3.8 The Joule-Thomson coefficient for air at temperatures near 298 K and pressures in the range 0 to 50 bar is relatively constant at 0.2 K bar\(^{-1}\). Estimate the final temperature if 58 g of air at 298 K and 50 bar undergoes Joule-Thomson expansion to a final pressure of 1 bar.

Solution

The Joule-Thomson coefficient relates the temperature change associated with constant enthalpy expansion:

\[\mu_{JT} = \left(\frac{\partial T}{\partial P} \right)_H \]

Since we're told that \(\mu_{JT} \) is independent of temperature and pressure, we can easily integrate this:

\[\int_{T_1}^{T_2} dT = \mu_{JT} \int_{P_1}^{P_2} dP \Rightarrow T_2 - T_1 = \mu_{JT}(P_2 - P_1) \]

We are given \(T_1, P_1, \) and \(P_2 \) so all we have to do is solve for \(T_2 \):

\[T_2 = (P_2 - P_1) \mu_{JT} + T_1 \]

\[= (1 \text{bar} - 50 \text{bar})(0.2 \text{Kbar}^{-1}) + 298 \text{K} \]

\[= 288.2 \text{K} \]

3.9 (a) Derive the expression

\[\left(\frac{\partial H}{\partial P} \right)_T = -C_p \mu_{JT} \]

(b) Show that

\[\mu_{JT} = \frac{V}{C_p} (\kappa P - \mu_{JT} \kappa - 1) \]

where \(\kappa \) is defined by

\[\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T \]

Solution

a. Use the cyclic rule,

\[\left(\frac{\partial H}{\partial P} \right)_T \left(\frac{\partial P}{\partial T} \right)_\mu \left(\frac{\partial T}{\partial H} \right)_P = -1 \]

and solve for the desired derivative (the one in red):

\[\left(\frac{\partial H}{\partial P} \right)_T = -\left(\frac{\partial T}{\partial P} \right)_\mu \left(\frac{\partial H}{\partial T} \right)_P \]

\[= -\mu_{JT} C_p \]

b. Solve the expression derived in (a) for the Joule-Thomson coefficient:

\[\mu_{JT} = -\frac{1}{C_p} \left(\frac{\partial H}{\partial P} \right)_T \]

Now, substitute \(H = U + PV \) and differentiate:

\[\mu_{JT} = -\frac{1}{C_p} \left(\frac{\partial (U + PV)}{\partial P} \right)_T \]

\[= -\frac{1}{C_p} \left[\frac{\partial U}{\partial P} \right]_T + P \left(\frac{\partial V}{\partial P} \right)_T + V \left(\frac{\partial P}{\partial P} \right)_T \]

\[\downarrow \quad \text{the red derivative is} \quad \left(\frac{\partial V}{\partial P} \right)_T = -\kappa V \]

\[= -\frac{1}{C_p} \left[\frac{\partial U}{\partial P} \right]_T - \kappa PV + V \]

\[= \frac{1}{C_p} \kappa PV - \left(\frac{\partial U}{\partial P} \right)_T - V \]

The remaining derivative (in blue) can be written as:

(continued on next page)
\[\left(\frac{\partial U}{\partial P} \right)_T = \left(\frac{\partial U}{\partial V} \right)_T \left(\frac{\partial V}{\partial P} \right)_T \]

\[= -\left(\frac{\partial U}{\partial V} \right)_T \kappa V \]

(This is found by writing the total differential of \(U = U(T, V) \), then dividing through both sides by \(dP \) and imposing constant \(T \).) Substitute this into the expression for \(\mu_{JT} \) and continue:

\[\mu_{JT} = \frac{1}{C_p} \left[\kappa PV + \left(\frac{\partial U}{\partial V} \right)_T \kappa V - V \right] \]

\[\downarrow \]

use the cyclic rule to express the derivative as:

\[\frac{\partial U}{\partial V} = -\left(\frac{\partial T}{\partial P} \right)_V \frac{\partial U}{\partial T} \]

\[= -\mu_c V \]

4.1 From the following data, determine \(\Delta_f H^\circ \) for diborane, \(B_2H_6(g) \) at 298 K:

- \(\Delta_f H^\circ(B_2H_6(g) + 3O_2(g) \rightarrow B_2O_3(s) + 3H_2O(g)) = -1941 \text{kJ mol}^{-1} \)
- \(\Delta_f H^\circ(2B(s) + \frac{3}{2}O_2(g) \rightarrow B_2O_3(s)) = -2368 \text{kJ mol}^{-1} \)
- \(\Delta_f H^\circ(H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)) = -241.8 \text{kJ mol}^{-1} \)

Solution

The reaction enthalpy for the first reaction in terms of the formation enthalpies of the reactants and products is:

\[-1941 \text{kJ mol}^{-1} = \Delta_f H^\circ \]

\[= 3\Delta_f H^\circ(H_2O,g) + \Delta_f H^\circ(B_2O_3,s) - 3\Delta_f H^\circ(O_2,g) - \Delta_f H^\circ(B_2H_6,g) \]

All of the remaining quantities are known except the formation enthalpy of diborane. So we just solve for it:

\[\Delta_f H^\circ(B_2H_6,g) = 3\Delta_f H^\circ(H_2O,g) + \Delta_f H^\circ(B_2O_3,s) - \Delta_f H^\circ \]

\[= 3(-241.8 \text{kJ mol}^{-1}) + (-2368 \text{kJ mol}^{-1}) - (-1941 \text{kJ mol}^{-1}) \]

\[= -1152 \text{kJ mol}^{-1} \]

4.2 Given that the standard combustion enthalpy of graphite is \(-393.5 \text{kJ mol}^{-1} \) and that of diamond is \(-395.41 \text{kJ mol}^{-1} \), calculate the standard enthalpy of the graphite-to-diamond transition.

Solution

If you write the reaction for the combustions of graphite and the reverse reaction for the combustion of diamond you see that the two reactions combine to give the desired reaction:

\[C(s, \text{graph.}) + O_2(g) \rightarrow CO_2(g) \quad \Delta_f H^\circ = -393.5 \text{kJ mol}^{-1} \]

\[CO_2(g) \rightarrow C(s, \text{diam.}) + O_2(g) \quad \Delta_f H^\circ = -395.41 \text{kJ mol}^{-1} \]

\[C(s, \text{graph.}) \rightarrow C(s, \text{diam.}) \quad \Delta_{\text{trs}} H^\circ = -395.41 \text{kJ mol}^{-1} + 395.41 \text{kJ mol}^{-1} \]

\[= +1.99 \text{kJ mol}^{-1} \]

4.3 Set up a thermodynamic cycle for determining the enthalpy of hydration of \(\text{Ca}^{2+} \) ions, \(\Delta_{\text{hyd}} H^\circ(\text{Ca}^{2+}, g) \), using the following data: enthalpy of sublimation of \(\text{Ca}(s), \Delta_{\text{sub}} H^\circ(\text{Ca}, s) = +178.2 \text{kJ mol}^{-1} \); first ionization enthalpy of \(\text{Ca}(g), \Delta_{\text{ion}} H^\circ(\text{Ca}, g) = +589.7 \text{kJ mol}^{-1} \); second ionization enthalpy of \(\text{Ca}^+(g), \Delta_{\text{ion2}} H^\circ(\text{Ca}^+, g) = +1145 \text{kJ mol}^{-1} \); enthalpy of vaporization of \(\text{Br}_2(l), \Delta_{\text{vap}} H^\circ(\text{Br}_2) = +30.91 \text{kJ mol}^{-1} \); dissociation enthalpy of \(\text{Br}_2(g), \Delta_{\text{diss}} H^\circ(\text{Br}_2, g) = +192.9 \text{kJ mol}^{-1} \); electron gain enthalpy of \(\text{Br}^-(g), \Delta_{\text{e.g.}} H^\circ(\text{Br}, g) = +331.0 \text{kJ mol}^{-1} \); enthalpy of solution of \(\text{CaBr}_2(s), \Delta_{\text{soln}} H^\circ(\text{CaBr}_2, s) = -103.1 \text{kJ mol}^{-1} \); enthalpy of hydration of \(\text{Br}^-(g), \Delta_{\text{hyd}} H^\circ(\text{Br}^-, g) = -337 \text{kJ mol}^{-1} \); formation enthalpy of \(\text{CaBr}_2(s), \Delta_{\text{fH}}(\text{CaBr}_2, s) = -682.8 \text{kJ mol}^{-1} \).

Solution

This is what we want:

\[\text{Ca}^{2+} (g) \rightarrow \text{Ca}^{2+} (aq) \]

From the information given, the following cycle would allow you to determined the desired enthalpy:
To find the hydration enthalpy, we recognize that the sum of the enthalpies of the hydration step is equal to the algebraic sum of all the other enthalpies around the cycle:

\[
\Delta_{\text{hyd}} H(\text{Ca}^{2+},g) + 2\Delta_{\text{hyd}} H(\text{Br}^-,g) = -2 \Delta_{\text{e.g.}} H(\text{Br},g) - \Delta_{\text{ion}} H(\text{Ca}^+,g) - \Delta_{\text{diss}} H(\text{Br}_2,g) - \Delta_{\text{ion}} H(\text{Ca},g) - \Delta_{\text{vap}} H(\text{Br}_2,\ell) - \Delta_{\text{sub}} H(\text{Ca},s) + \Delta_{1} H(\text{CaBr}_2,s) + \Delta_{\text{soln}} H(\text{CaBr}_2,s) - 2\Delta_{\text{hyd}} H(\text{Br}^-,g)
\]

Solve for the hydration enthalpy of \(\text{Ca}^{2+} \):

\[
\Delta_{\text{hyd}} H(\text{Ca}^{2+},g) = -2 \Delta_{\text{e.g.}} H(\text{Br},g) - \Delta_{\text{ion}} H(\text{Ca}^+,g) - \Delta_{\text{diss}} H(\text{Br}_2,g) - \Delta_{\text{ion}} H(\text{Ca},g) - \Delta_{\text{vap}} H(\text{Br}_2,\ell) - \Delta_{\text{sub}} H(\text{Ca},s) + \Delta_{1} H(\text{CaBr}_2,s) + \Delta_{\text{soln}} H(\text{CaBr}_2,s) - 2\Delta_{\text{hyd}} H(\text{Br}^-,g)
\]

\[
= -1587 \text{kJmol}^{-1}
\]

4.4 Determine whether the differentials of the following functions are exact: (a) \(f(x, y) = x^2y + 3y^2 \), (b) \(f(x, y) = x \cos xy \), and (c) \(f(x, y) = x(x + e^y) + y \).

Solution

Use Euler’s test for exactness; if the mixed second partial derivatives are equal, then the differentials are exact.

a. Evaluate the first derivatives:

\[
\frac{\partial f}{\partial x} = 2xy \quad \text{and} \quad \frac{\partial f}{\partial y} = x^2 + 6y
\]

Evaluate the mixed second derivatives:

\[
\frac{\partial^2 f}{\partial y \partial x} = 2x \quad \text{and} \quad \frac{\partial^2 f}{\partial x \partial y} = 2x
\]

They are equal, so \(df \) is an exact differential.

b. Evaluate the first derivatives:

\[
\frac{\partial f}{\partial x} = \cos xy - xy \sin xy \quad \text{and} \quad \frac{\partial f}{\partial y} = -x^2 \sin xy
\]

Evaluate the mixed second derivatives:

\[
\frac{\partial^2 f}{\partial y \partial x} = -2x \sin xy - x^2 \cos xy \quad \text{and} \quad \frac{\partial^2 f}{\partial x \partial y} = -2x \sin xy - x^2 \cos xy
\]

They are equal, so \(df \) is exact.
We want this:

\[
\begin{align*}
\lambda_{2H_2O, 473K} \rightarrow H_2O(g, 473K) \\
\lambda_{2H_2O, 373K} \rightarrow H_2O(g, 373K) \\
\lambda_{coolH, 373K} \rightarrow \lambda_{heatH, 473K} \\
\lambda_{vapH_{373K}} \rightarrow H_2O(g, 373K)
\end{align*}
\]

Based on the data that is given, we can construct the following cycle:

\[
\begin{align*}
\Delta_{vapH_{473K}} = ? \\
\Delta_{vapH_{373K}} = ? \\
\Delta_{coolH(\ell)} \\
\Delta_{healH(g)} \\
\end{align*}
\]

The enthalpies for the heating and cooling steps are calculated using the heat capacities:

\[
\begin{align*}
\Delta_{coolH(\ell)} &= C_{p,m}(\ell)(373K - 473K) \\
\Delta_{heatH(g)} &= C_{p,m}(g)(473K - 373K)
\end{align*}
\]

The desired quantity is the sum of the enthalpies for each step around the cycle:

\[
\Delta_{vapH_{473K}} = \Delta_{coolH(\ell)} + \Delta_{vapH_{373K}} + \Delta_{heatH(g)}
\]

\[
= 36.5 \text{ kJ mol}^{-1}
\]

The answer makes sense—it should require less heat to vaporize water at a temperature well above its normal boiling point.