Illinois DOT
From the AASHO Road Test
To
20 Years of Mechanistic Pavement Experience
......and Counting

David L. Lippert, PE
Bureau of Materials and Physical Research
Illinois Department of Transportation

Transportation Research Board
87th Annual Meeting
January 13, 2008

Outline
- AASHO Road Test History
- Illinois Adoption of Mechanistic
- Current Updating Efforts

"AASHO Road Test"
Loading

<table>
<thead>
<tr>
<th>LOOP</th>
<th>LANE 1</th>
<th>LANE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4 1 12</td>
<td>6 24 24</td>
</tr>
<tr>
<td>4</td>
<td>6 18 18</td>
<td>9 32 32</td>
</tr>
<tr>
<td>5</td>
<td>6 22 22</td>
<td>9 40 40</td>
</tr>
<tr>
<td>6</td>
<td>9 30 30</td>
<td>12 48 48</td>
</tr>
</tbody>
</table>

2 Years = 1.1 Million Axle Loads

Rigid Profile

Flexible Profile

Traffic

AASHO – Static Weights – Dynamic Loading

The AASHO Road Test
Pavement Performance

PSR = 0.0?

PSR = 0.0?

<table>
<thead>
<tr>
<th>Axle Load</th>
<th>Flex Single ESAL's</th>
<th>Rigid Single ESAL's</th>
<th>Flex Tandem ESAL's</th>
<th>Rigid Tandem ESAL's</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,000</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0000</td>
<td>0.0001</td>
</tr>
<tr>
<td>6,000</td>
<td>0.010</td>
<td>0.01</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>12,000</td>
<td>0.189</td>
<td>0.176</td>
<td>0.014</td>
<td>0.026</td>
</tr>
<tr>
<td>18,000</td>
<td>1.00</td>
<td>1.00</td>
<td>0.077</td>
<td>0.133</td>
</tr>
<tr>
<td>24,000</td>
<td>3.03</td>
<td>3.36</td>
<td>0.260</td>
<td>0.444</td>
</tr>
<tr>
<td>30,000</td>
<td>7.00</td>
<td>8.28</td>
<td>0.658</td>
<td>1.14</td>
</tr>
<tr>
<td>36,000</td>
<td>13.9</td>
<td>17.1</td>
<td>1.38</td>
<td>2.43</td>
</tr>
<tr>
<td>42,000</td>
<td>25.6</td>
<td>32.2</td>
<td>2.51</td>
<td>4.55</td>
</tr>
</tbody>
</table>
Illinois Method of Calculating ESAL’s

- Collect static weight data from enforcement scales.
- Load spectrum by axle/vehicle type.
 - Single.
 - Tandem.
 - Triple.
- ESAL factor by FHWA vehicle class & road type.
 - Class I – Interstate and multi lane.
 - Class II – Two lane over 2000 ADT.
 - Class III - 750 to 2000 ADT.
 - Class IV – Under 750 ADT.
- Summarize into PV, SU and MU groups.

PV, SU and MU

<table>
<thead>
<tr>
<th>Passenger Vehicles (PV)</th>
<th>Single Unit (SU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 2 (Cars)</td>
<td>Class 4 (Buses)</td>
</tr>
<tr>
<td>Class 3 (Light Trucks)</td>
<td></td>
</tr>
</tbody>
</table>

Multiple Unit (MU)

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Axle 5</td>
</tr>
<tr>
<td>3 Axle 6</td>
</tr>
<tr>
<td>4 Axle 7</td>
</tr>
</tbody>
</table>

Class 8 to 13

Current ESAL Factors (Flex)

<table>
<thead>
<tr>
<th>Road Class</th>
<th>PV</th>
<th>SU</th>
<th>MU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>0.0004</td>
<td>0.394</td>
<td>1.908</td>
</tr>
<tr>
<td>Class II</td>
<td>0.0004</td>
<td>0.372</td>
<td>1.554</td>
</tr>
<tr>
<td>Class III</td>
<td>0.0004</td>
<td>0.355</td>
<td>1.541</td>
</tr>
<tr>
<td>Class IV</td>
<td>0.0004</td>
<td>0.350</td>
<td>1.523</td>
</tr>
</tbody>
</table>

Design Minimums:
- Interstate – 1,500 MU, 500 SU
- Non Interstate – 900 MU, 300 SU

Traffic Maps

PV = Total ADT – Truck ADT SU = Truck ADT – MU ADT
AASHO Advances

- Equivalent 18^k Single Axle Loads (ESALs)
- Thickness Designs for both Flex & PCC
- “Equivalent” Pavements
- Cost Allocation

AASHO Limitations

- One Set of Materials.
- Two Years of Weathering.
- 1.1 Million Axles.
- Totally Empirical – need to extrapolate to 100’s of millions of axles.

Why Illinois Pursued Mechanistic

- AASHTO design produced excessively thick pavements for high volume facilities.
- New materials very difficult to relate back to road test for layer coefficient.
- Modern facility traffic well beyond road test traffic.
- Valid procedure??

1958 Materials vs. Modern Materials
Mechanistic Design

Mechanistic -

“Concerning the Relationships Between Applied Forces and Material Responses.”

Basic Premise -

Low Deflections = Long Life

IL-AAHSTO vs. Mechanistic

![Graph showing IL-AAHSTO vs. Mechanistic](Image)

Illinois Mechanistic-Empirical Design

- Research completed in 1987.
- Load spectrum discussed – dismissed.
- Designs based upon 18K ESAL’s.
- Results very complex.
- Many designer inputs.
- Policy decisions needed to simplify.
Fatigue Theory

High Strain = Short Life
Low Strain = Long Life

Fatigue Cracking

18K

18,000 Pounds
80 PSI

Illinois Mechanistic Loop Pavement Model

Load Model
Why Load Spectrum Not Used

- Data reliability.
 - Calibration.
 - Maintenance of equipment.
- Limited data collection ability.
 - Expense.
 - People – Head count limits.
- Data fit into performance calibration??
- Department understanding of ESAL’s.

Inputs – Full-Depth Asphalt

- Traffic.
- Soil Support (Eri).
- Location (temperature/modulus relations).
- Asphalt grade.
- Mix air voids and gradation.
- Crack initiation at bottom of HMA.
- Reliability.

Inputs – Jointed Concrete

- Traffic.
- Soil support (k).
- Joint spacing.
- Joint load transfer.
- Edge support.
- Drainage conditions.
- Concrete strength.
- Slab cracking.
- Reliability.

Decisions, Decisions, Decisions!

- Policy decisions:
 - To simplify design.
 - To limit sophisticated data collection or testing.
 - Insure design assumptions are built into pavement.
- Maintain “off-the-shelf” or current inputs.
 - 18K ESAL and related traffic data collection.
 - Current material test.
Example:

- Simplified correlation for soil inputs.
 - Not going to run subgrade resilient modulus \((E_{ri})\) for every project.
 - Not going to determine “k” values.
 - Correlated to Corp of Engineers soil triangle (grain size analysis) to three common support levels.

Impacts of Soil Inputs

<table>
<thead>
<tr>
<th>Soil Rating</th>
<th>Full-Depth HMA</th>
<th>Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granular</td>
<td>13.75</td>
<td>9.25</td>
</tr>
<tr>
<td>- 5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k = 200)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E_{ri}) = Stress Dependent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fair</td>
<td>14.00</td>
<td>9.75</td>
</tr>
<tr>
<td>- 5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k = 100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E_{ri}) = 5 ksi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>14.25</td>
<td>10.25</td>
</tr>
<tr>
<td>- 90%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k = 50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E_{ri}) = 2 ksi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For 2000 trucks/day in design lane — moderate volume Interstate

Pavement Performance

- Keys to long term performance:
 - Design.
 - Thickness.
 - Cross-section.
 - Materials.
 - Construction.
 - Maintenance.
“D” Cracked Concrete

ESAL Survival of Original Pavements – South IL
D-Cracking Comparisons

30% More Life

Keys to Pavement Performance - Illinois

Summary of Pavement Life (No DC) – Age
Summary of Pavement Life (No DC) – Cumulative ESALs

Traffic Data

Search for New Portable Equipment

- Safety of the worker
- Quality and Quantity of data collected
- Cost to the Department
- Comply with new FHWA’s Traffic Monitoring Guide (TMG)

Nu-Metrics Hi-Star 97
PV, SU and MU

Passenger Vehicles (PV)
- Class 2: Cars
- Class 3: Light Trucks

Single Unit (SU)
- Buses: Class 4
- 2 Axle: 5
- 3 Axle: 6
- 4 Axle: 7

Multiple Unit (MU)
- Class 8 to 13

Axle Classification vs. Length Classification
(data from permanent ATR locations)

Distribution of Vehicles by Length

Illinois Mechanistic Design
Minimum Designs:
Former procedure:
- Minimum thickness by facility type
- Same statewide
- Industry issues
New Minimums

- Minimums by Facility Type
 - Interstates 2 Way ADT:
 - 500 SU 1500 MU
 - Other State
 - 300 SU 900 MU
 - Unmarked
 - Actual Traffic

Mechanistic Example

Given:
TF = 4.27
AC = PG 58 – XX
Location = Springfield, IL

Soil Input

- 45% Silt
- 27% Clay
- 28% Sand

“Poor”
Illinois 2008 Mechanistic Update

- **HMA**
 - New Fatigue Equation
 - PG Graded Materials for Modules
 - Limiting Strain (Max thickness)

- **PCC**
 - Relook at Joint Spacing
 - Mechanistic CRCP

- **Both**
 - New Minimum Traffic (Lower)
Implementation

- Research start 1980
 - 6 years
- Industry meetings
 - Design Procedures
 - Selection Process
 - Implementation
 - 2 years
- Issue Design 1989

Issues after Implementation

- Industry questions
- FHWA/IDOT review
- Revisions 1992

Summary/Suggestions

- Review design.
- Determine where performance gains needed in your state.
 - Durability (materials)
 - Design
 - Other
- Determine merits of each design input and worth of refinement.
- Involve industry

Challenges & Issues

Quality Data

Quantity Needed?

Simplified Inputs

<table>
<thead>
<tr>
<th>Percent</th>
<th>Clay</th>
<th>Fair</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent</th>
<th>Silts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent</th>
<th>Gr</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>