56th Idaho Asphalt Conference
October 27th 2016

Performance Graded (PG) Asphalt Binder Modification - Lessons Learned With the Hamburg and MSCR

Joe DeVol
Assistant State Materials Engineer
State Materials Laboratory
Just the Facts

- Connecting Washington Transportation Package
- 16 Year, $16 Billion Package
 - $9.7 Billion, state and local road projects
 - $1.4 Billion, highway maintenance, operations, preservation
- 11.9¢ Gas Tax, phased in over next two years
Washington State Department of Transportation

- Just the Facts
 - WSDOT manages 18,500 lane miles
 - Smooth, safe and economical pavements
 - 2016 forecast
 - 1,043,000 tons HMA
 - 586,555 tons HMA - modified asphalt
• Background

➤ How we got to where we are

• SHRP efforts - 1995
• Implemented PG Binders - 2000
• Superpave Volumetric Mix Design - 2004
Hamburg & MSCR

What have we learned?

- Asphalt and Anti-Strip Compatibility
- Asphalt Modification – Products and Processes
- Benefits of Polymer Modification
 - Note: Dual testing AASHTO M 320 & M 332 since 2008
Shown with optional Crane Lift
• Hamburg Testing
• Hamburg Testing
• Hamburg Testing
• Hamburg Testing

➢ Asphalt & Anti-Strip Compatibility

Hamburg Samples with PG64-28 “Original Formulation”
• Hamburg Testing

➢ Asphalt & Anti-Strip Compatibility

• Results of data analysis
 • AASHTO M 320 – binder meet specification

• Mix design
 • Lottman – improved TSR with anti-strip
 • Hamburg – significant rutting with anti-strip
• Hamburg Testing

➢ Asphalt & Anti-Strip Compatibility

Hamburg Samples with PG64-28 “Polymer Modified”
Hamburg Mix Design Verification Test Data

Hamburg Samples with PG64-28 “Original Formulation”

Hamburg Samples with PG64-28 “Polymer Modified”
• Asphalt Binder Testing

 ➢ Data Analysis

Original Formulation

• Met Conventional PG Specs (AASHTO - M 320)

• Met MSCR Specs * (AASHTO - M 332)

• Elastic Recovery = 25% (AASHTO - T 301)

*Excluding Appendix X1

Polymer Modified

• Met Conventional PG Specs (AASHTO - M 320)

• Met MSCR Specs ** (AASHTO - M 332)

• Elastic Recovery = 74% (AASHTO - T 301)

**Including Appendix X1
• Asphalt Binder Testing

➤ Data Analysis

• Typical Modified PG Binders
 • Met all specifications requirements (AASHTO - M 320)
 • Passed MSCR (AASHTO - M 332) *
 *Excluding Appendix X1 (% recovery)
 • Tested elastic recovery (AASHTO - T 301)
• Hamburg & MSCR

➢ Where are we today?

• Elastic Recovery Specification - 2012
• Hamburg and IDT Specification - 2014
• Multiple Stress Creep Recovery - 2018
Elastic Recovery Specification

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Additional Requirements by Performance Grade (PG) Asphalt Binders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PG 58-22 PG 64-22 PG 64-28 PG 70-22 PG 70-28 PG 76-28</td>
</tr>
<tr>
<td>RTFO Residue:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastic Recovery¹</td>
<td>AASHTO T 301²</td>
<td>--</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Elastic Recovery @ 25°C ± 0.5°C
2. Specimen conditioned in accordance with AASHTO T 240 – RTFO
Hamburg and IDT Specification

<table>
<thead>
<tr>
<th>Mix Criteria</th>
<th>HMA Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>⅜ inch</td>
</tr>
<tr>
<td>Hamburg Wheel-Track Testing, WSDOT FOP for AASHTO T 324</td>
<td>10</td>
</tr>
<tr>
<td>Rut Depth (mm) @ 15,000 Passes</td>
<td></td>
</tr>
<tr>
<td>Hamburg Wheel-Track Testing, WSDOT FOP for AASHTO T 324 Minimum Number of</td>
<td>15,000</td>
</tr>
<tr>
<td>Passes With no Stripping Inflection Point</td>
<td></td>
</tr>
<tr>
<td>Indirect Tensile (IDT) Strength (psi) of Bituminous Materials WSDOT FOP for</td>
<td>175</td>
</tr>
<tr>
<td>ASTM D 6931</td>
<td></td>
</tr>
</tbody>
</table>
Hamburg Mix Design Test Data

No Inflection Point Allowed Prior to 15,000 Passes

Minimum Number of Passes 15,000

Maximum Rut Depth 10mm

0.50% Anti-strip
0.00% Anti-strip

Rut Depth in Millimeters

Number of Wheel Passes

-16
-14
-12
-10
-8
-6
-4
-2
0
• **Multiple Stress Creep Recovery**

 ➢ Where we’re headed next!

 • Multiple Stress Creep Recovery - 2018

 * Working with PCCAS, Regional Task Group & WAPA

 • Would Replace Elastic Recovery

 • New PG Grading Terminology
• **Asphalt Binder Grading - 101**

 • **Current Grading System**
 – Base grade (Environment)
 – Grade bump (Traffic/Load)
 – Bump = same stiffness at higher temperature
 – Allows for products & processes that may affect performance

 • **MSCR Grading System**
 – Base grade (Environment)
 – Grade bump (Traffic/Load)
 – Bump = increase stiffness at service temperature
 – Requires products & processes that ensure performance
• **Asphalt Binder Grading - 101**

- **Current Grading System**
 - PG58-22
 - PG64-22
 - PG70-22
 - PG64-28
 - PG70-28
 - PG76-28

- **MSCR Grading System**
 - PG58S-22 (Standard)
 - PG58H-22 (Heavy)
 - PG58V-22 (Very Heavy)
 - PG64S-28
 - PG64H-28
 - PG64V-28
PG64-28 (PG64-28H) MSCR vs Jnr 2013

Passing % recovery

PG64-28H would require a Jnr of \(\leq 2.0 \) and an MSCR % recovery of \(\geq 30\% \)

Failing % recovery

% MSCR

J\(_{nr}\), kPa

Extremely heavy 0.5
Very heavy 1.0
Heavy 2.0
Standard 4.0

Jnr, Kpa
PG64-28
56th Idaho Asphalt Conference

Questions?

devolj@wsdot.wa.gov

(360)709-5421

State Construction Office - Information

http://www.wsdot.wa.gov/business/construction