Evaluation of Non-Nuclear Density Gauges for Measuring In-Place Density of Hot Mix Asphalt

Mark Rose
E.I.T, Graduate Student
and
Haifang Wen
PhD, PE, Assistant Professor
Washington State University

Sunil Sharma
PhD, PE, Professor
University of Idaho
Outline

- Background
- Objectives
- Research Approach
- Results
- Cost Analysis
- Findings
- Recommended further studies
Outline

- Background
- Objectives
- Research Approach
- Results
- Cost Analysis
- Findings
- Recommended further studies
The density of in-place may be the single factor that most affects the performance of a properly designed pavement.

- Hot mix asphalt
Background

- Hot mix asphalt (HMA)
 - Lab - Maximum theoretical specific gravity
 - Field acceptance
 - Nuclear Gauge
 - Cores (true)
Background

- Core for HMA
 - Accurate
 - Destructive
 - Time consuming

- Nuclear gauge
 - Fast
 - Less accurate
 - Radiation
 - Strict regulation
Outline

- Background
- Objectives
- Research Approach
- Results
- Cost Analysis
- Findings
- Recommended further studies
Objectives

- Evaluate non-nuclear density gauges
- Compare performance of non-nuclear density gauges with nuclear gauges
 - Determine potential factors influencing gauge measurements
- Make recommendations
Outline

- Background
- Objectives
- Research Approach
- Results
- Cost Analysis
- Findings
- Recommended further studies
Research Approach

- HMA Devices
 - Trans Tech Pavement Quality Indicator (PQI) 301
 - Troxler PaveTracker (PT) Plus
Research Approach

- Theory
- Measures bulk dielectric constant of pavement/soil
 - Aggregates
 - Air
 - Asphalt Binder or Moisture

From Romero, 2002
Research Approach

Potential Factors Influencing Accuracy

- Global factors – different paving operations
 - HMA Classes
 - Nominal Maximum Aggregate Size
 - Aggregate Source
 - Percent Aggregate Absorption
 - Mat Thickness
Research Approach

- Potential Factors Influencing Accuracy
 - Local factors – one paving operation
 - Temperature
 - Moisture (high dielectric constant)
 - Presence of Fines/Debris: with and without fines
 - Presence of Paint/Marking: with and without spray
 - Change of density with Roller Passes
 - Gauge movement
 - Accuracy at the paving joints
Outline

- Background
- Objectives
- Research Approach
- Results
- Cost Analysis
- Findings
- Recommended further studies
Map of Projects
HMA

Testing

- 16 Test Strips
 - HMA Classes (SP 2 to SP 6)
 - Nominal Maximum Aggregate Size (1/2” and 3/4”)
 - Aggregate Source (Alluvial, Basalt, Quartz)
 - Percent Aggregate Absorption
 - Mat thickness: thin and thick (1.8” to 3.12”)

16
HMA

Testing

- Nuclear Gauge, PQI and PaveTracker
- Continuous reading for roller pattern
- 5 shot average for each device at core locations
- Moisture, fines, paint, and temperature study
- Five 4” or 6” cores in test strip for ITD correction
- Up to seven additional locations for tests and cores for validation
- Nuclear, non-nuclear shots, and/or cores at additional locations on joints.
HMA Field Work

- Testing
 - Local Factors
 - Plain HMA
 - Roller pattern
 - Fines
 - Moisture
 - Temperature
 - Paint
Results

- **Analysis Procedure**
 - Obtain correction factors from first 5 cores
 - Verify accuracy with additional cores
PQI Correlation: Average Correction

PQI, NDG vs Core Density: Average

- **PQI No Fines**
 - $y = 1.00x$
 - $R^2 = 0.88$

- **PQI Fines**
 - $y = 1.00x$
 - $R^2 = 0.89$

- **NDG**
 - $y = 1.00x$
 - $R^2 = 0.89$

- PQI no fines
- PQI with fines
- NDG

Linear (PQI no fines)
PT Correlation: Avg. Correction

PT, NDG Density vs Core Density: Average

- **PT No Fines**
 - \(y = 1.00x \)
 - \(R^2 = 0.83 \)

- **PT Fines**
 - \(y = 1.00x \)
 - \(R^2 = 0.84 \)

- **NDG**
 - \(y = 1.00x \)
 - \(R^2 = 0.89 \)
Slope Correction: PQI

- Offset not constant

Core Density vs PQI Density: US 95 Athol

\[y = 2.54x - 155.61 \]
\[R^2 = 0.87 \]
Slope Correction

- Develop best-fit trendline for each project using calibration cores from test strip
 - Both PQI and PT

- NDG results
 - NDG also has this slope
 - Continued to use average method in accordance with ITD specifications,
NDG Slope

Core Density vs NDG Density: SH 55

\[y = 1.10x - 14.38 \]

\[R^2 = 0.84 \]
PQI Correlation: Slope Correction

PQI, NDG vs Core Density: Slope

- **PQI No Fines**
 - $y = 1.00x$
 - $R^2 = 0.89$

- **PQI Fines**
 - $y = 1.00x$
 - $R^2 = 0.90$

- **NDG**
 - $y = 1.00x$
 - $R^2 = 0.89$

- **Graph Elements**
 - PQI no fines
 - PQI with fines
 - NDG
 - Linear (PQI no fines)
 - Linear (PQI with fines)
 - Linear (NDG)
PT Correlation: Slope Correction

PT, NDG vs Core Density: Slope

- **PT No Fines**
 - $y = 1.00x$
 - $R^2 = 0.70$

- **PT Fines**
 - $y = 1.00x$
 - $R^2 = 0.92$

- **NDG**
 - $y = 1.00x$
 - $R^2 = 0.89$
Slope Correction Method

- Good slopes not always possible

![Graph showing Core Density vs. PQI Density: SH 37](image)

- Linear equation: $y = 0.25x + 111.45$
- $R^2 = 0.02$
Hybrid Method

- Use slope correction if $R^2 > 0.5$
Hybrid Method

- If $R^2 < 0.5$, use average correction method
PQI Correlation: Hybrid Method

![Graph showing PQI, NDG vs Core Density: Hybrid](image)

- **PQI No Fines**
 - $y = 1.00x$
 - $R^2 = 0.90$

- **PQI Fines**
 - $y = 1.00x$
 - $R^2 = 0.90$

- **NDG**
 - $y = 1.00x$
 - $R^2 = 0.89$

Legend:
- ![PQI no fines](image)
- ![PQI with fines](image)
- ![NDG](image)
- ![Linear (PQI no fines)](image)
- ![Linear (PQI with fines)](image)
- ![Linear (NDG)](image)
PT Correlation: Hybrid Method

PT, NDG vs Core Density

- **PT No Fines**
 - $y = 1.00x$
 - $R^2 = 0.84$

- **PT Fines**
 - $y = 1.00x$
 - $R^2 = 0.92$

- **NDG**
 - $y = 1.00x$
 - $R^2 = 0.89$
Potential Factors

- **Global Factors**
 - HMA Classes
 - Nominal Maximum Aggregate Size
 - Aggregate Source
 - Percent Aggregate Absorption
 - Mat Thickness

- **Local Factors**
 - Moisture
 - Temperature
 - Paint
 - Fines
Potential Factors

- Global Factors
 - HMA Classes
 - Nominal Maximum Aggregate Size
 - Aggregate Source
 - Percent Aggregate Absorption
 - Mat Thickness

- Local Factors
 - Moisture
 - Temperature
 - Paint
 - Fines
Moisture Field Data: PQI

PQI 301 Water Effect: Field

\[y = -0.16x - 1.15 \]

\[R^2 = 0.84 \]
Moisture Field Data: PT

PaveTracker Water Effect: Field

\[
y = 0.049x + 4.47 \\
R^2 = 0.05
\]
2013 Moisture Lab Data: PQI 380

PQI 380 Water Effect: Lab

\[y = 0.58x + 1.02 \]

\[R^2 = 0.66 \]
Moisture Study: Solution

- Towel drying works reasonably well

![Graph](PQI 380: Slab 12)

- Uncorrected Gauge Density (pcf)
- H₂O Index
- Dry
- Light Water
- Medium Water
- Heavy Water
- Towel Dried
Moisture Investigation

- All electromagnetic gauges affected by surface moisture
 - PQI 301, PT, PQI 380
- Used PQI 301 \(\text{H}_2\text{O} \) Index to quantify moisture for all gauges
 - Otherwise difficult to quantify
- Dry the surface with towel if moisture is present
Roller Pattern Use

- How do NNDGs compare to NDGs on a roller pattern setup
 - 3 case studies
Roller Pattern: Example 1

US 95 Wilder Phase 2 Roller Pattern

Corrected Gauge Density (pcf)

Roller Pass

PQI Corrected
PT Corrected
NDG Uncorrected
Roller Pattern: Example 2

US 95 Wilder Phase 3 Roller Pattern

Corrected Gauge Density (pcf)

Roller Pass

- PQI Corrected
- PT Corrected
- NDG Uncorrected
Roller Pattern: Example 3

SH 162 Four Corners Roller Pattern

Corrected Gauge Density (pcf)

Roller Pass

PQI Corrected
PT Corrected
NDG Corrected
Asphalt NNDGs Findings

- PQI and PT have similar core correlations compared to NDGs.
 - PQI generally has a better correlation to cores than PT
- Slope correction recommended unless the correlation coefficient is low ($R^2 < 0.5$)
 - Average method recommended if $R^2 < 0.5$
- No global factors causing error with statistical significance
Asphalt NNDGs Findings

- Paint and fines do not cause error with statistical significance
 - Clean surface recommended
- Moisture effect gauge readings
 - Keep surface dry, use towel if necessary
Outline

- Background
- Objectives
- Research Approach
- Results
- Cost Analysis
- Findings
- Recommended further studies
Life Cycle Cost

<table>
<thead>
<tr>
<th>Device</th>
<th>Initial Cost</th>
<th>Annual Cost</th>
<th>Lifetime (10 years) Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDG (Troxler 3430)</td>
<td>$8,000</td>
<td>$1,652.30</td>
<td>$24,523</td>
</tr>
<tr>
<td>PQI 301</td>
<td>$9,150</td>
<td>$475</td>
<td>$13,900</td>
</tr>
<tr>
<td>PQI 380</td>
<td>$8,900</td>
<td>$525</td>
<td>$14,150</td>
</tr>
<tr>
<td>PT</td>
<td>$8,800</td>
<td>$500</td>
<td>$13,800</td>
</tr>
<tr>
<td>EDG</td>
<td>$9,060</td>
<td>$315</td>
<td>$12,210</td>
</tr>
<tr>
<td>SDG</td>
<td>$8,900</td>
<td>$525</td>
<td>$14,150</td>
</tr>
</tbody>
</table>
Outline

- Background
- Objectives
- Research Approach
- Results
- Cost Analysis
- Findings
- Recommended further studies
Asphalt NNDG Implementation

- NNDGs can be used to replace NDG for QA/QC
- Use hybrid correction method
 - Slope correction when $R^2 > 0.5$
 - Average correction when $R^2 < 0.5$
- Surface shall be dry or dried with towel
- Use 6” cores for calibration
- Revised ITD FOP for AASHTO 343
Outline

- Background
- Objectives
- Research Approach
- Results
- Cost Analysis
- Findings
- Recommended further studies
Further Studies

- Temperature effects in the field
- NNDG production paving repeatability
 - This study only examined data from test strips, not production paving
- Longitudinal joints
 - Both NNDGs and NDGs
Acknowledgements

- Project Committee: Clint Hoops, Mike Santi, Ned Parrish, Jake Legler, Garth Newman, Jayme Coonce, Kyle Holman
- ITD District Engineers, Technicians, Consultants, and Contractors
- External Reviewers: Dr. Bob Holtz (University of Washington) and Dr. Pedro Romero (University of Utah).
Thank You

QUESTIONS?