Bovine Mastitis

John Swain Fall 2018

References from Dr. Bhushan Jayarao- Ex. Vet. Penn State Univ.

Dr. Larry Fox, Washington State Univ.

Mastitis Management- Who on the farm needs to be involved???

- Milkers
- Housing Maintenance personnel
- Milk Equipment Maint. Personnel
- Operation Supervisor

- Mastitis cannot be eliminated. It can be controlled
- People control mastitis- TEAM EFFORT

What’s mastitis ?

- Inflammation of one or more quarters of the udder

Mammae = breast

-itis = Latin suffix for inflammation

Normal

- Swelling
- pain
- warm
- redness

Inflamed
What's the significance of bovine mastitis?

- Causes significant economic losses to the dairy industry in the US
 - $200/cow/year
 - $2 billion/year

The most costly disease affecting dairy cattle throughout the world.

What are the health concerns of mastitis?

- Animal health
 - Loss of functional quarter
 - Lowered milk production
 - Death of cow
- Human health
 - Poor quality milk
 - Antibiotic residues in milk

How severe can mastitis be?

<table>
<thead>
<tr>
<th>Subclinical Mastitis</th>
<th>Clinical Mastitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 90-95% of all mastitis cases</td>
<td>~ 5 - 10% of all mastitis cases</td>
</tr>
<tr>
<td>Udder appears normal</td>
<td>Inflamed udder</td>
</tr>
<tr>
<td>Milk appears normal</td>
<td>Clumps and clots in milk</td>
</tr>
</tbody>
</table>
| Elevated SCC (score 3-5) | **Acute type**
| Lowered milk output (~ 10%) | - major type of clinical mastitis
| Longer duration | - bad milk

Acute type
- Loss of appetite
- Depression
- Prompt attention needed

Chronic type
- Bad milk
- Cow appears healthy

RIP
What causes mastitis?

- Bacteria (~ 70%)
- Yeasts and molds (~ 2%)
- Unknown (~ 28%)
 - physical
 - trauma
 - weather extremes

Where do these organisms come from?

- Infected udder
- Environment
 - bedding
 - soil
 - water
 - manure
- Replacement animals

How does mastitis develop?

- Cow
 - Predisposing conditions
 - Existing trauma (milking machine, heat or cold, injury)
 - Teat end injury
 - Lowered immunity (following calving, surgery)
 - Nutrition
- Organisms
- Environment
Mastitis

- Mammary Immune system
 - Skin and keratin lining - 1st line of defense
 - Cellular - 2nd line of defense
 - Leukocytes
 - PMNs - phagocyte-engulfment and destroy
 - Macrophages - phagocytic
 - Lymphocytes - antibody producers + cytokine (hormones of the immune system)

Process of infection

- Organisms invade the udder through teat canal
- Migrate up the teat canal and colonize the secretory cells
- Colonized organisms produce toxic substances harmful to the milk producing cells

The cow’s immune system send white blood cells (Somatic cells) to fight the organisms

recovery clinical subclinical
Mastitis

- **Environmental** bacterial pathogens
- **Contagious** bacterial pathogens

Identification of the bacteria and where it came from is critical to mastitis treatment. Minimizing exposure is key to mastitis management.

Mastitis

- Bacterial physiology
 - A. Gram + (thick cell wall membrane)
 - B. Gram – (thin cell wall membrane)

Gram stain to determine category of pathogen.

BACTERIA

Streptococci

- **Environmental**
 - *S. uberis*
 - *S. dysgalactiae*
 - *S. equinus*

- **Contagious**
 - *S. agalactiae*
 - Gram +

- More subclinical mastitis
- Environment
- Predominant early and late lactation
- Clinical mastitis
- Cannot live outside the udder
- Treated easily with penicillin
BACTERIA

Staphylococci

- **Staph. aureus**
 - Summer mastitis
 - Spread by milking equipment and milker’s hands
 - Persistent, difficult to eliminate
 - If unattended leads to chronic mastitis

- **Other Staph**
 - Found normally on skin
 - Lowers milk yield
 - Elevated SCC
 - Easily responds to antibiotics
 - Relapse frequently seen

Field language

“Staph”
“Staph. Mastitis”

BACTERIA

Coliforms

- Groups of organisms
 - *E. coli*, *Klebsiella*, *Enterobacter*
 - *Gram -*

- Environmental source (manure, bedding, barns, floors and cows)

- Coliforms cause acute clinical mastitis
 - high temp, and inflamed quarter
 - watery milk with clots and pus
 - toxemia

Other organisms

- *Pseudomonas aeruginosa*
 - outbreaks of clinical mastitis

- *Serratia*
 - outbreaks of clinical mastitis

- *Corynebacterium pyogenes*

- Fungi
 - *Mycoplasma bovis*(non treatable and very contagious)
How is mastitis diagnosed?

- Physical examination
 - Signs of inflammation
 - Empty udder
 - Differences in firmness
 - Unbalanced quarters

- Cowside tests
 - California Mastitis test
 - Electrical Conductivity

Mastitis

- Leucocytes are the cell that leave the blood and enter the milk to destroy bacteria. They are the cells that chiefly make up the milk somatic cell count (scc).
- As scc increase, so does the likelihood of bacterial infection as more cells are moving into milk to fight the infectious agent.

Mastitis

- CMT- scc>200,000 cells/ml indicate that intramammary infection is probably present.

<table>
<thead>
<tr>
<th>Score</th>
<th>Scc (cells per ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg</td>
<td>0-200,000</td>
</tr>
<tr>
<td>Trace</td>
<td>150,000-500,000</td>
</tr>
<tr>
<td>1</td>
<td>4,000 – 1,500,000</td>
</tr>
<tr>
<td>2</td>
<td>800,000 -5,000,000</td>
</tr>
<tr>
<td>3</td>
<td>>5,000,000</td>
</tr>
</tbody>
</table>
Mastitis

- Scc x1000 | Linear score | Milk loss
- 0-12.5 | 0 | 17,124 lbs.
- 12.5-25 | 1 | 16,724
- 25-50 | 2 | 16,324
- 50-100 | 3 | 15,924
- 100-200 | 4 | 15,524
- 200-400 | 5 | 15,124
- 400-800 | 6 | 14,724
- 800-1,600 | 7 | 14,324
- 1,600-3,200| 8 | 13,924
- 3,200-6,400| 9 | 13,524
- 6,400-12,800| 10 | 13,124
- 12,800-25,600| 11 | 12,724
- U of Wisconsin 1995

Mastitis

- Electrical Conductivity
 - Leakage of blood components
 - Proteins
 - Ions – chloride (salts increase conductivity)

How is mastitis diagnosed?

- Culture analysis
 - The most reliable and accurate method
 - costly ($5-12)
How do you treat mastitis?

Clinical mastitis
- Strip quarter every 2 hours
- Oxytocin valuable
- high temp, give aspirin
- Seek veterinary assistance
- Treatment with penicillins

Subclinical mastitis
- Questionable

THE 10 STEPS TO MASTITIS CONTROL

ONE: Prepare cows properly for milking
- Udder preparation is pre-dipping with a dip labeled for pre-dipping. Pre-dips lower the risk of new infections by 70% !!!!!!!!!!!!!!!!
- Pre-dips
 - Iodophors 0.0 - 1.0%
 - Chlorhexidine 0.2%
 - Quats 0.5%
 - LDBSA 0.2%
 - Hypochlorous acid
 - Bleach ?
- Use single service paper towels, dry teats before machine-application.

TWO: Have a good milking system
- Milking equipment should be adequate in size, functioning properly, and regularly cleaned and maintained
- Correctly use proper functioning milking machines and properly prepare udders
 - Attach teat cups after thorough cleaning and drying of teats
 - Provide stable vacuum
 - Check for slipping of teat cup liners
 - Shut off vacuum before removing teat cups.
THREE: Apply and remove machine carefully
- Properly adjust to prevent liner slippage.
- Remove machine when cow is milked out, shut off vacuum at claw before removal.

FOUR: Dip each teat after each milking using a germicidal teat dip.
- Post-dips seal the teat ends temporarily for 6 to 8 hours
- A must for long term mastitis control program

FIVE: Monitor your mastitis score (DHI-SCC, WMT) regularly. Take action when significant increases occur.

SIX: Treat clinical cows, follow label recommendations, treat aseptically. Withhold treated cows' milk from milk supply.

SEVEN: Segregate chronic mastitis cows, milk them last, cull when necessary.
- Cows with chronic mastitis serve as reservoirs of organisms and could infect susceptible cows

EIGHT: Dry treat each quarter using partial insertion techniques with an approved dry cow treatment at drying off.
- Cure rate is twice high as that during lactation
- Lowers the risk of clinical and subclinical mastitis during subsequent lactation

NINE: Keep cows clean, udders free from soil and manure.
- Fence off wet, swampy areas.
- Keep free stalls and stanchions bedded properly.
- Keep calving areas clean, properly bedded (straw preferred).

TEN: Properly feed and care for cows.
Milking Procedures

1. Clean udder of debris
2. Strip 3-4 squirts of milk from each quarter
 a. Look for mastitis
 b. Stimulation
3. Pre-dip
4. Dry teats
5. Attach milking unit
6. Automatic take-off
7. Post-dip teats

Summary

- Mastitis is primarily a management problem
- Mastitis can be controlled
- Prevention programs work best when correctly followed

Milking Procedures for Quality Milk
Milking Procedures for Quality Milk

PREREQUISITES

- Maintain clean, well ventilated bedded areas for cows
- Segregate known infected cows. Milk them last or with designated equipment
- CMT all fresh cows by the 6th milking
- Milk all treated cows last
- Change rubber inflations every 60 days or 1000 cow milkings whichever comes first

PREREQUISITES

- Check the milking systems or units periodically for function and reliability
- Clip or singe the udder hair
- Examine periodically teats and teat ends
- Mastitis treatments should be done by one or two persons and should be done after milking
- Cloth towels should be washed after every use

Simple Steps

“Two trips to each cow will provide a routine to Maximize Milk Quality and Parlor Performance” — Dr. Andy Johnson

Simple Steps

Step One………Strip and Predip

Step Two………Dry and Apply
Standardized Milking Procedures

Stanchion / Tiestall
- Wear Gloves
- Wipe off excess dry manure, straw and bedding
- Strip each teat into a strip cup
- Dip teats with an approved pre-dip
- Allow the pre-dip to react for at least 30 sec.

Parlor
- Wear Gloves
- Wipe off excess dry manure, straw and bedding
- Strip each teat into a strip cup
- Dip teats with an approved pre-dip
- Dip 3-4 cows
- Allow the pre-dip to react for at least 30 sec.

Stanchion / Tiestall
- Clean teat and teat ends using single paper towel or individual towel cloth
- The teats must be dried for at least 15 sec
- Attach milking machines immediately after teats are dried
- Dip teats with post-dip immediately after milking

Parlor
- Return to the first cow and clean teat and teat ends using a single paper towel or individual towel cloth
- The teats must be dried for at least 15 sec
- Attach milking machines immediately after teats are dried
- Dip teats with post-dip immediately after milking

Steps involved in employing HACCP-based concepts for establishing proper milking procedures

STEP ONE
- Educate owners and milkers about implementing a standardized milking procedure (Benefits !!!!!!)
- IF a dairy farm initiates and shows sustained interest
 - Establish ground rules
 - They will have to be proactive and adopt changes
 - TEAM EFFORT !!!

EACH STEP IS A CRITICAL POINT !!!!!!!
- **STEP TWO**
 - Establish a team (owner, milkers, veterinarian, facilitator)
 - Mission statement
 - Goals and timeline
 - Written Procedures
 - Protocols
 - Critical Limits (SCC > 250,000)
 - Recording Keeping
 - Milking time/milking
 - Bulk Tank Temp; end of 1 hr of milking
 - Sanitation
 - Schedule team meetings to review the process

- **STEP THREE**
 - Train milkers and owners in implementing the standardized milking procedure

- **STEP FOUR**
 - Monitor the application of the standardized milking procedure
 - Floor tests (each step is a critical point !)
 - Laboratory tests (SPC or BTSCC)
 - Monitor records

- **STEP FIVE**
 - Establish corrective actions to be implemented if milk quality critical limits have exceeded.