

Thin HMA Overlays for Pavement Preservation

Xicheng Qi Nelson Gibson Ik Highway Research Center

Turner-Fairbank Highway Research Center US Federal Highway Administration www.TFHRC.gov

Acknowledgments

Thank Virginia DOT and Superior Paving whose cooperation and assistance were vital to the thin HMA overlay study.
Also thank laboratory staff at ALF, Mix, and Binder labs at the FHWA Tuner-Fairbank Highway Research Center for their lab tests and data collection.

Outline

Project Background

 Preceding research study at the Accelerated Load Facility (ALF)
 Motivation for the thin overlay study

 Thin Overlay Construction
 ALF Testing and Results
 Summary and Conclusions

Project Background

FHWA Recommendation to Replace |G*|sinδ for Fatigue Cracking

Calculated Crack Tip Opening Displacement (CTOD), a notched direct tension test

FHWA Recommendation to Replace |G*|sinδ for Fatigue Cracking

 Calculated Crack Tip Opening Displacement (CTOD), a notched direct tension test
 Primarily based on fatigue cracking in un-aged full scale accelerated pavement tests

PLUS

 Validated and Strengthened with full scale accelerated aged test sections

Accelerated Aging via Radiant Heaters used for Temperature Control

Green line is Accelerated aging

Top-Down / Bottom-Up Cracking Accelerated Aged Sections

	Total	Bottom-up Cracks		Top-Down Cracks		Full-Depth Cracks	
	Counts	Counts	Percentage	Counts	Percentage	Counts	Percentage
Lane 1 CR-AZ/Control	15	3	20%	11	73%	1	7%
Lane 2 Control	6	0	-	5	83%	1	17%
Lane 3 Air Blown	5	1	20%	0	-	4	80%
Lane 5 CR-TB	18	10	56%	5	28%	3	17%
Lane 6 Reacted Terpolymer	13	5	38%	8	62%	0	-

Motivation for the Thin Overlay Study

Although the aging experiment was intended to help with the statistics of the original experiment...

Although the aging experiment was intended to help with the statistics of the original experiment ... the concentration of aging at the surface and top-down fatigue cracking performance naturally led the research team to the scenario of pavement preservation

Although the aging experiment was intended to help with the statistics of the original experiment ... the concentration of aging at the surface and top-down fatigue cracking performance naturally led the research team to the scenario of pavement preservation....in other words, to what degree could the performance of the aged sections be extended they were renewed with a treatment?

AASHTO – FHWA – FP2. Transportation System Preservation Research, Development, and Implementation Roadmap

Performance #03 - Quantify Performance and Benefits of Various Pavement Preservation Treatments and Develop Pavement Preservation Treatment Performance Models.

- Performance # 04 Quantifying the Benefits of Pavement Preservation Treatments
- Design #02 Determining Pavement Preservation Treatment Lives and Related Pavement Life Extension
- Design #06 Integrating Pavement Preservation into the Design Process
- <u>Materials #01</u> Mechanical Binder Properties to Predict Surface Treatment Performance

Superpave 4.75mm NMAS

- Explored the concept of placing a chip seal, or slurry seal or other approach
- Collaborated with Virginia DOT as they are the closest neighbor to FHWA-TFHRC
 - Recommended the experiment use a thin overlay of a trial 4.75mm NMAS Superpave mix that was being considered for preventive maintenance application
- Other benefits:
 - Use of excess fine aggregates
 - Inclusion of RAP

Gradation of the mix design; job mix formula and production

Sieves #	Bealton sand	#10	RAP	Nat. Sand	Bag House	Mix Design	Gradation Check
3⁄4"(19mm)	100	100	100	100	100	100	100
¹ /2"(12.5mm)	100	100	99.8	100	100	100	99.7
3/8"(9.5mm)	100	100	95	100	100	99.1	97.0
#4 (4.75mm)	96	96	67	98	100	92.3	87.6
#8 (2.36mm)	62	66	50	86	100	68.7	60.1
#16(1.18mm)	38	45	39	66	100	45.7	43.1
#30(0.60mm)	26	33	29	36	100	31.9	31.0
#50(0.30mm)	17	24	21	12	100	21.6	21.4
#100(0.15mm)	10	18	14	5	98	14.7	15.1
#200(.075mm)	5.2	12.4	9.3	2.5	95	10.3	10.4
Blend %	26	44	20	10	1	-	-

Volumetric properties of the mix design; job mix formula and production

Specification Criteria				Produced		
Ndesign = 50 gyrations			T 1 1 <i>4</i>	$\mathbf{FHWA} \mathbf{Gmm} = 2.595$		
Volumetrics			Job Mix	Contractor's	Jmm = 2.584	
		Virgini	Formula	FHWA extracted	Contractor's	
		a DOT		aggregate	aggregate G _{SB}	
				$G_{SB} = 2.813$	= 2.789	
	Design	5%	4.4%	-		
VTM	Pro-	3% -		4.21% - 3.98%		
	duction	6%	-			
VFA	Design	70% -	740/	_		
		75%	/4%			
	Pro-	70% -		75 10/ 76 20/	74.00/ 75.20/	
	duction	80%	-	/3.1% - /0.2%	74.0% -75.2%	
VMA		16.5%	16 00/	16.00/ 16.70/	16.2 %- 16.0%	
		min.	10.9%	10.9% - 10.7%		
V _{be}		-	-	14.96%	14.86%	
Dust to Binder		1 2	1 09	1.00	2 11	
based on effective asphalt		1 - 2	1.90	1.77	2.11	

....Switch to animation of crack maps...

Aged Thin Overlay

Aged

Lane 10 Air Blown

A1:B = Effect of Aging on Conventional HMA (no preservation treatment)

Site 3 Site 4 A2:C = Effect of "Old" Aged 4.75mm on Aged Pavement

Lane 8 Control 70-22

Pavement

Cores cut from thin overlay section

Summary and Conclusions

• A trial 4.75 mm NMAS mix from VDOT placed as a thin treatment over existing APT sections. Full scale accelerated aging and loading used to compare the fatigue cracking performance for four combinations of with and without 4.75 mm NMAS treatment plus with and without aging. The unaged 4.75 mm NMAS overlay performed much better in fatigue cracking resistance than the untreated existing pavement in Lane 8.

Summary and Conclusions (Continued)

- The aged 4.75mm NMAS overlay performed almost the same as the untreated existing pavement in Lane 10.
 - Therefore, thin 4.75 mm NMAS overlays used as a preservation treatment have the ability to significantly delay the aging related top down cracking, but once such thin layers becomes brittle with age that benefit is lost.

Summary and Conclusions (Continued)

 Pavement cores indicate the top-down cracks become the predominant cracks for the aged sections. Therefore, the accelerated aging has made the pavement more prone to crack in a top-down cracking pattern.

 During the 19°C full-scale fatigue testing, the measured total rut depth of the AC section with the underlying structural mix and thin inlay is less than or equal to the rutting of the section without the treatment.

Discussion & & Questions

