approach that still achieves great time savings is to
conduct full TBR branch swapping but to only hold a single optimal tree in
memory. This can be accomplished with the following:

Au_C39_4
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set maxtrees ¼ 1 increase ¼ no;
bootstrap nrep ¼ 1000 search ¼ hs keepall ¼ yes;

DeBry and Olmstead (2000) and Mort et al. (2000) have demonstrated
that this approach will provide bootstrap values that are not significantly
different than those that would be attained by full heuristic searches for
large datasets under the parsimony criterion. The same should hold true
for ML bootstraps.

Hypothesis Testing

Finding Trees Constrained to Fit Hypotheses

Perhaps the greatest advance in systematic biology over the last 10
years is the development of explicitly statistical approaches to phylogenetic
hypothesis testing. Many hypotheses in evolutionary biology make specific
predictions about phylogenetic relationships, and these predicted relation-
ships form the basis of phylogenetic hypothesis testing. The idea is that the
ML (or MP) tree for a particular dataset may contradict the relationships
predicted by some hypothesis one wants to test. By using topological
constraints, one may assess how much worse than the optimal tree is the
best tree consistent with the predictions of the hypothesis. In order to do
this with PAUP, one needs to define a constraint tree in a tree file, which in
this example is called ‘‘constraint.nex.’’ It is a simple file that contains only
a trees block.

# nexus

begin trees;

utree constraint1 ¼ ð1� 5; ð6;7;8ÞÞ; ½Taxa 8�22 will be

unresolved in the constraint tree�
end;

There are a few important points to note here. First, the constraint tree
will not be fully resolved. Ideally, it should be resolved to the minimum
extent possible while still fitting the predictions of the hypothesis being
tested. The above constraint tree would be used to test some evolutionary
hypothesis that predicts that taxa 6, 7, and 8 exclusively share a common
ancestor. Second, not all taxa in the data matrix need to be specified in the
constraint tree. So, if there were more than eight sequences in the test
dataset, but the hypothesis under examination does not address them,
they should be left unresolved in the constraint tree and need not even
be included in the constraint tree. To test this hypothesis (that taxa 6, 7,
and 8 exclusively share a common ancestor), we first need to find the
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unconstrained ML tree (as above). Let us assume that we have chosen the
HKYþIþ� model and found that the ML tree has a score of �6456.14360,
and that the clade (6, 7, 8) is not present on the ML tree. The ML tree must
be saved to a file:

savetree file ¼ ML:tre;

We now need to run a constrained search to find the best tree which
contains clade (6, 7, 8).

loadconst file ¼ constraint:nex;
showconst; ½make sure the constraint tree is correct�
hs enforce ¼ yes;
lsc nst ¼ 2 trat ¼ est ba ¼ est ra ¼ g sha ¼ est pinv ¼ est;

½we should reoptimize parameters on this tree to find

the best possible fit between data and hypothesis�
lsc trat ¼ prev ba ¼ prev sha ¼ prev pinv ¼ prev;
savetree file ¼ hypothesis:tre;

The showconst command allows one to view the constraint and ensure
that the constraint tree was written correctly; it is a good idea to check this
before running long searches. In our example, the best tree constrained to
contain the clade (6, 7, 8) has a likelihood score of �6481.94451, a deterio-
ration of 25.80091 lnL units. It is critical to save the ML branch lengths if
one is interested in employing the parametric bootstrap for significance
testing.

The two trees are as follows, with the tree on the left being the ML tree
and the tree on the right being the best tree constrained for taxa 6, 7, and
8 constrained to form a group (Fig. 2).

Note that, because there are no characters supporting that clade (6, 7, 8)
in the dataset, the group is united by an internal branch length of zero. This
is sometimes the case in constrained trees.

Evaluating the Test Statistic

In this example, the value of the test statistic is, therefore, 25.80. For
several years, the only approach available to assessing the significance of
the test statistic, and therefore testing the hypothesis that predicts the
presence of clade (6, 7, 8), was through the use of the Kishino-Hasegawa
test (K-H test) (Kishino and Hasegawa, 1989). Assuming that there are
no trees in the display buffer (i.e., that the best constrained tree was saved
to the file ‘‘hypothesis.tre’’ and the ML tree was saved to the file ‘‘ml.tre’’)
and we have selected the HKYþIþ� model of evolution, this is
accomplished in PAUP as follows:

Au_C39_5
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gettree file ¼ ml:tre;
gettree file ¼ hypothesis:tre mode ¼ 7; ½mode ¼ 7 retains any

trees currently in buffer�
lset nst ¼ 2 ba ¼ est trat ¼ est ra ¼ g sha ¼ est pinv ¼ est;
lscore=khtest ¼ normal;

The output is as follows

Kishino-Hasegawa test:

KH test using normal approximation, one-tailed test

KH-test

Tree �ln L Diff �ln L P

---------------------------------------------------

1 6456.14360 (best)

2 6481.94451 25.80091 0.000*

*P < 0.05

This has been the most commonly used of the K-H tests, with a normal
distribution of single-site lnL differences assumed for the null distribution.

Fig. 2.
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This is a somewhat stringent assumption that can be relaxed by using the
reestimated log likelihood (RELL) bootstrap procedure:

lscore=khtest ¼ rell nrep ¼ 1000;

with the output as follows:

Kishino-Hasegawa test:

KH test using RELL bootstrap, one-tailed test

Number of bootstrap replicates = 1000

KH-test

Tree �ln L Diff �ln L P

---------------------------------------------------

1 6456.14360 (best)

2 6481.94451 25.80091 0.015*

* P < 0.05

Use of the RELL bootstrap to assess significance of the test statistic is
preferable because it eliminates assumptions about the actual shape of the
null distribution. If the null hypothesis (the support for the two trees is
not significantly different) is false, the distribution of single-site lnL’s will
be skewed (i.e., not normal). Note that this is a one-tailed test. This seems
appropriate because we are using the test incorrectly; one tree is the
estimated ML tree, whereas one is known a priori to be suboptimal
(Goldman et al., 2000; Shimodaira and Kishino, 1999). For the test to be
used appropriately, the two trees being compared must be selected a priori
and a two-tailed test would be more appropriate:

lscore=khtest ¼ rell nrep ¼ 1000 tailkh ¼ 2;

With the output of

Kishino-Hasegawa test:

KH test using RELL bootstrap, two-tailed test

Number of bootstrap replicates = 1000

KH-test

Tree �ln L Diff �ln L P

---------------------------------------------------

1 6456.14360 (best)

2 6481.94451 25.80091 0.018* *

P < 0.05

Shimodaira and Hasegawa (S-H test) have attempted to correct this
bias by including a set of trees into consideration and centering the null
distribution. However, the collection of trees to consider still must be
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erected a priori, and with just two trees that were selected a posteriori
considered, the S-H test reverts to the H-K test.

Therefore, the most appropriate way to assess the significance of the
test statistic (lnLMLTree � lnLConstrainedTree) is through use of the para-
metric bootstrap (Goldman et al., 2000; Hillis et al., 1996). This entails
generating the null distribution by simulation, with the best constrained
tree used as the model (true) tree for simulation. The idea is that we have
the test statistic measure how much more poorly the data fit the hypothesis
than they do the ML tree. We now want to derive a probability (given the
hypothesis is true) of observing a test statistic at least as large as that
observed in the real data that is simply due to stochasticity. This provides
an assessment (conditional on the model; see below) of whether phyloge-
netic uncertainty can plausibly explain the difference between the ML tree
and the relationships predicted by the hypothesis. To accomplish a para-
metric bootstrap test, one needs a program that can simulate sequence
evolution given a tree with branch lengths and a fully specified model of
sequence evolution. For the example above, we can use the tree saved to
simulate sequences using the program Seq-Gen (Rambault and Grassley,
1997), which is available for several platforms. Because Seq-Gen does not
model gaps, missing data, or ambiguities, the test statistic, branch lengths,
and model parameters must be recalculated after excluding any characters
that contain any such issues. Assuming the tree is loaded into PAUP’s tree
buffer, one accomplishes this as follows:

exclude gapped missambig;

lsc all=nst ¼ 2 ba ¼ est trat ¼ est ra ¼ g sha ¼ est pinv ¼ est;
savetree file ¼ NoGapHypoth:tre brlens ¼ y;

For Mac systems, the easiest thing to do is to convert the tree file that we
just saved into one that Seq-Gen can read. This is done by deleting every-
thing from the tree file except the tree (the file should be just a single line that
specifies the tree in Newic format with branch lengths); here, I will rename it
‘‘NoGapHypothIn.tre.’’ In the dialogue box that appears when starting the
program, one hits the ‘‘file’’ button on the bottom left and then navigates to
the appropriate file (NoGapHypothIn.tre). It is best to save the output to a
file (by clicking the ‘‘file’’ button on the bottom right). In the field labeled
‘‘Argument,’’ one specifies the model of sequence evolution (in our case
HKYþIþ�), the sequence length (here, 720 bp), the number of replicate
datasets to generate, and any formatting information. This includes type of
output file (i.e., PAUP vs. Phylip) and any set of commands that one wants to
use in analyzing the simulated sequences. This last task is accomplished by
reference to a text file that contains a PAUP block (e.g., PaupBlock.txt). The
program allows a number of options, including use of mixed models for
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multilocus (or otherwise partitioned) data and the ability to use different
true trees for different partitions. For the purpose of simulating null dis-
tributions to assess the significance of our test statistic, we want to simulate a
number of replicate datasets on the best constrained tree (with its ML
branch estimates of branch lengths and model parameters). We then must
find the difference between the ML tree and the best constrained tree for
each replicate. Thus, the argument line for this example would look like this:

�mHKY �f0.379386, 0.329111, 0.053277, 0.238226
�t9.094694 �a0.465274 �i0.461462 �l720 �n100 �on
�xPaupBlock.txt,

where the file PaupBlock.txt contains the following:

begin paup;

set monitor=no autoclose=y;

dset dist=logdet;

nj; [get an approximate tree for parameter

estimation]

lsc/nst=2 ba=est trat=est ra=g sha=est pinv=est;

lset ba=prev trat=prev sha=prev pinv=prev;

set crit=like;

hs;

lsc 1/ba=est trat=est sha=est pinv=est

scorefile=mltree.score append; [reoptimize

parameters

on the ML tree to find the best possible fit]

lset ba=prev trat=prev sha=prev pinv=prev;

loadconstr file=constraint.tre;

hs enforce=y; [find the best tree constrained to

fit the hypothesis]

lsc 1/ba=est trat=est sha=est pinv=est

scorefile=hypotree.score append;[reoptimize

parameters on best constrained tree to find best

possible fit to hypothesis]

end;

Seq-Gen will generate a single file with 100 simulated datasets (i.e.,
100 data blocks) under the hypothesis being examined (i.e., using the best
tree constrained to fit the hypothesis of interest). After each of the data
blocks, the output file will contain the above PAUP block, which will find
the best unconstrained tree (and write the ML score to a file named
mltree.score) and the best tree constrained to fit the hypothesis (and
write the ML score the hypotree.score file). These two score files can be
merged into a single database file (e.g., using Microsoft Excel) and the
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distribution of differences across the 100 (or more replicates) is the null
distribution with which to assess the significance of the test statistic
(25.80091 lnL units). If one is using a Unix version of Seq-Gen, the
simulation is conducted with a single command:

seq-gen -mHKY -f0.379386,0.329111,0.053277,0.238226

-t9.094694 -a0.465274 -i0.461462 -l722 -n100

<NoGapHypothIn.tre>OutFile.dat -on-xPaupBlock.txt

These runs can take substantial CPU time. One way to reduce this is to
confine the tests to the parsimony searches. One then uses the difference in
tree length of constrained versus unconstrained trees as the test statistic,
still uses ML to estimate branch lengths and model parameters of the best
constrained tree as the model tree/parameters, and then searches each
replicated for the best constrained and unconstrained MP trees. A prefera-
ble alternative is to use emerging technology in parallel clusters (i.e.,
a Beowulf cluster). For example, at the University of Idaho, the Bioinfor-
matics computing core facility has two clusters. The larger of these, a
modest cluster of eighty-eight 2.8-GHz processors can run a 500-replicate
full ML parametric bootstrap analysis for a moderate dataset of 66 taxa and
1.5 Kb in just 2 days. Given that it takes much more time than that to
generate the real data (and the growing affordability/availability of
Beowulf clusters), it makes little sense to take shortcuts in data analysis.

Parametric Bootstrap Test of Absolute Goodness of Fit

One caveat that must be given in the use of parametric bootstraps is
their reliance on the chosen model of evolution. In relying on the chosen
model to simulate the null distribution, one makes the assumption that the
model is adequate (Felsenstein, 2003). In the example given above, despite
that we have selected the HKYþIþ� model objectively based on its fit/
performance relative to others examined, we still have no indication about
its absolute goodness of fit. Goldman (1993) introduced an absolute good-
ness-of-fit test that is based on simulation. Here, the null hypothesis is a
perfect fit between model and data. As we can see from Eqn. 8, the ML
score that a dataset can have occurs when the model predicts the data
exactly, that is, when the probability of observing each site pattern is equal
to the frequency of each site pattern in the dataset. Thus, the maximum
possible likelihood score can be calculated as

lnLmax ¼
X4n

a¼1

faðInfaÞ (9)

This is the unconstrained likelihood and is sometimes called the
multinomial likelihood. One can think of it as the likelihood score under
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Au_C39_6

a scenario in which each site is allowed its own model and tree. This value is
calculated by PAUP every time one invokes the lscore or hs commands.
The difference between the ML score under the model and the
unconstrained likelihood measures the deterioration in fit associated with
forcing all the data to a single model (in this case HKYþIþ�) and tree.
Thus, we have a test statistic:

� ¼ lnLmax � lnLHKYþIþ�ðDataj�Þ (10)

We can now use Seq-Gen to simulate sequences under the model and
find the distribution of the difference between the lnLmax and the ML score
under the model. Here, we know that the fit between model and data is
perfect, because the model was used to generate the data, and therefore, any
deviation between lnLmax and the ML score is attributable to stochasticity.
For the real data, the ML score under HKYþIþ� is �6374.32274, whereas
the lnLmax is �2938.93723; the test statistic is � ¼ 3435.38551. To use Seq-
Gen to simulate the expectation of this statistic under the null hypothesis of
a perfect fit, we use the ML tree under the model and the ML estimates of
model parameters. Furthermore, we embed the following text (using
�xfilename in the argument field) into after each replicate data block:

begin paup;

log file=ABGoF.log append;

dset dist=logdet;

nj;

lsc/nst=2 ba=est trat=est ra=g sha=est pinv=est;

lset ba=prev trat=prev sha=prev pinv=prev;

set crit=like;

hs;

lsc 1/ba=est trat=est sha=est pinv=est

scorefile=ABGoFML.score append;

end;

The log file can then be searched to extract lines containing the string
‘‘�lnL (unconstrained) =’’ (the ‘‘Copy Lines Containing’’ tool in text
editors can be used for this), which will occur three times in the log file
for each replicate. The file ABGoFML.score will contain the ML scores
under the HKYþIþ� model for each replicate, as well as the distribution
of differences forms the null distribution. Here, any deviation between the
ML score under HKYþIþ� and the unconstrained (multinomial) model is
due simply to stochasticity, because HKYþIþ� was used to generate the
data (i.e., the data fit it perfectly).

In our example, the observed difference of � ¼ 3435.38551 is well within
the distribution simulated under the null hypothesis of a perfect fit between
the model and the data (Fig. 3).
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Fig. 3.

Au_C39_7

The HKYþIþ�, therefore, seems to be a statistically adequate descrip-
tion of the processes that generated this dataset; the fact that the model
assumes independence among sites and ignores codon structure should not
lead to biases in application of the model to statistical hypothesis testing.

Concluding Remarks

Advances in model complexity (Yang, 1994; Yang et al., 1994), algo-
rithmic efficiency, and cluster computing have made ML estimation of
phylogeny applicable to increasingly large datasets. This is certainly true
for incorporation of likelihood into a bayesian framework (see Chapter
XX). It is also true under the traditional frequentist framework, in which
point estimates of parameters of interest are sought (e.g., optimal topolo-
gies) in conjunction with an analysis of the uncertainty associated with the
point estimate. Given the amount of time and grant money that are
invested in generating sequence data, it makes little sense to analyze data
in a less than rigorous fashion.
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[40] Context Dependence and Coevolution among
Amino Acid Residues in Proteins

By Zhengyuan O. Wang and David Pollock

Abstract

As complete genomes accumulate and the generation of genomic
biodiversity proceeds at an accelerating pace, the need to understand the
interaction between sequence evolution and protein structure and function
rises in prominence. The pattern and pace of substitutions in proteins can
provide important clues to functional importance, functional divergence,
and adaptive response. Coevolution between amino acid residues and the
context dependence of the evolutionary process are often ignored, how-
ever, because of their complexity, but they are critical for the accurate
interpretation of reconstructed evolutionary events. Because residues in-
teract with one another, and because the effect of substitutions can depend
on the structural and physiological environment in which they occur, an
accurate science of evolutionary functional genomics and a complete
understanding of selection in proteins require a better understanding of
how context dependence affects protein evolution. Here, we present new
evidence from vertebrate cytochrome oxidase sequences that pairwise
coevolutionary interactions between protein residues are highly dependent
on tertiary and secondary structure. We also discuss theoretical predic-
tions that impinge on our expectations of how protein residues may
interact over long distances because of their shared need to maintain
protein stability.
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