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SMALL-WORLD MCMC AND CONVERGENCE TO
MULTI-MODAL DISTRIBUTIONS: FROM SLOW

MIXING TO FAST MIXING1

BY YONGTAO GUAN AND STEPHEN M. KRONE

University of Chicago and University of Idaho

We compare convergence rates of Metropolis–Hastings chains to multi-
modal target distributions when the proposal distributions can be of “local”
and “small world” type. In particular, we show that by adding occasional
long-range jumps to a given local proposal distribution, one can turn a chain
that is “slowly mixing” (in the complexity of the problem) into a chain that
is “rapidly mixing.” To do this, we obtain spectral gap estimates via a new
state decomposition theorem and apply an isoperimetric inequality for log-
concave probability measures. We discuss potential applicability of our result
to Metropolis-coupled Markov chain Monte Carlo schemes.

1. Introduction and main result. Many applications of Markov chain Monte
Carlo (MCMC) involve very large and/or complex state spaces, and convergence
rates are an important issue. A major problem in MCMC is thus to find sampling
schemes whose mixing times do not grow too rapidly as the size or complexity of
the space is increased. Guan et al. [8] used computer simulations to show that such
problems can be handled simply and efficiently by using an idea from “small-world
networks” [27] to make a slight change in a given proposal scheme. This change
amounts to augmenting a typical local proposal distribution with low probability
long-distance jumps that effectively contract the space and lead to much faster
convergence to multi-modal target distributions. In this paper we make rigorous
comparisons of the convergence rates of these two types of chains on Rn. We see
this as a first step in handling other complex state spaces, with the connection
between Rn and such spaces coming through possible embedding theorems.

Let π be a multi-modal probability measure on a convex set � ⊆ Rn. We wish to
compare convergence rates to this measure by two different Metropolis–Hastings
chains that are characterized by their proposal distributions: “local” and “small
world.” From now on, we refer to these two types of Markov chains as “local
chains” and “small-world chains,” respectively. Intuitively, a local proposal dis-
tribution is one that has thin tails, so that the mean distance of a proposed move

Received May 2006; revised August 2006.
1Supported in part by NIH Grants P20 RR16448 from the COBRE Program of the National Center

for Research Resources and P20 RR016454 from the INBRE Program.
AMS 2000 subject classifications. Primary 65C05; secondary 65C40.
Key words and phrases. Markov chain, Monte Carlo, small world, spectral gap, Cheeger’s in-

equality, state decomposition, isoperimetric inequality, Metropolis-coupled MCMC.

284

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/105051606000000772
http://www.imstat.org
http://www.ams.org/msc/


CONVERGENCE OF SMALL-WORLD MCMC 285

away from the current state is small compared to the distances between modes; by
a small-world proposal, we mean a mixture of a local proposal and a heavy-tailed
proposal, so that there are both small and large proposed moves away from the
current state.

In a multi-modal space a local chain will equilibrate rapidly within a mode,
but takes a long time to move from one mode to another. Hence, the entire chain
converges slowly to the target distribution. However, a small fraction of heavy-
tailed proposals enables a small-world chain to move from mode to mode much
more quickly. While this reduces the efficiency of equilibrating within a mode, it is
a small price to pay and easily outperforms purely local proposals. This is the spirit
of our main results. We derive bounds on the spectral gaps for such local and small-
world chains and, hence, show how a small fraction of heavy-tailed proposals can
turn a slowly mixing chain into a rapidly mixing chain.

Throughout this paper, we assume the state space � is equipped with two mea-
sures: a reference measure, taken to be the Lebesgue measure µ, and a Borel prob-
ability measure π which serves as the target distribution. Suppose π is absolutely
continuous with respect to µ so that it admits a density π(x):

π(B) =
∫
B

π(x)µ(dx).

The most widely used Markov chain Monte Carlo method is the Metropolis–
Hastings algorithm [9, 22], which we now describe briefly.

1.1. Metropolis–Hastings algorithm. A transition probability kernel P(x, dy)

corresponds to a Metropolis–Hastings Markov chain on � if it is of the form

P(x, dy) = α(x, y)k(x, y)µ(dy) + r(x)δx(dy),(1)

where k(x, y) is the proposal distribution and we say k(x, y) induces P(x, dy),

α(x, y) = min
(

π(y)k(y, x)

π(x)k(x, y)
,1

)

is the acceptance probability of a proposed move, δx is the unit point mass at x,
and

r(x) =
∫
�

(
1 − α(x, y)

)
k(x, y)µ(dy)

is the probability that the proposed move from x is rejected. It is easy to
check that the transition kernel P(x, dy) satisfies the detailed balance equation
π(dx)P (x, dy) = π(dy)P (y, dx) as measures on � × �, so that P(x, dy) is re-
versible with respect to π and, hence, has π as an invariant measure. For simplicity,
we consider only (spherically) symmetric proposal distributions, k(x, y) = k(|x −
y|), in which case the acceptance probability simplifies to α(x, y) = min(

π(y)
π(x)

,1).
[In typical cases for which the proposal chain is a random walk and {x :π(x) > 0}
is path connected, the Metropolis–Hastings chain will be irreducible and, hence,
π is the unique invariant measure.]
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1.2. Geometric ergodicity and spectral gap. Let L2(π) denote the space of
(Borel) measurable, complex functions on � satisfying∫

�
|f (x)|2π(dx) < ∞.

This is a Hilbert space with inner product 〈f,g〉 = ∫
� f (x)g(x)π(dx) and norm

‖f ‖ = 〈f,f 〉1/2. The Metropolis–Hastings kernel P(x, dy) induces a contraction
operator P on L2(π) given by Pf (x) = ∫

� f (y)P (x, dy). We say the operator P

is induced by a proposal distribution k(x, y) if the same is true of its transition
kernel. P(x, dy) being reversible with respect to π is equivalent to the operator P

being self-adjoint, that is,

〈Pf,g〉 = 〈f,Pg〉, f, g ∈ L2(π).

It is well known that the spectrum of P is a subset of [−1,1]. [P being self-
adjoint implies its spectrum is real, and P(x, dy) being a transition probability
kernel determines the range.]

A chain is L2(π)-geometrically ergodic if there exists γ < 1 such that

‖µ0P
n − π‖ ≤ γ n‖µ0 − π‖(2)

for any nonnegative integer n and any probability measure µ0 ∈ L2(π) (i.e., µ0 �
π with

∫ | dµ
dπ

|2 dπ < ∞). Roberts and Tweedie [26] have shown that convergence
in L2 implies convergence in “total variation” norm

‖µ1 − µ2‖tv = sup
A⊂�

|µ1(A) − µ2(A)| = 1
2

∫
�

|f1(x) − f2(x)|dx,

where fi(x) = dµi/dx.
Let L2

0(π) denote the orthogonal complement of the constant function 1 in
L2(π):

L2
0(π) =

{
f ∈ L2(π) : 〈f,1〉 =

∫
�

f (x)π(dx) = 0
}
.

Clearly, as a subspace of L2(π), L2
0(π) is also a Hilbert space. Denote by P0

the restriction of P to L2
0(π). Chan and Geyer [5] proved that, for a geometrically

ergodic chain, P0 has no point spectrum (i.e., eigenvalues) of value ±1. In addition,
it has been shown [25, 26] that, for reversible Markov chains, geometric ergodicity
is equivalent to the condition

‖P0‖ ≡ sup
f ∈L2

0(π),‖f ‖≤1

‖P0f ‖ < 1,(3)

and any γ ∈ [‖P0‖,1) satisfies equation (2). The spectral gap of the chain P is
defined by

Gap(P ) = 1 − ‖P0‖.
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Thus, the spectral gap provides a measure of the speed of convergence of a
Markov chain to its stationary measure. Two of the main tools for studying spectral
gaps in the setting of MCMC are conductance and Cheeger’s inequality, to which
we now turn.

1.3. Conductance and Cheeger’s inequality. Let P be a Markov transition
kernel that is reversible with respect to π . For A ⊆ � with π(A) > 0, define

hP (A) = 1

π(A)

∫
A

P (x,Ac)π(dx).(4)

The quantity hP (A) can be thought of as the (probability) flow out of the set A in
one step when the Markov chain is at stationarity. Notice that π(dx)/π(A) is the
conditional stationary measure on the set A.

The conductance of the chain is defined by

hP = inf
0<π(A)≤1/2

hP (A).(5)

Note that 0 ≤ hP ≤ 1. Intuitively, small hP implies that the chain can become stuck
for a long time in some set whose measure is at most 1/2, making it difficult for
the chain to sample the rest of the distribution. As a result, such a chain converges
slowly to the stationary measure. On the other hand, a large hP implies that the
chain travels around swiftly and, hence, samples different parts of the distribution
efficiently. As a result, such a chain converges rapidly. Lawler and Sokal [14] have
quantified this as a generalization of Cheeger’s inequality.

THEOREM 1.1 (Cheeger’s inequality). Let P be a reversible Markov transition
kernel with invariant measure π . Then

h2
P

2
≤ Gap(P ) ≤ 2hP .(6)

Next, suppose that a proposal distribution k(x, y) is a mixture of two proposal
distributions k1(x, y) and k2(x, y). That is, k(x, y) = (1 − s)k1(x, y) + sk2(x, y),

for some 0 ≤ s ≤ 1. Suppose operators P, P1 and P2 are induced by k(x, y),

k1(x, y) and k2(x, y), respectively. Clearly,

P = (1 − s)P1 + sP2(7)

and, for any measurable set A, hP (A) = (1 − s)hP1(A) + shP2(A). As an imme-
diate consequence, we have the following lemma showing that conductance acts
like a concave function on transition kernels and the spectral gap can be bounded
from below by one of the components.

LEMMA 1.2. Suppose a reversible chain has a mixture kernel defined by (7).
Then the conductance of the chain satisfies hP ≥ (1 − s)hP1 + shP2 . In addition,

Gap(P ) ≥ 1
2(1 − s)2h2

P1
.(8)
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PROOF. From (5),

hP = inf
0<π(A)≤1/2

(
(1 − s)hP1(A) + shP2(A)

)

≥ (1 − s) inf
0<π(A)≤1/2

hP1(A) + s inf
0<π(B)≤1/2

hP2(B)

= (1 − s)hP1 + shP2 ≥ (1 − s)hP1 .

Combine this with Cheeger’s inequality (6) to get (8). �

1.4. Definitions and main result. Let | · | be a norm on � ⊆ Rn and Br(x) the
n-dimensional ball centered at x with radius r . Denote by ∂Br(x) the surface of
the ball, and write π+(∂A) for the surface measure (relative to π ) of a set A in the
sense that

π+(∂A) = lim inf
ε→0

π(Aε) − π(A)

ε
,

where Aε = {x ∈ � :∃a ∈ A, |x − a| < ε} is the ε-neighborhood of A, consisting
of the union of A and its “ε-boundary” Aε \ A.

We say the measure π is log-concave if it has a density with respect to µ

of the form π(x) = exp(−V (x)), where V :� → (−∞,+∞] can be an arbi-
trary convex function. Examples of log-concave distributions include uniform,
exponential, normal and gamma distributions. For technical reasons, we restrict
our attention to “smooth” log-concave functions (but see discussion at the end
of Section 3). We say a log-concave function exp(−V (x)) is α-smooth if for
any x, y, we have |V (x) − V (y)| < α|x − y|. By Borell’s theorem [4], the tail
of π(x) is exponentially deceasing, that is, there is a number νπ > 0, such that
π+(∂Br(β)) ≤ c exp(−νπr), for some constant c. (This is also easy to check di-
rectly for most examples.) We will refer to νπ as a decay exponent for π. De-
fine the first absolute centered moment of π as Mπ = ∫

� |x − β|π(dx), where
β = ∫

� xπ(dx) is the barycenter of π .
Next, we characterize the multi-modal distributions that will serve as our target

distributions. Let � = A1 ∪· · ·∪Am be a partition of the state space � into disjoint
convex subsets. Suppose concentrated on each Ai we have a single α-smooth log-
concave probability measure πi with decay exponent νπi

and barycenter βi ∈ Ai .
Let dij = |βi − βj |, i �= j, denote the pairwise distances between barycenters.
The target distribution of interest is then defined as a mixture of these log-concave
densities:

π(x) =
m∑

i=1

cπi(x)1Ai
(x),(9)

where c is a normalization constant and 1Ai
is the indicator function of Ai . When

the modes have different smoothness parameters, we take α to be the largest such.
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We will refer to features of the above probability measure π that present barriers
to mixing in the local Metropolis–Hastings chain as the “complexity of the target
distribution.” These include µ(�) [if µ(�) < ∞], dij and νπj

. In particular, we
say a given chain is slowly mixing in the complexity of π if the spectral gap of the
chain is an exponentially decreasing function of at least one of these quantities.
We say a chain is rapidly mixing in the complexity of π if the spectral gap is a
polynomially decreasing function of all of these quantities.

To make our calculations concrete, we will always use for our symmetric local
proposal distribution k(x, y) a uniform distribution on an n-dimensional ball with
radius δ. Such a proposal distribution captures the essence of “local proposals”
and is easier to handle than other light-tailed proposals. We will sometimes refer
to such a local proposal scheme as a “δ-ball walk.”

Let h(x, y) be a heavy-tailed distribution, that is, one for which the tails de-
crease polynomially, instead of exponentially, on �. (For concreteness in exposi-
tion, we shall restrict ourselves to Cauchy distributions when � is unbounded, and
uniform distributions when � is compact.) A small-world proposal distribution
g(x, y) is a mixture of local and heavy-tailed distributions:

g(x, y) = (1 − s)k(x, y) + sh(x, y),(10)

for some s ∈ (0,1).

We are now ready to state our main result:

THEOREM 1.3. Let π be the multi-modal probability measure defined by (9)
with α-smooth log-concave modes. Let k(x, y) be the local proposal distribution
and let g(x, y) be defined by (10), where h(x, y) is a heavy-tailed proposal. Then
the local Metropolis–Hastings chain induced by k(x, y) is “slowly mixing,” and the
small-world chain induced by g(x, y) is “rapidly mixing” in the complexity of π .

Note that the local component of the small-world chain is the same as in the
local chain.

The rest of the paper is organized as follows. In the next section we prove a new
version of the state decomposition theorem of Madras and Randall [19]. This will
play an important role in proving our main theorem. On each log-concave piece, an
upper bound on conductance is easy to obtain. However, the lower bound requires
some extra work. Thus, we devote Section 3 to finding a lower bound through
an isoperimetric inequality for log-concave probability measures. The proof of the
main theorem is given in Section 4. In Section 5 we discuss possible applications of
our result to convergence rates in Metropolis-coupled Markov chain Monte Carlo.

2. State decomposition theorem. In this section we state and prove a new
version of the state decomposition theorem of [19]. The setup of the new theorem
is the same as that of their paper, but we repeat it here for convenience. Recall
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that {A1, . . . ,Am} is a partition of �. We describe the “pieces” of a Metropolis–
Hastings chain P by defining, for each i = 1, . . . ,m, a new Markov chain on Ai

that rejects any transitions of P out of Ai . The transition kernel PAi
of the new

chain is given by

PAi
(x,B) = P(x,B) + 1B(x)P (x,Ac

i ) for x ∈ Ai,B ⊂ Ai.(11)

It is easy to see that PAi
is reversible on the state space Ai with respect to the

measure πi, which, by definition, is the restriction of π to the set Ai .
The movement of the original chain among the “pieces” can be modeled by a

“component” Markov chain with state space {1, . . . ,m} and transition probabili-
ties:

PH(i, j) = 1

2π(Ai)

∫
Ai

P (x,Aj )π(dx) for i �= j,(12)

and PH(i, i) = 1 − ∑
j �=i PH (i, j). This definition is quite similar to the definition

of the quantity hP (A), except for the 2 in the denominator. The reason for this
factor will become clear as we progress.

Our theorem is more or less a direct application of the following lemma, which
is due to Caracciolo, Pelissetto and Sokal, and was recorded, together with its
proof, in [19] as Theorem A.1.

LEMMA 2.1 (Caracciolo, Pelissetto and Sokal). In the setting stated at the
beginning of this section assume that P(x, dy) and Q(x,dy) are transition kernels
that are reversible with respect to π . Assume further that Q is nonnegative definite
and let Q1/2 denote its nonnegative square root. Then

Gap(Q1/2PQ1/2) ≥ Gap(Q)

(
min

i=1,...,m
Gap(PAi

)

)
,(13)

where

Q(i, j) = 1

π(Ai)

∫
Ai

Q(x,Aj )π(dx) for i �= j,

and Q(i, i) = 1 − ∑
j �=i Q(i, j).

THEOREM 2.2 (State decomposition theorem). In the preceding framework,
as given by equations (11) and (12), we have

Gap(P ) ≥ 1
2 Gap(PH )

(
min

i=1,...,m
Gap(PAi

)

)
.(14)

REMARK 1. The theorem says the spectral gap for the whole Metropolis–
Hastings chain can be bounded below by taking into account the mixing speed
within each mode and the mixing speed between different modes.
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PROOF OF THEOREM 2.2. Let Q = 1
2(I + P), where I is the identity kernel.

Reversibility of Q with respect to π follows from the same property for P . To
see that Q is a nonnegative definite (and, hence, can be used in Lemma 2.1), note
first that since P is a self-adjoint probability operator, its spectrum is a subset of
[−1,1] and, hence, ‖P‖ ≤ 1. Thus,

〈Qf,f 〉 = 〈1
2(I + P)f,f

〉 = 1
2(〈f,f 〉 + 〈Pf,f 〉) ≥ 1

2(1 − ‖P‖)‖f ‖2 ≥ 0.

Since Q = 1
2(I + P), and Q1/2 always commutes with Q, we have that Q1/2

and P commute. It follows that

Q1/2PQ1/2 = QP.

Furthermore, setting γ = ‖P0‖, we have Gap(P ) = 1 − γ and, as a simple conse-
quence of the spectral mapping theorem, Gap(QP ) = 1 − (1/2)γ (1 + γ ). Thus,
2 Gap(P )−Gap(QP ) = 2(1−γ )−(1−(1/2)γ (1+γ )) = (1−γ )(1−γ /2) > 0,
and hence,

Gap(P ) > 1
2 Gap(QP ) = 1

2 Gap(Q1/2PQ1/2).(15)

Following the definition in Lemma 2.1, we have

Q(i, j) =
∫
Ai

Q(x,Aj )π(dx)

π(Ai)
=

∫
Ai

(I (x,Aj ) + P(x,Aj ))π(dx)

2π(Ai)
(16)

=
∫
Ai

P (x,Aj )π(dx)

2π(Ai)
,

which is just PH(i, j).
Combine equations (12), (13) and (15) to finish the proof. �

The same result has been obtained in [21]. However, their proof was not ap-
plicable in the general situation for which P is not nonnegative definite.

There is, of course, a resemblance between our state decomposition theorem
and that of Madras and Randall [19]. We note that, first, our conclusion appears
to be a bit stronger than theirs in that our result does not depend on the number
of overlapping “pieces”; second and more important, in the original theorem the
connection between different “pieces” of the state space is made via overlapping
of the different “pieces.” Jarner and Yuen [10] have applied the original theorem
to estimate the convergence rates of 1-dimensional local chains. Unfortunately,
the original theorem is not readily applicable to small-world chains because such
chains can move from one region to another even when the two regions are not
overlapping. On the other hand, in our theorem the connection between different
“pieces” is made via the “probability flow” from one region to another. We em-
phasize that having a chain that jumps from one region to another without visiting
the valleys in between is the key to sampling a multi-modal space efficiently. This
is discussed in [8]. In particular, the combination of the Hastings ratio and small-
world proposals results in most of the accepted long-range jumps being directly
from mode to mode, and not from modes to “valleys.”
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3. Lower bound for conductance. To apply the state decomposition theorem
to a multi-modal probability measure defined by (9), we need a lower bound on the
conductance (hence, spectral gap) for each log-concave piece of the distribution.
For this, we use an isoperimetric inequality.

The idea of using an isoperimetric inequality for log-concave probability mea-
sures to obtain a lower bound on the conductance of local chains is rather straight-
forward and has been used by many authors, including Applegate and Kannan [1],
Kannan and Li [11] and Lovász and Vempala [17]. Isoperimetric inequalities for
log-concave probability measures have been studied by Bobkov [3] and Kannan,
Lovász and Simonovits [12]. As noted in [3], although the result presented in [12]
was for a uniform measure on a convex set, their method, in fact, extends naturally
to general log-concave probability measures. The isoperimetric inequality in [12]
was studied using a “localization lemma” developed by [16] which essentially re-
duces integral inequalities in an n-dimensional space to integral inequalities in a
single variable. The original form of the result, applied to uniform measures, is the
following, recorded as Theorem 5.2 in [12].

THEOREM 3.1 (Kannan, Lovasz and Simonovits). Let K be a convex set and
K = K1 ∪ K2 ∪ K3 a partition of K into three measurable sets such that the
distance between K1 and K2 is d(K1,K2) > 0. Let b = 1

vol(K)

∫
K x dx be the

barycenter of K and M1(K) = ∫
K |x − b|dx. Then

vol(K3)vol(K) ≥ ln 2

M1(K)
d(K1,K2)vol(K1)vol(K2).

The following is the log-concave version of the above isoperimetric inequality.
See also [18], Theorem 2.4.

THEOREM 3.2. Suppose π is a log-concave probability measure on a convex
set K . Suppose further that π has barycenter 0 and set Mπ = ∫

K |x|π(dx). Let
K = K1 ∪ K2 ∪ B be a partition of K into three measurable sets such that the
distance between K1 and K2 is d(K1,K2) > 0. Then

π(B) ≥ ln 2

Mπ

d(K1,K2)π(K1)π(K2).

As remarked above, the proof of Theorem 3.1 extends to Theorem 3.2 via the
“localization lemma” on log-concave probability measures [12], Theorem 2.7.

The next lemma makes the connection between Euclidean distance between
two points and the total variation distance between the one-step Markov transition
kernels starting from those two points. Both the idea and the proof are borrowed
from [18].
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LEMMA 3.3. Let K ⊂ Rn be convex and suppose u, v ∈ K satisfy |u − v| <
δ

8
√

n
, for some δ > 0. Suppose further that P(x, dy) is a Metropolis–Hastings

transition kernel induced by a δ-ball local proposal and having an α-smooth log-
concave target distribution π on K . Then

‖P(u, ·) − P(v, ·)‖tv ≤ 1 − 1
2e−αδ.

PROOF. Let Bδ(u) and Bδ(v) be the balls of radius δ around u and v, respec-
tively. Write vol(Bδ) for their Euclidean volume and set C = Bδ(u)∩Bδ(v). Since
|u − v| < δ

8
√

n
, we have vol(C) > 1

2vol(Bδ). Since our target distribution is an
α-smooth log-concave function, the Hastings ratio is of the form

π(y)

π(x)
= e−|V (x)−V (y)| ≥ e−α|x−y|.

Thus, for any point x ∈ C, the probability density for an accepted δ-ball move from
u to x is at least 1

vol(Bδ)
e−αδ ; similarly for an accepted move from v to x. Thus,

computing the total variation distance as 1 minus the “overlapping area,” we have

‖P(u, ·) − P(v, ·)‖tv ≤ 1 − 1

vol(Bδ)

∫
C

e−αδµ(dx) < 1 − 1

2
e−αδ. �

THEOREM 3.4. Suppose π is an α-smooth log-concave probability measure
on a convex set K . Suppose further that π has barycenter 0 and set Mπ =∫
K |x|π(dx). Then the conductance, hP , of the Metropolis–Hastings chain with

transition kernel P(x, dy) induced by the uniform δ-ball proposal satisfies

hP ≥ δe−αδ

1024
√

nMπ

,

provided δ is small compared to 1/Mπ .

PROOF. Let K = S1 ∪ S2, where S1 and S2 are disjoint and measurable. We
begin by proving that

∫
S1

P(x,S2)π(dx) ≥ δe−αδ

1024
√

nMπ

min (π(S1),π(S2)).(17)

Now consider subsets that are “deep” inside S1 and S2, in the sense that the
Metropolis–Hastings chain is unlikely to move out of them in one step:

S′
1 = {

x ∈ S1 :P(x,S2) < 1
4e−αδ}

and

S′
2 = {

x ∈ S2 :P(x,S1) < 1
4e−αδ}.
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First consider the case π(S′
1) < π(S1)/2. Then∫

S1

P(x,S2)π(dx) ≥ 1
4e−αδπ(S1 \ S′

1) > 1
8e−αδπ(S1),

which proves (17), provided we choose δ small enough compared to 1/Mπ .
So we can assume that π(S′

1) ≥ π(S1)/2 and, by the same reasoning, π(S′
2) ≥

π(S2)/2. Then, for any x ∈ S′
1 and y ∈ S′

2,

‖P(x, ·) − P(y, ·)‖tv ≥ |P(x,S1) − P(y,S1)|
≥ 1 − P(x,S2) − P(y,S1)

> 1 − 1
2e−αδ.

Applying Lemma 3.3, we obtain for any x ∈ S′
1 and y ∈ S′

2 that

|x − y| ≥ δ

8
√

n
,

and hence, d(S′
1, S

′
2) ≥ δ

8
√

n
. Set B = K \ {S′

1 ∪ S′
2} and apply Theorem 3.2 to the

partition K = S′
1 ∪ S′

2 ∪ B to get

π(B) ≥ δ

16
√

nMπ

π(S′
1)π(S′

2) ≥ δ

64
√

nMπ

π(S1)π(S2).

From the above inequality and the simple fact that∫
S1

P(x,S2)π(dx) =
∫
S2

P(x,S1)π(dx),

we obtain∫
S1

P(x,S2)π(dx) = 1

2

∫
S1

P(x,S2)π(dx) + 1

2

∫
S2

P(x,S1)π(dx)

≥ 1

2

∫
S1∩B

P (x,S2)π(dx) + 1

2

∫
S2∩B

P (x,S1)π(dx)

≥ 1

8
π(B)e−αδ

≥ δe−αδ

512
√

nMπ

π(S1)π(S2),

in agreement with (17) since π(S1)π(S2) ≥ min (π(S1),π(S2))/2.
Thus, we have verified (17). To finish the proof of the theorem, just notice

that (17) implies, for every set S1 satisfying π(S1) ≤ 1/2 [and hence π(S2) ≥ 1/2],
that

1

π(S1)

∫
S1

P(x,S2)π(dx) ≥ δe−αδ

1024
√

nMπ
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and, hence,

hP = inf
0<π(A)≤1/2

hP (A) ≥ δe−αδ

1024
√

nMπ

. �

REMARK 2. We have freedom in choosing δ. The optimal δ (for the lower
bound on conductance) is δ = 1/α. With this choice, we have

hP ≥ 1

1024e
√

nMπα
.

This choice of δ makes sense. Imagine, for example, a chain starting at the apex of
a 1-dimensional two-sided exponential density e−α|x|, with α large. A large value
of δ causes proposed moves to be rejected most of the time, resulting in slower
mixing. However, a chain with small δ has a reasonably large chance of moving
away from the apex, and hence, mixes faster.

In recent work, Lovász and Vempala [18] were able to demonstrate fast con-
vergence when sampling a log-concave distribution without the “smoothness” as-
sumption. The technique they used was, loosely, to “smooth out” the distribution
by convolving the log-concave density with a uniform distribution of small vari-
ance. It is interesting to put their idea into a probability context. Suppose X and
Y are two random variables such that X has a log-concave density, f (x). Sup-
pose the probability density of Y is smooth and log-concave, with E[Y ] = 0 and
Var(Y ) small. Then the sum of these two random variables, Z = X + Y , has a
density, g(x), given by the convolution of two log-concave densities, and hence,
is also log-concave [15, 24]. Intuitively, these two densities f (x) and g(x) should
be close to each other if Var(Y ) is sufficiently small, and g(x) is smoother than
f (x) on the scale of the

√
Var(Y ). Y can be interpreted as a small perturbation

and this perturbation determines, in a way, how close a chain can get to the target
distribution (if one leaves out the smoothness assumption on density of X).

The result of [18] essentially says that

‖µ0P
n − π‖ ≤ Mε + γ n

ε ‖µ0 − π‖,(18)

where µ0 is the starting measure, P is the Markov operator with target measure π ,
ε is a small term that determines the accuracy of the algorithm, M is a constant, and
γε is the convergence rate that is determined by ε. In fact, γε = 1−
2

ε/2, where 
ε

is the ε-conductance defined by supε<π(A)≤1/2

∫
A P (x,Ac)π(dx)

π(A)−ε
. They were able to

show that the ε-conductance can be bounded below by a quadratic function of ε.
In summary, if one ignores sets of small measure for a log-concave target den-

sity, a Metropolis–Hastings chain induced by a ball walk (even without the smooth-
ness assumption on the target) is “geometrically ergodic.” We would like to have
directly applied this nice result, but we chose not to for two reasons. First, the state
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decomposition theorem applies in the context of spectral gap, while strictly speak-
ing, equation (18) does not give geometric ergodicity, and hence, it can not be
applied directly in the state decomposition theorem. Second, if one chooses to cut
off small sets, then all log-concave densities that decay faster than an exponential
essentially have compact supports, and hence, are “smooth.” So the results in this
section apply. We note here, however, that both Lemma 3.3 and Theorem 3.4 are
borrowed from [17] with some modifications to apply arguments on conductance
instead of ε-conductance.

4. Proof of the main theorem.

4.1. A 1-D example. To gain some insight into the role of the complexity of
the target distribution and the idea behind the proof of Theorem 1.3, we begin
with a simple 1-dimensional example in which � is a circle with perimeter 4L for
some L � 1; that is, the interval [−2L,2L] with the two ends connected. Consider
a two-mode target distribution

π(x) =
{

cνe−ν|x|, if x ∈ [−L,L],
cνe−ν(2L−|x|), if x ∈ [−2L,−L] ∪ [L,2L],(19)

where c is the normalization constant. Here, we can think of L and ν as determin-
ing the complexity of the target distribution; increasing ν makes the modes more
narrow, and increasing L increases the size of the space and places the modes
further apart. We denote by π1 the piece of π defined on [−L,L] and by π2
the other piece. We take for the local proposal the uniform distribution k(x, y) =
2/δ for y ∈ [x − δ, x + δ] and 0 otherwise. Let Pk(x, dy) be the transition kernel
for the Metropolis–Hastings chain based on this local proposal and having target
distribution π. Consider the partition A = [−L,L], Ac = [−2L,−L] ∪ [L,2L].
Then

hPk
≤ hPk

(A) <
2

π(A)

∫ L

L−δ
Pk(x,Ac)π(dx) < 2ce−ν(L−δ).

By Cheeger’s inequality, we get

Gap(Pk) ≤ 2hPk
≤ 4ce−ν(L−δ).(20)

Thus, the spectral gap for the local Metropolis–Hastings chain decreases exponen-
tially in L and ν, finishing the first part of our proof for this example.

Now consider a heavy-tailed proposal distribution h(x, y) = 1/4L, that is, a uni-
form distribution on �, and the small-world proposal g(x, y) = (1 − s)k(x, y) +
sh(x, y). Let Pg,A(x, dy) be the transition kernel for the small-world chain that is
restricted to the set A. Then

Pg,A(x, dy) = (1 − s)Pk,A(x, dy) + sPh,A(x, dy),
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where Pk,A and Ph,A are the restrictions to A of the kernels induced by k(x, y)

and h(x, y), respectively. By (8), we have hPg,A
≥ (1 − s)hPk,A

. It is easy to check
that, for the two-sided exponential distribution, Mπ = 1/ν. Then by Theorem 3.4,

hPk,A
≥ δνe−νδ

1024
.

By Cheeger’s inequality, we have

Gap(Pg,A) ≥
h2

Pg,A

2
≥ δ2ν2e−2νδ

221 (1 − s)2.(21)

By symmetry, the small-world chain that is restricted to Ac has the same lower
bound for its spectral gap.

Also, by symmetry, the matrix of transition probabilities for the component
chain has the form PH =

(
1 − a a

a 1 − a

)
. The spectral gap for this matrix is

Gap(PH ) = 2a. Now we calculate a = PH(1,2). Set I = ∫ L
0 νe−νx dx. Then

π(A) = 2cI . By (12), we have

PH(1,2) =
∫
A Pg(x,Ac)π(dx)

2π(A)
>

1

4cI

s

4L

∫
A

∫
Ac

min(π(y),π(x)) dy dx

= 1

4cI

csν

L

∫ L

0

∫ L

0
min(e−νx, e−νy) dy dx

(22)

= sν

4IL

∫ L

0

(∫ x

0
+

∫ L

x

)
min(e−νx, e−νy) dy dx

= s

2IνL
(1 − e−νL − νLe−νL).

When νL ≥ 2, this yields PH(1,2) > s/(4νL). Note that instead of just using the
fact that 2π(A) = 1, we chose to do the calculation the “hard” way in order to
show that the normalization constant c has no effect on the spectral gap.

Using the state decomposition theorem to combine (21) and (22), we have

Gap(Pg) >
s(1 − s)2δ2νe−2νδ

223L
for νL ≥ 2.(23)

Setting δ = 1/ν in equation (23) leads to

Gap(Pg) >
s(1 − s)2e−2

223νL
for νL ≥ 2.

For a small world chain, the lower bound on the spectral gap decreases linearly
with both L and ν. Moreover, the quantity 1/ν determines the absolute “size” of a
mode, and hence, 1/(νL) reflects the relative size of each mode. Thus, we can see
how the spectral gap is influenced by the relative size of each mode.



298 Y. GUAN AND S. M. KRONE

We have freedom in the choice of the value s. It is clear that s = 0 corresponds
to a pure local chain and s = 1 corresponds to the rejection method. Either case
will make the right-hand side of (23) equal to 0, which either implies the lower
bound is too rough, or the chain is slowly mixing. Note that, in the lower bound,
the best value for s is 1/3, which maximizes s(1 − s)2.

Using a uniform distribution for h(x, y) does not make sense in an unbounded
space. However, this is not a problem because we can always use, say, a Cauchy
distribution h(x) = 1

π
b

x2+b2 , where b is the half width at half maximum. Some
prior knowledge about the target distribution will help in choosing b in a way that
increases the lower bound on the spectral gap, and hence, the convergence rate
of the corresponding small-world chain. Even in a bounded space, the use of a
Cauchy distribution, instead of a uniform, may increase the convergence rate in
cases for which most of the mass is accumulated in a small portion of the state
space.

4.2. The general case.

PROOF OF THEOREM 1.3. The proof of the general case is similar in spirit to
the one-dimensional case. For the first part of the theorem we want to show that,
under a local proposal, the spectral gap is exponentially small. It is sufficient to
prove that the one-step probability flow going out of at least one mode is exponen-
tially small. Among all m pieces of the partition, at least one piece has measure no
bigger than 1/2. Without loss of generality, suppose it is A1. Consider any radius
L > 0 such that B = BL(β1) ⊂ A1, where β1 is the barycenter of π1. Let Pk be the
operator induced by a local proposal k(x, y) given by a δ-ball walk. Then

hPk
≤ hPk

(B)

= 1

π1(B)

∫
B

Pk(x,Bc)π(dx)

= 1

π1(B)

∫
B

∫
Bc

π(x)k(x, y)µ(dy)µ(dx)

≤ 1

π1(B)

∫ L

L−δ
π+

1 (∂Bu(β1)) du

≤ 1

π1(B)

∫ L

L−δ
e−ν1u du

≤ 1

π1(B)ν1
e−ν1(L−δ),

where the second inequality follows the fact
∫
Bc k(x, y)µ(dy) ≤ 1, and we have

written ν1 for the decay exponent of π1.
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By Cheeger’s inequality, we have

Gap(Pk) ≤ 2hPk
≤ 2

π1(B)ν1
e−ν1(L−δ),

and this finishes the first part of the proof.
To prove the second part of the theorem, let Pg = (1 − s)Pk + sPh be the small

world operator, where Pk and Ph are induced by the local proposal k(x, y) and
the heavy-tailed proposal h(x, y), respectively. Let Pg,Aj

be the restriction of the
operator Pg on the set Aj , and Pk,Aj

,Ph,Aj
be the restrictions of Pk,Ph to Aj ,

respectively. We have Pg,Aj
= (1 − s)Pk,Aj

+ sPh,Aj
.

By Theorem 3.4 and Mπj
≤ c/νj , we have

hPg,Aj
≥ νj δe

−νj δ

1024c
√

n
(1 − s)

and hence, Cheeger’s inequality implies

Gap(Pg,Aj
) ≥ ν2

j δ2e−2νj δ

221c2n
(1 − s)2.(24)

Next we want to calculate PH(i, j). Let b = maxi �=j |βi − βj | denote the maxi-
mum of the pairwise distances between barycenters. Let the heavy-tailed distribu-
tion be an n-dimensional Cauchy distribution with half width b:

h(x, y) = b

cn(|y − x|2 + b2)(n+1)/2 ,

where cn = �(n+1
2 )/π(n+1)/2 is the normalization constant.

On each partition piece Ai pick a ball Bi = BRi
(βi) ⊂ Ai such that π(Bi) =

2
3π(Ai). Let hi = infx∈∂Bi

π(x), the “height” of the density πi along the boundary
of Bi . Let Bc

i = Ai \ Bi be the complement of Bi on the set Ai and set cij =
min(hi/hj , hj/hi). Then

I ≡
∫
Ai

∫
Aj

h(x, y)min(π(y),π(x))µ(dx)µ(dy)

>

∫
Bc

i

∫
Bj

h(x, y)min(π(y),π(x))µ(dx)µ(dy)

+
∫
Bi

∫
Bc

j

h(x, y)min(π(y),π(x))µ(dx)µ(dy)

>

∫
Bc

i

∫
Bj

h(x, y)π(x)min
(

hi

hj

,1
)
µ(dx)µ(dy)

+
∫
Bi

∫
Bc

j

h(x, y)π(y)min
(

hj

hi

,1
)
µ(dx)µ(dy)
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> cij

∫
Bc

i

∫
Bj

π(x)h(x, y)µ(dx)µ(dy)

+ cij

∫
Bc

j

∫
Bi

π(y)h(x, y)µ(dy)µ(dx).

Since h(x, y) = h(|x − y|) = h(r) decreases polynomially, while both π(x) and
π(y) decrease exponentially, there exists a ball B̂w with radius wb such that
πi(B̂w) > 5

6πi(Ai), πj (B̂w) > 5
6πj (Aj ), and inf

r∈B̂w
h(r) = ε/cn, where ε =

ε(wb) is polynomially small in wb. Note that πi(Bi) = 2
3πi(Ai) and πi(Bj ) =

2
3πj (Aj ), so

I > cij

∫
Bc

i ∩B̂w

∫
Bj

π(x)
ε

cn

µ(dx)µ(dy)

+ cij

∫
Bc

j ∩B̂w

∫
Bi

π(y)
ε

cn

µ(dy)µ(dx)(25)

>
cij ε

cn

(
1

6
π(Ai)vol(Bj ) + 1

6
π(Aj )vol(Bi)

)
.

From (12) and (25) we get

PH(i, j) =
∫
Ai

Pg(x,Aj )π(dx)

2π(Ai)

>
s

2π(Ai)
I

(26)

>
s

2π(Ai)

cij ε

cn

(
1

6
π(Ai)vol(Bj ) + 1

6
π(Aj )vol(Bi)

)

>
scij ε

12cn

vol(Bj ).

For an m×m stochastic matrix A = (aij ), the spectral gap can be bounded from
below [23] by

Gap(A) ≥ mmin
i �=j

aij .

Combining this with (26) results in

Gap(PH ) ≥ smε

12cn

min
i �=j

(cij vol(Bj )).(27)

Using the state decomposition theorem to put (24) and (27) together, we get

Gap(Pg) ≥ s(1 − s)2 mεδ2

226c2ncn

min
j

(ν2
j e−2νj δ)min

i �=j
(cij vol(Bj )).(28)
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Setting δ = 1/maxj (νj ) yields

Gap(Pg) > s(1 − s)2 mε

226c2e2ncn

min
i �=j

(cij vol(Bj )).

Notice that vol(Bj ) decreases polynomially with an increase in νj . This concludes
the proof. �

REMARK 3. In the proof we essentially used a uniform distribution on a
bounded set as a heavy-tailed distribution. Notice that, loosely, ε vol(Bj )/cn de-
termines the relative size of mode j . In our lower bound as shown in (28), we
have the so-called “curse of dimensionality”: cn increases exponentially with the
dimension n. Interestingly, the best value for s in the lower bound is still 1/3.

5. Metropolis-coupled MCMC and simulated tempering. Metropolis-
coupled Markov chain Monte Carlo (MCMCMC), proposed by Geyer [6], is in
the same spirit as “simulated tempering,” which was independently proposed by
Marinari and Parisi [20]. Both are based on an analogy with simulated anneal-
ing [13], which is an optimization algorithm rather than a sampling scheme. It
provides the useful metaphor of using some help from a “heated” version of the
problem (that makes valley crossing easier by flattening the state space) to ob-
tain the result in the original “cooled” version of the problem one is interested
in. Simulated annealing uses a specific form of “heating” that is sometimes called
“powering up.” If h1(x) is the unnormalized density for the distribution of inter-
est, ht (x) = h1(x)1/t , for t > 1, are the heated unnormalized densities, including
perhaps t = ∞ which gives π(x) = 1. However, as noted by [7], “powering up” is
not an essential part of simulated tempering or of MCMCMC, and a different form
of heating may work better in a specific real application.

Let T = {1, . . . , t}. Both MCMCMC and simulated tempering simulate a se-
quence of distributions specified by unnormalized densities hi(x) (i ∈ T ) on the
same sample space �, where the index i is called the “temperature,” h1(x) is the
“cold” distribution, and ht (x) is the “hot” distribution. Thus, an MCMCMC chain
lives in a product state space � × T such that, for a given i ∈ T , the chain up-
dates itself on � using a Metropolis–Hastings algorithm. For the move between
different “temperatures,” one keeps the x ∈ � and only updates the “temperature.”
Specifically, suppose a(i) (i = 1, . . . , t) is the auxiliary probability distribution for
the temperatures. Then one iteration of the “Metropolis–Hastings” version of the
simulated tempering algorithm is as follows [7]:

1. Update x using a Metropolis–Hastings update for hi .
2. Set j = i ± 1 according to probabilities qi,j , where q1,2 = qm,m−1 = 1 and

qi,i+1 = qi,i−1 = 1/2 if 1 < i < m (i.e., reflecting random walk on different
temperatures).
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3. Calculate the Hastings ratio

r = hj (x)a(j)qj,i

hi(x)a(i)qi,j

and accept the transition (set i to j ) or reject it according to the Metropolis rule:
accept with probability min(r,1).

An implicit assumption in the simulated tempering algorithm is that, at each
temperature, the proposal distribution that is used to generate a new move x ∈ �

is local. For the sake of simplicity and clarity, let us assume that we have two
temperatures, hot and cool, a(1) = a(2) = 1/2 and q1,2 = q2,1 = 1. Then r in
step 3 becomes hj (x)/hi(x), for i, j ∈ {1,2}. Suppose now that the chain is at
high temperature, h2(x). If x is in a mode, then h1(x)/h2(x) is close to 1 (by
powering up), so that the chain is likely to jump back to the cool state and collect
samples. On the other hand, if x is in a valley, h1(x)/h2(x) is small, so that the
chain tends to stay at the hot temperature. When the hot chain has wandered far
enough and proposes a move back to a cool temperature, it in fact proposes a move
to the cool chain that is on average far away (as compared to the local proposal)
from the state (in �) where the chain last visits the cool temperature. In summary,
if one is only interested in the samples collected in the cool state (i.e., the original
distribution), then the only purpose of the hot state is to provide a far away proposal
for the cool chain. This is the exact spirit of the occasional heavy-tailed proposals
in the small-world chain.

We note, however, that although simulated tempering, or MCMCMC, is a way
to generate heavy-tailed proposals to overcome bottlenecks in �, the computa-
tional cost is heavy—much heavier than for a small-world chain. Moreover, it has
been shown by Bhatnagar and Randall [2] that, in certain situations, the transition
between different temperatures can have bottlenecks, which will slow down the
frequency of “heavy-tailed” proposals, and hence, slow down the overall conver-
gence.

Nonetheless, if one can rule out the possible bottlenecks in transitions between
the hot chain and the cool chain, our Theorem 1.3 for small-world chains read-
ily applies to MCMCMC, or simulated tempering, to show that both of them are
“rapidly mixing.”

Note that the different temperatures in simulated tempering in fact correspond
to different amounts of heaviness of the tail in a small-world chain. Particularly,
when � is compact, t = ∞ corresponds to the heavy-tailed proposal being a
uniform distribution. Therefore, we propose that a promising scheme for using
Markov chain Monte Carlo methods to solve hard problems would be to run mul-
tiple small-world chains in parallel with different chains having different heaviness
of tails; for example, using different half-widths in Cauchy distributions, then cou-
pling different chains via the Hastings ratio and Metropolis rule.
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