Evaluation of Non-Nuclear Density Gauges for Measuring In-Place Density of Hot Mix Asphalt

Mark Rose

E.I.T, Graduate Student

and

Haifang Wen

PhD, PE, Assistant Professor Washington State University

Sunil Sharma

PhD, PE, Professor University of Idaho

University of Idaho

Outline

- Background
- Objectives
- Research Approach
- Results
- Cost Analysis
- Findings
- Recommended further studies

Outline

Background

- Objectives
- Research Approach
- Results
- Cost Analysis
- Findings
- Recommended further studies

Background

- The density of in-place may be the single factor that most affects the performance of a properly designed pavement.
 - □ Hot mix asphalt

Background

Hot mix asphalt (HMA)

- Lab Maximum theoretical specific gravity
- □ Field acceptance
 - Nuclear Gauge
 - Cores (true)

Background

- Core for HMA
 - Accurate
 - Destructive
 - □Time consuming
- Nuclear gauge
 - □Fast
 - □ Less accurate
 - Radiation
 - □ Strict regulation

Outline

Background

Objectives

- Research Approach
- Results
- Cost Analysis
- Findings
- Recommended further studies

Objectives

Evaluate non-nuclear density gauges

 Compare performance of non-nuclear density gauges with nuclear gauges
 Determine potential factors influencing gauge measurements

Outline

- Background
 Objectives
 Research Approach
 Results
 Cost Analysis
 Findings
- Recommended further studies

Research Approach

HMA Devices

Trans Tech Pavement Quality Indicator (PQI) 301

Troxler PaveTracker (PT) Plus

Research Approach

Theory

- Measures bulk dielectric constant of pavement/soil
 - Aggregates
 - □Air
 - Asphalt Binder or Moisture

From Romero, 2002

- Potential Factors Influencing Accuracy
 - □ Global factors different paving operations
 - HMA Classes
 - Nominal Maximum Aggregate Size
 - Aggregate Source
 - Percent Aggregate Absorption
 - Mat Thickness

Research Approach

- Potential Factors Influencing Accuracy
 - Local factors one paving operation
 - Temperature
 - Moisture (high dielectric constant)
 - Presence of Fines/Debris: with and without fines
 - Presence of Paint/Marking: with and without spray
 - Change of density with Roller Passes
 - Gauge movement
 - Accuracy at the paving joints

Outline

- Background
- Objectives
- Research Approach
- Results
- Cost Analysis
- Findings
- Recommended further studies

Map of Projects

HMA

Testing

- 16 Test Strips
 - HMA Classes (SP 2 to SP 6)
 - Nominal Maximum Aggregate Size (1/2" and 3/4")
 - Aggregate Source (Alluvial, Basalt, Quartz)
 - Percent Aggregate Absorption
 - Mat thickness: thin and thick (1.8" to 3.12")

HMA

Testing

- □ Nuclear Gauge, PQI and PaveTracker
- Continuous reading for roller pattern
- □5 shot average for each device at core locations
- □ Moisture, fines, paint, and temperature study
- □ Five 4" or 6" cores in test strip for ITD correction
- Up to seven additional locations for tests and cores for validation
- Nuclear, non-nuclear shots, and/or cores at additional locations on joints.

HMA Field Work

Testing

Local Factors

- Plain HMA
- Roller pattern
- Fines
- Moisture
- Temperature
- Paint

Results

Analysis Procedure

Obtain correction factors from first 5 cores Verify accuracy with additional cores

PQI Correlation: Average Correction

PQI, NDG vs Core Density: Average

PT Correlation: Avg. Correction

PT, NDG Density vs Core Density: Average

Slope Correction: PQI

Offset not constant

Slope Correction

- Develop best-fit trendline for each project using calibration cores from test strip
 Both PQI and PT
- NDG results
 - □ NDG also has this slope
 - □ Continued to use average method in accordance with ITD specifications,

NDG Slope

PQI Correlation: Slope Correction

PQI, NDG vs Core Density: Slope

PT Correlation: Slope Correction

Slope Correction Method

Good slopes not always possible

Hybrid Method

• Use slope correction if $R^2 > 0.5$

Hybrid Method

■ If *R*² <0.5, use average correction method

PQI Correlation: Hybrid Method

PT Correlation: Hybrid Method

Potential Factors

Global Factors

- HMA Classes
- Nominal Maximum Aggregate Size
- Aggregate Source
- Percent Aggregate Absorption
- Mat Thickness

Local Factors

- Moisture
- Temperature
- Paint
- Fines

Potential Factors

Global Factors

- HMA Classes
- Nominal Maximum Aggregate Size
- Aggregate Source
- Percent Aggregate Absorption
- Mat Thickness

Local Factors

- Moisture
- Temperature
- Paint
- Fines

Moisture Field Data: PQI

Moisture Field Data: PT

2013 Moisture Lab Data: PQI 380

Moisture Study: Solution

Towel drying works reasonably well

Moisture Investigation

- All electromagnetic gauges affected by surface moisture
 - **DQI 301, PT, PQI 380**
- Used PQI 301 H₂O Index to quantify moisture for all gauges
 - □ Otherwise difficult to quantify
- Dry the surface with towel if moisture is present

Roller Pattern Use

How do NNDGs compare to NDGs on a roller pattern setup

□ 3 case studies

Roller Pattern: Example 1

Roller Pattern: Example 2

Roller Pattern: Example 3

Asphalt NNDGs Findings

- PQI and PT have similar core correlations compared to NDGs.
 - PQI generally has a better correlation to cores than PT
- Slope correction recommended unless the correlation coefficient is low (R² < 0.5)

□ Average method recommended if $R^2 < 0.5$

No global factors causing error with statistical significance

Asphalt NNDGs Findings

- Paint and fines do not cause error with statistical significance
 - □ Clean surface recommended
- Moisture effect gauge readings
 Keep surface dry, use towel if necessary

Outline

- Background
- Objectives
- Research Approach
- Results
- Cost Analysis
- Findings
- Recommended further studies

Life Cycle Cost

Device	Initial Cost	Annual Cost	Lifetime (10 years) Cost
NDG (Troxler 3430)	\$8,000	\$1,652.30	\$24,523
PQI 301	\$9,150	\$475	\$13,900
PQI 380	\$8,900	\$525	\$14,150
PT	\$8,800	\$500	\$13,800
EDG	\$9,060	\$315	\$12,210
SDG	\$8,900	\$525	\$14,150

Outline

- Background
- Objectives
- Research Approach
- Results
- Cost Analysis
- Findings
- Recommended further studies

Asphalt NNDG Implementation

- NNDGs can be used to replace NDG for QA/QC
- Use hybrid correction method
 - □ Slope correction when $R^2 > 0.5$
 - □ Average correction when $R^2 < 0.5$
- Surface shall be dry or dried with towel
- Use 6" cores for calibration
- Revised ITD FOP for AASHTO 343

Outline

- Background
- Objectives
- Research Approach
- Results
- Cost Analysis
- Findings
- Recommended further studies

Further Studies

- Temperature effects in the field
- NNDG production paving repeatability
 - This study only examined data from test strips, not production paving
- Longitudinal joints
 Both NNDGs and NDGs

Acknowledgements

- Project Committee: Clint Hoops, Mike Santi, Ned Parrish, Jake Legler, Garth Newman, Jayme Coonce, Kyle Holman
- ITD District Engineers, Technicians, Consultants, and Contractors
- External Reviewers: Dr. Bob Holtz (University of Washington) and Dr. Pedro Romero (University of Utah).

Thank You

QUESTIONS?

