expanding the realm of **POSSIBILITY**®

53rd Annual Idaho Asphalt Conference Moscow, Idaho October 23, 2013

MEPDG: Implementation in Idaho

MEPDG—Implementation in Idaho

Prepared By: Harold Von Quintus Jagannath Mallela Michael I. Darter

Outline

1. Introduction

- 2. Idaho's Roadmap
- 3. User Guide & Training
- 4. Local Calibration
- 5. Comparative New & Rehabilitation Design

What is the MEPDG?

- Mechanistic-Empirical Pavement Design Guide
- Analysis/Design Procedure based on pavement responses that have been correlated to observed distresses.
- Associated AASHTO software program: ME Design.

MEPDG Analysis/Design Process

Example HMA Design: Performance

DUSIER HIDUS

Design Life:	20 years	Existing construction:	August, 1985	Climate Data	43.516, -112.06
Design Type:	AC over AC	Pavement construction:	September, 2005	Sources	43.834, -111.88
		Traffic opening:	October, 2005		42.92112.571

Design Structure

				_				
All Shares	Layer type	Material Type	Thickness (in.):	Volumetric at Construction:		Age (vear)	Heavy Trucks	
	Flexible	AC Overlay	4.0	Effective binder 12.2		Age (year)	(cumulative)	
	Flexible	Existing AC	3.0	content (%)	_	2005 (initial)	1,353	
	NonStabilized	Crushed gravel	5.3	Air voids (%) 5.5		2015 (10 years)	2,887,450	
	Subgrade	A-1-a	30.0			2025 (20 years)	7,904,430	
	Bedrock	Highly fractured and weathered	Semi-infinite					

Design Outputs

Distress Prediction Summary

Distress Type	Distress @ Relia	Specified bility	Reliability (%)		Criterion
	Target	Predicted	Target	Achieved	Sausieur
Terminal IRI (in./mile)	175.00	100.70	85.00	100.00	Pass
Permanent deformation - total pavement (in.)	0.50	0.27	85.00	100.00	Pass
Total Cracking (Reflective + Alligator) (percent)	10	8.95	-	-	Pass
AC thermal cracking (ft/mile)	1500.00	37.88	85.00	100.00	Pass
AC bottom-up fatigue cracking (percent)	15.00	1.17	85.00	100.00	Pass
AC top-down fatigue cracking (ft/mile)	5000.00	2500.83	85.00	98.88	Pass
Permanent deformation - AC only (in.)	0.50	0.27	85.00	100.00	Pass

Distress Charts

Predicted Total Rutting (Permanent Deformation) 0.6 0.5 E 0.5 Rutting Depth (2.0 Cepth Threshold Value 0.2 ····· @ Specified Reliability @ 50% Reliabilit 0.1 ż 10 12 14 16 18 20 Pavement Age (years) Thermal Cracking: Total Length vs. Time 1800

Traffic

Example HMA Design: Performance

Distress Charts

ARA Proprietary © 2011 Applied Research Associates, Inc.

expanding the realm of **POSSIBILITY**®

Example MEPDG Implementation

AZ, CO, UT, & WY: Concurrent Design Use.

ARA

IN & MO: Day

to Day Use

GA & MS:

Local

Calibration

Ongoing

Interesting Applications

- Missouri: Over \$900 million in Alternative Bid projects competing HMA & PCC designs.
- Indiana: During 2009 Indiana designed projects using AASHTO 93 & MEPDG & found several million in savings. Alternative bid projects have resulted in contractors / consultants who are proficient in MEPDG.

Common Finding: AASHTO ME Design thickness lower for heavy traffic as compared to the 1993 AASHTO Design Guide. (Indiana Data Below)

Available Documents:

- 1. MEPDG Manual of Practice (Engineering Manual)
- 2. ME Design Software (HELP)

Available Documents:

 University of Idaho Research Report on Implementation

- 4. Idaho MEPDG User Manual
- 5. Idaho's Implementation Plan or Roadmap

Outline

1. Introduction

expanding the realm of **POSSIBILITY**[®]

2. Idaho's Roadmap

- 3. User Guide & Training
- 4. Local Calibration
- 5. Comparative New & Rehabilitation Design

Objective:

expanding the realm of POSSIBILITY

Identify the activities needed to verify and/or calibrate the transfer functions to ITD's policies and materials, and streamline a design process enabling ITD personnel to use ME Design with confidence for routine pavement design

Scope:

POSSIBILITY

- All service levels of roadways: interstates, freeways, major arterials, & collectors.
- New designs: HMA and PCC pavement common design strategies currently used in Idaho.
- Rehabilitation designs: common rehabilitation strategies currently used in Idaho.

End Products:

POSSIBILITY

- USER'S GUIDE: A software and engineering manual tailored to ITD: input procedures, sensitivity, procedures, software, examples, comparative designs.
- 2. TRAINING PROGRAM: Application in the software use and in determining traffic, materials & soils, climate, and design factors.

End Products:

- **3. INPUT LIBRARIES:** Recommend defaults and procedures to obtain proper inputs for use in designing asphalt, concrete and rehabilitated pavements.
- **4. LOCAL CALIBRATION:** Verify the global calibration factors and if needed, determine local calibration factors for Idaho.

Stages of Implementation:

expanding the realm of POSSIBILITY

- ✓ Prepare preliminary user's guide and assemble initial inputs for immediate use of the software.
- 2. Fill in the data gaps and build input libraries.
- Determine local calibration 3. coefficients.

RP ### DAHO TRANSPORTATION **Road Map for Implementing** The AASHTO Pavement ME Design Software for **Idaho Transportation Department** By Jagannath Mallela Harold L. Von Quintus Michael I. Darter DEPARTMENT Applied Research Associates, Inc.

Prepared for Idaho Transportation Department **Research Program** Division of Highways, Resource Center http://itd.idaho.gov/highways/research/

July 2013

RESEARCH REPORT

Steps to Implementation:

1. Review experience & lessons learned by other agencies.

- 2. Prepare preliminary User Manual & become familiar with software.
- 3. Complete concurrent or comparative designs.
- 4. Establish default values for inputs specific to Idaho.

Steps to Implementation:

- 5. Complete local calibration define coefficients of the distress transfer functions.
- 6. Finalize User's Guide.

expanding the realm of POSSIBILITY

- 7. Execute training program.
- 8. Update input libraries established by ITD.

4-20

Outline

1. Introduction

expanding the realm of **POSSIBILITY**[®]

2. Idaho's Roadmap

3. User Guide

- 4. Local Calibration
- 5. Comparative New & Rehabilitation Design

IDT User's Guide

- 1. Overview of the MEPDG & Software & Installation of Software.
- 2. General Information Inputs
- 3. Performance Criteria Inputs
- 4. Design Reliability Input
- 5. Traffic Inputs

- 6. Climate Inputs
- 7. Structures and Material Inputs

IDT User's Guide

- 8. JPCP Design Features
- 9. Rehabilitation Inputs
- 10. Reconstruct Pavement & Rehabilitation Designs
- 11. Sensitivity Analysis
- 12. DARWIN-ME Outputs Used for Performance Assessment
- 13. References

expanding the realm of POSSIBILITY

14. Example Designs (HMA, JPCP, Overlays, CPR)

WIM Sites - Truck Weight Road Group Categories

Training

- Provide comprehensive training on use of the ME Design procedure.
 - Use of the software.
 - Engineering principals and concepts.
 - Limitations.

expanding the realm of POSSIBILITY

• Case studies for new, reconstruction, and rehabilitation.

Outline

1. Introduction

expanding the realm of **POSSIBILITY**®

- 2. Idaho's Roadmap
- 3. User Guide

4. Local Calibration

5. Comparative New & Rehabilitation Design

Local Calibration – Rut Depth Example

Local Calibration – Rut Depth Example

Local Calibration – IRI Example

Local Calibration – IRI Example

Is Local Calibration Needed?

Local Calibration Process:

POSSIBILITY

- 1. Selection of appropriate inputs and design criteria for individual test sections.
- 2. Validation of distress & IRI models: Are the global calibration factors appropriate for Idaho? Probably Not!
- 3. Local Calibration Recommend Approach: Utilize LTPP data and other asphalt sections and conduct calibration analyses to remove bias (over or under prediction).

Outline

1. Introduction

expanding the realm of **POSSIBILITY**[®]

- 2. Idaho's Roadmap
- 3. User Guide & Training
- 4. Local Calibration

5. Comparative New & Rehabilitation Design

Comparative Designs

New Designs

- ME Design generally results in slightly thinner sections for high truck volumes.
- ME Design for low truck volumes will vary depending on material inputs.

Comparative Designs

Rehabilitation

expanding the realm of **POSSIBILITY**[®]

 Highly variable in comparison to agency's rehabilitation design procedure.

Distress Prediction Summary							
Distress Type	Distress @ Reli	Specified ability	Reliability (%)		Criterion		
	Target	Predicted	Target	Achieved	Satisfied?		
Terminal IRI (in./mile)	150.00	86.20	90.00	100.00	Pass		
Permanent deformation - total pavement (in.)	0.50	0.33	90.00	99.92	Pass		
Total Cracking (Reflective + Alligator) (percent)	15	57.32	-	-	Fail		
AC thermal cracking (ft/mile)	1500.00	27.17	90.00	100.00	Pass		
AC bottom-up fatigue cracking (percent)	15.00	13.98	90.00	91.54	Pass		
AC top-down fatigue cracking (ft/mile)	4000.00	2782.28	90.00	97.22	Pass		
Permanent deformation - AC only (in.)	0.50	0.26	90.00	100.00	Pass		

Distress Charts

Predicted Total Rutting (Permanent Deformation)

expanding the realm of **POSSIBILITY**[®]

Structural

required for

procedure

structural

overlay

agency

but no

overlay

from ME

Design.

Distress Prediction Summary

Distress @ Relia	Specified bility	Reliability (%)		Criterion
Target	Predicted	Target	Achieved	Satisfied?
150.00	99.21	97.00	100.00	Pass
0.50	0.50	97.00	97.13	Pass
15	0.45	-	-	Pass
1000.00	39.41	97.00	100.00	Pass
10.00	4.22	97.00	100.00	Pass
3000.00	693.51	97.00	100.00	Pass
0.50	0.50	97.00	97.13	Pass
	Distress @ Relia 150.00 0.50 15 1000.00 10.00 3000.00 0.50	Distress @ Specified Reli>ility Target Predicted 150.00 99.21 0.50 0.50 15 0.45 1000.00 39.41 10.00 4.22 3000.00 693.51 0.50 0.50	Distress @ Specified Reliability Reliability Target Predicted Target 150.00 99.21 97.00 0.50 0.50 97.00 15 0.45 - 1000.00 39.41 97.00 10.00 4.22 97.00 3000.00 693.51 97.00 0.50 0.50 97.00	Distress @ Specified Reliability Reliability (%) Target Predicted Target Achieved 150.00 99.21 97.00 100.00 0.50 0.50 97.00 97.13 15 0.45 - - 1000.00 39.41 97.00 100.00 10.00 4.22 97.00 100.00 3000.00 693.51 97.00 100.00 0.50 0.50 97.00 97.13

Distress Charts

Pavement Age (years)

@ 50% Reliability

200

© 2011 Applied Research Associates, Inc.

³ලි:එර

Non-

Distress Prediction Summary

Distress Type	Distress @ Relia	Specified bility	Reliability (%)		Criterion
	Target	Predicted	Target	Achieved	Satistieu
Terminal IRI (in./mile)	150.00	97.84	80.00	99.92	Pass
Permanent deformation - total pavement (in.)	0.50	0.44	80.00	93.09	Pass
Total Cracking (Reflective + Alligator) (percent)	25	167.12	-	-	Fail
AC thermal cracking (ft/mile)	1500.00	18.19	80.00	100.00	Pass
AC bottom-up fatigue cracking (percent)	25.00	109.84	80.00	0.02	Fail
AC top-down fatigue cracking (ft/mile)	4000.00	3520.27	80.00	85.38	Pass
Permanent deformation - AC only (in.)	0.50	0.36	80.00	99.52	Pass

Distress Charts

Predicted Total Rutting (Permanent Deformation)

Thermal Cracking: Total Length vs. Time

Questions

Outline of Presentation

	Торіс	Focus of Individual Topics	Time, minutes
1	Introduction	Title and purpose of presentation.	1
1.1	MEPDG Overview	Provide a brief overview of the MEPDG for attendees or participants that have not used it and identify or focus on some of the important points.	4
1.2	MEPDG Implementation in the U.S.	Summarize the implementation and status of use by other agencies in the U.S. Also note how that use is being used to benefit Idaho.	3
2	Idaho's Roadmap	Introduce the roadmap and how it is being used.	1
2.1	Objective & Scope	Overview the objectives of the implementation process and scope of the MEPDG use, as well as the end products that are expected.	2
2.2	Available Documentation	Identify and briefly list the documents that are available to understand the MEPDG and its use in Idaho, as well as nationally. Refer to work done by the University of Idaho and its report.	4

Outline of Presentation

	Торіс	Focus of Individual Topics	Time, minutes
2.3	Steps to Implementation	Identify and briefly discuss the different steps to implementing the MEPDG in Idaho and note which steps have already been completed or in the process of being completed	5
3	User Guide & Training	Summarize and identify the important points of the draft user guide, which has been completed.	3
4	Local Calibration	Identify the importance of validation and local calibration of the transfer functions – adequately predicting observed distresses.	4
5	MEPDG Use: New Design & Rehabilitation	Overview the use of MEPDG in Idaho and show some results of the predicted versus measured distress from LTPP sites located in Idaho.	6
6	Summary	Ending comments.	2

ARA

ARA Proprietary © 2011 Applied Research Associates, Inc.