Introduction

Asphalt Binder Properties

Consistency
Asphalt is a *thermoplastic* material that softens as it is heated and hardens when cooled.

Why Heat Asphalt? So It Can Be:
- Pumped and transported
- Blended with and coat aggregate
- Remain workable during
 - Transport, laydown, and compaction

Other Ways to Make Asphalt Workable:
- Add solvents – cutback asphalt

 Emulsify with water
Asphalt Emulsions – A History

- First developed in the early 1900s
- Early use in spray applications + dust palliatives
- Growth use relatively slow:
 - Limited by the type of available emulsions
 - General lack of knowledge
- Steady rise in volume since the 1970’s

Why Use Asphalt Emulsions?

- No petroleum solvent required to liquefy
- Little or no hydrocarbon emissions
- In most cases, used with no additional heat
- The ability to coat damp aggregate
- Can use cold materials at remote sites
- Wide variety of emulsion types available today

Preventive maintenance apps – Improved LCC!

Asphalt Emulsions in Pavement Preservation (PP)

- Strategy of managing pavement condition to:
 - Maximize pavement lifespan at minimal cost
- Applies to all types of roads
 - Low volume local roads to heavy interstates
- Achieved by careful planning and selection
 - Right protective treatment (application)
 - At the optimal (right) time

Pavement Life Cycle Theory

- Maintenance ~$ 1.00/SY
- Rehabilitation >$10.00/SY
- Reconstruction >$$$$

[Graph showing maintenance, rehabilitation, and reconstruction costs over time]
Emulsion Chemistry

- Emulsions are mixtures of
 - Two or more materials
 - Normally do not mix or blend together
 - Created via mechanical + chemical processes

- Some common examples
 - Mayonnaise, latex paint, ice cream

Asphalt Emulsions - Composition

- Three basic ingredients
 - Asphalt
 - Water
 - Emulsifying agent

- May contain other additives
 - Polymers
 - Stabilizers
 - Coating improvers
 - Antistrips
 - Break control agents

Basic Emulsion Ingredients – Asphalt

- Asphalt cement is basic ingredient
 - Up to 50-75% of finished emulsion
- Hardness of base asphalt cement varies
 - Emulsion base ranges from 40–250 dmm PEN
 - No exact correlation bwn. asphalt props. and emulsification
 - Climate may require harder or softer base
 - Compatibility of emulsifier needed for stability
Basic Emulsion Ingredients – Water

- Second basic ingredient in an emulsion is water
 - Contribution cannot be minimized
- Water may contain minerals or other matter
 - Can affect the production of stable emulsions
- Water considered suitable for drinking,
 - Might NOT be suitable for emulsion production

Basic Emulsion Ingredients – Emulsifying Agents

- Surfactants
 - Adsorbed at interface between liquids and solid
 - Concentrate at interface based on their structure
 - Hydrophilic head towards more polar phase (H₂O)
 - Lipophilic tail towards less polar phase (asphalt)
 - Surfactant molecule or ion acts as bridge bwn. phases

Asphalt Emulsions – Emulsifying Agents

- Asphalt emulsions are classified into three categories
 - Anionic (-)
 - Cationic (+)
 - Nonionic (neutral)

Based on electrical charges surrounding asphalt particles
Emulsion Production

Producing the Emulsion - Emulsifying Equipment
- Basic equipment
 - High-speed, high-shear mechanical device
 - Usually colloid mill to shear asphalt into droplets
- Also required
 - Emulsifier solution tank
 - Hated asphalt tank
 - Pumps
 - Flow-metering gauges

Producing the Emulsion – Emulsification Process
- Asphalt particle size vital factor for stable emulsion
 - Smaller than:
 - 0.001 millimeter (1 micron) 20 percent
 - 0.001–0.005 millimeter (1–5 microns) 57 percent
 - 0.005–0.010 millimeter (5–10 microns) 23 percent
Emulsion Classification

Asphalt Emulsions – Classification by Set Rate

• How quickly do asphalt droplets coalesce?

• Two letter codes used to simplify + standardize
 • RS – Rapid Setting
 • MS – Medium Setting
 • SS – Slow Setting
 • QS – Quick Setting

• Relative terms only

Proportional to break speed after contact agg. surface

Asphalt Emulsions - Classification by Set Rate

• RS Emulsions
 • Little/no ability to mix with aggregate

• MS Emulsions
 • Can mix with coarse but not fine aggregate

• SS and QS Emulsions
 • Can mix with fine aggregate
 • QS expected to break more quickly than SS

Sub-Classifications - Typical Applications

• RS
 ▪ Rapid Setting
 ▪ Chip Seals

• MS
 ▪ Medium Setting
 ▪ Plant Mixing
 ▪ In-place Recycling

• SS
 ▪ Slow Setting
 ▪ Cold Mixes
 ▪ Tack Coats

• QS
 ▪ Quick Setting
 ▪ Slurry Seals
 ▪ Micro Surfacing
Asphalt Emulsions – Full Classification

- Identified by numbers and letters related to:
 - Particle charge (prefix)
 - Set rate (prefix)
 - Viscosity of liquid emulsion (suffix)
 - Hardness of base asphalt cements (suffix)

Hardness + Modification Suffixes

- No suffix
 - 100-200 pen
- L
 - Latex-modified
- P
 - Polymer-modified
- R
 - Recycling agent-mod.

Asphalt Emulsion Nomenclature

- RS-1
- RS-2
- HFRS-2
- MS-1
- MS-2
- MS-2h
- HFMS-1
- HFMS-2
- HFMS-2h
- HFMS-2s
- SS-1
- SS-1h
- QS-1h

Asphalt Emulsion (ASTM D 977, AASHTO M 140)

<table>
<thead>
<tr>
<th>Asphalt Emulsion</th>
<th>Cationic Emulsion (ASTM D 2397, AASHTO M 208)</th>
<th>Polymer-Modified Cationic Emulsion (AASHTO M 316)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-1</td>
<td>CRS-1</td>
<td>—</td>
</tr>
<tr>
<td>RS-2</td>
<td>CRS-2</td>
<td>CRS-2P, CRS-2L</td>
</tr>
<tr>
<td>HFRS-2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>MS-1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>MS-2</td>
<td>CMS-2</td>
<td>—</td>
</tr>
<tr>
<td>MS-2h</td>
<td>CMS-2h</td>
<td>—</td>
</tr>
<tr>
<td>HFMS-1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HFMS-2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HFMS-2h</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HFMS-2s</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SS-1</td>
<td>CSS-1</td>
<td>—</td>
</tr>
<tr>
<td>SS-1h</td>
<td>CSS-1h</td>
<td>—</td>
</tr>
<tr>
<td>QS-1h</td>
<td>CQS-1h</td>
<td>—</td>
</tr>
</tbody>
</table>
Asphalt Emulsions – Micro Surfacing Classification
- Micro surfacing often specifies CSS-1hP emulsion
 - Meets ASTM and AASHTO CSS-1h requirements
 - With the exception of the cement mixing test
 - Min. polymer content of 3% solids on asphalt
 - Enhances high temperature performance
 - Permits application in multiple stone depths:
 - Rut-filling
 - Leveling operations

Emulsion Application

Asphalt Emulsions – Breaking and Curing
- Breaking/Drying
 - Separation and evaporation of water
- Curing
 - Return of residual asphalt properties
 - Adhesion
 - Durability
 - Water-resistance

Emulsions – Breaking
- Breaking
 - \(\text{H}_2\text{O} \) separating from asphalt phase + evaporating
- Emulsions formulated to break according to app.
- Two breaking mechanisms
 - Chemical
 - Physical or evaporative
Emulsions - Breaking

- **Breaking**
 - For SS grades = mechanism mainly evaporation
 - For MS + RS grades = mechanism mainly chemical

Emulsions - Curing

- **Curing** – Process whereby mechanical properties of the asphalt return after application
 - Water must completely evaporate
 - Asphalt particles must coalesce and bond to intended surface
 - Water fully removed by evaporation + absorption