

Project Selection for In-Place Recycling and CRAB

54th Annual Idaho Asphalt Conference

Moscow, Idaho October 23, 2014

Stephen A (Steve) Cross, PhD, PE Professor, Oklahoma State University Technical Director Asphalt Recycling & Reclaiming Association

Types of Cold Recycling

 Cold Central Plant Recycling (CCPR)

 Cold In-Place Recycling (CIR)

Cold Central Plant Recycling

A viable alternative when stockpiles of high quality RAP are available or when it is not possible to in-place recycle the pavement. May be used immediately or stockpiled

Cold In-Place Asphalt Recycling

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Full Depth Reclamation(FDR)

A rehabilitation technique in which the full flexible pavement section and a predetermined portion of the underlying materials are uniformly crushed, pulverized or blended, resulting in a stabilized base course.

Full Depth Reclamation (FDR)

Stabilizing Agent Selection Guide

Material Type -	Well	Poorly	Silty	Clavey	Well	Poorly	Silty Sand	Clavey	Silt, Silt	Lean	Organic	Flastic	Fat Clay, Fat
Including RAP	Graded	Graded	Gravel	Gravel	Graded	Graded	,	Sand	with	Clay	Silt/Organic	Silt	Clay with Sand
	Gravel	Gravel			Sand	Sand			Sand		Lean Clay		
USCS ²	GW	GP	GM	GC	SW	SP	SM	SC	ML	CL	OL	MH	СН
AASHTO ³	A-1-a	A-1-a	A-1-b	A-1-b	A-1-b	A-3 or	A-2-4 or	A-2-6 or	A-4 or	A-6	A-4	A-5 or	A-7-6
and a provide a special second				A-2-6	1.1.1.1.1.1	A-1-b	A-2-5	A-2-7	A-5			A-7-5	A State State
Emulsified Asphalt													
SE > 30 or PI < 6 and	~		~		~	~							
P ₂₀₀ < 20%	X	X	X	X	X	X	x						
· · · · · · · · · · · · · · · · · · ·		1. 1. 1.				in all	in and	Carl series			and the second		and the second
Foamed Asphalt													
PI < 10 and	v		v	v	v		v						
P ₂₀₀ 5 to 20%			X	×	×		~						
and and the second second		1			and the second		and and	the second	· · · · · · · ·		1. 1	1	1. "
Cement, CKD or Self-													
Cementing Class C Fly				2									
Ash	X	Х	X	Х	Х	Х	X	х	Х	Х			* · · · · · · · · · · · · · · · · · · ·
PI < 20		1			11.				· · · · · · · · ·				1
SO ₄ < 3000 ppm													
Lime/LKD		17 11 11		-						4.7			
PI > 20 and P ₂₀₀ > 25%				1.	1.1.1.			Х		X	a second and a second	X	Х
SO ₄ < 3000 ppm	-	1.											1

P₂₀₀ = Percent passing No. 200 (0.075 mm) sieve; SE = Sand equivalent (AASHTO T 176 or ASTM D2419); PI = Plasticity Index (AASHTO T 90 or ASTM D4318)

 $^{\rm I} {\rm Additives}$ may also be used in combination with a stabilizing agent to optimize performance of the FDR section

²USCS: Unified Soil Classification System, ASTM D2487

³AASHTO: American Association State Highway Transportation Officials, AASHTO M 145

Where to Use In-Place Recycling

► CIR

- Where mill and fill is considered
- All cracking distresses provided not base related

FDR/CRAB

- Where removal and replacement is considered
- All distresses provided not drainage related

Logistics - Should accommodate equipment

Technique Selection

Attribute Description	Cold In-Place Recycling (CIR)	Full Depth Reclamation (FDR)		
Attributes of Existing Pavement	Structurally sound, cracked, good profile	Requires structural improvement, distorted		
Existing Pavement Depth	> 4" (100 mm)			
Typical Materials Reclaimed	100 % RAP	Any combination of RAP and Underlying Materials		
Typical Treatment Depth	3-5" (75-125 mm)	4-12" (100 - 300 mm)		
Typical Cross Sections Treated	Urban, Ru	ral, Freeway		

Technique Selection

Attribute Description	Cold In-Place Recycling (CIR)	Full Depth Reclamation (FDR)
Traffic	Capable of Treating	Full Range of Traffic
Potential Geometric Limitations	Tight turns, steep grades, profile correction	None
Typical Overlay Treatment	Hot Mix Asphalt, Chip Seals, Slurry Surfacing, Fog seal	Hot Mix Asphalt, Chip Seals
Performance Measures	Removal of surface distresses, helps mitigate reflective cracking, improves smoothness and profile	Eliminates pavement distresses, increases structural capacity, & restores profile

Keys to a Successful/Quality Recycling Project

Proper Site Selection – Right Method Right Road – Right Time

- Good Communication and Education
- Experienced Contractor
- Quality Achieved
 - Before Design

Before Construction

During Construction

Recycling & Reclaiming Strategies

Strategy	Method	СР	HIR	CR	FDR
New					
Reconstruction		Х			Х
Major		Х		Х*	Х
Structural Overlay		Х	Х*	Х*	Х*
Minor		Х	Х	Х	
Preventative	- PP	Х	Х	Х	
Routine		Х			
Corrective		Х	Х	Х	
Catastrophic		Х			
	StrategyNewReconstructionMajorStructuralOverlayMinorPreventativeRoutineCorrectiveCatastrophic	StrategyMethodNewReconstructionMajorStructural OverlayMinorPreventativePreventativeCorrectiveCatastrophic	StrategyMethodCPNewReconstructionXMajorXStructuralXOverlayXMinorXPreventativePPRoutineXCorrectiveXCatastrophicX	StrategyMethodCPHIRNewReconstructionXMajorXStructural OverlayXX*MinorXXPreventativePPXRoutineXXCorrectiveXXCatastrophicXX	StrategyMethodCPHIRCRNewReconstructionXXMajorXXX*Structural OverlayXX*X*MinorXXXPreventativePPXXRoutineXXXCorrectiveXXXCatastrophicXX

Pavement Conditions that Can be Addressed by Cold In-Place Recycling

Ruts	< 3/4 in > 3/4	√ ?¹
Crack	Fatigue Longitudinal Transverse Block	?1 1/ 1/ 1/
Surface	Dry Flushing Bleeding Variable	$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{array}$
Raveling Potholes Texture - R	ough	$\sqrt[n]{}$

Ride - Poor	V
Poor Drainage	no
Snow Plow Use	1
Low Skid Resistance	1
Asphalt Crumb Rubber	no
Stripping Pavement	? ²
Paving Fabrics	? ³
Structural Deficiency	no
Base Failure	no

Questions?

- 1. Provided not base, subgrade or unstable mix related.
- 2. Depends on severity. May be able to add antistrip additive.

 No problem if properly installed. If not, logistical issue with additional costs for disposal.

Pavement distresses which can be corrected by FDR include

- All forms of cracking including age, fatigue, edge, slippage, block, longitudinal and reflective
- Reduced ride quality due to swells, bumps, sags, patches and depressions
- Permanent deformations including rutting, corrugations and shoving
- Loss of bond between pavement layers
- Moisture damage (stripping)
- Loss of surface integrity due to raveling, potholes and bleeding
- Excessive shoulder drop off
- Inadequate structural capacity
- Subgrade instability

Pavements Not to be In-place Recycled

Paving fabric makes it tough! • Possible but messy for CIR & FDR

CIR will not fix base problems!

Engineered Approach

- Sampling of In-place Materials
 - Coring For Thickness
 - Ground Penetrating Radar
- Variable thickness causes issues with
 - Recycling/stabilizing agent application rates
 - Support of recycling train

DCP	Acceptable	Marginal	Poor
Each Set of 10 Blows	< 6 Inches <150 mm	6 to 10 inches 150 mm to 250 mm	> 10 Inches > 250 mm
Inches per Blow mm per Blow	0.6 15	0.6 to 1.0 15 to 25	> 1.0 > 25

Pavement Analysis Guide – Structural Assessment

- Falling Weight Deflectometer (FWD)
- Light Weight
 Deflectometer (LWD)

Pavement Analysis Guide – Design

- Utilize pavement design guides/software
 - 1993 AASHTO
 - MEPDG?
- Common layer coefficients utilized

Treatment	Structural Number	VDOT I-81 Study
CIR/CCPR	0.30-0.35	0.39
CRAB	0.15-0.25	
FDR	0.20-0.30	

Mix Design Determines:

- Optimum Recycling/Stabilizing Agent Rate
- Requirement for and dosage rate of additives (corrective aggregate, hydrated lime or cement)
- Required mix characteristics such as indirect tensile strength, Marshall stability, retained stability, raveling, compressive strength, etc.

Environmental Conditions

Decreased Service Life -Adequate strength is not achieved if curing is incomplete

- CIR & FDR should not performed during excessively wet conditions, nor started if rain is imminent
- Minimum ambient and RAP temp. of 50°F for CIR
- Overnight ambient temperature above 35°F
- No Freezing weather expected within 7 days of end of CRAB placement

Mixture

Decreased Service Life -Non-homogeneous mixture; incorporation of deleterious materials; wrong application rate of recycling/stabilizing agent, water or any additives

- Calibrate mixing system to ensure that the recycling agent, water and additives are added at the proper rates specified in mix design
 - Beginning of each season with full material calibration
 - Every lot during project by in-place volumetrics
 - End of each day by volumetrics and certified delivery weight tickets

Check Spread Rate of Cement using Canvas Patch Test

Sample Each Tanker of Recycling Agent Prior to Use

Foamed Asphalt Half Life and Expansion Ratio Emulsified Asphalt Visual Sieve Test

Compaction

Decreased Service Life – Inadequate compaction leads to lack of stability and cohesion. Secondary compaction from traffic caused by insufficient rolling

- For CIR & FDR use test strip to establish rolling pattern and target density
- ► For CRAB typically use AASHTO T 134 or ASTM D558
- Test In-place density with nuclear gauge at random locations
 Once per ¼ mile (200 m)
- Verify rollers have working water to prevent pickup and raveling

Curing and Protection

Decreased Service Life – Insufficient curing leads to lack of cohesion for CIR and FDR and low strength/cracking issues with CRAB. Raveling during curing is the most common distress of CIR.

- Fog seal at the end of shift to minimize raveling during curing
- Moist cure or use curing membrane for CRAB
- Apply sand blotter to avoid pickup of fog seal
- Allow to cure prior to surface course

Training Resources

TCCC Inspector Training for Cold In-Place Recycling (CIR) Web Based FHWA-NHI-134114

Currently Under Development

- TC3 Inspector Training for HIR. Anticipated availability December 2014
- TC3 Inspector Training for FDR. Anticipated availability May 2015

Training Resources

- http://www.nhi.fhwa.dot.gov/training /course_search.aspx?tab=0&key=co ld&typ=3&sf=0&course_no=134114
- www.tccc.gov
- Link on <u>www.arra.org</u>
- ARRA has 1-day General and Training Seminars

ARRA Best Practice Recycling Guidelines

It is not intended or recommended that these guidelines be used verbatim within a specification. Owner agencies should use them to help establish their particular project specification.

Recommended Construction Guidelines For Full Depth Reclamation (FDR) Using Cementitious Stabilization FDR102

ARRA Guidelines

- 100 Series Recommended Construction Guidelines
- 200 Series Recommended Mix Design Guidelines
- 300 Series Recommended Quality Control Sampling and Testing Guidelines
- 400 Series Recommended Project Selection Guidelines

Status of ARRA Guidelines

	Cold P	laning	Cold Recycling			
Series	Milling	Micro Milling	CIR	CCPR		
100 Series Construction	Final Review	Final Review	Complete	Under Development		
200 Series Mix Design	N/A	N/A	Con	nplete*		
300 Series QC	Un Develo	der opment	Complete			
400 Series Project Selection	N/A	N/A	Under Development			

Status of ARRA Gui<u>delines</u>

	Full Depth Reclamation (FDR)				
Series	Bituminous	Cementitious	Lime		
100 Series Construction	Complete	Complete	Complete		
200 Series Mix Design	Under Development				
300 Series QC	Under Development				
400 Series Project Selection	Under Development				

