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Abstract. Among-site rate variation, as quantified by
the gamma-distribution shape parameter,a or a, and the
ratio of transition rate to transversion rate (Ts/Tv) influ-
ence phylogenetic inference. We examine the effect of
topology on estimates of these two parameters in 12S
rRNA sequences from nine species of mice belonging to
the generaOnychomysand Peromyscusby generating
100 random topologies and estimating these parameters
using parsimony and maximum-likelihood methods for
each of the random topologies. The parsimony-based es-
timate ofTs/Tv from the well-corroborated topology falls
within the distribution of estimates based on random to-
pologies, whereas the maximum-likelihood estimate of
Ts/Tv based on the well-corroborated topology lies well
outside the distribution of estimates derived from ran-
dom topologies. TheTs/Tv ratio derived via maximum-
likelihood estimation is three times the parsimony-based
estimate, suggesting that parsimony-based estimates are
severe underestimates even when the correct topology is
used. Both parsimony- and likelihood-based estimates of
the gamma-distribution shape parameter (a) are sensitive
to topology because the best estimates based on the well-
corroborated topology are well outside the distributions
of estimates derived from random topologies for both
methods. We show that the reason for topology depen-
dence is the presence of long internal branches in the
underlying topology.
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Introduction

It has become increasingly obvious that among-site rate
variation influences phylogenetic estimation from nucle-
otide sequence data and therefore must be incorporated
in phylogenetic models (Kuhner and Felsenstein 1994;
Tateno et al. 1994; Yang 1994; Yang et al. 1994; Sulli-
van et al. 1995). Yang et al. (1994) tested a series of
models typically used in estimation of molecular phy-
logenies and made important contributions in showing
that the use of complex models which incorporate nucle-
otide and substitution bias as well as rate variation
among sites led to significant improvement in likelihood
scores relative to use of more simple models. The model
of among-site rate variation most widely used is the
G-distributed rates model (e.g., Tateno et al. 1994; Gaut
and Lewis 1995; Sullivan et al. 1995). The important
parameter of this model is the shape parameter (a or a),
which is inversely related to the coefficient of variation.
Low values ofa, therefore, imply substantial rate het-
erogeneity across sites. A shape parameter of 0.5 has
been used by Tateno et al. (1994) and Gaut and Lewis
(1995) to model extreme among-site rate variation, but
estimates derived from real data sets are often signifi-
cantly lower (e.g., Kocher and Wilson 1991).

Yang et al. (1994) found little variation in estimates of
a derived from different topologies for several real four-
and five-taxon data sets. If it is true generally that esti-
mates are not topology dependent, this provides an im-
portant escape from the impossible situation of trying to
incorporate tree-based estimates of these parameters into
models used for estimating tree topology. However,
Yang (1994) subsequently showed that basing estimates
of a on a star topology can lead to significant overesti-
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mates of among-site rate variation (underestimates ofa)
in a larger data set. It is therefore important to assess the
variation in tree-based estimates ofa over a wide range
of alternative topologies and to ascertain under what con-
ditions estimates will vary across topologies.

In this paper we examine variation in the estimates of
the G-distribution shape parameter (a) and the ratio of
transition rate to transversion rate (Ts/Tv) over a wide
range of tree space by generating a distribution of these
tree-based estimates over 100 random trees for some of
the sequences examined in Sullivan et al. (1995). We
then compare the best estimates of these parameters de-
rived from the well-corroborated relationships among
these taxa to the distribution of estimates from random
topologies.

Methods

The data set used here consists of nine 12S rRNA sequences (775 bp)
from grasshopper mice (Onychomys) and deer mice (Peromyscus), a
subset of those presented in Sullivan et al. (1995). Divergence levels
range up to ca. 13% among the sequences, and the relationships among
these mice are well understood based on congruence among morpho-
logical, allozyme, chromosomal, and DNA hybridization and sequenc-
ing studies. Further, it has been shown that the mitochondrial DNA
gene tree is equivalent to the species tree for these samples (Sullivan et
al. 1995).

MacClade (Maddison and Maddison 1992) was used to generate
100 random trees for these nine taxa using the equiprobable trees
option. Transition/transversion ratio (Ts/Tv) was estimated for each of
these trees by direct count of changes inferred for each topology under
the assumption of parsimony, and by the maximum-likelihood method
of Yang (1994) using Baseml and the F84 model for each of the
topologies. Wakeley (1994) pointed out a relationship between among-
site rate variation andTs/Tv. To examine this relationship in our data
we estimatedTs/Tvwith Baseml using both a single rate model and a
G-distributed rates model.

Shape parameters were calculated for each of the random topolo-
gies using the discrete gamma option of Baseml (Yang 1994) with 40
categories and the F84 model. In addition, MacClade was used to
generate parsimony-based distributions of the number of changes in-
ferred at each site for each of the random topologies andG-distribution
shape parameters (a) were estimated by finding the maximum-
likelihood fit to the negative binomial using the program GAMMA
(Sullivan et al. 1995). Tree-based estimates ofa derived from the
well-corroborated relationships of these taxa using both of the above
methods were compared to the distributions of estimates generated by
using the random topologies.

To test for the effect of long internal branches, we took three
subsets of four taxa such that two subsets contained a long internal
branch (betweenOnychomysand Peromyscus) and one contained a
short internal branch. Subset A includedO. leucogaster, O. torridus, P.
leucopus,andP. eremicus;in subset B,P. keenireplacedP. leucopus;
subset C containedO. leucogaster, P. eremicus, P. keeni,andP. leu-
copus.We then estimateda for all three possible topologies plus the
star topology for all three data subsets using Baseml as above (Yang
1994). Estimates ofa derived from the alternative topologies were
fixed in Baseml and likelihood scores were calculated using the well-
corroborated topology. The likelihood scores were then compared us-
ing likelihood-ratio tests.

Results and Discussion

Ts/Tv Estimates

The estimate ofTs/Tv derived using parsimony and di-
rect counts from the well-corroborated relationships
among these taxa is 1.75 and lies well within the distri-
bution of parsimony-based estimates from random topol-
ogies (Fig. 1A). However, as pointed out by Wakeley
(1994), tree-based parsimony estimates ofTs/Tv are typ-
ically conflated with among-site rate variation and thus
are underestimates when there is a large amount of rate
heterogeneity. The underestimation ofTs/Tv due to par-
simony is uniform across the random topologies in this
data set.

The maximum-likelihood estimate ofTs/Tv based on
the well-corroborated relationships when among-site rate
variation is accommodated (using F84 and discrete
gamma options of Baseml) is 6.04, much higher than any
of the parsimony-based estimates (Fig. 1). This estimate
lies well outside the distribution of estimates derived
from random topologies (Fig. 1B). However, when
among-site rate variation is ignored (Fig. 1C) the esti-
mate of Ts/Tv from the well-corroborated topology is
well within the distribution of estimates from the random
topologies. This suggests that accurate maximum-like-
lihood estimation ofTs/Tv is topology dependent when
among-site rate variation is accommodated.

The difference between the results for parsimony-
based estimates (Fig. 1A) and maximum-likelihood es-
timates (Fig. 1B) is due to the bias in estimation ofTs/Tv
from direct counts of changes inferred on a tree using
parsimony. The magnitude of this bias can be seen by the
displacement of the distribution in Fig. 1A relative to
Fig. 1B and C. Any estimate of the underlying ratio of
rate of transitional substitutions to rate of transversional
substitutions derived by counting observable substitu-
tions on a tree is a severe underestimate. When the more
accurate of the maximum-likelihood methods is used to
estimateTs/Tv (incorporating among-site rate variation)
the effect of using an incorrect topology becomes appar-
ent (Fig. 1B).

Estimates of Shape Parameters

The parsimony-based estimate ofa derived (using
GAMMA) from the well-corroborated relationships
clearly falls outside the distribution of estimates based on
random trees (Fig. 2A). Similarly, the Baseml estimate
derived from the well-corroborated topology falls out-
side the distribution of estimates from random topologies
(Fig. 2B). The estimate derived from the star phylogeny
falls in the middle of the distribution, indicating that
estimates based on the star topology are inadequate. We
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interpret these results to indicate that topology has a
dramatic effect on estimates ofa regardless of whether
Yang’s (1994) method or the method of Sullivan et al.
(1995) is used; estimates ofa are clearly topology de-
pendent for this data set.

The Effect of Long Internal Branches

In each of the five small data sets (four or five taxa)
examined by Yang et al. (1994) there is a very short
internal branch. In our data set, the generaPeromyscus
andOnychomysare separated by a relatively long inter-
nal branch. In our three four-taxon subsets, two (Fig.
3A,B) contained a long internal branch and one did not
(Fig. 3C). When we used Baseml (Yang 1994) to esti-
matea for all three alternatively resolved topologies plus
the star topology for each subset, the estimates ofa from
the true topology (a1) for subsets A and B (long internal
branch maintained) were significantly higher (as judged
by likelihood ratio tests) than the estimates derived using
any of the other topologies (a2, a3) including the star
topology (a0). In data subset C, where there was a very

short internal branch, the estimates of the shape param-
eter were not significantly different across the four to-
pologies (Fig. 3).

Interestingly, in data subset C, the maximum-like-
lihood tree unitesP. eremicuswith P. leucopus(Table 1)
and the likelihood score was significantly higher than
that for the star topology. Although the likelihood-ratio
test is difficult to interpret in this case, this resolution
conflicts with relationships based on all data examined to
date for these taxa, including data from linked cy-
tochromeb (Sullivan et al. 1995). Thus, maximum-
likelihood estimation fails to find the well-corroborated
relationships amongPeromyscusspecies with the 12S
data, even when among-site rate variation and unequal
substitution probabilities and base composition are in-
cluded in the model of evolution.

The conclusion of Yang et al. (1994) that there is little
variation in estimates ofa across topologies was based
primarily on four-taxon data sets. Upon inclusion of ad-
ditional taxa, Yang (1994) found that there is indeed
variation in estimates ofa across topologies. Specifi-
cally, adding a gibbon (Hylobates) sequence to the pri-
mate mtDNA data set generated a long internal branch

Fig. 1. A The distribution of
parsimony-based estimates ofTs/Tv for 100
random topologies. Variation in 12S rRNA
sequences among nine taxa ofPeromyscus
andOnychomyswas optimized on each
topology using MacClade and estimates
were based of direct counts of changes on
each tree.B The distribution of
maximum-likelihood estimates ofTs/Tv for
100 random topologies when among-site
rate variation is accommodated.C The
distribution of maximum-likelihood
estimates across topologies when a single
rate is assumed across all sites.
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betweenHomo-Pan-GorillaandPongo-Hylobates.To-
pologies that did not maintain this bipartition of taxa
produced underestimates ofa. This is consistent with the
results seen here (Fig. 3).

To further examine the importance of long internal
branches, we estimateda from the nine-taxon data set
using a topology with only one bipartition of taxa, that
separatingOnychomysfrom Peromyscus.All intrage-

Fig. 2. A The distribution of shape parameter estimates (a) calculated by the GAMMA program for 100 random topologies. Note that the x-axis
is not continuous.B The distribution of shape parameter estimates (a) calculated by the maximum-likelihood method of Baseml for 100 random
topologies.

Fig. 3. The effects of long internal branch on
estimates ofa. For all three subsets, topology
1 is the well-corroborated topology, topologies
2 and 3 represent the alternative resolutions,
and topology 0 represents the star phylogeny.
ax represents estimates of the shape parameter
for each of the above topologies. Significance
tests were conducted by comparing the
likelihood score for topology 1 anda1 with the
likelihood score calculated using topology 1
and eachax, x2 = 2(l1 − lx).
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neric relationships remained as unresolved star topolo-
gies. The estimate ofa for this topology was 0.125 (com-
pared to a value of 0.158 when the well-corroborated
relationships were used, Fig. 2B) and a likelihood-ratio
test showed that these estimates are statistically indistin-
guishable. Thus, in this data set, using any topology that
maintains the bipartition of taxa into their appropriate
genera will generate a reasonable estimate ofa.

Accommodating Among-Site Rate Variation

One potential limitation of using maximum-likelihood
estimation of parameters in complex (realistic) models is
the intensive computation required. This is especially
problematic for large data sets. Yang (1994) suggested
using subsets of taxa to obtain maximum-likelihood es-
timates directly from the sequence data. The results of
the taxon subsampling here (Fig. 3) suggest that there is
a taxon sampling effect. The estimates of the shape pa-
rameter produced by Baseml for two of the four-taxon
subsets (i.e., subset A,a1 = 0.284) are no closer to the
Baseml estimates from the whole data set (Fig. 2B;a =
0.158) than is the estimate ofa derived by the method of
Sullivan et al. (1995), which is based on the entire data
set (Fig. 2A;a = 0.281). However, a very good estimate
of a is obtained from the four taxa in subset C (Fig. 3;a1

= 0.143). Thus, in this data set, some subsets of taxa
provide accurate estimates ofa, whereas others do not.
We are currently examining the effect of data set size and
taxon subsampling on estimates ofa using large (ca. 40
taxa) data sets.

Topology clearly has a dramatic effect on estimates of
the G-distribution shape parameter, regardless of the

method used in estimation, if the history of the included
taxa involves long internal branches. Fortunately, long
internal branches are easy to resolve using virtually any
phylogenetic inference method. It is therefore possible to
conduct an initial phylogenetic analysis based on a sim-
ple model of evolution to identify long internal branches,
incorporate them into estimates of among-site rate vari-
ation, and then refine phylogenetic analyses using more
complex models of nucleotide substitution. This ap-
proach is conceptually very similar to successive approx-
imations (Farris 1969) and dynamic parsimony (Wil-
liams and Fitch 1989) in that an initial tree is used to
evaluate character variability. Phylogenetic analysis then
becomes a recursive procedure.
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Table 1. Likelihood scores of three trees for data subset C of Fig. 3a

Topology l x2 vs tree 0

0) (Ole, Ple, Per, Pke) −1,435.005
1) ((Ole, Per), Ple, Pke) −1,435.007 0.004
2) ((Ole, Pke), Ple, Per) −1,433.064 3.887*

* P < 0.05
a Topology 0 is the star topology, topology 1 represents the well-
corroborated relationships among these taxa, and topology 2 is the
maximum-likelihood and maximum parsimony tree (Sullivan et al.
1995). Topology 2 has a higher likelihood score than the star topology,
whereas topology 1 does not. Standard likelihood ratio tests are appli-
cable when testing a resolved topology vs star topologies because the
star topology is the same as any resolved topology, but with zero-length
internal branches
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