Tack Coat Best Practices
FHWA Cooperative Agreement Subtask
Idaho Asphalt Conference
October 22, 2015

Tack Coat Workshops
As of September 2015

- 2014 – Pilot, VA
- Completed (25)
- Scheduled (19)
- Requested (6)
- Have not Requested (3)
Far too frequent practices.
Importance of Tack Coats

• To promote the bond between pavement layers.
• To prevent slippage between pavement layers.
• Vital for structural performance of the pavement.
• All layers working together.

Why do we use Tack Coats?

Bonded Demonstration

½" Deflection, 60# Load

⅛" Deflection, 160# Load

Unbonded

Fully Bonded
Bonded Demonstration Highlights

- Up to 5 sheets (layers)
- 48” x 4” x 11/32”
- 60, 100, or 160 pound loadings
- Various Bonding Configurations

- Two bonded layers had less deflection than five unbonded (60#).
- Five bonded layer deflected half as much as five unbonded with 267% greater loading (60# vs. 160#).

Pavement Behavior

Shear Transfer?

Soil Subgrade

Aggregate Base

Compression

Stress Distribution

Tension

Courtesy of Rich May
Consequences of Debonding

- Layer independence
- Reduced fatigue life
- Increased rutting
- Slippage
- Shoving
- Compaction difficulty

Consequences of Poor Bonding

```
• Layer independence
• Reduced fatigue life
• Increased rutting
• Slippage
• Shoving
• Compaction difficulty
```

Direction of traffic?
Loss of Fatigue Life Examples

- May and King:
 - 10% bond loss = 50% less fatigue life

- Roffe and Chaignon
 - No bond = 60% loss of life

- Brown and Brunton
 - No Bond = 75% loss of life
 - 30% bond loss = 70% loss of life

8 – 10 years (est.) Interstate Pavement

Courtesy of MODOT
So is it worth it to apply a tack coat?

Cost of Tack Coat

- **New or Reconstruction**
 - About 0.1-0.2% of Project Total
 - About 1.0-1.5% of Pavement Total Cost

- **Mill and Overlay**
 - About 1.0-2.0% of Project Total
 - About 1.0-2.5% of Pavement Total Cost

Cores Showing Debonding

Bonding Failures

Courtesy of MODOT
Estimated Cost of Bond Failure in Only the Top Lift

- Assume no inflation for materials
- Estimated traffic control
- Used project plans for thicknesses
- Used bid tabs for:
 - Milling
 - Material costs
 - Replaced pavement markings

30-100% of Original Pavement Costs

Tack Coat Challenges

- Contractor
 - Application Rate
 - Consistency of Application
 - Tack Coat Pickup or Tracking By Vehicles
 - Traction for Construction Equipment
 - Breaking/Setting Time
- Agency
 - Acceptance
 - Dilution?
 - Application Measurement
 - Bond Quality
 - Tort Claims
Best Practices

- Surfaces need to be clean and dry.
- Uniform application.
- All surfaces are tacked.
- Tack should not be tracked off the road.

Best Practices

- Match application to conditions.
 - Materials
 - Residual rate
- Verify application rate.
- Resist tacking too far ahead of paver.
Distributor Truck Setup

- Liquid temperature
 - Monitor and match to material
- Calibrate distributor truck
 - Spray bar height
 - Spray bar pressure
 - Nozzle angle
 - Nozzle selection
 - Thermometers
 - Volumeter

Calculating field application rates

- There are three primary methods of determining field application rates.
 - Determination by volume.
 - Determination by weight or mass.
 - Determination by direct measurement, ASTM D2995
Critical elements in determining application rates

• Dilution rates are critical in determining final application rates.
• Temperature is important in determining accurate volumetric rates.

<table>
<thead>
<tr>
<th>°C</th>
<th>°F</th>
<th>M</th>
<th>°C</th>
<th>°F</th>
<th>M</th>
<th>°C</th>
<th>°F</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>50</td>
<td>1.0025</td>
<td>35.0</td>
<td>95</td>
<td>0.9912</td>
<td>60.0</td>
<td>140</td>
<td>0.9800</td>
</tr>
<tr>
<td>10.6</td>
<td>51</td>
<td>1.0022</td>
<td>35.6</td>
<td>96</td>
<td>0.9910</td>
<td>60.6</td>
<td>141</td>
<td>0.9797</td>
</tr>
<tr>
<td>11.1</td>
<td>52</td>
<td>1.0020</td>
<td>36.1</td>
<td>97</td>
<td>0.9907</td>
<td>61.1</td>
<td>142</td>
<td>0.9795</td>
</tr>
<tr>
<td>11.7</td>
<td>53</td>
<td>1.0017</td>
<td>36.7</td>
<td>98</td>
<td>0.9905</td>
<td>61.7</td>
<td>143</td>
<td>0.9792</td>
</tr>
<tr>
<td>12.2</td>
<td>54</td>
<td>1.0015</td>
<td>37.2</td>
<td>99</td>
<td>0.9902</td>
<td>62.2</td>
<td>144</td>
<td>0.9790</td>
</tr>
<tr>
<td>12.8</td>
<td>55</td>
<td>1.0012</td>
<td>37.8</td>
<td>100</td>
<td>0.9900</td>
<td>62.8</td>
<td>145</td>
<td>0.9787</td>
</tr>
<tr>
<td>13.3</td>
<td>56</td>
<td>1.0005</td>
<td>38.3</td>
<td>103</td>
<td>0.9897</td>
<td>63.7</td>
<td>148</td>
<td>0.9780</td>
</tr>
<tr>
<td>13.9</td>
<td>57</td>
<td>1.0000</td>
<td>38.7</td>
<td>105</td>
<td>0.9895</td>
<td>64.4</td>
<td>149</td>
<td>0.9777</td>
</tr>
<tr>
<td>14.4</td>
<td>58</td>
<td>1.0000</td>
<td>39.0</td>
<td>106</td>
<td>0.9887</td>
<td>65.0</td>
<td>150</td>
<td>0.9775</td>
</tr>
<tr>
<td>15.0</td>
<td>59</td>
<td>1.0000</td>
<td>39.3</td>
<td>108</td>
<td>0.9885</td>
<td>65.6</td>
<td>151</td>
<td>0.9772</td>
</tr>
<tr>
<td>15.6</td>
<td>60</td>
<td>1.0000</td>
<td>39.6</td>
<td>109</td>
<td>0.9883</td>
<td>66.1</td>
<td>152</td>
<td>0.9770</td>
</tr>
<tr>
<td>16.1</td>
<td>61</td>
<td>0.9997</td>
<td>40.1</td>
<td>110</td>
<td>0.9882</td>
<td>66.7</td>
<td>153</td>
<td>0.9767</td>
</tr>
<tr>
<td>16.7</td>
<td>62</td>
<td>0.9995</td>
<td>40.7</td>
<td>112</td>
<td>0.9880</td>
<td>67.2</td>
<td>154</td>
<td>0.9765</td>
</tr>
<tr>
<td>17.2</td>
<td>63</td>
<td>0.9992</td>
<td>41.2</td>
<td>114</td>
<td>0.9877</td>
<td>67.8</td>
<td>155</td>
<td>0.9762</td>
</tr>
<tr>
<td>17.8</td>
<td>64</td>
<td>0.9990</td>
<td>41.7</td>
<td>116</td>
<td>0.9875</td>
<td>68.3</td>
<td>156</td>
<td>0.9760</td>
</tr>
<tr>
<td>18.3</td>
<td>65</td>
<td>0.9987</td>
<td>42.2</td>
<td>117</td>
<td>0.9872</td>
<td>68.9</td>
<td>157</td>
<td>0.9757</td>
</tr>
<tr>
<td>18.9</td>
<td>66</td>
<td>0.9985</td>
<td>42.8</td>
<td>119</td>
<td>0.9870</td>
<td>69.4</td>
<td>158</td>
<td>0.9755</td>
</tr>
<tr>
<td>19.4</td>
<td>67</td>
<td>0.9982</td>
<td>43.3</td>
<td>121</td>
<td>0.9867</td>
<td>70.0</td>
<td>159</td>
<td>0.9752</td>
</tr>
<tr>
<td>20.0</td>
<td>68</td>
<td>0.9979</td>
<td>43.9</td>
<td>123</td>
<td>0.9865</td>
<td>70.6</td>
<td>160</td>
<td>0.9750</td>
</tr>
<tr>
<td>20.6</td>
<td>69</td>
<td>0.9977</td>
<td>44.4</td>
<td>125</td>
<td>0.9862</td>
<td>71.1</td>
<td>160</td>
<td>0.9750</td>
</tr>
</tbody>
</table>
Recommended Application Rates

<table>
<thead>
<tr>
<th>Surface Type</th>
<th>Residual Rate (gsy)</th>
<th>Appx. Bar Rate Undiluted* (gsy)</th>
<th>Appx. Bar Rate Diluted 1:1* (gsy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Asphalt</td>
<td>0.020 – 0.045</td>
<td>0.030 – 0.065</td>
<td>0.060 – 0.130</td>
</tr>
<tr>
<td>Existing Asphalt</td>
<td>0.040 – 0.070</td>
<td>0.060 – 0.105</td>
<td>0.120 – 0.210</td>
</tr>
<tr>
<td>Milled Surface</td>
<td>0.040 – 0.080</td>
<td>0.060 – 0.120</td>
<td>0.120 – 0.240</td>
</tr>
<tr>
<td>Portland Cement Concrete</td>
<td>0.030 – 0.050</td>
<td>0.045 – 0.075</td>
<td>0.090 – 0.150</td>
</tr>
</tbody>
</table>

*Assume emulsion is 33% water and 67% asphalt.

Review and Summary
Areas of Known Agreement

- Layer Bonding is Vital
- Surface Preparation
 - Clean
 - Dry
- Millings Improves Field Performance
 - Shear
 - Cleaning

Areas of Known Agreement

- Application Quality Vital
 - Proper Rate
 - Consistency
- Distributor Truck
 - Setup
 - Calibration/Verification
 - Maintenance
- Tacking of Longitudinal Joints
 - Bonding
 - Confinement
- Excessive Tack is Bad
- Thicker/Stiffer Lifts Less Prone to Slippage
Areas of Known Agreement

• Tack Coat Rate Depends on Surface Condition
 • Fresh
 • Weathered
 • Raveled
 • Milled
• Need for Research
 • Field Performance
 • Field Testing
 • Bond strength
 • Application amount
• Treat Tack as **Separate Pay Item** vs. Incidental Item

Tack Coat Application
Free 4-hour workshop requested through FHWA divisional offices

Questions?

Free webinar: