Use of High Percentage RAP in HMA

Haifang Wen, PhD, PE
Washington State University
Outline

- Background
- Objectives
- Research Approach
- Schedule
Background

- Benefits of using RAP in HMA
 - Economics
 - Aggregates
 - Binder
 - Environment
 - Resources
 - Petroleum
 - Landfill
Background

- Status of the use of RAP in HMA

Source: FHWA

Louisiana did not respond to this question
Background

Evolution of Design of HMA with RAP

- NCHRP 9-12 (McDaniel et al. 2000)

 Findings

 - Black rock, partial blending or total blending?
 - Increase RAP percentage
 - Increase stiffness of HMA
 - Increase rutting resistance
 - Reduce fatigue resistance
 - Reduce thermal cracking resistance
Background

- Evolution of Design of HMA with RAP
 - NCHRP 9-12 (McDaniel et al. 2000)
 - Mix design method
 - Low RAP Level (15% or lower): no change of PG grade
 - Intermediate RAP Level (15 – 30%): one full grade softer
 - High RAP Level (30 or higher): blending chart
 - \[T_{\text{virgin}} \times (1 - \text{RAP\%}) + T_{\text{RAP}} \times \text{RAP\%} = T_{\text{cri}} \]
Background

- Evolution of Design of HMA with RAP
 - NCHRP 9-46 (West et al. 2008)
 - Design HMA with 25-50% RAP
 - Test stiffness of blended mix and backcalculate the PG grade.
 - PG grade of RAP binder will not be determined.
Background

- Pavement performance
 - Fatigue
Background

- Pavement performance
 - Rutting
Background

- Pavement performance
 - Thermal Cracking
Background

- Pavement performance
 - Moisture Damage - Raveling

www.pavementinteractive.com
Background

- We can not wait for 20 years to see the performance
- Need to determine the performance before pavement with high RAP percentage is built
- Key is to select materials properties from lab to relate to field performance
Background

For fatigue, test methods in the lab can include:

- Stiffness
- Indirect tensile strength
- Beam fatigue
Background

- For fatigue, test methods in the lab can include
 - Fracture work from Indirect tensile test
Background

- For fatigue, test methods in the lab can include
 - Fracture work from Indirect tensile test

Wen H. 2011
Experiments

- Two mixes
 - HMA with 0% RAP
 - HMA with 20% RAP
 - Same gradation and sources of materials
 - PG58-28
Experiments

- Laboratory Tests
 - Stiffness
Experiments

- Laboratory Tests
 - Stiffness
Experiments

- Laboratory Tests
 - Fatigue cracking – fracture work from indirect tensile test at room temperature
Experiments

- Laboratory Tests
 - Fatigue cracking
 - 0% RAP mix (10% higher fracture work) is slightly more resistant to 20% RAP mix.
Experiments

- Laboratory Tests
 - Rutting (flow number) – repeated load @ high temperature

NCHRP Report 465
Experiments

- Laboratory Tests
 - Rutting (flow number)
 - 118 (0% RAP) vs. 114 (20% RAP), no difference
Experiments

- Laboratory Tests
 - Fatigue cracking – fracture work from indirect tensile test at 14°F
Experiments

- Laboratory Tests
 - Thermal cracking
 - 0% RAP mix (13% higher fracture work) is more resistant to thermal cracking than the 20%RAP mix
Experiments

- Laboratory Tests
 - Moisture susceptibility
 - Tensile Stress Ratio (TSR)
 - 0%RAP: 88%
 - 20%RAP: 82%
Thoughts

- RAP influences mix performance even at low RAP percentage

- We can design high RAP mix (or other mixes, i.e. war mix asphalt) through these laboratory tests

- Life cycle cost analysis determine the use of RAP
By graduate students

Junyan Yi
Joe Westergreen
Mengqi Wu
Sophie Melis
Sushanta Bhusal