Designing Rations and Troubleshooting on Dairies

Mark McGuire
University of Idaho

Designing Rations
• Has to start with forage
 – Quality and availability

Quality of forage
• Harvested at correct maturity and moisture
• Packed well
• Sealed
• Good face management
Large Piles of Silage

Designing Rations
• Has to start with forage
 – Quality and availability
• Must understand the operations and limitations of the farm
 – Must feed certain feeds since they are grown by brother/cousin/etc. no matter the quality
• Add other ingredients to meet nutrient needs affordably

Troubleshooting Nutrition on Dairies
• Gather information from reliable sources
 – Milk yield & composition
 – Bulk tank
 – Pen averages
 – By DIM
 – By parity
 – History - Previous month, year
 – Any idea on dry matter intakes?
 • By pen
 • By DIM
 • Overall
• Know feed ingredients
 – Nutrient analyses
 – Who mixes diet
 – Type of mixer
 – How often is feed offered
 – Bunk management
 – Pushed up
• Feed inventories
Troubleshooting Nutrition on Dairies

- TMR
 - Particle size
- Rumen fermentation
 - Feet and legs
 - Fecal screens
 - Milk fat %

- Cows
 - Milk yield
 - Feet and legs
 - Locomotion scoring
 - Incidence of metabolic disorders
 - Milk fever, ketosis, DA
 - When do they occur?
 - Body condition score
 - Reproduction

Usefulness of milk urea nitrogen (MUN) to evaluate on-farm nutrition

Introduction

- On a gross scale, increasing crude protein content of diets:
 - Increases feed intake
 - Increases milk yield
 - May increase milk protein content
Concerns

- Inefficiency of nitrogen use
 - Costly if excess protein is fed
 - Environmental issues
 - Cheese

CHEESE

- Processing yields affected by true protein content
- Increased value of protein

Protein Fractions of Milk

- Casein (~80%)
- Whey (14-15%)
- NPN - nonprotein nitrogen (5-6%)
 - 25-30 mg/dl of milk
 - ~50% of NPN is urea N
Concerns (con’t)

- Inefficiency of nitrogen use
 - Costly if excess protein is fed
 - Environmental issues
 - Cheese
 - Poor reproductive performance

Butler et al., 1995 and 1996

BUN and MUN suggested as a measure to evaluate efficiency of protein utilization

Butler et al., 1995 and 1996
Urea

\[
\begin{array}{c}
\text{NH}_2 \\
\text{O=C} \\
\text{NH}_2
\end{array}
\]

- Excretory product of ammonia (NH\textsubscript{3})
 - Rumen
 - AA catabolism
- Formed in liver: urea cycle

Reticulo-rumen

- Released into blood for excretion by kidney
- Blood urea nitrogen - BUN, PUN or SUN
- Urea equilibrates with body water
- BUN highly correlated with milk urea N (MUN)
Summary of 35 trials

Broderick and Clayton, 1997

MUN

- Easier to sample
- Pre- and post-milking strip samples not different than typical milk sample

Gustafsson and Palmquist, 1993

Nutritional effects on MUN
Quick summary

• MUN increased with increasing dietary protein

• Response confounded with carbohydrate availability

• RDP as a % of crude protein increased with increasing dietary CP
Quick summary

- Excess RDP increases MUN
- Imbalance in protein supply contributes to increased MUN

Effect of RUP on MUN

Baker et al., 1995

Roseler et al., 1993
Quick summary

- MUN is affected by level of dietary RUP
- Non-urea NPN is stable

MUN may be a useful tool, BUT...
- Problem could be from a variety of nutritional issues
 - Dietary protein source
 - RDP
 - RUP
 - Dietary carbohydrate
 - Rumen fermentation (i.e., energy)
Milk Urea Nitrogen (MUN)

• What does it tell you?
 – Low MUN (<12 mg/dl) suggests a very efficient use of amino acids
 • possibly limiting

Milk Urea Nitrogen (MUN)

• What does it tell you?
 – High MUN (>18 mg/dl) suggests a significant rate of amino acid oxidation
 • overfeeding of protein
 • imbalanced amino acid pattern
 • excess urea fed
 • low energy
 • inadequate carbon for the bacteria to capture the N as microbial protein

How to Use MUN

• Sampling
 – with normal herd testing (individual animals)
 – more repeated in a subset of each ration fed or pen of cows (10-15% of cows sampled)
 – Time of day
 • little variation unless significant slug feeding or significant sorting occurring
How to Use MUN

• Results only can suggest that protein nutrition is improper (could be either protein or energy effect)
• Only provides a clue; does not give the full answer
• You must investigate to determine if there is a problem