

Comparison of T-84, CoreLok, and SS Detect

Idaho Asphalt Conference

Lawrence H. James, Ph.D. InstroTek, Inc. October 23th, 2014

Goal

Review of the assumptions, areas of subjectivity and procedural difficulties for different Aggregate specific gravity determination Methods

Parameters of Interest

- Apparent Specific Gravity:
- Bulk Specific Gravity:
- % Absorption:

AASHT0 T-84

- Procedure in a Nutshell
 - Dry and soak sample (Assumptive)
 - Obtain SSD condition of sample (Subjective/Procedural)
 - Measure specific gravity of SSD sample (Subjective)
 - Calculate absorption from Dry weight and SSD weight (Assumptive)
 - Calculate specific gravity of dry aggregate

AASHTO T-84 Dry and Soak Sample

- Assumptive
 - Rests on the idea that the soak period is sufficient for the aggregate pores to be sufficiently saturated.
 - Known that wet materials from the field can display higher absorptions than oven dried

AASHTO T-84 Obtain SSD

- Subjective/Procedural
 - Operator determines SSD condition and is defined as "when the fine aggregate slumps slightly".
 - Slightly can be defined differently by different organizations.
 - Such as when it slumps
 - Or it slumps such that the top remaining portion is the size of a dime
 - Another SSD condition used is the change in color of the pan during dry back.

AASHTO T-84 Measure SSD Specific Gravity

- Subjective
 - Volume of added water is at the calibration mark.
 - Especially if foam is present and must be removed by adding alcohol.

AASHTO T-84 Calculate Absorption

Assumptive

• Water does not change the physical nature of the aggregate

AASHTOO T-84

- Advantage
 - Inexpensive
 - Requires a tray, a cone and tamp, and other standard laboratory items.
- Disadvantage
 - Requires a significant time investment, at least one full day soak,
 - time for drying the aggregate back.
 - Operator dependent.

CoreLok: ASTM D7370

CoreLok: ASTM D7370

Procedure in a Nutshell

- Split dried sample into two portions (Assumptive)
- Place one portion into CoreLok bag, apply vacuum, and seal
- Obtain apparent density of that portion by CoreLok (Procedural)
- Obtain apparent bulk density of second portion using volumeter (Assumptive/Procedural)
- Calculate absorption from apparent bulk density and apparent density $a = \left(\frac{\rho_v \rho_u}{\rho_v \rho_u}\right) \rho_w \times 100$
- Calculate bulk specific gravity SSD basis
- Calculate bulk specific gravity dry basis

CoreLok Split dried sample into two portions

- Assumptive
 - It is assumed that the two portions are representative of the same sample and will behave identically. This is a reasonable assumption.

CoreLok Obtain apparent density

- Procedural
 - There is a procedure to this in that the operator must keep the sealed sample and bag completely submerged,
 - cut open the bag,
 - remove any air bubbles,
 - and make sure the sample has been saturated with water.
 - This must be done carefully.

CoreLok Obtain apparent bulk density

- Assumptive/Procedural
 - It is assumed that the water will not readily infiltrate the pores. This is based on the criteria for 15 to 19 hour soak time as prescribed by AASHTO T-84. If the measurement of dry specific gravity using a volumeter is short there will be no significant infiltration of the water into the pores.

CoreLok

- Advantage
 - Fast
 - Measurements may be made in less than a 30 minutes
 - Real Time
 - Removes major subjectivity
- Disadvantage
 - More cost

SSDetect: ASTM D7172

- In a Nutshell
 - Obtain two portions of a sample (Assumptive)
 - Place sample in flask, wait 5 minutes, fill to calibration and obtain a first volume (Subjective/Procedural)
 - Apply vacuum to flask, refill to calibration and obtain a second volume (Subjective/Procedural)
 - Obtain difference in weights and calculate Film Coefficient (Assumptive)
 - Place other portion in test bowl
 - SSDetect injects water and mixes aggregate until infrared detects surface water, infrared absorbed by surface water (Assumptive)

CoreLok, T-84, SSDetect Comparison Data Compilation

- Grouped data from different aggregates and absorptions
 - Procedure from E691
- Pooled the standard deviations
 - Interpreted as uncertainty in the measurement
- References
 - Implementation of Testing Equipment for Asphalt Materials, FHWA/LA. 09/458 (King, Kabir, and Mohammad)
 - Round Robin Evaluation of New Test Procedures for Determining the Bulk Specific Gravity of Fine Aggregate, NCAT Report 05-07 (Prowell and Baker)
 - Automated Laboratory Testing Methods for Specific Gravity and Absorption Verified to Match the Current Method Results, Ohio State Job No. 134302 (Rajagopal)

Gsb Fine Aggregate Comparison of CoreLok and T-84 and SSDetect

Gsb	Ν	T-84	CoreLok	SSDetect
Average	20	2.604	2.621	2.627
Pooled SD	22	0.025	0.012	0.010
Difference		T-84 – CL	T-84 – SS	CL - SS
Gsb Diff SD		0.040	0.045	0.035

Gsb Fine Aggregate Comparison of CoreLok and T-84 and SSDetect

Cumulative Probability Comparison T-84, CoreLok, SSDetect

Gsb Fine Aggregate Comparison of CoreLok and T-84 and SSDetect

- Interpretation Gsb between 5% and 95% lines
 - You are 53% likely to obtain the results CoreLok would have obtained using T-84
 - There is 100% probability that the results of CoreLok would be a possible result of T-84
 - You are 34% likely to obtain the results SSDetect would have obtained using T-84
 - There is a 100% probability that the results of SSDetect would be a possible result of T-84

Absorption of Fine Aggregate, Comparison of CoreLok and T-84 and SSDetect

Abs	Ν	T-84	CoreLok	SSDetect
Average	20	1.75	1.51	1.40
Pooled SD	22	0.36	0.16	0.15
Difference		T-84 – CL	T-84 – SS	CL - SS
Abs Diff SD		0.89	0.88	0.80

Abs Fine Aggregate Comparison of CoreLok and T-84 and SSDetect

Abs Fine Aggregate Comparison of CoreLok and T-84 and SSDetect

- Interpretation Abs between 5% and 95% lines
 - You are 45% likely to obtain the results CoreLok would have obtained using T-84
 - There is 100% probability that the results of CoreLok would be a possible result of T-84
 - You are 39% likely to obtain the results SSDetect would have obtained using T-84
 - There is a 100% probability that the results of SSDetect would be a possible result of T-84

Conclusions

- Based on the available data and considering the uncertainty in the test methods, CoreLok results are the same as the T-84 method.
- The uncertainty in the CoreLok measurements are better with better precision
- The CoreLok results can be obtained in a considerably shorter time than T84.

Thank You

