TRB MEPDG Workshop
Traffic & Axle Weight Data

Brian Diefenderfer, PhD, PE
Research Scientist
Virginia Transportation Research Council
Charlottesville, VA
January 13, 2008

Presentation Outline

• WIM program (prior to MEPDG)
• WIM program & MEPDG implementation
 – sensors and locations
• Data quality
• Utilizing WIM data
 – MEPDG & AASHTO ‘93
• Future efforts

VDOTs Early Traffic Data & WIM Program

• 1980s to early 1990s
 – prescreening trucks at pull-off scales
 – development of ESAL factors
• 1990s
 – piezoelectric sensors (LTPP sites)
 – 17 WIM sites around Virginia
 – primarily volume & classification data
 – data drifted over time and with temperature

Traffic Data & WIM Program in 2000

• Existing count stations
 – 270 continuous
 • all with classification
 – approximately 17,000 short-term
 • 6,100 w/ classification
• 6 existing WIM sites
 – DMV monitored
 – associated with truck pull-off scales
WIM data - Initial MEPDG Implementation

- MEPDG implementation committees
 - established by VDOT in 2000
- Traffic data committee
 - focused on VDOT's WIM program
 - evaluate existing data sources
 - determine additional needs

WIM data - Initial MEPDG Implementation

- VTRC study, 2003
 - Traffic Data Plan for M-E Pavement Designs
 - B. Cottrell, T. Schinkel, T. Clark
 - http://vtrc.virginia dot.org (click on “Reports”)
- WIM sites
 - based on TT truck volumes (TMG)
 - > 1,000 per day
 - < 1,000 per day
 - < 100 per day (optional)

WIM data - Initial MEPDG Implementation

- Site selection guidelines
 - smoothness is the key
- Sensors
 - piezoelectric (older type)
 - did not consistently meet ASTM standards
 - bending plates
 - reliable, but safety concerns
 - load cells
 - reliable and safe, but expensive

WIM data - Current MEPDG Implementation

- 16 sites monitored by VDOT & 6 by DMV
 - 10 with TT truck count > 1,000 per day
 - 12 with TT truck count < 1,000 per day
- Equipment
 - primarily Kistler quartz piezoelectric sensors
 - reliable, least expensive alternative, 5yr± life
 - bending plates at LTPP site
 - DMV sites are load cells
Choosing New WIM Sites

- Quartz piezoelectric sensors
 - approx. $30,000 per lane
- New asphalt overlays (HMA and SMA)
 - IRI < 40-45 in/mi
 - sites evaluated using LTPP software
- Construct a location (not preferred = $$$)
 - VDOT has built concrete and asphalt pads
 - both ground to achieve desired smoothness
Data Quality

- Calibrated using known axle loads
 - continuously checked for drift
 - minor rutting found to affect data
 - corrected by grinding
 - adjustment about every 6 months
- Goal
 - ASTM Type I

WIM data uses in M-E Design

- Load spectra
 - statewide vs. regional
 - vehicle classification specific
 - administrative classification specific
 - modeling by statistical distributions / equations

- Truck weight policy decisions
 - effects (costs) of increased weight limits

Axle Load Spectra

Class 9 - Primary

Axle weight, kips

frequency of occurrence

Class 9 - Interstate

Axle weight, kips

frequency of occurrence
WIM Data Uses in AASHTO ’93 Design

• ESAL factor
 – vehicle classification specific
 – administrative classification specific
 – depends on knowledge (or estimate) of SN
 – current VDOT values (flexible) = 0.37 & 1.28
 – revised primary = 0.63 & 1.03
 • SN = 4.75, \(p_1 = 2.85 \)
 – revised interstate = 0.37 & 1.05
 • SN = 6.0, \(p_1 = 3.0 \)

Future Efforts

• Equipment
 – maintain & evaluate existing WIM sites
 – replace sites when needed
 – add new sites when advantageous

• Data
 – revised ESAL factors for ’93 AASHTO design (flexible & rigid)
 – default load spectra for MEPDG

VDOT MEPDG Traffic Team

• Materials Division
 – Trenton Clark, chair
 – Mohamed Elfino

• Research Council
 – Ben Cottrell
 – Brian Diefenderfer

• Traffic Engineering Division
 – Tom Schinkel
 – Hamlin Williams
 – Richard Bush

• Richmond District
 – William Hughes