

Use of High Percentage RAP in HMA

Haifang Wen, PhD, PE Washington State University

Outline

- Background
- Objectives
- Research Approach
- Schedule

Benefits of using RAP in HMA

Economics

- Aggregates
- Binder
- Environment
 - Resources
 - Petroleum
 - Landfill

Status of the use of RAP in HMA

States That Use More Than 20 Percent RAP in HMA Layers

Source: FHWA * Lousiana did not respond to this question

Evolution of Design of HMA with RAP NCHRP 9-12 (McDaniel et al. 2000)

- Findings
 - □ Black rock, partial blending or total blending?
 - Increase RAP percentage
 - Increase stiffness of HMA
 - Increase rutting resistance
 - Reduce fatigue resistance
 - Reduce thermal cracking resistance

Evolution of Design of HMA with RAP NCHRP 9-12 (McDaniel et al. 2000)

Mix design method

□ Low RAP Level(15% or lower): no change of PG grade

□ Intermediate RAP Level (15 – 30%): one full grade softer

High RAP Level (30 or higher): blending chart

T_{virgin} x (1-RAP%)+T_{RAP} x RAP% = T_{cri}

- Evolution of Design of HMA with RAP
 - □NCHRP 9-46 (West et al. 2008)
 - Design HMA with 25-50% RAP
 - Test stiffness of blended mix and backcalculate the PG grade.
 - PG grade of RAP binder will not be determined.

Pavement performance Fatigue

Pavement performance Rutting

Pavement performance Thermal Cracking

Pavement performance Moisture Damage - Raveling

*www. pavementinteractive.com

- We can not wait for 20 years to see the performance
- Need to determine the performance before pavement with high RAP percentage is built
- Key is to select materials properties from lab to relate to field performance

For fatigue, test methods in the lab can

include Stiffness

Indirect tensile strength

□ Beam fatigue

- For fatigue, test methods in the lab can include
 - Fracture work from Indirect tensile test

Vertical Displacement

- For fatigue, test methods in the lab can include
 - Fracture work from Indirect tensile test

Two mixes
HMA with 0% RAP
HMA with 20% RAP
Same gradation and sources of materials
PG58-28

Laboratory Tests Stiffness

Laboratory Tests Stiffness

Laboratory Tests

Fatigue cracking – fracture work from indirect tensile test at room temperature

Vertical Displacement

Laboratory Tests

- □ Fatigue cracking
 - 0% RAP mix (10% higher fracture work) is slightly more resistant to 20% RAP mix.

Laboratory Tests Rutting (flow number) – repeated load @ high temperature

- Laboratory Tests
 - □ Rutting (flow number)
 - 118 (0% RAP) vs. 114 (20% RAP), no difference

Laboratory Tests

Fatigue cracking – fracture work from indirect tensile test at 14°F

Vertical Displacement

Laboratory Tests

- □ Thermal cracking
 - 0% RAP mix (13% higher fracture work) is more resistant to thermal cracking than the 20%RAP mix

- Laboratory Tests
 Moisture susceptibility
 - Tensile Stress Ratio (TSR)

Thoughts

- RAP influences mix performance even at low RAP percentage
- We can design high RAP mix (or other mixes, i.e. war mix asphalt) through these laboratory tests
- Life cycle cost analysis determine the use of RAP

By graduate students Junyan Yi Joe Westergreen Mengqi Wu Sophie Melis Sushanta Bhusal