51st Annual Idaho Asphalt Conference October 27, 2011

Structural Considerations in Moving Mega Loads on Idaho Highways

By: Harold L. Von Quintus, P.E.

Focus:

Overview <u>mechanistic-empirical</u> <u>procedures</u> used to determine the impact of oversize and overweight vehicles on flexible pavement performance in Idaho.

1. Examples for Using Mechanistic-Empirical Based Pavement Design-Analysis Procedures

Example: Analysis & design of designated routes for hauling overloads for pavement & rehabilitation design.

Photo: Courtesy of Jim Scherocman.

INDEPENDENT

Example: Analysis of special loading configurations for pavement design.

E TIT

HYUNDO

HYUNDA

Sec.

Example: Determine impact from transporting overweight/oversize commodities on pavement deterioration and maintenance.

Photo: Courtesy of Ken Fults.

Example: Determine damage from special loading configurations for transporting oversize commodities.

Photo: Courtesy of Ken Fults.

Higher loads, more axles, higher tire pressures:

Result in higher bending or strains in the pavement:

Causing increased pavement damage & shorter service life.

But, how much more damage?

Photo: Courtesy of Ken Fults.

2. How Much More Damage?

Determined from Pavement Responses to Estimate Allowable Load Cycles, N

Pavement Evaluation Procedures.

1993 AASHTO Design Guide – Empirical Procedure

Mechanistic-Empirical Equivalent Seasonal Modulus Values.

Mechanistic-Empirical Pavement Design Guide.

Effect of Mega Loads on Pavement Distress

- M-E Based Procedures to Determine Allowable Load Cycles (ESALs):
- Tensile strain bottom of HMA layer; FATIGUE CRACKING.
- Vertical compressive strain in HMA;
 HMA RUTTING.
- Subgrade vertical compressive strain;
 STRUCTURAL RUTTING.

ESAL = Equivalent Single Axle Load.

3. How Much More Damage or Distress Specific to Idaho Mega Vehicles – Kearl Oil Sands Project?

Idaho Mega Vehicle Loading Details

Pull Vehicle:One Steering AxleOne Tandem Axle

Push Vehicle:One Steering AxleOne Tandem Axle

Trailer:

Fourteen axles or seven tandem axles.

Frequency: 200 annual operations.

Idaho Mega Vehicle Loading Details

- Trailer Weight per Tire = 7,720 lbs.
- Tractor Steer Axle Weight per Tire = 8,050 lbs.
- □ Tractor Drive Axle Weight per Tire = 5,738 lbs.
- Dual Tire Spacing = 30 inches
- Tandem Axle Spacing = 59 inches
- Vehicle speed = 5 mph
- Tire pressure = 125 psi

Effect of Multiple Axles – Tensile Strain

Threshold Values Used to Determine Allowable Load Applications

Rut Depth – 0.5 inches Alligator Fatigue Cracking – 10% Roughness – 160 in./mi.

Allowable Number of Load Applications for Threshold Values

Davomont	18-kin	Mega Vehicle/Loads				
Structure	ESALS	Steering Axle	Trailer Axles			
Thin Pavement	1,661,000	949,000	999,000			
Thick Pavement	41,129,000	24,205,000	24,463,000			
Good subgrade support conditions assumed:						
A-1-b Soil; R-Value – 40 to 50						

Equivalent Number of Single Axles Per Mega Vehicle

	Nu	mber of ESA	ALS				
Pavement Structure	Tractor Steering Axle	actor ering xle					
Thin Structure	1.75	1.58	1.66				
Thick Structure	1.70	1.55	1.68				
Number of ESALs for Mega Vehicle = 30							
Annual ESALs = 6,000							
000							

4. What does this mean in terms of pavement distress or performance?

MEPDG Design Process

Distresses Predicted for the Idaho Mega Vehicles Versus Roadway without Mega Vehicles:

- 1. Bottom-Up Alligator Cracking
- 2. Total Rut Depth
- 3. Roughness

HKH -

Coad Monthly C Level 1: S C Level 3: D	Adjustmer ite Specifi efault MA	nt Factor c - MAF F	s (MAF)-				Load Expo	MAF Fro	om File o File	
Monthly Adjus Month	tment Fac	tors Class 5	Class 6	Class 7	Class 8	Class 9	Class 10	Class 11	Class 12	Class 13
January	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
February	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
March	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
April	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
May	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
June	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
July	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
August	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
September	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
October	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
November	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
December	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Mont	hly/	Sea	aso	nal	Adi	ust	me	nt F		tors

Тга	affic Volume	Adjustment F	actors	? 🔀	
1	📕 Monthly Adju	ıstment 🛛 🗖 Veh	nicle Class Distribution	Hourly Distribution Traffic Growth Factors	
	Opening Da	te: June,	2006	AADTT: 200	
	Design Life	(years): 10		% Traffic Design Direction: 60	
				% Traffic Design Lane: 100	
	Vehicle-cla	ss specific traffic	growth		
		Rate (%)	Function	Default Growth Function	
	Class 4	3.5	Linear	C No Growth	
	Class 5	3.5	Linear	C Linear Growth	
	Class 6	3.5	Linear	Cinear drown	
	Class 7	0	Linear	C Compound Growth	
	Class 8	3.5	Linear	Default growth cate (%) 35	
	Class 9	3.5	Linear	Derault growth rate (%)	
	Class 10	3.5	Linear		
	Class 11	3.5	Linear		
	Class 12 Class 13	3.5	Linear	Manu Counth Plats	
	1000010	10.0	Lindar	View Growth Plots	
	Note: Vehicle-	class distribition f	actors are needed to vie	w the effects of traffic growth.	
Truck Growth:					
No growth used for mega vehicle.					
				Expanding the Realm of Possibility	
				- -	

? > Axle Load Distribution Factors Axle Load Distribution View Axle Types Export Axle File Evel 1: Site Specific Cumulative Distribution C Single Axle C Level 2: Regional Tandem Axle e Oistribution C Level 3: Default Tridem Axle Open Axle File View Plot Quad Axle Axle Factors by Axle Type Veh. Class 54000 56000 58000 Season Total 6201 ^ 60000 100.00 0.04 0.08 0.01 0.02 4 0.1 January 5 0.02 100.00 0.06 0.06 0.02 0.01 January 6 0.17 100.00 0.32 0.26 0.19 0.13 January 7 100.00 0.00 77.80 0.00 0.00 0.00 January 8 0.03 0.02 100.00 0.06 0.05 0.06 January 9 100.00 0.05 0.03 0.02 0.08 January 0.11 10 100.00 0.38 0.25 0.16 0.15 0.09 January 11 100.00 0.13 0.15 0.09 0.03 0.06 January 12 100.00 0.2 0.12 0.07 0.19 0.09 January 0.08 0.14 13 100.00 0.6 0.26 0.18 January 1 - -. 100.00 0.04 0.00 0.04 0.00 **~** · < >

Axle Load Distribution

Truck Tandem Axle Load Distributions

General Traffic Inputs

General Traffic Inputs		? 🔀
Lateral Traffic Wander		
Mean wheel location (inches	from the lane marking):	18
Traffic wander standard devi	iation (in):	10
Design lane width (ft): (Note:	This is not slab width)	12
Number Axles/Truck	de Configuration 📘 Wheelbase	

	Single	Tandem	Tridem	Quad
Class 4	1.62	0.39	0	0
Class 5	2	0	0	0
Class 6	1.02	0.99	0	0
Class 7	2	5	0	0
Class 8	2.38	0.67	0	0
Class 9	1.13	1.93	0	0
Class 10	1.19	1.09	0.89	0
Class 11	4.29	0.26	0.06	0
Class 12	3.52	1.14	0.06	0
Class 13	2.15	2.13	0.35	0

🧹 ОК

🗶 Cancel

General Traffic Inputs

General Traffic Inputs	? 🔀
Lateral Traffic Wander Mean wheel location (inches from the lane marking): Traffic wander standard deviation (in): Design lane width (ft): (Note: This is not slab width)	18 10 12
 Number Axles/Truck Axle Configuration Wheelbase Average axle width (edge-to-edge) outside dimensions,ft): Dual tire spacing (in): Tire Pressure (psi) Axle Spacing (in) Tandem axle: Tridem axle: 49.2 Quad axle: 49.2 	
Cancel	

Distresses or Performance Indicators Predicted with the MEPDG:

Increased Fatigue Cracking

Increased Rutting

Increased Roughness

5. Summary or Findings

- M-E Based Analysis:
- Each mega vehicle applies about 30 ESALs per operation.
- Pavement will exhibit slightly higher levels of alligator cracking, rutting, and roughness.
- Mega vehicle more damaging over weaker soils.

5. Summary or Findings

- Expect service lives to decrease no more than about 2 years in comparison to pavements without these mega vehicles <u>that were properly designed</u>.
- New designs or rehabilitation strategies will require no more than about 0.5 inch of HMA.

ARA •

QUESTIONS?

