Particle Transport through Porous Media

Mark Cummings
Spring 2009
Order of Events

• Introduction to topic
• Theory
• Application
• Remaining Uncertainties/Challenges
• Questions
Introduction to Topic

• Particulate
 – Size
• Porous Media
 – Collector
• Flow
 – Advection
 – Dispersion
 – Diffusion
Intro. Continued

• Adsorption
 – Sticking
• Desorption
 – Desticking
• Filter
• Strain

Picture from McGechan and Lewis (2002)
SEM of Bacteria in Soil

Why Study?

- Transport of pathogenic bacteria
- Spread of toxins
- Bioremediation
- Biomineralization
Theory

• What is transported?
 – What is the particle?

• What is it transported in?
 – What is the fluid?

• What is it transported through?
 – What is the porous media made of?

• Physical / Chemical / Biological

• CFT, DLVO, Collision Efficiency
Theory

• Physical
 – Porous media
 • Grain size
 • Shape
 – Particle concentration
 – Particle Size
 – Particle Shape
 – Fluid velocity
Theory Cont.

• Chemical
 – Porous medium surface coatings
 – Solution
 • Composition
 – What is in the fluid?
 • Ionic strength
 – How much is in the fluid?
Theory

• Biological
 – Surface macromolecule length and composition
 – Cell motility
 – Cell size
 – Cell shape
 – Organism type
 – Growth Phase
• Derjaguin, Landau, Verwy, Overbeek
• Describes the force between charged surfaces interacting through a liquid medium
 – van der Waals
 • Dipole-Dipole, Dipole-Induced Dipole, Dispersion
 • Totality of the intermolecular forces
 • Attraction and repulsion, not covalent or electrostatic ion
 – Double layer of counterions
DLVO Cont.

- Double layer of counterions
 - Surface of object in liquid
 - Inner Layer – Stern Layer
 - Surface layer
 - Outer layer - Diffuse layer
 - Outer part of
- Electrically neutral
- Zeta Potential
 - Estimating of DL
CFT

• Theory of deposition/filtration
 – Exponential decrease of attachment with distance
• Classical Clean Bed Filtration
 – Bacteria, Viruses, Protozoa
• Non-exponential Deviations
 – Heterogeneity
 – Blocking/Ripening
 – Microbial Release
CFT Model

• Collector Efficiency
 – Calculated from knowledge of system
• Collision Efficiency
 – Calculated after experiment
Collector Efficiency, η

• Function of
 – A_s - Happel Correction Factor
 • collector radius, velocity
 – N_{Pe} - Peclet Number
 • ratio of dispersive force to diffuse force
 – N_{Lo} - London-van der Waals number
 • viscosity, particle radius,
 – N_G - Gravitational Number
 • density of particle and fluid, viscosity, particle radius, velocity, gravity

$$\eta = 4A_s^{1/3}N_{Pe}^{-2/3} + A_sN_{Lo}^{1/8}N_R^{15/8} + 0.00338A_sN_G^{1.2}N_R^{-0.4}$$
Collision Efficiency, α

- Ratio of the rate of particles sticking to collector to the rate they strike the collector
- To Determine α
 - Measuring the retained fraction of bacteria in a column
 - Measure the steady-state breakthrough concentration of column effluent
Collision Efficiency Cont.

• The fraction of cells retained, F_R, is a function of porosity, characteristic size, length of travel, and moisture content.

• Determination of F_R can be used to find the collision efficiency, α

$$F_R = \left(1 - \frac{C}{C_0}\right) = 1 - \left\{\exp\left[-\frac{3}{2} \frac{(1 - \theta)}{d_c} \alpha \eta L\right]\right\}$$
Retained Fraction

- X axis – Mass Fraction
- Y axis – Dimensionless Depth

![Graph showing retained fraction with X axis as Mass Fraction, Y axis as Dimensionless Depth, and a graph with data points indicating mass fraction particles vs. dimensionless depth.]
Breakthrough Curve

- X axis – Pore Volume
- Y axis – Relative Concentration
Application

• Bioremediation
 – Transport of bacteria to metabolize constituent

• Biomineralization
 – Transport of bacteria to create biominerals

• Pollution Transport
Remaining Uncertainties/Challenges

• Kinetics of Microorganisms alter transport
 – Life cycle
• Heterogeneity of porous medium
• Lots of them

Tufenkji Dissertation “Spatial distributions of retained colloidal and microbial particles in porous media”

