AAS Performance Analysis

Brooke Dakota Jackson Karlee Kyle

Existing condition

EUI= 9.68 in 2018

Current Condition (Roof)

Original Roof assembly

-Shiplap and Shingles

-R Value = 3.13

-Large temperature fluctuation

Current Roof assembly

-6" ventilated nail base insulation

-Shiplap and Shingles

-R Value = 34.76

Current Condition (Wall)

Original wall assembly

-13" masonry wall + wood paneling

-R Value = 3.82

-More Thermal Mass

Current wall assembly

-13" masonry wall

-R Value = 3.02

Recommended changes (Wall)

- -Additions to interior:
 - -4" polyurethane foam
 - -2" brick cladding
- -R Value = 26.75
- -Similar look with better performance

Current Condition (Floor/Ceiling)

Original floor assembly

-Suspended track floor

-R value - 0

-Open to ceiling

Current floor assembly

-16" joists 24" O.C.

-suspended ACT

-R Value = 6.98

Current Condition (Windows)

Original window assembly

- -Single pane operable wood frame windows
- -U factor of roughly 1.1
- -The Saturation of the heat and or cold can be nearly 90%.
- -Deteriorating frames lead to draftiness.

Recommended Changes (Windows)

Triple Pane Argon gas Insulated Windows

R value = 5

U factor = .2

Non Operable

Selective shading device (Gallery Crit)

- 1. 3rd floor, on average, will be hotter than the 2nd floor.
 - a. Hobos placed on 4 corners and 1 in middle
 - b. Collect data for multiple weeks

ROAST Survey Results

 On average, students on the 2nd floor reported that they were colder than those on the 3rd floor

Single Day HOBO Data

 At all times during the day, the 2nd floor is colder than the 3rd floor

University of Idaho

HOBO Data 2nd Floor

2nd Floor Temperature March 1st to 14th

High 70 Degrees Low 65 Degrees

High 75 Degrees Low 65 Degrees

HOBO Data 3rd Floor

3rd Floor Temperature March 1st to 14th

March 15th to 28th

High 70 Degrees Low 65 Degrees

High 75 Degrees Low 65 Degrees

Hypotheses

- 2. 3rd floor, on average, will be more humid than the 2nd floor.
 - a. Hobos placed on 4 corners and 1 in middle

2nd Floor Relative Humidity March 1st to 14th

March 15th to 28th

High 33% Low 20% High 30% Low 20%

3rd Floor Relative Humidity March 1st to 14th

March 15th to 28th

High 31% Low 21%

- 3. People on the 3rd floor are more productive than the 2nd floor.
 - a. ROAST Survey Results see what people say
 - b. Using data from previous experiments to make conclusions

ROAST Survey Results

 Due to the wide spread of results across both floors, they survey is somewhat inconclusive as far as measuring productivity

- 4. 2nd floor has more glare than the 3rd floor.
 - a. ROAST Survey Results
 - b. Culp light glare analysis program

ROAST Survey Results

• These results, while somewhat inconclusive, suggest the opposite of our hypothesis

- 5. The 3rd floor has better distribution of natural daylight than the 2nd floor
 - a. Revit/Sefaira Daylight Analysis footcandles/daylight factor

Digital Model

2nd Floor

2nd Floor - Summer Solstice

Footcandle levels on June 20 at 12PM measured at 2.79 feet above the floor plate. Time does not take into account daylight savings time.

2nd Floor - Summer Solstice

2nd Floor - Winter Solstice

2nd Floor - Winter Solstice

3rd Floor

3rd Floor - Summer Solstice

3rd Floor - Summer Solstice

3rd Floor - Winter Solstice

3rd Floor - Winter Solstice

Conclusion

2nd Floor:

3rd Floor:

Average annual DF:

Average annual DF:

.49%

.5%

Conclusion

2nd Floor:

3rd Floor:

Average annual DF:

Average annual DF:

.49%

.5%

TOUT		WALT.
Averag DF	e Appearance	Energy implications
< 2%	room looks gloomy	Electric lighting needed most of the day
2% to 5%	Predominantly daylit appearance, but supplementary artificial lighting is needed.	Good balance between lighting and thermal aspects
> 5%	Room appears stongly daylit	Daytime electric lightin rarely needed, but potential for thermal problems due to overheating in summer and heat losses in winter
	· In	