Harvesting Milk Crop

Amin Ahmadzadeh, Larry Fox
University of Idaho, Washington State University

Factors affecting milk production

- Milk synthesis is dependent on:
 - no. secreting cells
 - blood supply
 - supply of milk precursor
 - endocrine support for lactogenesis
 - milking frequency

- No. secreting cells is dependent on:
 - genetics
 - endocrine support for mammogenesis
 - nutrition
 - disease (mastitis)
Mature equivalent = Production records have been adjusted for age at freshening, frequency of milking and season of the year at calving. Mature equivalent records estimate how much a cow would have produced if she was of mature age, calved during an average month, and were milked twice a day.

Comparison of lactation curve for different parity

- 1st lactation peak: 70-73% of peak for mature cows;
- 2nd lactation peak: 92-93% of peak for mature cows
- 1st lactation cows peak later, but are more persistent after peak

Adapted from W. Canadian DHI services
1st lactation “ 80% of mature cows
2nd lactation = 85-90% of mature cows
3rd lactation = 90-95% of mature cows
4th lactation=95-98% of mature cows
Lower than normal persistency post-peak may be due to improper nutrition of health.

In general, high post-peak persistency gives an opportunity to improve production.

Managerial Practices and Milk production

Milk Frequency
Milk Interval
Use of Hormones
Photo Period
Effect of Increased Milking Frequency (IMF) on Milk Production

<table>
<thead>
<tr>
<th>Milking Frequency Change</th>
<th>Increased Milk Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>1X - 2X</td>
<td>13.6 lb.</td>
</tr>
<tr>
<td>2X - 3X</td>
<td>7.7 lb.</td>
</tr>
<tr>
<td>2X - 4X</td>
<td>10.8 lb.</td>
</tr>
</tbody>
</table>

IMF: Effect of Udder Pressure on Milk Secretion

![Graph showing the effect of udder pressure on milk secretion over hours since last milking.](chart.png)
Early Lactation IMF & Changes in milk yield

<table>
<thead>
<tr>
<th>Study</th>
<th>Times Milked</th>
<th>Length of Trt</th>
<th>“Earned Milk” Trt Diff.</th>
<th>“Free Milk” Carryover Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poole, 1982</td>
<td>3X vs. 2X</td>
<td>20 wks</td>
<td>8.8 lb/d</td>
<td>4.8 lb/d</td>
</tr>
<tr>
<td>Bar Peled et al., 1995</td>
<td>6X vs. 3X</td>
<td>6 wks</td>
<td>16.0 lb/d</td>
<td>11.2 lb/d</td>
</tr>
<tr>
<td>Sanders et al., 2000</td>
<td>6X vs. 3X</td>
<td>6 wks</td>
<td>9.0 lb/d</td>
<td>5.5 lb/d</td>
</tr>
</tbody>
</table>

~11 lbs/d ~7 lbs/d

IMF Results Depend on Timing

- IMF initiated during mid lactation
 - Increases milk production during IMF
 - Milk production declines to pre IMF level after IMF ceases
 - All extra milk is “Earned”

- IMF initiated **during early lactation**
 - Increases milk production during IMF
 - Milk production **does not** decline to pre IMF level after IMF ceases
 - A large portion of the extra milk is “Free”
IMF Milking Interval

- IMF cows milked before and after the normal 2X milking
- ~2 ½ hours between 2 AM and 2 PM milkings
- 8 ½ hours between AM and PM milkings

Profitability
- 8 cents/cow/day at 3 lb response
- 32 cents/cow/day at 6 lb response
Endocrine Support of Established Lactation; Photoperiod Effects

Photoperiod (length of time cattle are exposed to light)

• affects lactation yield

• 18hr light/ 6hr dark (long day-length) is best for maximum yields during lactation

Endocrine Support of Established Lactation Photoperiod Effects

• Long day-length suppresses melatonin (from pineal gland)
 • melatonin apparently regulates (suppresses?)
 • IGF-1 release from liver
 • IGF-1 increases milk synthesis
 • long day-length allows greater IGF-1 stimulation of milk synthesis
 (~ 5 lbs/cow/day = ~ 7 %)
Photoperiod Management of Dairy Cattle

Cows exposed to long days, i.e. 16 to 18 hours of light and a 6 to 8 hour period of darkness, daily milk production increases an average of 2 liters/cow (4.4 lb/day).

Effect of bST on milk yield and feed intake

<table>
<thead>
<tr>
<th>Location</th>
<th>Increase in Milk Yield</th>
<th>Increase in Feed Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td>8.3%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Cornell University</td>
<td>11.5%</td>
<td>5.3%</td>
</tr>
<tr>
<td>Missouri/Monsanto</td>
<td>21.8%</td>
<td>8.2%</td>
</tr>
<tr>
<td>Utah/Utah State U.</td>
<td>14.6%</td>
<td>5.3%</td>
</tr>
<tr>
<td>France</td>
<td>17.8%</td>
<td>9.3%</td>
</tr>
<tr>
<td>Germany</td>
<td>16.6%</td>
<td>4.9%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>18.5%</td>
<td>7.1%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>19.2%</td>
<td>5.4%</td>
</tr>
</tbody>
</table>

10-15% 6%
Milk from rbST-Treated Cow vs Conventional Milk

Endocrine Support of Established Lactation; Photoperiod Effects

- Milk yield and DMI (dry matter intake) are elevated in response to long day-length (18hr light/6hr dark)
- Milk yield and DMI are further elevated in response to long day-length + bST (additive effect)
Take Home Messages

• **Increasing peak and persistency**
 - Taking care of transition period, health and nutrition
 - Increase milk frequency overall
 - Increase milk frequency early postpartum
 - Use of galactopoietic hormone: bST
 - Photoperiod: 16 hr light; 8 hr dark