Evolution of Pavement Structural Design Systems

Chris Wagner, P.E.
FHWA Resource Center
Atlanta, GA
Christopher.Wagner@dot.gov

Why are pavements important?

- Fundamental to economic growth and quality of life
- Pavement design is critical for long lasting and economical pavements

Major Advances in Pavement Design and Construction

- Roman Roads
- Telford Pavements
- Macadam Pavements
- German Autobahn
- US Interstate System
- China’s highway expansion
- AASHTO Road Test
- Mechanistic Empirical Design
 - IlliSlab
 - Asphalt ME procedures
 - DARWin –ME

http://training.ce.washington.edu/wsdot/
Roman Roads
- 312 B.C.

Source: www.asphaltwa.com

McAdam Pavements
- John McAdam
 1756 – 1836

“Regardless of the thickness of the structure many of the roads in Great Britain deteriorated rapidly when the subgrade was saturated.”

German Autobahn, 1936

China’s National Trunk Highway System

Installation of Lean Concrete Base material
China’s National Trunk Highway System

US Interstate: 46,876 Miles

1919 Transcontinental Convoy – July 7 – September 7

Grand Island, Nebraska

US Roadway Expansion
- 1956
 ◦ President Eisenhower
 ◦ Funded by Gas Taxes
 ◦ ~ $38 Billion / Yr
 ◦ Responsible for NHS
 ◦ Interstate
 ◦ US Routes
 ◦ 46,876 miles

The AASHO Road Test: A Look Back
Previous Road Test

- Road Test one – MD 1950
 - Concrete Pavement
- WASHO Road Test, Idaho 1953–54
 - Flexible Pavements

AASHO Road Test

- “Grand-daddy” of major road tests
 - 1956–1960
 - Studied both pavements and bridges
 - $27 million (1956 $)
- Long lasting effects in pavement engineering
- Cornerstone of pavement design

Project Location

- Ottawa, IL on future I–80 alignment
- “Representative” soil and climate
- Cooperation of host state
- Flexible and pavements and bridges

Experimental Design

- Statistically based experimental design to isolate variables
- Flexible pavements
 - Surface, base, and thickness
 - 100 to 160 ft long
 - 468 total sections
- Rigid pavements
 - Reinforcing, slab and base thickness
 - 120 to 240 ft long (all doweled joints)
 - 368 total sections
Objectives

- To determine relationships between axle loads and pavement performance
- To determine effects of axle and vehicle loads on bridges
- To conduct special studies (base types, paved shoulders, fatigue, tire pressures, etc)
- To provide a record of the type and extent of effort/materials to maintain sections
- To develop test instrumentation, test procedures, graphs, charts, and formula helpful to highway design and evaluation

Construction

- 1956 to 1958
- Highly controlled
- Specifications based on prevailing SHA practices

Truck Traffic

- Trucks driven by U.S. Army Transportation Corps
 - Initially 6 day schedule (18 hours, 40 minutes)
 - Later changed to 7 day (19 hours, 5 minutes)
 - Three rotating driving schedules (7.5 hours per driver each day)

Walt McKendrick

—Project Director—

“Take all the time you want as long as you are off the road when the trucks are back in service”

—to field staff inspecting pavement conditions
Performance Monitoring

- Flexible Pavements
 - Profile
 - Roughness
 - Cracking
 - Patching
 - Rut Depth

- Rigid Pavements
 - Profile
 - Cracking
 - Patching
 - Spalling
 - Joint/Crack Faulting

Serviceability

- Introduced as a way of measuring pavement performance and defining "failure"
- Correlations developed to estimate panel rating serviceability based on observed distress, e.g., for flexible pavements:

\[PSI = 5.03 - 1.91 \log(1 + SV) - 1.38(RD)^2 - 0.01 \sqrt{C_F + P_F} \]

Road Test Products

- Serviceability-performance concept
- Pavement design models
- Load equivalency factors
- Recognition of variability in construction and need for statistical sampling
- Demonstration of statistically based experimental designs and statistically based modeling
- Development and implementation of new performance monitoring equipment
- Framework for pavement and asset management
Limitations

- One subgrade type
- One environment
- Only 2 years of service
 - Limited truck traffic
 - Limited environmental effects
- One HMA mix
- One PCC mix
- 1950s materials & paving technology

These factors limit the “inference space,” not the validity of the results

One Subgrade Type...

A–6 / A–7–6 (Clay)
Poor Drainage

(AASHO, 1961)

Low Traffic Levels...

Bill Carey

—Chief Engineer for Research—

“It was recognized that other models... could lead to correlation with subjective ratings just as good or perhaps even better than the correlation obtained with [the AASHO] model.”

—1962 AC Pavement Conference
Alvin C. Benkelman
—Flexible Pavement Research Engineer—

“This is my third road test and if I don’t get it right this time they’ll fire me”

—Having also served at Hybla Valley and WASHO Road Tests

Frank Scrivner
—Rigid Pavement Research Engineer—

“Well over half of the [rigid pavement] sections under traffic exhibited very little change in condition during the two years of traffic testing”

—1962 St. Louis Proceedings

Paul Irick
—Chief, Data Processing and Analysis—

“…we aim to explore models for long time pavement performance that will bring in some of the physical parameters that are considered basic to the explanation of pavement performance.”

—1962 AC Pavement Conference

Fred “Mickey” Finn

“The Asphalt Institute is fully aware of the significant contributions which have been made and, just as important, which will be made by this Project to the highway engineer.”

—1962 St. Louis Proceedings
1993 Version

1993 Version

How many billions of dollars of pavement has this nomograph been used to design? Still used by 37 States and multiple countries.

50 year step forward....

- Fundamental Materials Inputs
- Traffic Loadings
- Climatic Considerations
- Calibrated to research grade pavement sections

Available December 2010
Climate Inputs

Material Properties

Traffic

Transfer Functions

Predicted Performance

Mechanistic Analysis

For rigid pavements

ISLAB2000—Finite Element Model (FEM) program

For flexible pavements

JULEA—Linear elastic layered analysis program

Material Property Inputs
Traffic

ARA, ASU and NCHRP 1–40

NCAT Test Track

Strain Response
Evolution

- Pavement design is not perfect.....BUT;
- We're moving toward a more fundamental and structured platform for continuous improvement.