Ron Wright Chemist Supervisor Idaho Transportation Department

Methods of Operation

- Traditional Methods
 - Plow and antiskid
- Anti-icing
- Deicing
- Pre-wetting

Anti-icing

 The control practice of preventing the formation or development of bonded snow or ice to the pavement surface by timely applications of a chemical freezing-point depressant.

Anti-icing

- Pro-active
- Largely uses liquid products
- Can use pre-wetted solid chemicals

Deicing

 Traditional snow and ice control practice is to wait until and inch or more of snow accumulates before beginning to plow and treat the highway with chemical or abrasives.

Pre-wetting

- The addition of a liquid chemical to an abrasive or solid chemical before it is applied to the road.
- Increases the deicer performance and longevity on the roadway surface.
- Embeds the particle in the snow and ice floor by melting in and freezing.

Deicing

 Subsequently it requires large quantities of chemical to work its way through the pack to reach the pavement interface and destroy the ice to pavement bond.

Benefits

- Reduce the use of abrasives
- Lower accident rates
- Better performance
- Increase winter mobility
- Reduce chemical usage
- Reduce maintenance labor cost
- Fewer winter pass closures

Benefits Pre-wetting Enhances the penetration of chemical Gets the chemical reaction going quicker Jump starts the ice melting More salt stays on the highway 96% verses 70%

Benefits

- Abrasive Cost
 - Abrasives require seven more times material to treat a section of roadway than chemical products.
 - PM 10 areas
 - Flushing drains
 - Clearing pipes
 - Sediment loading in waterways (EPA)
 - The final cost of using abrasives including cleanup and environmental impact is typically over three times the original cost of the abrasive.

Strategies

- New Equipment
 - Spray verses Stream
 - Stream offers less issues with plugging
 Multi-lane spray
 - Pre-wet
 - Spinner more complex with various injection ports for liquid chemical.

D6 / Rigby – 9CY / 150 gal liquid - RDS Body - 2005

<image><image>

Strategies

- New Operational Methods Proactive
- Road Weather Information System (RWIS)
 - Forecasting (http://511.idaho.gov/)
- Maintenance Decision Support System (MDSS)

Strategies

- New Management Techniques
 - Train your workforce
 - FHWA "Manual of Practice for an Effective Anti-icing Program - A guide for Highway Winter Maintenance Personnel"
 - AASHTO Interactive CD Training Programs
 - Hire professionals for a training program
 - Attend Winter Maintenance Conferences
 - Talk to your neighbors

Strategies

- New Chemical Products
 - Pacific Northwest Snowfighters www.wsdot.wa.gov/partners/pns
 - Many products are available Chlorides, acetates, and carbohydrate
 - Corrosion Inhibited
 - PNS approved products drastically reduce threats to the environment.
 - Liquids are tested for coefficient of friction

Lets talk Chemicals

- Use them to prevent or break the bond between snow/ice and the pavement.
- Use the right amount, in the right form, in the right place, at the right time.
- Consider the following when deciding how much chemical to apply
 - Temperature
 - Dilution potential
 - Cycle time

Temperature

- As the temperature decreases then need for more chemical increases.
- Time of chemical reaction slows down with lower temperatures.
- With lower temperatures the dilution rate is slowed.
- Surface temperature is more important than air temperature.

Dilution Potential

- The higher the moisture presence, the quicker the chemical application dilutes.
- Different precipitations events have various amounts of available liquid.
 - Sleet, freezing rain, wet snow verses dry snow.
- Thus these types of events will require more chemical.

General Guideline

- Lower temperatures, wetter precipitation, and longer cycle times all require more chemical to avoid refreeze.
- Don't use liquids with rain or on top of compact snow.
- Don't use liquids or pre-wet solids if this will create a wet road in a drifting snow.
- Don't put down dry chemicals on a dry road. Use a pre-wet chemical.

Cycle Time

- Time between chemical applications to a given point on the highway system.
- Short cycle on a high priority route, longer cycle on lower priority routes.
- The longer the cycle time, the more the chemical application will dilute out on the road.
- Longer routes require higher application rates.

What do you want for a chemical

- Freeze point depressant
- Melt snow/ice in reasonable time frame
- Penetrate to the snow/pavement interface
- Will not damage infrastructure
- Protect the traveling publics vehicles
- Non-toxic to humans, animals and vegetation
- Available in large quantities
- Cheap

Picking your chemical

- What are your temperature requirement?
- What do you need the chemical to do?
- What are your constraints?
- Differentiate between different chemicals.
- Performance characteristics
- What is the chemicals freeze point depression.

What is a freeze point depressant?

- The mixture of water and chemical must have a lower freezing point than water.
- The free water would rather bond with the ions in the chemical than with other water molecules.

Phase Diagram

- A graphical diagram that shows a chemicals physical characteristics at a given temperature and concentration.
- Can be represented for a single or multiple component chemical system.
- We are primarily interested in two phases, liquid and solid.

Chemical	Eutectic temperature °F	Eutectic concentration %
Calcium Chloride (CaCl ₂)	-60	29.8
Sodium Chloride (NaCl)	-5.8	23.3
Magnesium Chloride (MgCl ₂)	-28	21.6
Calcium Magnesium Acetate (CMA)	-17.5	32.5

Eutectic Point Information

- Eutectic Point tells you if the chemical is suitable for you climate.
- Inhibitors and carbohydrates can lower EP.
- Need to know two more point from the curve.
 - Half the concentration from the Eutectic Point.
 - Tells us the lowest temperature we should use the chemical.
 - Quarter point from the half point gives provides temperature where refreeze is being approached.

Points of Interest

- Half point for salt is 18 °F
- Half point for Magnesium chloride is 2 °F
- Half point for calcium chloride is -15 °F
- Which chemical should you choose?

Picking your chemical

- Consider all the points that you need for a region.
- Different regions may have different requirements.
- Score the chemical accordingly giving more weight to the more critical factors and less weight to the lesser factors.

Manufacturing your own salt brine

Brining

- Weight to weight mixture of salt and water not weight to volume.
- Verify finished concentration with a hydrometer for specific gravity or salinity.
- Install a documented QC plan.
- Can be easily adapted for adding corrosion inhibitors.
- Carbohydrates can increase the longevity of the chemical on the roadway.

