Pavement Design for Low Volume Roads

53rd Annual Idaho Asphalt Conference Moscow, Idaho

October 24, 2013

John Duval, P.E.
Principal Engineer
PAVEMENT SERVICES, INC.

Types of Low Volume Roads?

Low Volume Road Materials

Low Volume Roads—Failure

Low Volume Roads—Failure

Low Volume Roads—Failures

Flexible Pavement Design

Flexible Pavement System

Progressively stronger layers

Wearing Surface—HMA, BST

Base Course (CBR 50-100)

Subbase (Optional)

Frost Proteaction (Optional)

Subgrade

CBR Method

Layered Elastic Design—Flexible

Flexible Pavement Layer Parameters-LED vs CBR

Flexible Pavement Design Process

Start with a Field Investigation

Soil Investigations and Evaluation

- Unified Soil Classification System (USCS)
 - ASTM 2487

GW	CL
GP	ML
GM	OL
GC	СН
SW	МН
SP	ОН
SM	PT
SC	

Field Investigation

Deflection Testing

Seasonal Variation

16th Street ESAL Calculations

- Use 20-year Design Life
- AADT =945 vehicles per day
 - School Buses = 10
 - Delivery Trucks = 4
 - Garbage Trucks = 2
 - Tractor/Semi-trailers = 1
- Traffic Growth Rate =2% annually

Single Unit (2-axle) Truck

10,000 lb **0.09 ESAL** 10,000 lb **0.09 ESAL** 20,000 lb 0.18 ESALs

Single Unit (3-axle) Truck

18,000 lb **1.00 ESAL** 42,000 lb **2.51 ESAL** 60,000 lb 3.51 ESALs

Tractor Semi-Trailer (5-axle)

12,000 lb + 34,000 lb + 34,000 lb = 80,000 lb = 80,000 lb = 2.39 ESALs

16th Street ESAL Calcs

Class	Vehicle Type	Day	Year	20Y* (k)	Factor	20Y* ESALs
Ш	Autos	503	183,595	3,672	0.00012	440
III	Pickups	425	155,125	3,103	0.008	24,824
IV	School Buses	10	1,950	39	1.0	39,000
V	Delivery Truck	4	1,460	29	0.18	5,220
VI	Garbage Truck	2	730	15	3.51	52,650
IX	18-Wheelers	1	250	6.1	2.39	14,159
Total		945				136,293

Pavement Design Detail Report

SW-1 Thickness Design Software version 1.0

User:	duvalj	Date:	10/24/2013	Time:	10:11			
Project Information								
Project Na	me:	US 195	US 195 Harper to Ironsides					
Descriptio	n:		Example Problem-See SW-1 User's Guide Chapter 8					
Pavement	Use:	Genera	General Roadway					
Problem T	уре	New Pa	New Pavement Design					
Design Input Summary								
Climate		45° F	45° F					
Design Tr	affic (ESAL):	2,477,6	2,477,636					
Subgrade	M _r (psi):	29,160	29,160					
Design Traffic Details								
Design Lit	fe (years):	20	20					
Design La	ne Factor:	0.5	0.5					
Initial Ave Traffic (A	erage Annual Daily ADT):	1500	1500					
Truck Vol AADT:	ume, as a percentage of	40	40					
Annual Co (%):	ompound Growth Rate	4	4					
Type of u	age:	Rural	Rural					
Truck Cla	ssification	% Truc	ks	Truck F	Factor			
TRUCK(2	2-AXLE,4-TIRE)	25 0.01						
TRUCK(2	-AXLE,6-TIRE)	18	18 0.30					

Results - CBR

Results – Base Thickness

Results – Base Thickness

Results – % Design Thickness

Resources

Pavement Design for Low Volume Roads

Thank You!

PAVEMENT SERVICES, INC. www.psipdx.com

