Design and Evaluation of WMA

Brandon Milar Technical Marketing Manager

Summary

- 1. What is Warm Mix Asphalt (WMA)?
- 2. Why are we shifting to WMA?
- 3. How do we produce WMA?
- 4. Implementation
- 5. WMA/RAP/RAS

FHWA: Every Day Counts

Identify and Deploy Innovation that:

- Shortens Project Delivery
- Enhances Roadway Safety
- Protects the Environment

WMA identified as an effective, proven, and market ready technology that the FHWA is prioritizing for accelerated use

Victor Rendez PHTRA Administrator EDC Initiatives Write separated ECC assault three plans. One is as

or carbon floogvint. The other box are directly related to or aroch, as streached of America's highway system: conferenting Technology and inconvertion: Deployment erry Day Courts is not about inventing the rest "big

n. By advancing 21⁻ century solutions, we can improve fery, reduce congestion and keep America moving and constraining Project Delivery in scorer we can deliver projects, the scorer the public

Differ and the the high-law community make coulde use of increasive practices. We're put together a toolke that includes items for using elocitizes in the law and not duplicating efforts in the planning and environmental review process. We are also recommending that States make increases. We are also recommending that States

Constructability

Utilizes exiting asphalt paving equipment and methods

Improved Compaction

Improved Workability

Reducing RISK!!!

Cold Weather Paving

How do we produce WMA

Production BMPs

Dry the Rock!!!

To maximize energy savings:

- Tune burner and adjust drum flights to efficiently operate at lower temperatures
- Maintain baghouse temperature above condensation point

Warm Mix, 2012

30+ Warm Mix Technologies

Foam warm mixes Wax warm mixes Chemical (surfactant) warm mixes

Differences

WMA Mechanism Effective temperature range Track record of performance

14

How many can you name?

WMA Implementation

In the Beginning...

Exisiting HMA mix designs (dropin technology)

What can WMA do?

How do we evaluate WMA?

Can we utilize existing specs and tests?

NCHRP Projects Results in WMA Design Considerations

Published in Standard Specifications for Transportation Materials and Methods of Sampling and Testing, 32nd Edition, 2012

Appendix to AASHTO R35 with commentary "Special Mixture Design Considerations and Methods for Warm Mix Asphalt (WMA)"

HMA – WMA Comparison

ITEM	НМА	WMA
OBC	AASHTO M323	AASHTO M323
Gradation	Std Spec	Std Spec
Aggregate	Std Spec	Std Spec
Binder Type	Std Spec	Std Spec
Specimen Prep	Std Spec	Technology Specific
Mixing Compaction Temperature	Viscosity/Binder	Field Targets, Coating, & Compactability
Moisture Sensitivity	Std Spec	Std Spec
Rutting	APA, Hamburg, Flow	APA, Hamburg, Flow

WMA Technology – Which One?

Contractor Selection

"Approved" Technology Lists?

Technology capabilities (target production and compaction temperatures) •Categories:

- By Process:
 - Additive to Binder
 - Additive to Mix
 - Wet Aggregate
 - Foam Asphalt
- By Type
 - Chemical Additive
 - Wax Additive
 - Mineral Additive
 - Mechanical Foam

Mixing/Compaction/Conditioning

Mixing Temperature: Use anticipated field production temperature

Compaction Temperature: Use anticipated field compaction temperature

Conditioning: 2 hours at compaction temp

Compactability

Compact specimens to N_{des} (1) at field compaction temperature and (2) at 54F (30C) below field compaction temperature

Determine number of gyrations for 92% relative density

OK if $N_{92(t-30)} / N_{92t} < 1.25$

WMA/RAP/RAS

WMA and RAP/RAS

Does RAP/RAS binders blend with virgin binders at WMA temperatures? Is it necessary to adjust the virgin binder grade when WMA includes high percentages (>25%) RAP?

RAP Binders

NCHRP 9-43 findings

Binder grading PG82-xx to PG100-xx Field compaction temps 180F to 212F within WMA ranges

WMA Helps Increase in RAP Percentage

	WMA	HMA
	35% RAP	20% RAP
Penetration	28	29
Viscosity	23,500	25,900
Ductility	42	38
DSR @ 64 C	7.56	7.35
MSCR	32	26
DSR @ 70 C	3.49	3.48

I-44 in Eureka, MO near St. Louis

12.5-mm Superpave mix with PG70-22 binder

Increased RAP content while maintaining mix properties.

Excellent workability in the lab and in the field.

Blending of RAP and Virgin Asphalt

Thorough blending of virgin and RAP binders is important, especially when high levels of RAP are used.

WMA mix formulations containing various high percentages of RAP were evaluated in MWV's Asphalt Innovations laboratory

- Dynamic moduli were measured with an AMPT and calculated using the Hirsch model protocol.
- Thorough blending of the RAP binder and virgin binder was observed.
- Excellent correlation between measured and calculated values was shown.

EVOTHERM

52nd Idaho Asphalt Conference, 10/25/2012

Asphalt Mixture Performance Tester (AMPT)

AKA the "Simple Performance Tester"

- Product development
 - High RAP/RAS chemistries
 - Processing aides (rubberized mixes)
- Added value to contractor
 - Increase RAP without grade-dump using warm-mix
 - Prove effective blending at lower temperatures
- Sample prep per AASHTO PP60
- Tested per AASHTO PP61

Conclusions

The future of asphalt paving is available TODAY!!! Properly condition materials prior to testing Adequate binder blending occurs at WMA temperatures High RAP mixes produced at WMA temperatures do not require a change in virgin binder grade

Thank you!

