Water and Wastewater System Planning CE 431

Under "Planning" we will cover the following elements which guide most of our design-level decisions:

- Population forecasting and related elements
- Water Supply planning criteria
- Wastewater planning criteria

1. Service Life/Design Period/Population Forecasting

We size and design infrastructure to accommodate growth, not based on current needs.

Service Life versus Design Period

- Service Life = expected useable life of infrastructure
 - Mechanical systems 25 years
 - o Piping (e.g. sanitary sewer systems; water distribution systems) 50 to 100 years
 - Structures (water tanks, wastewater treatment structures) 50 to 100 years
 - 0
- Design Period = population planning period for designing/sizing infrastructure
 - $\circ \quad \mbox{Typically work on 25 year minimum planning periods}$
 - o Also need to consider build-out populations
 - .
 - What drives the 25 year timeframe?
- Sometimes the two overlap; sometimes not
 - o e.g.: collection system wastewater pumping station mechanical vs structural

Population Data

- Historical population data
 - U.S. Census decennial counts (e.g. 10 year intervals)
 - State, local, other annual estimates
- Contrast with similar cities
- School enrollments
- Utility connections
- Land use data
- Latter three require population factor estimate
 - o e.g.: 3:1 for typical utilities
 - o socio-economically influenced
 - o residential/commercial/industrially influenced

Population Forecasting

- More of an art than science
- Relies on experience and understanding of local socio-economic conditions
- Factor in potential "build-out" boundaries and build-able lands inventory
- Ultimately may need to coordinate population with the State
 - o e.g.: Oregon

Population Forecasting Models

- Constant Percentage Method
 - o Linear on semi-log paper

- Linear Model
 - Constant rate of growth
 - Linear on arithmetic paper

• Curvilinear method

• Which model is most appropriate?

2. Wastewater System Planning

Wastewater Flows

- Commercial, Industrial rely on such information as fixture units, use-specific data as provided by your client or obtained from similar facilities, and the various general references.
- Municipal typically base our design flow analyses on actual treatment plant data
- Sources of municipal wastewater
 - o Domestic
 - o Infiltration

o Inflow

- Similar diurnal pattern to water usage
- Pertinent flow factors see Oregon DEQ handout
 - o Average Daily Flow
 - o Peak Day
 - o Peak Hour
 - o Maximum and Minimum Month
 - o Minimum Day
 - What is the relevance of each?

<u>Wastewater Constituents</u> - see also the example NPDES permit on the course web site • Physical

Physical

• Inorganics

• Metals

• Organics/oxygen demand

• Microorganisms

3. Water System Planning

Water Demands

- Design flows are based on the type of usage associated with the facility being constructed
- Need to consider public, municipal, industrial, and commercial usage
- Municipal Planning need to identify top users
- Consider average, minimum, maximum, and peak flow conditions
 - 0
 - 0

0

- Also consider un-accounted for water
 - o Leaks
 - Pipeline breaks
 - o Unauthorized service connections
 - o Improperly operating meters
 - Recommended to be less than 15%
 - o In estimating, best to account for as much usage as possible
 - Separate out unmetered but known usage
- Forecasting need to incorporate more efficient use of water in the future
- What are some "typical" average water usage numbers and max/min factors?

• How do we develop this data for our specific situation (e.g. City, commercial building, apartment complex)?

- General Design Factors:
 - o Sizing raw water and finished water supplies, including transmission and treatment
 - Maximum Day Demand (MDD)
 - Often provide some level of reliability/redundancy, plus some excess capacity in individual units

- o Storage sizing
 - One general approach
 - •
 - •
 - •
 - Ground level versus Elevated tanks critical to understand hydraulics and necessary appurtenances to provide required flow.
 - Each State/jurisdiction may have their own storage sizing criteria
 - Washington

- Distribution system
 - PHF + fire flow

Water Quality

- Common Contaminants raw water
 - o Surface Water

• Ground Water

• Common Contaminants - finished water (see drinking water MCLs on course web site)

- Bulk Parameters
 - o Physical
 - Turbidity
 - Color
 - Taste/Odor
 - Temperature
 - pH
 - Chemical