Table of Contents

Introductory Information

- Academic Calendar ... 2
- Regents and Administration .. 3
- Campus Map ... 4

The University

- Mission Statement .. 5
- Purpose, Functions, and Objectives 5
- General Honorary Societies ... 6
- Libraries .. 6
- Galleries .. 6
- Information Technology Services .. 7
- Research .. 7
- Degrees Granted ... 12
- Programs Offered ... 12
- Academic Minors Offered .. 13
- Certificates of Completion Offered 14

The Student

- Undergraduate Admission .. 15
- Graduate Admission to the University 19
- Fees and Expenses ... 21
- University Residences ... 24
- Student Services ... 25
- International Programs .. 33
- Mutual Responsibility Agreement 38
- Student/Program Assessment ... 38

General Requirements and Academic Procedures 39

College and Related Units ... 51

- College of Agricultural and Life Sciences 51
- College of Business and Economics 52
- College of Education ... 53
- College of Engineering .. 56
- College of Graduate Studies .. 58
- College of Law ... 64
- College of Letters, Arts and Social Sciences 66
- College of Natural Resources ... 68
- College of Science ... 69
- Certificates of Completion ... 70
- Continuing Education .. 71
- Engineering Outreach .. 71
- Independent Study in Idaho ... 73
- Cooperative Programs .. 73
- Summer Programs ... 74
- University Honors Program .. 74
- University of Idaho Centers .. 75

Departments of Instruction (arranged in alphabetical order) 77

Courses ... 165

- Course Numbering System & Key to Abbreviations and Symbols .. 165
- Course Descriptions ... 165

Faculty .. 257

Emeriti Faculty ... 278

Index ... 283

Correspondence Directory .. Inside Back Cover
Academic Calendar for 2005-2006

Dates in this calendar are subject to change without notice; dates appearing in admission and registration instructions take precedence over those listed below. See the “Engineering Outreach” section for dates related to that program.

SUMMER 2005
Note: See the Summer Session Catalog for additional dates and information.
Monday, May 16 Beginning of early Summer Session
Monday, May 30 Memorial Day – classes DO NOT meet
Monday, June 13 Beginning of 4-8 week Summer Session
Monday, July 4 Independence Day – classes DO NOT meet
Monday, July 11 Beginning of late 4-6 week Summer Session
Friday, Aug. 19 Last day to submit final grades for Incompletes given in the prior Fall or Intersession terms
 Close of Summer Session (5 p.m.)
Monday, Aug. 22 Last day to file acceptable theses, dissertations, abstracts, and results of comprehensive examinations for graduate degrees to be awarded in August
 Summer grades due

FALL SEMESTER 2005
Note: For application deadlines for new and former students, see Undergraduate and Graduate Admissions sections in Part 2 of the Catalog.
Monday, Aug. 22 Classes begin (7:30 a.m.)
Tuesday, Aug. 23 $50 late registration service charge begins
Monday, Aug. 29 Last day to add course or change course section on-line
Friday, Sept. 2 Last day to register with $50 service charge but without paying $50 late registration fee
 Last day to change from audit to regular credit without instructor permission
 Last day to change from pass/fail grading option to regular grading
 Last day to turn in Course Level Adjustment forms to the College of Graduate Studies
Monday, Sept. 5 Labor Day – classes DO NOT meet
Monday, Sept. 12 Last day to submit Idaho Residency Information
Monday, Sept. 19 Last day to register with $50 service charge and $50 late registration fee but without petition
 Last day to avoid paying add/drop fee
 Last day to drop a course without having a grade of ‘W’ recorded (the deadline for accelerated or short courses is when 12.5 percent of the class is completed)
 Last day to change from regular credit to audit without having a grade of ‘W’ recorded
 Last day to reduce the number of credits for which registered in a course
 Last day to change from regular to pass/fail grading option
Wednesday, Sept. 21 Freshman early warning grades due
Monday, Oct. 10 Columbus Day – classes WILL meet even though Columbus Day is a holiday
Friday, Oct. 14 Last day for midterm examinations
Monday, Oct. 17 Midterm grades due
Monday, Oct. 24 Academic advising begins for Spring semester
Wednesday, Oct. 26 Last day to withdraw from a course or from the university (the deadline for accelerated or short courses is when less than 60 percent of the class is completed)
 Last day to change from regular credit to audit
Saturday, Nov. 5 Registration for Spring courses begins
Friday, Nov. 11 Veterans’ Day – classes WILL meet even though Veterans’ Day is observed (students who wish to attend an observance are excused from 11 a.m. until 1 p.m.)
Mon-Fri, Nov. 21-25 Fall recess
Monday, Dec. 5 Field-trip completion deadline (7:30 a.m.)
Mon-Fri, Dec. 5-9 No-examination week
Friday, Dec. 9 Last day to report grades for challenged courses
Saturday, Dec. 10 Commencement Day
Mon-Fri, Dec. 12-16 Final examinations
Friday, Dec. 16 Last day to file graduation applications for degrees to be awarded in May without late service charge
 Last day to submit final grades for Incompletes given in the prior Spring or Summer terms
 Close of Fall semester (5:30 p.m.)
 Last day to submit to the College of Graduate Studies theses, dissertations, and results of the non-thesis requirements for Fall graduate degrees
Monday, Dec. 19 Fall semester grades due

INTERSESSION 2005-2006
Note: Scheduled breaks for the observance of holidays vary by class.
Friday, Dec. 23 Classes begin (7:30 a.m.)
Monday, Jan. 16 Martin Luther King-Idaho Human Rights Day – classes DO NOT meet
Tuesday, Jan. 17 Close of Intersession (5:30 p.m.)
Friday, Jan. 20 Intersession grades due
SPRING SEMESTER 2006

Note: For application deadlines for new and former students, see Undergraduate and Graduate Admissions sections in Part 2 of the Catalog.

Monday, Jan. 9 Law classes begin (7:30 a.m.)
Wednesday, Jan. 11Classes begin (7:30 a.m.)
Thursday, Jan. 12 $50 late registration service charge begins
Monday, Jan. 16 Martin Luther King/Human Rights Day – Classes DO NOT meet
Thursday, Jan. 19 Last day to add course or change course section on-line
Thursday, Jan. 26 Last day to register with $50 service charge but without paying $50 late registration fee
 Last day to turn in Course Level Adjustment forms to the College of Graduate Studies
 Last day to change from audit to regular credit without instructor permission
 Last day to change from pass/fail grading option to regular grading
Wednesday, Feb. 1 Last day to submit Idaho Residency Information
Thursday, Feb. 9 Last day to register with $50 service charge and $50 late registration fee but without petition
 Last day to drop a course without having a grade of ‘W’ recorded (the deadline for accelerated or short courses is when 12.5 percent of the class is completed)
 Last day to change from regular credit to audit without having a grade of ‘W’ recorded
 Last day to reduce the number of credits for which registered in a course
 Last day to change from regular to pass/fail grading option
Friday, Feb. 13 Freshman early warning grades due
Monday, Feb. 20 Presidents’ Day – classes DO NOT meet
Friday, March 10 Last day for midterm examinations
Monday, March 13 Midterm grades due
Mon-Fri, March 13-17 Spring recess
Wednesday, March 29 Last day to withdraw from a course or from the university (the deadline for accelerated or short courses is when less than 60 percent of the class is completed)
 Last day to change from regular credit to audit
Monday, April 3 Academic advising begins for Fall semester
 Registration for Summer courses begins
Saturday, April 15 Registration for Fall courses begins
Monday, May 1 Field-trip completion deadline (7:30 a.m.)
Mon-Fri, May 1-5 No-examination week
Friday, May 5 Last day to report grades for challenged courses
Mon-Fri, May 8-12 Final examinations
Friday, May 12 Last day to file graduation applications for degrees to be awarded in August and December without late service charge
 Last day to submit to the College of Graduate Studies theses, dissertations, and results of the non-thesis requirements for Spring graduate degrees
Saturday, May 13 Commencement Day
Monday, May 15 Spring semester grades due

Regents and Administration

(January 2005)

Board of Regents
Roderic W. Lewis, President, Boise
Laird Stone, Vice President, Twin Falls
Milford Terrell, Secretary, Boise
Paul C. Agidius, Moscow
Blake Hall, Idaho Falls
Karen McGee, Pocatello
Sue Thilo, Coeur d’Alene
Marilyn Howard, State Superintendent of Public Instruction, Boise
(ex officio)
Gary W. Sivers, Executive Director, Boise

University Administration
Timothy P. White, Ph.D., President
Linda J. Morris, Ph.D., Provost
(Vacant), Vice President for University Advancement
Charles R. Hatch, Ph.D., Vice President for Research and Graduate Studies
(Vacant), Vice Provost for Finance and Administration
Jay D. Kenton, Ph.D., Vice Provost for Academic and Student Affairs

Glenn R. Wilde, Ph.D., Vice Provost for Libraries and Information Technology
Ronald W. Force, M.S., Dean of Library Services
Retta W. Pikowsky, M.Ed., Registrar
Daniel D. Davenport, Ph.D., Director of Undergraduate Admissions

College of Graduate Studies
Charles R. Hatch, Ph.D., Vice President for Research and Graduate Studies

College of Law
Donald L. Burnett, Jr., LL.M., Dean

Undergraduate Colleges
Agricultural and Life Sciences – John E. Hammel, Ph.D., Dean
Business and Economics – Byron J. Dangerfield, Ph.D., Dean
Education – Jeanne S. Christiansen, Ph.D., Dean
Engineering – Charles Peterson, Ph.D., Interim Dean
Natural Resources – Steven B. Daley Laursen, Ph.D., Dean
Science – Judith Totman Parrish, Ph.D., Dean
The University of Idaho was created in 1899 by a statute of the 15th territorial legislature. Commonly known as the university charter, that act became part of the state constitution when Idaho was admitted to the Union in 1890.

The university is a publicly supported comprehensive land-grant institution with principal responsibility in Idaho for performing research and granting the Doctor of Philosophy degree. The liberal arts and sciences, offered through the College of Letters, Arts and Social Science and the College of Science, are the heart of the university’s educational programs. The primary areas of statewide responsibility of the university are agriculture, architecture, engineering, natural resources, mining and metallurgy (including international programs in those areas), foreign languages, and law.

Additional university responsibilities include programs in business, economics, and education as well as the regional medical and veterinary medical education programs in which the state participates.

To assist with its statewide mission, the university maintains resident instruction centers in Coeur d’Alene, Boise, and Idaho Falls, extension offices in 42 of Idaho’s 44 counties, research and extension centers in Aberdeen, Caldwell, Dubois, Kimberly, Moscow, Parma, Salmon, Sandpoint, Teton, and Twin Falls, and field stations at McCall, Point, and the Taylor Ranch in central Idaho. Through its international programs, the university extends its services to many other countries.

Over 18,000 students from all states and more than 90 foreign countries choose programs from a vast array of disciplines. Strong undergraduate programs are coupled with nationally recognized research and scholarly achievements. There are more than 750 faculty members in teaching and research, and 1,500 staff and professional personnel.

The University Library and the Law Library contain over 2 million items of books, bound periodicals, microforms, and U.S. government publications. These resources, together with the libraries at Washington State University (eight miles to the west), equal those of major metropolitan areas.

The Moscow campus and adjacent farms cover nearly 800 acres. Other university lands, including the nearby university farms and experimental forests, exceed 10,000 acres.

The university is proud of its friendly campus atmosphere and sense of community. For example, the tradition of “Hello Walk” leading to the Administration Building dates from the 1920s, when the university president greeted students and members of the faculty and staff with a warm hello and friendly smile on his way to work. The university has granted 92,253 degrees since its founding, including 2,650 to the 2003-2004 graduating class.

The feeling of camaraderie that pervades the campus extends to Moscow, the university’s “hometown.” It is a thriving community of 21,000 friendly people located in the northern part of the state about 90 miles southeast of Spokane, Washington.

Moscow is the gateway to a natural wonderland. The surrounding Palouse hills and the mountains and lakes of northern Idaho provide a scenic background for university facilities. Skiing, boating, and other outdoor recreation resources are available within easy driving distance. They include the Sawtooth and Hells Canyon national recreation areas, Frank Church River of No Return Wilderness, and scenic rivers such as the Snake, Clearwater, Salmon, Lochsa, and Selway.

The university is a member of the National Association of State Universities and Land-Grant Colleges and is accredited by the Northwest Association of Schools and Colleges. Additional approval or accreditation for specific programs has been granted by the following organizations: American Bar Association, American Chemical Society, American Dietetics Association, Association of American Law Schools, Accreditation Board for Engineering and Technology, Commission on Accreditation of Allied Health Education Programs, Computer Science Accreditation Commission of the Computing Sciences Accreditation Board (bachelor’s degree in computer science), Council on Rehabilitation Education, National Architectural Accrediting Board, American Society of Landscape Architects, National Association of Schools of Music, National Council for Accreditation of Teacher Education, Society of American Foresters, National Association of School Psychologists, the Council for the Accreditation of Counseling and Related Educational Programs, and the National Recreation and Park Association Council on Accreditation.

SBOE Mission Statement – University of Idaho

1. Type of Institution
The University of Idaho is a research II, land-grant institution committed to undergraduate and graduate-research education with extension services responsive to Idaho and the region’s business and community needs. The university is also responsible for regional medical and veterinary medical education programs in which the state of Idaho participates.

The University of Idaho will formulate its academic plan and generate programs with primary emphasis on agriculture, forestry, mining and metallurgy, engineering, architecture, law, foreign languages, teacher preparation, and international programs related to the foregoing. The University of Idaho will give continuing emphasis in the areas of business and education and will maintain basic strengths in the liberal arts and sciences, which provide the core curriculum or general education portion of the curriculum.

2. Programs and Services (listed in order of emphasis)

Baccalaureate Education: Offers a wide range of baccalaureate degrees and professional programs.

Graduate-Research: Offers a wide range of masters, doctoral and professional programs and also coordinates and conducts extensive research programs that are consistent with state needs.

Extension Services, Continuing Education and Distance Learning: Supports extension offices throughout the state in cooperation with federal, state and county governments, provides life-long learning opportunities and uses a variety of delivery methods to meet the needs of select, yet diverse constituencies in the state and region.

Associate Education: None

Certificates/Diplomas: None

Technical and Workforce Training: None

3. Constituencies Served
The institution serves students, business and industry, the professions, and public sector groups throughout the state and region as well as diverse and special constituencies. The university also has specific responsibilities in research and extension programs related to its land-grant functions. The University of Idaho works in collaboration with other state and regional post-secondary institutions in serving these constituencies.

Purpose, Functions, and Objectives of the University of Idaho

The highest aspiration of a university is to imbue the human mind with knowledge, tolerance, and vision, and to stimulate a lasting attitude of inquiry. The University of Idaho shares this aspiration with universities everywhere. The particular purpose, functions, and objectives of the university have been defined as follows:

Purpose. In the widest sense, the purpose of the University of Idaho, a publicly supported comprehensive land-grant institution, is to serve the people of the state and nation as a major center for the preservation, advancement, and transmission of knowledge. Deriving from this purpose are the functions to be performed and the objectives to be
achieved through the interaction of the various components and publics of the university.

Basic Functions and Objectives. Since its founding, the functions of the university have been viewed as threefold—teaching, research, and service. The broad objectives relating to these functions are, respectively:

1. To offer undergraduate and graduate academic programs of excellent quality in the liberal arts and sciences and in many professional disciplines so that qualified students may develop into responsible, thinking citizens, provided with a sound general education, prepared for a lifetime of learning, and equipped with the professional and technical skills needed by society.

2. To add to knowledge through research, scholarship, and creative activities in both fundamental and applied fields, and to seek ways of applying that knowledge to the betterment and enrichment of humanity.

3. To make readily available to all people of the state the results of research and the rich heritage of human culture embodied in the arts and sciences.

Unique Functions of the University. As a part of the coordinated system of higher education that encompasses the state universities and college and the public community colleges, the University of Idaho has historically had certain unique functions. Specifically, the university serves the state as:

1. Its comprehensive land-grant institution, with primary statewide responsibility for instruction, research, extension, and public service in agriculture, architecture, engineering, forestry and wildlife, law, mining and metallurgy, and in designated areas in the arts and sciences, business, and education.

2. The institution with principal responsibility for research, research-oriented graduate education, and the granting of the Ph.D. degree. As a concomitant of this responsibility, UI’s faculty members conduct research as a clearly defined element of their professional duties.

3. The institution responsible for the state’s role as a partner in regional cooperative programs in medical and veterinary medical education.

4. A center for professional education, operating accredited professional programs in architecture, chemistry, education, engineering, forestry, family and consumer sciences, law, music, and wildlife, fishery, and range sciences, and also offering comprehensive programs in the preparation of public-school teachers, administrators, and counselors.

General Honorary Societies

The university has long possessed nationally recognized marks of excellence, including chapters of national honorary and scholarship societies in practically every specialized field and chapters of the following general honorary societies: Phi Beta Kappa (since 1926), Sigma Xi (since 1922), and Golden Key (since 1990).

Phi Beta Kappa. To qualify for nomination to Phi Beta Kappa, a candidate must have a major in the College of Letters, Arts and Social Sciences or the College of Science. They must have achieved a cumulative grade-point average of at least 3.50 and have fulfilled the following distribution requirements: humanities (7 semester credits); laboratory sciences and/or mathematics (11 semester credits); social sciences (7 semester credits); foreign language (completion of a single foreign language through the intermediate level, or the equivalent 16 semester credits or 4 high-school units in a single foreign language).

Phi Kappa Phi. To qualify for nomination by the local chapter of Phi Kappa Phi, a candidate must be (1) registered at UI for at least one year and (2) enrolled in the final period of his or her junior year and rank scholastically in the upper 5 percent of the class or a senior enrolled in a course of study leading to a baccalaureate degree and rank scholastically in the upper 10 percent of his or her class.

Sigma Xi. To qualify for nomination to associate membership in Sigma Xi, a student must have shown marked aptitude for research in some field of pure or applied science. An associate member must have shown noteworthy achievement as an original investigator in some field of pure or applied science to qualify for nomination to full membership.

Golden Key National Honor Society. To qualify for membership in Golden Key, a student must have junior or senior standing and must have a cumulative grade-point average that falls in the top 15 percent of the junior and senior classes. Transfer students who have completed at least 25 semester credits at the University of Idaho and meet the grade-point average requirements also qualify for membership.

Libraries

The University Library and the Law Library hold over 2 million items. The libraries receive 10,700 serials and add over 100,000 items annually. There are subscriptions to 100 newspapers, including all Idaho newspapers and representative papers from around the U.S. The library is a regional depository for U.S. and Idaho state government documents and U.S. patents, and is a designated Earth Science Information Center.

The library’s collections emphasize the land-grant traditions of the basic sciences, agriculture, and the natural resources while maintaining supporting collections in the humanities and social sciences. The Special Collections and Archives Division is rich in collections of Pacific Northwest and Idaho state history, including books, photographs, and historical maps. The archives contain personal papers and records of families, politicians, educators, authors, and business records of lumber companies, mines, and railroads.

The library building was expanded and remodeled in 1993, resulting in essentially a new library facility. The library is air-conditioned and is open 8 a.m. to midnight daily during the school terms.

Library services are fully computerized, and the library has subscriptions to numerous automated indexes, services, and electronic journals and books. There are 180 public-access computers within the library, and all library computer resources are fully accessible in all campus computing labs and off-campus over the Internet 24/7.

There is a reciprocal use agreement between the UI Library and the Washington State University Libraries located in Pullman, eight miles away, giving students immediate access to the equivalent of library resources in many urban areas. The library cooperates with institutions throughout the Pacific Northwest. Overnight delivery services ensure rapid delivery of items held throughout the area.

The library operates a staffed photocopy service that will make black and white or color photocopies from library materials, as well as enlargements, reductions, and copies on special paper. Self-service machines located throughout the building accept coins, debit cards, or charges to university budgets.

Art Galleries

The galleries serve the university, community, state, and region and are the principal facilities emphasizing the visual arts in northern Idaho. The University Gallery occupies the main floor of Ridenbaugh Hall on campus (corner of Blake Street and Campus Drive) and the work of University Undergraduate and Graduated students studying in the disciplines of Art & Design, Architecture, and Landscape Architecture is exhibited here during the academic year. The Prichard Art Gallery is located at 414/416 South Main Street in downtown Moscow; it is open throughout the year. All gallery programs and exhibitions are open to the public and no admission is charged.

Through the galleries’ rotation of exhibits, visitors may see examples of the full range of visual arts, including traditional and experimental art media, as well as decorative and applied design. The objectives of these galleries are to provide opportunities for local, regional, and national artists and students to exhibit their work, and a means by which visitors’ awareness and appreciation of the arts is heightened. The galleries also serve as an excellent teaching device. Ties between the university and local and regional communities are strengthened by the outreach efforts of the Prichard Art Gallery.
PART ONE
The University

Research

Research is a primary function of the University of Idaho and is closely related to teaching for both students and faculty members, especially at the graduate level. Research and teaching are intimately associated and mutually complementary. Hence, most classroom teaching faculty members are also actively engaged in research.

University Research Office

The University Research Office stimulates and supports research and creative activities at the university. While colleges, departments, and other units commonly develop and administer their own scholarly activities, the Research Office focuses on promoting research university-wide and on providing assistance in writing multidisciplinary proposals and in obtaining research funds. This is accomplished by organizing and promoting research activities such as special grant programs and research awards; providing to individuals and departments information on grant opportunities from federal agencies, state and private sector groups and foundations; and processing and recording all grant and contract proposals to ensure that policies and procedures are recognized and followed. The Research Office strives to increase UI’s research competitiveness by offering assistance to faculty, staff, and students.

Idaho Research Foundation

The Idaho Research Foundation, Inc. (IRF), is a private nonprofit corporation organized for the purpose of supporting research at the university. Its principal activity is licensing technologies resulting from academic research to the private sector. The IRF identifies and protects the intellectual property developed at the University of Idaho and transfers it to the private sector through licensing agreements in order to secure support for and further develop the university’s academic, research, and service responsibilities. The IRF also disseminates scientific knowledge and technical information and encourages and assists researchers and inventors by providing the means by which their scientific discoveries may be patented, copyrighted, developed, and applied. The transfer of technology generated through UI research turns society’s investment into new products and industrial processes, thus increasing Idaho’s competitiveness as well as the nation’s.

Research Units

Research activities are many and varied, and are unique for each department and college. Certain administrative units provide an additional research function and emphasis that are, in many cases, related to the research program of the departments. Some of these units are:

Aquaculture Research Institute. The Aquaculture Research Institute (ARI), University Research Office, conducts, facilitates, supports, directs, and coordinates aquaculture research activities at the University of Idaho, at the Hagerman Fish Culture Experiment Station, and throughout the state. Through the institute, UI scientists from various disciplines conduct research in both commercial and conservation aquaculture sciences and technologies such as fish culture and production efficiency, fish breeding and genetics, fish nutrition and growth physiology, fish diseases and pathology, fish waste management and water quality assessment, aquaculture marketing and economics, and recovery efforts for endangered fish species. The ARI does not offer degrees. Rather, the ARI assists academic departments in the training of graduate-level students by providing resources and opportunities for research.

Bureau of Public Affairs Research. The Bureau of Public Affairs Research, College of Letters, Arts and Social Sciences, prepares research studies and handbooks for state and local officials; it also conducts training for state and local government employees. The Idaho Election Report, a summary and analysis of state and federal elections, is published by the bureau every two years.

Information Technology Services (ITS)

ITS provides the university community with information technologies and support to complement its teaching, learning, research, telecommunications, and outreach activities, as well as serve administrative operations. The ITS main office is located in the UI Administration Building, Room 140, phone 208/885-6721. Some services provided by ITS include:

- **Help Desk services** – including technical assistance through telephone, e-mail, and walk-in support. The Help Desk can be visited at Admin. 133 or reached at 208/885-APAL (208/885-2725) or helpdesk@uidaho.edu.
- **Student Computer Labs** – located throughout the Moscow campus with a mix of 600 Pentium and Macintosh computers, also computer access for individuals with disabilities. Some labs are open 23 hours a day.
- **Wireless Laptop Checkout** – available in the Idaho Commons and Library.
- **Campus Wireless Network** – is available in the core of campus. The wireless network utilizes the 802.11b network standard.
- **Technical support** – for the university’s 20 media-enhanced classrooms and 8 compressed video classrooms.
- **Printing and Design Services** – providing graphic design for print, web and displays and in-house printing and printing consultation for the university community.
- **Copier and Imaging Services** – copy centers are located in the Idaho Commons and Student Union Building. The Commons Copy Center provides black and white, color and large format imaging services in addition to a variety of bindery services including binding for dissertations and theses.
- **Telephone Services** – providing complete telephony service and support to the Moscow campus.
- **Audio/Visual equipment** – check out and classroom support services.
- **Photographic Services** – providing on location photography, film processing, black and white photography and a digital library of University of Idaho images.
- **Management Information Systems** – which aids in the analysis, maintenance, and installation of purchased software for administrative clients.
- **Video Production/Teleconferencing Services**.
- **Network and Systems** – provides network and server-based services including: e-mail; Internet access; high-speed campus data network; wide-area network connecting university sites across Idaho; server-based personal and shared file space; print queues; wiring and fiber optics for data and voice networks; and student computer labs.

The ITS web page can be found on the World Wide Web at http://www.uidaho.edu/its and provides detailed coverage of the functions and services of this unit.
Center for Advanced Microelectronics and Biomolecular Research. At CAMBR advanced microelectronics are created for both government and commercial applications. There are currently many CAMBR-designed processors flying in space, supporting missions including the Hubble Space Telescope, Mars Odyssey and other NASA and DoD spacecraft. The apparatus is used to determine the density of pure gases. CAMBR also develops linear and nonlinear regression technology of molecular biology and microelectronics in the development of electronic sensors. CAMBR provides graduate education opportunities at the master’s and doctoral levels for individuals interested in multidisciplinary research programs associated with engineering and the life sciences. CAMBR was created at the University of Idaho in 1985 as the Microelectronics Research Center (MRC), transitioned to the University of New Mexico in 1992, named as the NASA Institute of Advanced Microelectronics in 1995, and returned to the University of Idaho in 2002. CAMBR is located at the University of Idaho Research Park in Post Falls.

Center for Thermodynamic Studies. The Center for Applied Thermodynamic Studies (CATS) was established at the College of Engineering in 1975. Since its inception, the primary focus of the research in CATS has been the development of standard reference quality thermodynamic property formulations for fluids of engineering interest. In addition to equation of state development, CATS research areas include the extended corresponding states methods and mathematical formulation development for transport properties of cryogenic fluids, refrigerants, and natural gases. In conjunction with this research, CATS also develops linear and nonlinear regression techniques and fluid properties database. The CATS Experimental Laboratory houses a dual-sinker densimeter and a magnetic suspension balance. The apparatus is used to determine the density of pure gases and gas mixtures. CATS is an integral part of the research program of the College of Engineering. Graduate and undergraduate students in mechanical and chemical engineering are employed as research assistants in the work of the center. Many students have participated in theses and short-term projects as part of their academic programs. Research at the center has also resulted in a significant strengthening of the undergraduate and graduate courses in engineering thermodynamics.

Center for Business Development and Entrepreneurship. The Center for Business Development and Entrepreneurship (CBDE) is a ‘virtual’ organization within the College of Business and Economics. The CBDE provides an administrative framework and support services for faculty-led business outreach efforts. The goals of the CBDE are to support business development in Idaho and the region served by the University, while providing students with practical experience in ‘project’ settings. Outreach activities supported by the CBDE faculty include non-credit seminars and workshops, business consulting projects involving students working in project teams, and research projects addressing particular business problems such as market research, productivity improvement and economic impact analysis.

Center for Science and Dependable Systems. The Center for Science and Dependable Systems (CSDS) operates as a center in the Microelectronics Research and Communications Institute (MRCI), University Research Office. This board-approved center concentrates on computer-related security education and research. The National Security Agency designated the University of Idaho in 1999 as one of the initial seven Centers of Excellence in Information Assurance Education, partly in recognition of CSDS’s efforts in promoting information security education and research. This status was reapproved in 2002. The CSDS faculty conducts research in the areas of system defense, intrusion detection, critical infrastructure protection, secure protocols, network security, evolutionary algorithms, computer forensics, reliability, and fault tolerance.

Center for Educational Research and Public Service. The Center for Educational Research and Public Service was established to conduct and support research and evaluation, to facilitate research by College of Education faculty members and graduate students, and to be of assistance to local school districts and to other educational institutions. The center publishes a monthly newsletter providing information on grant opportunities (http://www.uidaho.edu/ed/ceps).

Center for Forest Nursery and Seedling Research. The Center for Forest Nursery and Seedling Research develops and demonstrates cost and environmentally effective processes for propagation, growth, and subsequent survival of forest seedlings. Processes are tested and demonstrated in a production scale nursery operation, with subsequent transfer of technology to the forest nursery industry of the region.

Center for Intelligent Systems Research. The Center for Intelligent Systems Research (CISR) operates as a center in the Microelectronics Research and Communications Institute (MRCI), University Research Office. CISR does research, teaching, and outreach in the development of intelligent autonomous systems. These systems include, but are not limited to, self-propelled autonomous vehicles operating under on-board intelligent computer control. Other computer-controlled electrical, mechanical, and chemical systems also fall under the purview of CISR. CISR provides a structure of collaboration among researchers, students, and industrialists concerned with the development of autonomous machines controlled by intelligent computers.

Center for International Training and Outreach. The Center for International Training and Outreach (CITO) functions as the College of Natural Resource’s international outreach center. Its central long-term goal is the development of a self-sufficient program of worldwide training, technical assistance and research activities focused on three related substantive areas: (1) nature-based tourism, (2) environmental interpretation, and (3) protected area management and sustainable development. Key within CITO’s functions is the cultivation of strategic linkages within organizations that can help facilitate a greater role for the UI and the College of Natural Resources in international training and outreach. Paramount in this vision is the establishment of strategic linkages and institutional partnerships with government, private firms, and international institutions of higher education.

Center for Research on Invasive Species. The Center for Research on Invasive Species (CRISSSP) combines advanced techniques in molecular biology with traditional approaches to biological and ecological management, in order to maintain and enhance the integrity of our nation’s native plant and animal populations. The goal of the center is to address the challenges and inform policy on invasive species and small or threatened populations. This will be accomplished by taking an integrated approach that coordinates resources and expertise for scientific research on these problems. The Center’s mission also incorporates public education and outreach on invasive species and conservation biology issues. The Center contains state-of-the-art instrumentation for molecular biology and a dedicated computer laboratory, to facilitate data acquisition and analysis. Stipends for graduate study and undergraduate internships are available through the Center to students with an interest in invasive species and/or conservation biology issues.

Center for ETHICS* (Ethical Theory and Honor in Competition and Sport). The Center for ETHICS*, Division of Health, Physical Education, Recreation and Dance, College of Education, is housed in “teaching the tradition of competitive integrity to inspire leaders of character.” The goal of the center is to improve moral development and character education through intervention, consultation, and leadership in advancing moral education.

CISR does research, teaching, and outreach in the development of intelligent autonomous systems. These systems include, but are not limited to, self-propelled autonomous vehicles operating under on-board intelligent computer control. Other computer-controlled electrical, mechanical, and chemical systems also fall under the purview of CISR. CISR provides a structure of collaboration among researchers, students, and industrialists concerned with the development of autonomous machines controlled by intelligent computers.

Center for International Training and Outreach. The Center for International Training and Outreach (CITO) functions as the College of Natural Resource’s international outreach center. Its central long-term goal is the development of a self-sufficient program of worldwide training, technical assistance and research activities focused on three related substantive areas: (1) nature-based tourism, (2) environmental interpretation, and (3) protected area management and sustainable development. Key within CITO’s functions is the cultivation of strategic linkages within organizations that can help facilitate a greater role for the UI and the College of Natural Resources in international training and outreach. Paramount in this vision is the establishment of strategic linkages and institutional partnerships with government, private firms, and international institutions of higher education.

Center for Research on Invasive Species. The Center for Research on Invasive Species (CRISSSP) combines advanced techniques in molecular biology with traditional approaches to biological and ecological management, in order to maintain and enhance the integrity of our nation’s native plant and animal populations. The goal of the center is to address the challenges and inform policy on invasive species and small or threatened populations. This will be accomplished by taking an integrated approach that coordinates resources and expertise for scientific research on these problems. The Center’s mission also incorporates public education and outreach on invasive species and conservation biology issues. The Center contains state-of-the-art instrumentation for molecular biology and a dedicated computer laboratory, to facilitate data acquisition and analysis. Stipends for graduate study and undergraduate internships are available through the Center to students with an interest in invasive species and/or conservation biology issues.

Center for Secure and Dependable Systems. The Center for Secure and Dependable Systems (CSDS) operates as a center in the Microelectronics Research and Communications Institute (MRCI), University Research Office. This board-approved center concentrates on computer-related security education and research. The National Security Agency designated the University of Idaho in 1999 as one of the initial seven Centers of Excellence in Information Assurance Education, partly in recognition of CSDS’s efforts in promoting information security education and research. This status was reapproved in 2002. The CSDS faculty conducts research in the areas of system defense, intrusion detection, critical infrastructure protection, secure protocols, network security, evolutionary algorithms, computer forensics, reliability, and fault tolerance.
Electron Microscopy Center. A campus-wide facility, including scanning and transmission electron microscopes and energy-dispersive x-ray microanalysis, is available for use in teaching, research, and service. Located in the Holm Research Center at the western edge of the campus, this facility is available to students and faculty members. Information concerning use of the EM Center may be secured directly from the facility or through the University Research Office.

Environmental Research Institute. The Environmental Research Institute (ERI), University Research Office, supports environmental and ecological research at the University of Idaho in areas such as microbial physiology and genetics, subsurface microbiology, ecosystem processes and dynamics, bioassay design, microbial community characterization, astrobiology, and bioremediation of soils and water contaminated by toxic chemicals. ERI supports research by developing research proposals and providing instruments, facilities, and services, including molecular biology computing, capillary electrophoresis, liquid/chromatography/mass spectrometry, ion chromatography, electrospray tandem mass spectrometry, supercritical fluid extraction, and access to inductance coupled plasma atomic emission, HPLC, SEM, and TCLP testing capability. The Institute has full capability for recombinant DNA research and has recently, in association with the Idaho National Engineering and Environmental Laboratory (INEL), added a Molecular Ecology and Genomics Laboratory with complete capability for preparation and experimentation with oligonucleotide arrays. ERI assists in the multidisciplinary training of predoctoral and postdoctoral scientists from departments that award graduate degrees in environmental fields.

Forest, Wildlife and Range Experiment Station. The Forest, Wildlife and Range (FWR) Experiment Station is the research arm of the College of Natural Resources. Its staff includes all members of the college faculty, full-time research associates and technicians, and graduate students. The station staff conducts research on a wide variety of natural resource management problems in the areas of forestry, forest products, range, wildland recreation, wildlife, and fisheries. Because many of the graduate students enrolled in the college are on assistantships associated with station projects, the programs of the experiment station are closely connected with the college’s graduate education mission.

Glaciological and Arctic Sciences Institute. Established by the Board of Regents in 1975, the Glaciological and Arctic Sciences Institute, located in the College of Science, is a cooperative summer program with the University of Alaska-Homer and the Foundation for Glacier and Environmental Research, Pacific Science Center, Seattle WA. It promotes opportunities and administers academic field work on the Juneau Icefield on the Alaska-B.C.-Yukon border. The two-month field training and research involvement on the Western Hemisphere's fifth largest icecap is an expeditionary experience oriented to training and emphasizing the environmental and earth systems sciences. It includes field geology, exploration geophysics, glaciology, Pleistocene stratigraphy, process geomorphology, glacio-hydrology, arctic geobotany, remote sensing, and allied areas of the atmospheric sciences and survey and mapping. This program has an international scope and is the only one of its kind in the U.S. The summer session is in an expedition mode and runs for eight consecutive weeks during July and August. Upwards of 40 students participate, including undergraduate and graduate students, some high school science teachers, and a select number of high ability high school senior student advance placements. In recent years, NASA, the National Science Foundation, the M. J. Murdock Charitable Trust, the U.S. Army Research Office, the Department of Defense, the National Geographic Society, and the Foundation for Glacier Research have supported a number of full and partial field scholarships. Because these awards are limited and competitive, early application is encouraged. Experiential training is emphasized and up to 9 credits can be earned. Opportunities for senior thesis and graduate thesis work are available with a faculty/student ratio of nearly one to one.

Hagerman Fish Culture Experiment Station. The Hagerman Fish Culture Experiment Station is located in the heart of Idaho’s aquaculture industry in the Magic Valley and its focus is on rainbow trout. Most of Idaho’s largemouth bass aquaculture operations are located nearby, and the close proximity of the research facility provides opportunities for industry partnerships in aquaculture research.

The Hagerman Station is a field laboratory of the College of Agricultural and Life Sciences, and is a part of the Aquaculture Research Institute. UI scientists from various disciplines conduct research at the station in both commercial and conservation aquaculture sciences and technologies. Research is conducted within two centers at the station: the Center for Sustainable Aquaculture and the Center for Salmonid and Freshwater Species at Risk. The Hagerman Station has both exceptional water resources supporting its wet laboratories and outdoor fish culture systems and leading edge analytical resources supporting functional genomics in association with nutrition, immune function, growth, reproduction, and marker-based breeding programs for rainbow trout. The Hagerman Station, which hosts USDA Agriculture Research Service scientists who contribute to UI research, educational and extension programs. Idaho Springs, a nearby commercial-scale trout farm, is operated by the Hagerman Station as a research farm where large-scale trials and long-term broodstock holding can be conducted. Scientists at the station are deeply involved in recovery efforts for Idaho’s endangered fish species, and in agriculture in the state and region. Graduate education at the M.S. and Ph.D. levels is an integral part of most research projects. Research Centers located at Aberdeen, Boise, Caldwell, Kimberly, Moscow, Parma, Sandpoint, Salmon, Teton, and Twin Falls provide opportunities to conduct studies in local areas where problems exist. The off-campus agricultural research centers represent a significant component of the college’s and university’s research capacity in terms of personnel, facilities and experimental land resources. Over 40 of the college’s research faculty and over 100 research support staff are stationed at these facilities. Facilities at the off-campus centers are valued in excess of $50 million and the centers have an experiment land resource exceeding 4,000 acres. Cooperative research programs involving a number of USDA Agricultural Research Service scientists and Federal laboratory facilities exist at Aberdeen, Kimberly, and Parma.

Idaho Agricultural Experiment Station. The Idaho Agricultural Experiment Station is the research arm of the College of Agricultural and Life Sciences. Applied and fundamental research programs provide a technological base to assist the agricultural industries and rural development in the state and region. Graduate education at the M.S. and Ph.D. levels is an integral part of most research projects. Research Centers located at Aberdeen, Boise, Caldwell, Kimberly, Moscow, Parma, Sandpoint, Salmon, Teton, and Twin Falls provide opportunities to conduct studies in local areas where problems exist. The off-campus agricultural research centers represent a significant component of the college’s and university’s research capacity in terms of personnel, facilities and experimental land resources. Over 40 of the college’s research faculty and over 100 research support staff are stationed at these centers. The station works closely with Idaho’s aquaculture extension educator, who is nearby in Idaho’s Magic Valley. Through this collaboration and that with other UI faculty and staff throughout the state, a variety of outreach activities designed to educate the public and support and promote aquaculture are pursued.

Idaho Cooperative Park Studies Unit. The Cooperative Park Studies Unit in the College of Natural Resources applies the results of sociological and biological research to the management of parks, preserves, and recreation areas. Because major funding comes from the National Park Service, the unit has a primary responsibility to conduct research related to the mission of the NPS and the management of the national park system. An important responsibility of the unit is technical assistance to park staffs, working directly with resource managers to help solve management problems.

Idaho Forest, Wildlife and Range Policy Analysis Group. The Idaho Forest, Wildlife and Range Policy Analysis Group is a research program of the Idaho Forest, Wildlife and Range Experiment Station, College of Natural Resources, created by the Idaho legislature to provide timely and objective analyses of natural resource issues of importance to the citizens of Idaho. Graduate students are involved in specific short-term tasks to support policy analysis projects.

Idaho Geological Survey. Established in 1919, the Idaho Geological Survey is the lead agency for collecting, interpreting, and disseminating all scientific information on the geology and mineral resources of Idaho. As a special program of the University of Idaho, the Idaho Geological Survey’s main office is at the Moscow campus. The Survey also has...
Institute for Pacific Northwest Studies. The Institute for Pacific Northwest Studies, College of Letters, Arts, and Social Sciences, education and awareness of history, art, and life in the Pacific Northwest, Washington, Idaho, western Montana, Alaska, and western Canada. It fosters scholarly investigation as well as popular understanding of the Pacific Northwest and seeks to relate developments there to those in the rest of the United States, Canada, and the world. The institute promotes inter-institutional and interdisciplinary cooperation among investigators in such areas as anthropology, history, literature, political science, and sociology, and the dissemination of the resulting knowledge through monographs, lectures, seminars, workshops, and popular forums.

Intermountain Forest Nutrition Cooperative. The Intermountain Forest Nutrition Cooperative in the College of Natural Resources includes the major state, federal, and private forest management organizations throughout the Inland Northwest. The cooperative's main function is the support of research dealing with the nutritional management of forests. Results of such research have the potential for application in forest management programs.

Laboratory Animal Research Facility. A centrally located facility for housing and maintaining small animals for use in teaching and research is available to faculty members and students. Information concerning space availability, use, and services provided is available through the University Research Office or through the facility itself.

Laboratory of Anthropology. The Alfred W. Bowers Laboratory of Anthropology serves as a research unit within the Department of Sociology, Anthropology, and Justice Studies, College of Letters, Arts, and Social Sciences. The three primary objectives are research, cultural resource management, and public outreach and education. Research facilities include the Pacific Northwest Archaeological Archives, the Asian American Comparative Collection, and the Crabtree Lithic Collection. As the Archaeological Survey of Idaho, Northern Repository, the Laboratory of Anthropology houses site forms and archaeological collections for the ten northern counties of Idaho. Public education projects include interactive presentations at area schools.

Lionel Hampton Center. The mission of the Lionel Hampton Center, Academic Affairs, is to ensure the future of the American art form jazz, through unique educational, research, and performance opportunities. The center is a unique partnership between the UI Lionel Hampton Jazz Festival and the Lionel Hampton School of Music. Each year, in late February, the UI Lionel Hampton Jazz Festival brings thousands of students from all over the U.S., Canada, and as far away as Japan to the UI campus to perform for judges and peers, enjoy world class concerts, and learn from jazz masters in workshop settings. The School of Music supports scholarships, visiting professorships, and courses in jazz studies. Together the UI Lionel Hampton Jazz Festival and School of Music service significant jazz archives including original scores, recordings, film/video, letters, photographs, and other documents, a terrific research base for jazz studies.

Martin Institute for Peace Studies and Conflict Resolution. The Martin Institute for Peace Studies and Conflict Resolution is an interdisciplinary research, teaching, and service center at the University of Idaho. It was founded for the purposes of advancing research and teaching into the causes of conflict and peaceful resolution. Research is supported on global conflict and policy issues. The institute administers the undergraduate major in international studies through the Martin School of International Affairs and supports courses on conflict and peace.

Microelectronics Research and Communications Institute. The Microelectronics Research and Communications Institute (MRCI), University Research Office, first established at the University of Idaho in 1983, focuses its research efforts on the application, development, design, and testing of high performance electronic circuits and systems. Since 1995, MRCI's capabilities have expanded into other disciplines such as avionics, computer security, neuromorphic computing, communications and information engineering, electromagnetics, and intelligent control systems. Partnerships with local and national industries as well as governmental agencies continue to provide research opportunities for University of Idaho graduate and undergraduate students. The MRCI
also collaborates with ERI and NIATT and with several University of Idaho departments to enhance multidisciplinary research endeavors. Additionally, two research centers approved by the Idaho State Board of Education (SBOE) reside in the MRCI: Center for Intelligent Systems Research (CISR) and Center for Secure and Dependable Systems (CSDS).

National Institute for Advanced Transportation Technology. The mission of the National Institute for Advanced Transportation Technology (NIATT), University Research Office, is to work with industry, government, and research institutions to develop, evaluate, and market technologies that will improve the design and operation of transportation systems and vehicles. NIATT is one of 33 university-based centers of excellence established by US DOT to advance U.S. technology and expertise in the many disciplines comprising transportation through the mechanisms of education, research and technology transfer. Four centers currently operate as part of NIATT, each with a unique mission related to transportation. The Center for Clean Vehicle Technology focuses on research to promote a cleaner environment and reduce our dependence on foreign oil, testing clean engine technologies on a variety of vehicle test beds. The Center for Traffic Operations and Control conducts research concerning traffic detection, control, surveillance, simulation and optimization. Erosion control, bridge construction, and pavement design, as well as planning methods, design practices, and software development fall under the auspices of the Center for Transportation Information. The Idaho Technology Transfer Center also operates within NIATT, supporting and enhancing the overall effectiveness of local transportation agencies through communication, consultation, technical support, and training programs. NIATT provides opportunities for graduate and undergraduate students to participate in research supported by the University Transportation Centers program, the Idaho Transportation Department.

Potato Center of Distinction. The Center encompasses research programs on development of new cultivars in concert with USDA-ARS potato germplasm program; development and refinement of production methods; development on insect, disease, and weed germplasm program; development and refinement of storage methods; and utilization of potato products. The Center’s education program includes extension programming focusing on variety choice, crop production, pest management, storage, and processing. The Center also includes utilization and pesticide residue testing, research on genetic manipulation of the potato, and economic research.

Remote Sensing Research Unit. The Remote Sensing Research Unit, College of Natural Resources, was formed to encourage, facilitate, and coordinate, on an interdisciplinary basis, remote sensing and geographic information system (GIS) research at UI. The unit maintains “state of the art” computing hardware, software, and field equipment for project support. Research funding comes from a variety of sources including NASA, USFS, and commercial forest industries, among others. Most research projects utilize graduate students as essential elements in both data acquisition and interpretation. These projects often form the basis of either a thesis or dissertation.

Rocky Mountain Cooperative Ecosystem Studies Unit. The Rocky Mountain Cooperative Ecosystem Studies Unit, College of Natural Resources, is a university-federal agency partnership involving the University of Idaho, University of Montana, Montana State University, Salish Kootenai College, Utah State University, Washington State University, and federal land management agencies. The mission of this unit is to improve the scientific base for managing ecosystems in the rapidly changing social, cultural, and environmental landscape of the Rocky Mountain Region. The unit provides research, technical assistance, and training programs for federal partners and provides support for faculty and graduate student ecosystem studies programs.

Rocky Mountain Forest Experiment Station. The Rocky Mountain Forest Experiment Station, College of Natural Resources, with facilities on the UI campus, is a research branch of the USDA Forest Service. It conducts research in silviculture, forest health, forest genetics, and watershed management. The station provides funding to UI faculty and graduate students to pursue forestry and watershed management sciences.

Snake River Conservation Research Center. The Snake River Conservation Research Center at Kimberly, Idaho, has been developed as a cooperative facility between UI and the U.S. Department of Agriculture. USDA scientists specialize in research to improve soil and water management practices and to contribute to a better understanding of basic soil processes. Programs are focused on systems and practices that improve irrigation uniformity, efficiency, and crop yields; decrease costs and energy; and reduce soil erosion. Collaborative research projects between the USDA and UI specialists provide graduate students the opportunity to work closely with experts in both agencies and to utilize expanded facilities. USDA scientists hold adjunct faculty rank and may assist in directing student research projects and serve on graduate committees.

Statistics Consulting Center. The Statistics Consulting Center, College of Science, provides assistance in the design of experiments and sample surveys, advice on statistical analyses, and expertise on recent developments in statistical research. Proper statistical design and analysis play a key role in producing quality research within the university. The optimal time to seek statistical consulting is during the earliest stages of the research project, and certainly before any data collection stage. Faculty members and graduate students from any discipline are welcome. The center is located in on the fourth floor of Brink Hall. There is no charge for these services.

USDA Hemoparasitic Disease Research Unit. The USDA Hemoparasitic Disease Research Unit, College of Agricultural and Life Sciences, is a USDA-University of Idaho cooperative research unit carrying on studies dealing with blood parasites of livestock. This is the only USDA research unit dealing with hemoparasitic diseases, which are of major importance in livestock throughout the world. USDA personnel hold graduate research appointments with UI and/or Washington State University.

U.S. Sheep Experiment Station. The U.S. Sheep Experiment Station, College of Agricultural and Life Sciences, outside Dubois, Idaho, is linked to the College of Agricultural and Life Sciences through affiliate faculty members. The facility provides an opportunity to investigate sheep breeding and reproductive physiology, nutrition, and range and flock management.

Wilderness Research Center. The university-wide Wilderness Research Center (WRC), created in 1969, is located in the College of Natural Resources. The staff conducts and facilitates research by faculty, cooperators, and graduate students on wilderness and related topics. The WRC sponsors a Distinguished Lecture Series and teaches several wilderness-related undergraduate and graduate classes. Research focuses on (1) wilderness ecosystem research and monitoring and (2) use of wilderness for recreation, personal growth, therapy, education, and leadership development. In 1999, the Outdoor Behavioral Healthcare Research Cooperative (OBHRC) was established in the WRC by a consortium of 12 wilderness and outdoor treatment companies to support research important to their industry.
Degrees Granted

On completion of specific courses of study and recommendation of the faculty, the degrees listed below are granted by the Regents of the University of Idaho. In addition, the Certificate of General Proficiency is granted to students who complete specified lower-division educational programs at the UI/Idaho Falls Center for Higher Education.

Baccalaureate Degrees

Bachelor of Arts, B.A.
Bachelor of Science, B.S.
Bachelor of Science in
Agricultural Economics, B.S.Ag.Econ.
Agricultural Education, B.S.Ag.Ed.
Agricultural Science and Technology, B.S.Ag.Sc.Tech.
Agricultural Systems Management, B.S.A.S.M.
Architecture, B.S.Arch.
Art Education, B.S.Art.Ed.
Biological and Agricultural Engineering, B.S.B.A.E.
Business, B.S.Bus.
Chemical Engineering, B.S.Ch.E.
Civil Engineering, B.S.C.E.
Computer Engineering, B.S.Comp.E.
Computer Science, B.S.C.S.
Dance, B.S.Dan.
Education, B.S.Ed.
Electrical Engineering, B.S.E.E.
Entomology, B.S.Ent.
Environmental Science, B.S.Env.S.
Family and Consumer Sciences, B.S.F.C.S.
Fishery Resources, B.S.Fish.Res.
Food Science, B.S.F.S.
Forest Products, B.S.For.Prod.
Forest Resources, B.S.For.Res.
Interdisciplinary Studies, B.S.I.S.
Manufacturing Engineering, B.S.Mfg.E.
Materials Science and Engineering, B.S.M.S.E.
Mechanical Engineering, B.S.M.E.
Metallurgical Engineering, B.S.Met.E.
Microbiology, B.S.Microbiol.
Molecular Biology and Biochemistry, B.S.M.B.B.
Office Administration, B.S.O.Ad.
Physical Education, B.S.P.E.
Plant Science, B.S.Pl.Sc.
Range Livestock Management, B.S.R.L.M.
Recreation, B.S.Rec.
Soil Science, B.S.Soil.Sc.
Technology, B.S.Tech.
Veterinary Science, B.S.Vet.Sc.
Wildlife Resources, B.S.Wildl.Res.
Bachelor of Fine Arts, B.F.A.
Bachelor of General Studies, B.G.S.
Bachelor of Landscape Architecture, B.L.Arch.
Bachelor of Music, B.Mus.
Bachelor of Naval Science, B.N.S.

Master’s Degrees

Master of Arts, M.A.
Master of Science, M.S.
Master of Accountancy, M.Acct.
Master of Architecture, M.Arch.
Master of Arts in Teaching, M.A.T.
Master of Education, M.Ed.
Master of Engineering, M.Engr.
Master of Fine Arts, M.F.A.
Master of Music, M.Mus.
Master of Natural Resources, M.N.R.
Master of Natural Science, M.Nat.Sc.
Master of Public Administration, M.P.A.

Education Specialist Degrees

Education Specialist in Adult Education, Ed.S.Ad.Ed.
Education Specialist in Counseling and Human Services, Ed.S.Couns.-Hum.Serv.
Education Specialist in Education, Ed.S.Ed.
Education Specialist in Educational Leadership, Ed.S.Ed.Ldrshp.
Education Specialist in Professional-Technical Education, Ed.S.P.T.Ed.

Professional Degree in Law

Juris Doctor, J.D.

Doctoral Degrees

Doctor of Philosophy, Ph.D.
Doctor of Education, Ed.D.

Programs Offered

Programs offered by the university are shown in the list below. Entries followed by degree abbreviations are major curricula leading to the degrees indicated. After a student has completed the requirements for a degree, the degree name and, if not already a part of the degree name, the major curriculum as shown in this list are printed on the student’s diploma. (Options listed under some curricula are areas of concentration within the major. Options and academic minors are recorded only on the student’s final transcript.) In parentheses after each major curriculum is the college/unit through which the program is offered. The abbreviations used are:

CALS – College of Agricultural & Life Sciences
CBE – College of Business & Economics
CLASS – College of Letters, Arts & Social Sciences
CNR – College of Natural Resources
COGS – College of Graduate Studies
COGSS – College of Graduate Studies
Education Specialist Degrees

Education Specialist in Adult Education, Ed.S.Ad.Ed.
Education Specialist in Counseling and Human Services, Ed.S.Couns.-Hum.Serv.
Education Specialist in Education, Ed.S.Ed.
Education Specialist in Educational Leadership, Ed.S.Ed.Ldrshp.
Education Specialist in Professional-Technical Education, Ed.S.P.T.Ed.

Professional Degree in Law

Juris Doctor, J.D.

Doctoral Degrees

Doctor of Philosophy, Ph.D.
Doctor of Education, Ed.D.

Programs Offered

Programs offered by the university are shown in the list below. Entries followed by degree abbreviations are major curricula leading to the degrees indicated. After a student has completed the requirements for a degree, the degree name and, if not already a part of the degree name, the major curriculum as shown in this list are printed on the student’s diploma. (Options listed under some curricula are areas of concentration within the major. Options and academic minors are recorded only on the student’s final transcript.) In parentheses after each major curriculum is the college/unit through which the program is offered. The abbreviations used are:

CALS – College of Agricultural & Life Sciences
CBE – College of Business & Economics
CLASS – College of Letters, Arts & Social Sciences
CNR – College of Natural Resources
COGS – College of Graduate Studies
COGSS – College of Graduate Studies
Education Specialist Degrees

Education Specialist in Adult Education, Ed.S.Ad.Ed.
Education Specialist in Counseling and Human Services, Ed.S.Couns.-Hum.Serv.
Education Specialist in Education, Ed.S.Ed.
Education Specialist in Educational Leadership, Ed.S.Ed.Ldrshp.
Education Specialist in Professional-Technical Education, Ed.S.P.T.Ed.

Professional Degree in Law

Juris Doctor, J.D.

Doctoral Degrees

Doctor of Philosophy, Ph.D.
Doctor of Education, Ed.D.

Programs Offered

Programs offered by the university are shown in the list below. Entries followed by degree abbreviations are major curricula leading to the degrees indicated. After a student has completed the requirements for a degree, the degree name and, if not already a part of the degree name, the major curriculum as shown in this list are printed on the student’s diploma. (Options listed under some curricula are areas of concentration within the major. Options and academic minors are recorded only on the student’s final transcript.) In parentheses after each major curriculum is the college/unit through which the program is offered. The abbreviations used are:

CALS – College of Agricultural & Life Sciences
CBE – College of Business & Economics
CLASS – College of Letters, Arts & Social Sciences
CNR – College of Natural Resources
COGS – College of Graduate Studies
COGSS – College of Graduate Studies
Education Specialist Degrees

Education Specialist in Adult Education, Ed.S.Ad.Ed.
Education Specialist in Counseling and Human Services, Ed.S.Couns.-Hum.Serv.
Education Specialist in Education, Ed.S.Ed.
Education Specialist in Educational Leadership, Ed.S.Ed.Ldrshp.
Education Specialist in Professional-Technical Education, Ed.S.P.T.Ed.

Professional Degree in Law

Juris Doctor, J.D.

Doctoral Degrees

Doctor of Philosophy, Ph.D.
Doctor of Education, Ed.D.
Programs Offered

- Microbiology, Molecular Biology and Biochemistry (CALS) M.S., Ph.D.
- Microbiology (CALS) B.S.
- Metallurgy (Engr) M.S.
- Metallurgical Engineering (Engr) B.S., M.S., Ph.D.
- Counseling and Human Services (Ed) M.S., M.Ed., Ed.S.
- Serv. Doctoral programs in this field are offered under "Education."
- Creative Writing (CLASS) M.F.A.
- Curriculum and Instruction (Ed) M.S., M.Ed.; see also "Elementary Education" and "Secondary Education." Doctoral programs in this field are offered under "Education."
- Dance (Ed) B.S., B.F.A.
- Early Childhood Development and Education (CALS & Ed), B.S.Ed.
- Child, Family, and Consumer Studies (CALS) B.S.F.C.S.
- Civil Engineering (Engr) B.S.C.E., M.S., M.Eng., Ph.D.
- Clothing, Textiles and Design (CALS) B.S.F.C.S.
- Communication Studies (CLASS) B.A., B.S.
- Computer Engineering (Engr) B.S.Comp.E., M.S., M.Eng.
- Computer Science (Engr) B.S.C.S., M.S., Ph.D.
- Counseling and Human Services (Ed) M.S., M.Ed., Ed.S.
- Couns.-Hum. Serv. Doctoral programs in this field are offered under "Education."
- Molecular Biology and Biochemistry (CALS) B.S.M.B.B.
- Music (CLASS) M.A., M.Mus.
- Music: Applied (CLASS) B.A., B.S.
- Music: Business (CLASS) B.Mus.
- Music: Composition (CLASS) B.Mus.
- Music: History and Literature (CLASS) B.A., B.S.
- Music: Instrumental Performance (CLASS) B.Mus.
- Music: Theory (CLASS) B.A., B.S.
- Music: Vocal Performance (CLASS) B.Mus.
- Music Education: Instrumental (CLASS) B.Mus.
- Music Education: Vocal (CLASS) B.Mus.
- Music Education: Vocal-Instrumental (CLASS) B.Mus.
- Musical Theatre (CLASS) B.F.A.
- Natural Resources (CNR) M.N.R., Ph.D.
- Naval Science (CLASS) B.N.S.; also Navy-Marine Officer Education Program
- Neuroscience (COGS) M.S., Ph.D.
- Nuclear Engineering (Engr) M.S., M.Eng., Ph.D. (limited to students enrolled at Idaho Falls)
- Office Administration (Ed) B.S.O.Ad.
- Philosophy (CLASS) B.A., B.S., M.A.
- Physical Education (Ed) B.S.Ed., M.S., M.Ed. Doctoral programs in this field are offered under "Education."
- Physics (COS) B.A., B.S., M.A.T., Ph.D.
- Political Science (CLASS) B.A., B.S., M.A., Ph.D.
- Plant Science (CALS) M.S., Ph.D.
- Production/Operations Management (CBE) B.S.Bus.
- Production-Technical and Technology Education (Ed) B.S.Ed., M.S., M.Ed., Ed.S.P.-T.Ed. Doctoral programs in this field are offered under "Education."
- Psychology (CLASS) B.A., B.S., M.S.
- Public Administration (CLASS) M.P.A.
- Public Relations (CLASS) B.A., B.S.
- Range Livestock Management (CALS & CNR) B.S.R.L.M.
- Range Rangeland Ecology and Management (CNR) B.S.Rangeland Ecol.-Mgt., M.S. A doctoral program in this field is offered under "Natural Resources."
- Recreation (Ed) B.S.Rec., M.S.
- Resource Recreation and Tourism (CNR) B.S.Res.Rec., M.S. A doctoral program in this field is offered under "Natural Resources."
- Sociology (CLASS) B.A., B.S.
- Soil and Land Resources (CALS) B.S.Soil Sc., M.S., Ph.D.
- Spanish (CLASS) M.A.T.
- Special Education (Ed) B.S.Ed., M.S., M.Ed., Ed.S.Sp.Ed. Doctoral programs in this field are offered under "Education."
- Sport Science (Ed) B.S.P.E.
- Statistics (COS) M.S.
- Studio Art (CLASS) B.F.A.
- Systems Engineering (Engr) M.Engr.
- Teaching English as a Second Language (CLASS) M.A.
- Theatre Arts (CLASS) B.A., B.S., M.T., M.A., Ph.D.
- Veterinary Science (CALS) M.S.; also Veterinary Medicine, cooperative with Washington State University. See also "Science/Predentary."
- Virtual Technology and Design (CLASS) B.S.
- Wildlife Resources (CNR) B.S.Wildl.Res., M.S. A doctoral program in this field is offered under "Natural Resources."

Academic Minors Offered

- A student may elect to pursue one or more of the academic minors listed below. See regulation J-9 in Part 3.
- Accounting
- Addictions
- Advertising
- Aerospace Studies
- Aging Studies
- Agribusiness
Certificates of Completion Offered

For information about Certificates of Completion, please see Part 4. Requirements for certificates offered by a department may be obtained at the relevant department. Requirements for university-wide certificates are listed in Part 4.

College of Agricultural and Life Sciences
Agricultural and Extension Education
- Sustainable Small Acreage Farming and Ranching
Margaret Ritchie School of Family and Consumer Sciences
- Extension Nutrition Program

College of Education
Division of Adult, Counselor, and Technology Education
- Emergency Planning and Management
Division of Health, Physical Education, Recreation and Dance
- Character Education
Division of Teaching, Learning, and Leadership
- Online Instruction

College of Engineering
Department of Civil Engineering
- Structural Engineering
- Water Resources Engineering
- Applied Geotechnics
Department of Computer Science
- Secure and Dependable Computing Systems
Department of Electrical and Computer Engineering
- Analog Integrated Circuit Design
- Communication Systems
- Electrical Machines and Drives
- Power System Protection and Relaying
Department of Materials Science and Engineering
- Advanced Materials Technology
Department of Mechanical Engineering
- Advanced Materials Design
- Heating, Ventilation, and Air Conditioning (HVAC) Systems

College of Letters, Arts and Social Sciences
Sociology, Anthropology, and Justice Studies
- Diversity and Stratification (Interdisciplinary certificate)
Program in Environmental Science
- Environmental Contamination Assessment
- Environmental Water Science

College of Natural Resources
- Restoration Ecology
- Environmental Education
Department of Conservation Social Sciences
- Environmental Education
Department of Forest Resources
- Fire Ecology, Management and Technology

College of Science
Department of Geography
- Geographic Information Systems
Department of Statistics
- Statistics

University-wide Certificate
- University of Idaho Leadership Certificate
Undergraduate Admission to the University

Information about the undergraduate admission process is available from the Undergraduate Admissions and New Student Services Offices. A prospective student will be sent an application for admission, scholarship and financial aid forms, and a means of requesting information on housing and various student activities. Application forms are also available on-line at http://www.students.uidaho.edu/admissions. Applicants for admission to the university must present satisfactory evidence of good character.

Students who are pursuing a baccalaureate degree are classified as undergraduates: freshmen (fewer than 26 semester credits), sophomores (fewer than 58 semester credits), juniors (fewer than 90 semester credits), or seniors.

Application Procedures

All applicants for admission are required to submit:

1. The appropriate, completed application form (i.e., undergraduate, non-degree, or international). Failure to list all institutions attended or submission of inaccurate transcripts or other supporting documents as specified on the application form is considered fraud and subjects the applicant to immediate cancellation of his or her registration and/or dismissal from the university.

2. Official transcripts from the last high school and all colleges or universities attended. (See sections on freshman, transfer, non-degree, or international admission requirements for further details.) Transcripts submitted in support of an application must be official and must be sent directly to the Undergraduate Admissions Office by the issuing institution. Transcripts received become the property of the university and cannot be returned, copied, or forwarded. Official transcripts must be signed by the registrar, superintendent, principal, or other authorized official of the school.

3. Scores from the College Board (SAT) or the American College Test (ACT) if applying for admission to the freshman class. This includes transfer applicants with fewer than 14 transferable semester credits.

4. A nonrefundable application fee of $40 for domestic students and $60 for international applicants. Review of the application will be delayed until this fee is received. This fee is not charged to students applying for non-degree status or to applicants seeking re-admission.

Application Deadlines. To provide time for evaluation and for notice of acceptance to reach the applicant, applications and credentials should be submitted to the Admissions Office at least three weeks prior to the beginning of classes. International applicants have different deadlines (see “International Admission Requirements”).

Notification of Admission. When all of an applicant’s credentials have been received and he or she has been found eligible, a letter of acceptance and information on registration procedures will be sent. Acceptance is granted for a specified semester or summer session. If an applicant does not register for the term for which he or she applied and was accepted, it will be necessary to contact the Undergraduate Admissions Office to reactivate the application if entrance at a later time is desired.

Freshman Admission Requirements

Freshman applicants graduating from high school prior to 1996 must meet the requirements in effect for their graduation year. A degree-seeking applicant with fewer than 14 semester credits of transferable college work must:

1. Submit ACT or SAT scores.

2. Graduate from an accredited high school with a combination of cumulative GPA and test scores as defined in the following table:

<table>
<thead>
<tr>
<th>High School GPA</th>
<th>ACT Composite</th>
<th>SAT Verbal + Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00 – 4.00</td>
<td>And</td>
<td>Any test score</td>
</tr>
<tr>
<td>2.80 – 2.99</td>
<td>And</td>
<td>15 – 36 Or Any test score</td>
</tr>
<tr>
<td>2.60 – 2.99</td>
<td>And</td>
<td>17 – 36 Or 870 – 1600</td>
</tr>
<tr>
<td>2.40 – 2.49</td>
<td>And</td>
<td>19 – 36 Or 930 – 1600</td>
</tr>
<tr>
<td>2.30 – 2.39</td>
<td>And</td>
<td>21 – 36 Or 1000 – 1600</td>
</tr>
<tr>
<td>2.20 – 2.29</td>
<td>And</td>
<td>23 – 36 Or 1070 – 1600</td>
</tr>
</tbody>
</table>

3. Complete specified high school courses with a minimum 2.00 GPA as listed below. A credit is defined as a course taken with a minimum of 70 hours of classroom instruction. A high school credit can be counted in only one category.

a. English: A minimum of 8 credits, selected from composition and literature courses or courses that integrate composition, language, and literature.

b. Mathematics: A minimum of 6 credits including algebra I or applied math I, geometry or applied math II, and algebra II. An additional 2 credits are strongly recommended. Other courses may include probability, discrete math, analytic geometry, calculus, statistics, and trigonometry. Four of the required mathematics credits must be taken in the 10th, 11th, and 12th grades.

c. Social Science: A minimum of 5 credits, selected from American government (state and local), geography, U.S. history, world history, psychology, sociology, and economics (consumer economics courses approved by the Idaho State Board of Education may be counted toward this requirement).

d. Natural Science: A minimum of 6 credits, selected from anatomy, biology, chemistry, geology, earth science, physical science, physiology, physics, zoology, and applied science courses jointly approved by the State Department of Education (SDEO) and the State Department of Professional-Technical Education (DSPTE) (maximum of two credits in this category). Ecology will count if SDEO approved. At least two credits must involve laboratory science experience. Note: A laboratory science course is defined as one in which at least one class period each week is devoted to providing students the opportunity to manipulate equipment, materials, or specimens; develop skills in observation and analysis; and discover, demonstrate, illustrate, or test scientific principles or concepts.

e. Humanities/Foreign Language: A minimum of 2 credits, selected from literature, history, philosophy, foreign language, fine arts, and interdisciplinary humanities (related study of two or more of the traditional humanities disciplines). These courses should emphasize history, appreciation, theory, analysis, and/or critique. History courses beyond those required for state high school graduation may be counted. Foreign language study is strongly recommended. Native American language (five Idaho tribes) may meet this requirement if taught by certified high school faculty.

f. Other College Preparation: A minimum of 3 credits, of which no more than one credit may be in speech or debate (debate must be taught by a certified teacher). Other courses may include studio/performing arts (art, dance, drama, and music) or foreign language (beyond any foreign language credit applied in the humanities/foreign language category). May include no more than two credits in SDPTE-approved classes in agricultural science and technology, business and office education, health occupations education, family and consumer sciences education, occupational family and consumer science education, trade, industrial, and technical education, and individualized occupational training.

4. Applicants with fewer than 14 semester hours of transfer credit must meet both freshman and transfer admission requirements, including submission of the required test scores. (See “Freshmen Admission Requirements” above.)
5. Students who have participated in running start, dual enrollment or accelerated learning programs who concurrently enroll in college credit courses while still in high school need to meet freshman requirements for admission and submit all the appropriate high school documentation regardless of the number of transferable credits completed. See Freshman Admission Requirements.

If a high school does not offer a required course, or if a freshman applicant does not qualify for regular admission but satisfies one of the criteria below, he or she may petition the Admissions Committee for consideration as a provisional student.

1. Graduates from a non-accredited high school,
2. Home schooled students,
3. Students with General Educational Development (GED) certificates,
4. Students deserving consideration because of special circumstances (i.e. disadvantaged or minority status, delayed entry, returning veteran, a talented student wishing to enter college early, and/or similar situations).

Applicants who are still in high school should apply during their senior year and should ask their high school counselor to send a copy of their current transcript to the Undergraduate Admissions Office. If qualified, the applicant will be given an early notice of acceptance based on this record. Final acceptance will be granted when the university receives a final transcript mailed directly from the high school verifying that the applicant has graduated from an accredited high school and has satisfied all admission requirements.

Transfer Admission Requirements

Applicants who have been enrolled in other colleges or universities accredited by one of the regional accrediting agencies, such as the Northwest Association of Schools and Colleges, and who have satisfactorily accumulated 14 or more transferable credits may be admitted with advance standing as transfer students.

In addition to a completed undergraduate admission application form, transfer applicants must submit the following credentials to the Undergraduate Admissions Office:

1. Official transcripts from each college or university previously attended. To be considered official transcripts must be mailed directly to the University of Idaho Undergraduate Admissions Office by the issuing institution. Transcripts received become the property of the university and cannot be returned, copied or forwarded.
2. High school records may aid in the scholarship selection process, so submission of high school credentials, although not required, is recommended.
3. Students participating in running start, dual enrollment or accelerated learning programs who are concurrently enrolled in college credit courses while still attending high school need to meet freshman requirements for admission and submit all the appropriate high school documentation regardless of the number of transferable credits completed. See Freshman Admission Requirements.
4. Applicants with fewer than 14 semester hours of transfer credit must meet both freshman and transfer admission requirements, including submission of the required test scores. (See “Freshman Admission Requirements,” above.)

Transfer students are selected from those applicants who present a cumulative grade-point average of at least 2.00 (C) for all college-level study attempted in all accredited colleges attended, exclusive of courses for which credits are not allowed. Students transferring from out-of-state schools into the College of Engineering must have a cumulative grade-point average of at least 2.80. Admission of transfer students to the landscape architecture program will be based on GPA (typically limited to 2.5 or above), test scores (ACT/SAT), and a portfolio with a letter of intent submitted to the department.

Students admitted to the University of Idaho from other collegiate educational institutions must have complied with the academic regulations for continuance in the institution(s) that they have attended in addition to the academic regulations that are applied to students enrolled in this institution.

An applicant with previous college work who does not qualify for regular admission may also seek provisional acceptance by petitioning the Admissions Committee for consideration.

Re-admission Requirements

Students returning after two years from last attendance must complete an application for Readmission and submit official transcripts from all colleges or universities attended since last enrolling at UI. (Also see regulation B-1) Application forms are available on-line at http://www.students.uidaho.edu/admissions.

Returning students who were in good academic standing when they left the UI are guaranteed readmission. Returning students who were not in good academic standing when they left the university need to submit the above materials and follow the appropriate reinstatement procedures as stated in regulation L-4. Contact the Admissions Office for more information (208/885-6326, admapp@uidaho.edu).

Provisional Admission – Petitioning the Admissions Committee

Applicants who do not qualify for admission to the University of Idaho may petition the Admissions Committee. Such applicants must submit to the Undergraduate Admissions Office an application for admission, the appropriate fee, all required official transcripts and test scores, three signed letters of recommendation, and a signed written statement of the student’s objectives. This information should be received in the Undergraduate Admissions Office by August 1 for fall semester and December 1 for spring semester.

If admitted through the appeal process, the student may be required to attend pre-academic planning within an office or program to be specified in the letter of acceptance. Students admitted through the appeal process may be enrolled with provisional standing and will be subject to the regulations on academic probation, disqualification, and reinstatement (see regulation L in part 3).

Freshmen admitted provisionally may change to regular admission status upon satisfactory completion of 14 credits, 12 of which must be in four different categories of the general education requirements (see regulation J-3). Regular admission status must be attained within three semesters or the student will be dismissed, subject to the Admissions Committee’s appeal procedures.

Transfer students admitted provisionally must enroll on probation, meet all conditions imposed by the committee, and complete the first semester with at least a 2.00 grade-point average or they will be dismissed, subject to the Admissions Committee’s appeal procedure.

Dual Enrollment

Dual enrollment is a program authorized by the Idaho State Legislature that provides qualified high school students with an opportunity to receive both high school and university credit for classes taken at the University of Idaho. High school students are eligible if they are at least 16 years old before the first day of class in any semester OR they have completed at least half the high school graduation requirements (generally high school juniors and seniors).

To apply for the dual enrollment program, students must complete the UI “Application for Accelerated Learning” form, available from the Office of Dual Enrollment (208/885-6237). The completed application must be signed by the student’s parent/guardian and high school principal or counselor. Written notice of acceptance to the dual enrollment program and confirmation of registration will be provided to the student. Dual enrollment students are not eligible for federal or state financial aid programs.
PART TWO
The Student

Undergraduate Admission to the University

17

Non-degree Admission Requirements

This category is for applicants who wish to enroll in courses pertaining to their personal interest and who do not want to work toward a formal degree at the University of Idaho. Application forms are available on-line at http://www.students.uidaho.edu/admissions.

A person admitted as a non-degree student who wants to take undergraduate courses must (1) be a high school graduate or have completed the GED; (2) understand that acceptance in this category does not constitute acceptance to a degree-granting program; (3) have sufficient educational background to qualify for the course or courses in which enrollment is sought; (4) accept personal responsibility for the applicability of credits earned while registered in this category; and (5) understand that students in this non-degree category cannot be considered for federal or state financial aid.

A person admitted as a non-degree student who wants to take graduate-level courses must have an undergraduate degree from an accredited institution with a GPA of 2.80 or higher. Strict limitations exist for use of non-degree credits toward a graduate degree. Please refer to the College of Graduate Studies section in Part 4.

A student who is still in high school, junior high school, or elementary school may be admitted as a non-degree student based on the concurrent enrollment policies of UI. He or she must submit a letter from his or her school principal or counselor indicating permission or recommendation for taking a college class. With regard to a student who is less than junior status in high school, or less than the summer before his or her junior year, the student or the Undergraduate Admissions office shall contact the faculty member teaching the class to gain permission for the student to enroll.

Students who do not have a high school diploma or a GED, are between 16 and 18 years of age, and are not in high school must have a letter from a parent indicating permission or recommendation for taking a college class.

Students who do not have a high school diploma or a GED, are under the age of 16, and are not a junior or senior in high school must have a letter from a parent indicating permission or recommendation for taking a college class. Also, the student or the Undergraduate Admissions office shall contact the faculty member teaching the class to gain permission for the student to enroll.

Students less than junior status in high school or under the age of 16 that are admitted as non-degree students shall be admitted for one semester only. To attend another semester, students will need to have written permission (e-mail acceptable) from the faculty member teaching the class and a letter of recommendation from the student’s school principal or counselor.

Applicants whose native language is not English must provide proof of English proficiency.

A non-degree student may register for no more than 7 credits each semester and may complete a maximum of 32 semester credits. Students on official UI exchange programs are not limited to 7 credits each semester. International exchange students must take 12 or more credits. Upon completion of 32 semester credits, the student must either be admitted as a degree-seeking student at the University of Idaho or submit a letter of appeal to continue as a non-degree student. Permission of the instructor is required to enroll in courses numbered 500-600. Permission of the dean of the College of Law is required to enroll in courses numbered 800-999.

A non-degree student seeking admission as an undergraduate student or as a graduate student will remain classified as a non-degree student and will not be admitted to a program until all admission requirements have been met. Total credits and the UI GPA will be considered when applying for admission. Credit earned as a non-degree student will be moved to the undergraduate transcript upon admission as an undergraduate student unless the student specifically requests in writing to the Registrar’s Office that all credits earned remain on the non-degree transcript.

Any deviations to the admission policy or credit limits will be acted on by the Director of Admissions and/or the Admissions Committee if the student wishes to enroll for undergraduate credit. Any deviations to the admission policy or credit limits will be acted on by the associate dean of the College of Graduate Studies and director of graduate admissions and/or the Graduate Petitions Committee if the student wishes to enroll for graduate credit.

International Admission Requirements

The University of Idaho encourages the application of qualified students from other nations to complement its student community. Admission is dependent upon credentials demonstrating a capacity to succeed academically at the university level. The Undergraduate Admissions Office recognizes that equivalents between curricula in any other country and the United States is essentially nonexistent, and, therefore, UI evaluates foreign courses and academic transcripts in terms of approximations. Application forms are available on-line at http://www.students.uidaho.edu/admissions.

In some instances, individual departmental requirements may be more rigorous than the general UI admission requirements. In those situations, final admission is based on the department’s decision.

All international students who hold nonresident alien visas and who are pursuing a degree (i.e., matriculated) must be in the current F-1 or J-1 student status and comply with the U.S. Immigration and Customs Enforcement (USICE) regulations pertaining to student status.

Deadlines for international applicants are as follows:

<table>
<thead>
<tr>
<th>Month</th>
<th>Deadline</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 1</td>
<td>If applying for Fall semester</td>
<td></td>
</tr>
<tr>
<td>October 1</td>
<td>If applying for Spring semester</td>
<td></td>
</tr>
<tr>
<td>March 1</td>
<td>If applying for summer term</td>
<td></td>
</tr>
<tr>
<td>Application Fee</td>
<td>$60.00 (non-refundable)</td>
<td></td>
</tr>
</tbody>
</table>

International student applicants must submit:

a. Official transcripts or certified copies of certificate(s), diploma(s), or government examination report(s) received from any educational institution (high school, college, or university). These documents must be translated into English and must be sent by the certifying agency directly to the Undergraduate Admissions Office.

b. An official score report of the Test of English as a Foreign Language (TOEFL) for applicants whose native language is not English. Students must present a minimum score of 525 (PBT) or 193 (CBT) to be considered for admission to the university. Exceptions to the minimum TOEFL requirement are made for (a) those from English-speaking countries, (b) those who have earned a degree from either a U.S. institution or an institution in another English-speaking country; or (c) those who successfully complete Level 5 of the American Language and Culture Program at the University of Idaho. The following may be used as a substitute for the TOEFL to show English proficiency: SAT verbal with a minimum score of 500; SAT plus English language proficiency (SATII-ELP) with a minimum score of 956; Cambridge International English Language Testing System (IELTS) with a minimum score of 5.5; Cambridge Certificate in Advanced English (CAE) with a pass; Cambridge Certificate of Proficiency in English (CPE) with a pass; Cambridge International “O” Levels with a pass; Michigan English Language Assessment Battery (MELAB) with a minimum score of 76; a previous degree at an accredited U.S. institution; or, based on the judgment of the Undergraduate Admissions Office, English classes that students have passed at U.S. institutions. If required, the TOEFL score or an approved substitute must be on file before the application for admission will be processed. UI does not accept scores that are more than two years old. Applicants wishing to take the Computer Based TOEFL on campus should contact the Counseling and Testing Center.

c. A completed “Certificate of Financial Responsibility” and all required supporting documentation as required by the U.S. Immigration and Customs Enforcement (USICE). International students must present to the Undergraduate Admissions Office satisfactory statements of finances and adequate proof of financial responsibility or sponsorship for all financial obligations while attending the university.
d. If the student is transferring to the University of Idaho from another U.S. college or university, the student must request that their SEVIS records be transferred to the University of Idaho before an I-20 or DS-2019 can be issued.

Undergraduate applicants who have had no previous work at the post-secondary level must have at least a 2.50 grade-point average (on a 4.0 scale) from secondary school and must also meet the criteria for being admitted to a post-secondary institution in the applicant’s home country in order to be considered for admission at the University of Idaho.

Undergraduate applicants who have attended a post-secondary-level institution must have completed at least 14 transferable semester credits at an accredited institution and must present a minimum grade-point average of 2.00 for all post-secondary work attempted. For admission into the College of Engineering, transfer students must have a cumulative grade-point average of at least 2.80. Other departments have additional requirements.

Students who have completed fewer than 14 transferable semester credits (post-secondary) must meet the secondary school GPA requirements in addition to the post-secondary transfer requirements.

Applicants who do not meet the minimum university admission requirements may appeal to the Admissions Committee. Those applicants must submit an application for admission, the appropriate fee, all required official transcripts and official translations, test scores, three signed letters of recommendation, and a signed written statement of their educational objectives. All materials supporting the applicant’s appeal must be submitted in English. This information should be received in the Undergraduate Admissions Office by June 1 in order to be considered for the fall semester and October 1 for the spring semester.

International Application Deadlines. To provide time for evaluation, for notice of admission status to reach the applicant, and for USICE requirements to be met for issuance of a student visa, applications and documents should be sent to the Office of the Registrar, PO Box 444260, Moscow, ID 83844-4260. (See regulation J-5-b for credit limitations.)

International Deferred Admission. Deferred admission may be granted to applicants who qualify academically, but have not yet achieved UI’s minimum English language proficiency requirement. Students granted deferred admission must enroll in UI’s American Language and Culture Program (ALCP) to achieve the department’s English language requirement. If the required level of language proficiency is not achieved within a two-year time period, applicants may petition to continue in the ALCP and will need to reapply for admission to the academic department. Those who are granted deferred admission may qualify for concurrent enrollment.

International Student Concurrent Enrollment. Students admitted under deferred status and students enrolled in ALCP Level 5 or Level 6, in consultation with the coordinator of ALCP (to determine appropriate courses) and the course instructor, obtain approval to enroll as non-degree students for up to seven credits per semester of academic courses in addition to their ALCP courses. Students whose proficiency levels later prove inadequate for success in the academic courses may be withdrawn at the discretion of the academic course instructor and the ALCP coordinator. Once students achieve the necessary language qualification and pursue full admission to the university, they may apply credits of academic courses completed while in deferred status toward UI degree programs (other university and College of Graduate Studies restrictions may apply).

International Student Health and Accident Insurance. Supplemental health and accident insurance is mandatory for international students who hold nonresident alien visas and all accompanying dependents. Students must purchase and maintain the UI Student Health Insurance policy (SHIP) or document coverage of an equivalent policy with the International Programs Office before they are allowed to register or attend classes. Failure to obtain and maintain the required insurance may subject students to sanctions, up to and including disenrollment. See information on insurance in the Student Services section.

Evaluation of Transfer Credits

Upon admission to the University of Idaho, college level courses completed at regionally accredited institutions are evaluated by the Registrar’s Office. All credits accepted must be from regionally accredited American institutions or from non-US institutions recognized by the appropriate authorities in their respective countries. The UI degree audit web report details the applicability of the transfer courses to the core curriculum and to the student’s program of study. The student’s major department may further evaluate the applicability of the transfer courses to the student’s selected program of study. Transfer credits are not included in the computation of a student’s grade point average at the University of Idaho. Students with courses from non-accredited educational sources may request to have the courses reviewed by the UI University Curriculum Committee for possible transfer to UI. Transfer credit from non-U.S. institutions is recorded with grades of pass or fail only. Accepted transfer credits are recorded on the student’s permanent record after he or she is officially admitted. The UI database of courses transferable from accredited colleges and universities is on the web at http://www.uidaho.edu/registrar/transguide/transferguides.html.

Credit for Military Service. Credit may be given for military courses according to recommendations in the American Council on Education (ACE) Service Guide. Credit is not awarded for the military occupation specialties or basic training courses. Credits awarded for military service are recorded with grade of pass or fail only and will appear on UI transcripts after the student is officially admitted. Official documentation is necessary and may include official DD214 papers, official certificates showing completion of courses, and/or an official DD295 Form. Official documents should be sent to the Office of the Registrar, PO Box 444260, Moscow, ID 83844-4260. (See regulation J-5-b for credit limitations.)

Vocational-Technical Credit.Credits earned in vocational-technical courses at accredited or state-approved vocational-technical schools may be the basis for waiving requirements or transferring credits to the University of Idaho in accordance with the following regulations:

1. When equivalence has been validated by the academic department and college that offer comparable subject matter, credits may be transferred for specific lower-division courses taken at the other institution.

2. In those cases in which comparable subject matter is not taught at the University of Idaho, the amount and characterization of the credits to be transferred is determined by the department and the dean of the college into which the student is transferring (for example, a block of credits in agriculture).

3. A grade of P (pass) is recorded for vocational-technical credits that are transferred.

4. Credits transferred from vocational-technical schools are included in the 48-credit limitation of extramural and similar credits that may be counted toward a baccalaureate degree (see regulation J-5-b).

5. The department into which the student transfers decides what curricular requirements, if any, will be waived (this determination may be made independently of the transfer of credits).

6. If there are any questions concerning the waiving of distributional requirements in the college into which the student transfers, such questions are to be resolved by the dean of that college.

7. For students seeking a liberal arts degree (i.e. B.A. or B.S.) in the College of Letters, Arts and Social Sciences, except as substitutions for equivalent courses offered by the student’s academic department, no credits in vocational-technical courses taken at a vocational-technical school may be counted toward the 128 credit minimum required for a baccalaureate degree.

Transfer Credit Limitations. A maximum of 70 credits earned at junior or community colleges (or one-half of the total credits required for the student’s intended baccalaureate degree program, whichever is the higher number) may be used toward the total net credit requirement of the intended baccalaureate degree program.
Credit Based on Test Scores. Credit is granted for specific scores on the following tests: ACT, SAT, COMPASS, AP (College Board Advanced Placement) and CLEP (College Level Examination Program). (See regulation I.)

General Education Requirements for Transfer Students

One of the requirements for a UI baccalaureate degree is fulfillment of the general-education or “core-curriculum” requirements.

Students who transfer from an academic regionally accredited institution with an earned A.A. or A.S. degree have met the UI general-education requirements.

Students who transfer from any academic regionally accredited institution who have completed the equivalent of Idaho’s State Board of Education general-education core (but have not completed an A.A. or A.S. degree) are not required to complete additional lower-division general-education core courses. However, these students must obtain certification of such completion from the transferring institution.

Students who enter UI without having completed an A.A. or A.S. or are not certified as having completed the equivalent of Idaho’s State Board of Education general-education core have two options for fulfilling the general-education requirement. One option is to satisfy the requirement as outlined in regulation J-3 in Part 3 of this catalog. In this case, transfer credits are evaluated on a course-by-course basis for equivalency to courses specified in J-3, and deficiencies are made up by completing the necessary additional credits in non-duplicating courses listed in J-3.

The second option is to satisfy the general-education requirements established by the State Board of Education as set forth immediately below. In this case, transfer credits are evaluated by subject matter, rather than on a course-by-course basis, and deficiencies are made up by completing the necessary additional credits in non-duplicating courses listed in J-3. Courses that are approved to satisfy a core requirement can be used to satisfy those requirements even if the course is completed prior to being approved as a core course.

Alternative General Education Requirements for Transfer Students.

A total of at least 36 credits that fit within the following categories and credit ranges must be completed.

1. Communications: 1 course (2-3 credits). Courses in this area enhance the student’s ability to communicate clearly, correctly, logically, and persuasively in spoken English. Disciplines—debate, rhetoric, and speech.

2. English Composition: 1-2 courses (3-6 credits, depending on initial placement results). To satisfy this category, students must be able to express themselves in clear, logical, and grammatically correct written English. The first three credits may be exempt by ACT, SAT, CLEP, or College Board AP exam.

3. Behavioral and Social Science: 2-4 courses (6-12 credits). Courses in this area provide instruction in the history and culture of civilization; the ways political and economic organizations, structures, and institutions function and influence thought and behavior; and the scientific method as it applies to social science research. Disciplines—anthropology, economics, geography, history, political science, psychology, and sociology. Courses must be distributed over two different disciplines.

4. Humanities, Fine Arts, and Foreign Language: 2-4 courses (6-12 credits). Courses in this area provide instruction in the creative process, history and aesthetic principles of the fine arts, philosophy and the arts as media for exploring the human condition and examining values, and communication skills in a foreign language. Disciplines—art, drama-theatre, foreign languages, literature, music, and philosophy.

5. Natural Science: 2 courses (7-12 credits). Courses in this area provide an understanding of how the biological and physical sciences explain the natural world and introduce the basic concepts and terminology of the natural sciences. Disciplines—biology, chemistry, geology, physical geography, and physics. Courses may be distributed over two different disciplines; at least one course must have had an accompanying laboratory experience.

6. Mathematics: 1 course (3-5 credits). Courses in this area are intended to develop logical reasoning processes; skills in the use of space, numbers, symbols, and formulas; and the ability to apply mathematical skills to solve problems. Courses may include college algebra, calculus, finite mathematics, and statistics.

Graduate Admission to the University

The University of Idaho offers 29 doctoral programs, 6 specialist degrees, and 102 master’s degrees. Graduate students are able to pursue degrees full- or part-time.

All of the graduate programs are available on the main campus in Moscow. Graduate programs in education disciplines are available at UI’s Coeur d’Alene and Boise centers, graduate programs in engineering and natural resources are available at UI’s Boise center, and graduate programs in engineering disciplines and several physical science disciplines are available at the Idaho Falls center.

More than 750 faculty members participate in teaching and research. In addition to the accreditation of individual programs, the University is accredited by the Northwest Association of Schools and Colleges.

Graduate Admission Requirements

Students who satisfy all criteria listed below will be considered for graduate admission to the University of Idaho:

1. Have a bachelor’s degree from a college or university accredited by a recognized accrediting association,

2. Have an undergraduate grade-point average of 3.00 or higher for the last 60 semester credits (or 90 quarter credits) or an undergraduate cumulative grade-point average of 2.80 or higher,

3. Have maintained at least a 2.80 grade-point average in subsequent academic work if any, and

4. Have been reviewed and recommended for acceptance by the department administering the program in which the student seeks to enroll. For individual departmental admission requirements please refer to part 5 of this catalog or consult the graduate admissions website at www.students.uidaho.edu/gradadmissions.

Students planning to apply for work leading to a graduate degree should contact the department in which they wish to major before submitting the application for graduate admission. All admissions decisions are made at the departmental level with final admission granted by the College of Graduate Studies. Admission is granted only to a specific degree and program; and initial admission is granted for a specific semester.

Admission application files will not be sent to the department for review until all required documents have been received by the Graduate Admissions Office. Students currently enrolled in a college or university need to submit a current transcript that shows all work completed thus far. The general application deadlines are:

*Domestic Applicants

<table>
<thead>
<tr>
<th>Semester</th>
<th>Deadline</th>
<th>Application Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall-July 1</td>
<td>**Spring-November 1</td>
<td>$55.00</td>
</tr>
<tr>
<td>**Spring-April 1</td>
<td></td>
<td>non-refundable</td>
</tr>
</tbody>
</table>

*International Applicants

<table>
<thead>
<tr>
<th>Semester</th>
<th>Deadline</th>
<th>Application Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall-May 1</td>
<td>**Spring-October 1</td>
<td>$60.00</td>
</tr>
<tr>
<td>**Summer-March 15</td>
<td></td>
<td>non-refundable</td>
</tr>
</tbody>
</table>

*Individual academic departments may have earlier departmental deadlines especially for applicants seeking financial assistance or assistantships.
Graduate Record Examination

The Graduate Record Examination (GRE) is not a College of Graduate Studies requirement, but is required by some departments. Official copies of GRE results must come from the Educational Testing Service. In rare cases, if the examination is many years out of date, students may be able to provide unofficial results of the examination with their admission application to facilitate evaluation and acceptance. GRE scores are retained by the student's department. Applicants wishing to take the Computer Based GRE on campus should contact the Counselling and Testing Center.

Transcripts and Application for Admission

Graduate students wishing to enter the College of Graduate Studies must submit an application for admission on a form provided by the Graduate Admissions Office, three letters of recommendation from professional/academic references, a statement of career objectives, vita/resume, and have official transcripts sent directly from each institution attended to the Graduate Admissions Office. Transcripts become the property of the university and cannot be copied, returned, or forwarded.

Effective Summer 2005 forward, the College of Graduate Studies requires all applicants to submit three letters of recommendation, a one to two page Statement of Career Objectives and a one to two page resume/curriculum vitae.

The Test of English as a Foreign Language (TOEFL) is required for permanent residents and American citizens whose primary language is not English. Primary language is defined as native language or the official language of instruction used in previous university-level academic work.

Acceptance

When admitted to the College of Graduate Studies, a graduate applicant will be issued a letter of acceptance. Acceptance is granted for a specified semester or summer session. If an applicant does not register for the term indicated, it will be necessary for the applicant to notify the Graduate Admissions Office if he or she wishes to enter for a subsequent session or semester.

Admission Categories

Regular Enrollment. Regular enrollment for graduate study leading toward an advanced degree may be granted to a student who satisfies all of the following criteria: (1) has a bachelor’s degree from a college or university accredited by a recognized accrediting association, (2) has an undergraduate grade-point average of 3.00 or higher for the last 60 semester credits (or 90 quarter credits) or an undergraduate cumulative grade-point average of 2.80 or higher, (3) has maintained at least a 2.80 grade-point average in subsequent academic work if any, and (4) has been reviewed and recommended for acceptance by the department administering the program in which the student wishes to enroll.

Provisional Enrollment. A student who is not eligible for regular enrollment may be accepted for provisional enrollment (on the master’s level only) if the department administering the program in which the student seeks to enroll recommends it, and if at least two of the following conditions are met: (1) the student’s undergraduate GPA shows steady improvement; (2) the student has taken post-baccalaureate undergraduate level course work with A and/or B grades; (3) the student has achieved the 75th percentile on the relevant GRE or equivalent exam; (4) the student has been out of school for five or more years and has been working for at least one year in the field of the proposed graduate major. The department specifies conditions that the student must fulfill in order to be advanced to regular enrollment. Provisional enrollment may also be granted to a student who is otherwise eligible for regular enrollment but whose prospective department specifies conditions that he or she must first meet (i.e. achievement of specific grades and/or completion of specific course work). International students who hold nonresident alien visas and students who are to be appointed to assistantships cannot be accepted in provisional enrollment.

The admissions office notifies the student that he/she has been accepted for provisional enrollment. In the letter of acceptance, the following general and specific terms governing the student’s provisional enrollment are stated:

1. A student may not remain in provisional-enrollment status for more than 12 consecutive calendar months (a shorter period may be specified by the department). Nor may a student remain in this status after completing nine credits (a lower credit limitation may be specified by the department).

2. A student will be advanced from provisional to regular enrollment provided he or she maintains a GPA of at least 3.00 each semester while in the provisional status (a higher GPA may be specified by the department), fulfills the conditions, if any, that were specified by the department at the time of initial enrollment, and receives no incompletes.

3. A student who does not meet the stated conditions for advancement to regular enrollment within the specified time and credit limitations cannot continue in the College of Graduate Studies or enroll in 500-level courses and is subject to normal disqualification and reinstatement procedures.

It is the student’s responsibility to be in touch with the department regarding his or her progress toward meeting the conditions for advancement.

The conditions specified for a student’s advancement to regular enrollment are established at the time of his or her acceptance and must not be changed (i.e., either strengthened or relaxed) thereafter.

Departments need not require a student to make up ALL of his or her academic deficiencies while in provisional enrollment. Performance on a limited demonstration of them should suffice to demonstrate whether or not the student has the ability to do satisfactory graduate work. Remaining deficiencies, if any, can be made up after the student is in regular enrollment. The department must be sure that any courses the student is required to take while in provisional enrollment will, in fact, be offered during that period.

Unclassified Enrollment. Unclassified enrollment is for students who do not wish to work for a graduate degree and is not to be used as a probationary category. Admission as an unclassified student does not guarantee subsequent transfer to any departmental degree program. This enrollment category is not open to international students who hold nonresident alien visas or to students who are to be appointed to assistantships. (Students on Unclassified enrollment are not eligible for Title IV financial aid.)

Non-degree Student. Refer to the “Undergraduate Admission” status above for a full description of this classification. Non-degree students are not admitted to the College of Graduate Studies. They may, however, take graduate courses with permission of the instructor and Vice President for Research and Graduate Studies provided that they have earned a baccalaureate degree with an overall 2.80 GPA. (Non-degree students are not eligible for Title IV financial aid.). If a non-degree student receives a grade of C, D, or F in a 500-level course, he/she loses the privilege of taking more 500-level courses.

Dual Level Curricula for Graduate Students. A graduate student may enroll in an undergraduate curriculum and be in both programs simultaneously. The “Course Level Adjustment” form indicating course
use (graduate, undergraduate or law) is available at the Graduate College and must be filed each semester. Please note that students who have not been admitted as undergraduate or law students in the past need to officially apply for admission at the appropriate level. The deadline for receipt of approved forms during the fall or spring semester is the tenth day of classes. For summer session deadlines, check the summer bulletin. Students in dual-level curricula will be assessed graduate fees for all courses.

Seniors in 500-Level Courses. A senior who has a cumulative grade-point average of 2.80 or higher may enroll in 500-level courses. The course(s) may be placed on either the undergraduate or the graduate transcript. Seniors desiring to have the class placed on a graduate transcript must submit to and have approved by the Graduate College a “Course Level Adjustment” form that lists the course(s) to be placed on the graduate transcript. If the form is not filed, the course(s) will automatically be placed on the undergraduate transcript. The placing of courses on a graduate transcript does not admit or guarantee subsequent admission of such students to the Graduate College. The deadline for filing the “Course Level Adjustment” form is the tenth day of the class for that semester or session. All courses placed on a graduate transcript, regardless of the course level, will be assessed graduate fees.

Returning Students. A graduate student who has completed one degree and wishes to enroll in further courses must file a “Change of Curriculum” form with the Graduate Studies Office. A returning graduate student who has not enrolled within two years of the term in which he or she wishes to register must file an Application for Readmission with the Graduate Admissions Office (see B-1). Readmission requests must be approved by the department in whose degree program the returning graduate student wishes to enroll. If the department denies the readmission, the student will be moved automatically into Unclassified enrollment status.

Admission of International Students

The College of Graduate Studies welcomes applications from qualified students from other countries. International applicants are expected to have qualifications equivalent to those required of other graduate students.

Credentials. Official transcripts and/or certified copies of the certificate, diploma, or government examination report received on completion of any college or university course work must be sent by the certifying agency directly to the Graduate Admissions Office. The credentials must be translated into English if written in a foreign language.

English Language Proficiency. UI requires all applicants whose primary language is not English to demonstrate proficiency in the English language. Primary language is defined as native language or the language of instruction used in previous university-level academic work. Because most applicants report the Test of English as a Foreign Language (TOEFL) score, UI bases its minimum English language proficiency requirements on the TOEFL. UI requires a minimum TOEFL score of 525 (paper test) or 193 (computer test). Equivalent measures of proficiency acceptable to UI include the SAT II-ELP (956), MTEL (score of 90, but even then only if administered by UI), MELAB (76), the Cambridge IELTS (5.5), Cambridge FCE (Pass), Cambridge CAE (Pass), Cambridge CPE (Pass), and Cambridge International O level (Pass). Most departments require language proficiency at the level of the TOEFL 650 (paper) or 213 (computer) or above.

Deferred Admission. Deferred admission may be granted to applicants who qualify academically, but who have not yet met UI’s minimum English language proficiency requirement. In deferred admission status, students enrolled in UI’s American Language and Culture Program (ALCP) to achieve the academic department’s English language requirement prior to being granted full admission and commencing their degree programs. Please note that not all academic departments grant deferred admission.

Concurrent Enrollment as an Option of Deferred Admission. Students enrolled in ALCP Level 5 or Level 6 may, in consultation with the coordinator of ALCP and the course instructor, obtain approval to enroll as non-degree students for up to 7 credits per semester of academic courses in addition to their full-time ALCP courses. Students whose proficiency levels later prove inadequate for success in the academic courses may be withdrawn at the discretion of the academic course instructor and the ALCP coordinator. Once students achieve the necessary language qualification and gain full admission to the university, they may apply the credits of academic courses completed while in deferred admission status toward UI degree programs (other university and College of Graduate Studies restrictions may apply).

Financial Statement. As required by the U.S. Immigration and Customs Enforcement (USICE), all international students who hold or intend to hold nonresident alien visas must present to the Graduate Admissions Office satisfactory statements of finances and adequate proof of financial responsibility or sponsorship to cover all financial obligations while attending the University of Idaho.

Health and Accident Insurance. Supplemental health and accident insurance is mandatory for international students who hold nonresident alien visas and all accompanying dependents. Students must purchase and maintain the UI health insurance (SHIP) policy or document coverage of an equivalent policy with the International Programs Office before they are allowed to register or attend classes. Failure to obtain and maintain the required insurance may subject students to sanctions, up to and including disenrollment. See information on insurance in the Student Services section.

Status. In order to pursue a degree, international students must be authorized in their current visa status. Immigration regulations require that international students holding F-1 (non-sponsored student) or J-1 (exchange visitor, student classification) visas be certified as full-time students during the academic year. Graduate students are thus required to take a minimum of nine credit hours. For all other visa holders, contact the International Programs Office for rules governing taking courses while in the U.S.

Deadline for Application for Admission. To provide time for evaluation, notice of admission status to reach the applicant, and for USICE to be met for issuance of a student visa, applications and credentials should be received by the Graduate Admissions Office no later than the following dates: for fall semester, May 1; for spring semester, October 1; for summer session, March 15.

International Student Advisors. The international student advisors (ISAs) are involved with an international student’s progress at every stage of the educational process. Once a student has been admitted, the ISAs provide general information about cultural adjustment and the educational system, as well as specific details about other matters. Community contacts may be arranged, if requested. All matters pertaining to a student’s non-immigrant status with the Department of Homeland Security (DHS) are handled through the International Programs Office. A mandatory orientation before registration provides new students with assistance on initial questions. After this orientation, students are invited to visit the ISAs at any time with questions or concerns relating to immigration matters, education, finances, and cultural adjustment. The ISAs also serve as official liaisons between students and their consular offices or sponsoring agencies.

Fees and Expenses

The rates and procedures in this section are subject to change without notice.

The rates and procedures quoted in this section were in effect during the 2004-2005 school year. The Board of Regent’s of the University of Idaho approve rate changes each April. For the most current rate information, go to http://www.baas.uidaho.edu/acctrec.

Annual Expenses

Estimated annual expenses include the cost of undergraduate student fees, nonresident tuition (if applicable), grad/law/architecture fees (if applicable), room and board, books, and miscellaneous costs (clothing, laundry, transportation, incidentals, social/recreational expenses, fraternal affiliations, and personal needs). For an estimated cost of attendance, see the Financial Aid website, http://www.students.uidaho.edu/finaid/cost.asp.

Students can choose to pay fees in installments. Payment information is shown in the “Deferred Payment of Fees” section further on in this catalog section. Personal checks, bank drafts, money orders, travelers checks, Discover, VISA, and MasterCard are accepted by the university.

Full/Part-Time Registration Fees

Architecture Dedicated Fee. College of Letters, Arts and Social Sciences students enrolled in academic courses for landscape architecture, interior design, and the architecture professional program pay the graduate fee and the architecture dedicated fee in addition to the undergraduate student fee and, if applicable, nonresident tuition. Students carrying eight or more credits will pay the full-time Architecture fee; students carrying seven credits or less pay the part-time Architecture fee. See the Student Accounts website, http://www.baas.uidaho.edu/acctrec, for current fee rates.

Graduate/Professional Fee. Graduate students pay this fee in addition to the undergraduate student fee and, if applicable, nonresident tuition. Undergraduate and non-degree students enrolling in graduate courses must also pay the appropriate graduate fee. Students carrying eight or more credits will pay the full-time Graduate/Professional fee; students carrying seven credits or less pay the part-time Graduate/Professional fee. See the Student Accounts website, http://www.baas.uidaho.edu/acctrec, for current fee rates.

Law Fee. Law students pay the graduate fee and the law fee in addition to the undergraduate student fee and, if applicable, nonresident tuition. Undergraduate and non-degree students enrolling in graduate courses must also pay the appropriate graduate fee. Students carrying eight or more credits will pay the full-time Law fee; students carrying seven credits or less pay the part-time Law fee. See the Student Accounts website, http://www.baas.uidaho.edu/acctrec, for current fee rates.

Undergraduate Student Fee. Unless exempted, students carrying eight or more credits and all research/instructional assistants (including faculty-staff spouses) on full appointment pay the full-time undergraduate student fees. Students carrying seven credits or less pay the part-time undergraduate student fees. In addition, students in certain divisions may need to pay special fees (see “Special Fees” below). See the Student Accounts website, http://www.baas.uidaho.edu/acctrec, for fee payment deadlines.

Payment of full-time fees covers most laboratory and course charges and entitles the student to membership in the Associated Students University of Idaho (ASUI), to a nontransferable student identification card, to the services of the Alumni Office, and to the other services and facilities maintained by the university for the benefit of the students, subject to charges for special services and the payment of the special fees listed below. No reduction in fees can be made for students who may not want to use any part of these services.

WUE Fee. The Western Undergraduate Exchange Program fee is equal to 50 percent of the institution’s full-time undergraduate student fee. This fee is in addition to the undergraduate student fees; nonresident tuition is not assessed to WUE students. See the Student Accounts website, http://www.baas.uidaho.edu/acctrec, for current fee rates.

Nonresident Tuition Fee. Students who are classified as nonresidents of the state of Idaho pay this fee in addition to the undergraduate student fees. Students carrying eight or more credits will pay the full-time nonresident tuition; students carrying seven credits or less pay the part-time nonresident fee. See the Student Accounts website, http://www.baas.uidaho.edu/acctrec, for current fee rates. For tuition purposes, a student may be classified as an Idaho resident by meeting one or more of the following qualifications:

1. Any student who has one or more parent or parents or court-appointed guardians who are domiciled in the state of Idaho. Domicile means the individual’s true, fixed, and permanent home. It is the place where that individual intends to remain, and to which that individual expects to return when that individual leaves without intending to establish a new domicile elsewhere. To qualify under this section, the parent, parents, or guardian must have maintained a bona fide domicile in the state of Idaho for at least one year before the opening day of the term for which the student matriculates. One year is interpreted as 12 consecutive months immediately preceding the opening date of the term for which resident status is requested.

2. Any student who receives less than 50 percent of the student’s support from a parent, parents, or legal guardians who are not residents of this state for voting purposes, but which student has continuously resided in the state of Idaho for 12 months next preceding the opening day of the term during which the student proposes to attend the college or university and who has in fact established a bona fide domicile in this state primarily for purposes other than educational. “Continuously resided” is interpreted as physical presence in the state for 12 consecutive months. Specified support applies to the 12-month period immediately preceding the opening date of the term for which resident status is requested.

3. Subject to the definition of “nonresident student” below, any student who is a graduate of an accredited secondary school in the state of Idaho, and who matriculates at a college or university in the state of Idaho during the term immediately following graduation regardless of the residency for the student’s parent or guardian.

4. The spouse of a person who is classified, or is eligible for classification, as an Idaho resident for the purposes of attending a college or university. Classification under this section will require a copy of the marriage certificate, and the qualifying spouse may be required to submit proof of residency in the form of an affidavit.

5. A member of the U.S. Armed Forces, stationed in the state of Idaho on military orders. “Armed Forces” means the U.S. Army, Navy, Air Force, and Marine Corps. Uniformed services such as Coast Guard or National Guard do not qualify for residency requirements. Armed Forces members must be stationed in Idaho on active duty. A certified copy of the military orders may be requested in support of this qualification for residency classification.

6. A student whose parent or guardian is a member of the Armed Forces and stationed in the state of Idaho on military orders and who receives 50 percent or more of support from parents or legal guardians. The student, while in continuous attendance, shall not lose that residency when the student’s parent or guardian is transferred on military orders. Specified support must have been provided for the 12 months immediately preceding the opening day of the term for which resident status is requested. “Armed Forces” means the U.S. Army, Navy, Air Force, and Marine Corps. Uniformed services such as Coast Guard or National Guard do not qualify for residency requirements. Armed Forces members must be stationed in Idaho on active duty. A certified copy of the military orders may be requested in support of this qualification for residency classification.

7. A person separated, under honorable conditions, from the United States Armed Forces after at least two years of service, who at the time of separation designates the state of Idaho as his or her intended domicile or who has Idaho as the home of record in service and enters a college or university in the state of Idaho within one year of the date of separation. “Armed Forces” means the U.S. Army, Navy, Air Force, and Marine Corps. Uniformed services such as Coast Guard or National Guard do not qualify for residency requirements. “Two years of service” shall mean two years of active duty service. Reserve duty status does not qualify for residency requirements. A certified copy of the DD-214 separation papers may be requested in support of this qualification for residency classification.

8. Any individual who has been domiciled in the state of Idaho, has qualified and would otherwise be qualified under the provisions of this statute and who is away from the state for a period of less than one calendar year and has not established legal residence...
9. A student who is a member of any of the following Idaho Native American Indian tribes, regardless of current domicile: (a) Coeur d'Alene tribe; (b) Shoshone-Paiute tribes; (c) Nez Perce tribe; (d) Shoshone-Bannock tribes; and (e) Kootenai tribe.

A "nonresident student" is a student who does not qualify as a "resident student" under the provisions above, and shall include:

1. A student attending an institute in the state with the aid of financial assistance provided by another state or governmental unit or agency thereof, such nonresidency continuing for one year after the completion of the semester for which such assistance is last provided.

2. A person who is not a U.S. citizen, who does not have permanent or temporary resident status or does not hold "refugee-parolee" or "conditional entrant" status with the United States Immigration and Customs Enforcement (USICE) or is not otherwise permanently residing in the United States under color of the law and who does not also meet and comply with all applicable requirements of the definition of resident status.

For students who apply for special graduate and professional programs including, but not limited to, the WWAMI (Washington, Wyoming, Alaska, Montana, Idaho) Regional Medical Program, the WICHE Student Exchange Programs, Creighton University School of Dental Science, the University of Utah College of Medicine, and the Washington, Oregon, Idaho (WOI) Regional Program in Veterinary Medical Education, no applicant shall be certified or otherwise designated as a beneficiary of such special program who has not been a resident of the state of Idaho for at least one calendar year previous to the application date.

Students currently enrolled at UI may obtain information and interpretation of the residency regulations from the Registrar's Office. Students who have not yet enrolled may contact the Admissions Office.

Special Fees

Add/Drop Fee ($5). This fee is charged each time an Add/Drop Form is filed after the fourth week of classes.

Admission Application Fee. For information concerning the application fee, see the section headed "Application Procedures" at the beginning of Part 2 of the catalog.

Audit or Zero-Credit Fee. Students who audit or take a course for zero credit pay this fee in addition to any special course fee unless the student has already paid the full-time student fees for that term. This fee is equivalent to the Part-Time Fee. See the Student Accounts website, http://www.baas.uidaho.edu/acctrac, for current fee rates.

Diploma Fee ($25). This fee is payable at the time the student applies for each degree to be awarded by the university. An additional late service charge of $35 is charged for each application filed after the date listed in the registration calendar.

Extramural Credit Application Fee ($35). Extramural Credit Fee ($25 per credit granted). Students seeking extramural credits earned under regulation 1-2 must pay the application fee at the time of application. The per-credit fee is charged to the student's account at the time the credit is granted.

Lab and Course Fees. Special fees are charged for certain courses. Examples include the College of Letters, Arts and Social Sciences that charges a general shop fee and the College of Education that charges special fees for physical education courses. See the Student Accounts website, http://www.baas.uidaho.edu/acctrac for current fee rates.

Late Registration Service Charge ($50). Charging this fee is an incentive for students to complete their registration early. Students who register after the first day of classes must pay this fee.

Late Registration Fee ($50). Students who are allowed to register after the sixth day of classes must pay this fee in addition to the Late Registration Service Charge.

Music Special Fees. All students who enroll in individual instruction pay a course fee. Additionally, fees are charged for some required courses within the music major curriculum. For current fees, consult the School of Music (208-885-6231) or see the lab & course fees on the Student Accounts website, http://www.baas.uidaho.edu/acctrac.

Petition Fee ($10). This fee is charged for each petition submitted to the Academic Petitions Committee or Graduate Council.

Publication and Microfilming Fee ($50). At the time the application for the degree is filed, every doctoral candidate pays this fee for the publication of the dissertation abstract and for the microfilming of the dissertation.

Registration Fee for Senior Scholars. Idaho residents 60 years of age and older are permitted to enroll in courses on the Moscow campus, on a space-available basis. The fee is $20 plus $5 per credit. Senior scholars are enrolled after the regular registration days. In addition to this fee, special course fees for specific courses are also assessed (see Lab and Course Fees). Registration under this program entitles the student to instruction and library privileges only, and does not include insurance, student health services, ASUI membership, or free admission to athletic events.

Registration Fee for Staff. Under the Employee Educational Assistance Program (UI Faculty-Staff Handbook Sections 3740 and 3760), salaried UI employees on regular appointment who work at least half time (including those on official leave) may enroll in the university at the reduced rate of $20 plus $5 per credit. The Educational Fee and Tuition Reduction Program is a qualified reduction plan under Section 117 of the Internal Revenue Code. Under this program, fees waived for enrollment in undergraduate courses (except graduate students in undergraduate courses) are exempt from federal, state, and social security taxes; fees waived for graduate level courses or for graduate students in any courses are subject to tax. The tax is payable by the employee and deductions are made from the employee's paycheck by semester.

Registration Fee for Staff Spouse. To be eligible for this registration fee, the spouse must be on a board appointment at least half time. If the employee has been on a continuous half-time appointment for fewer than four years, during the fall or spring semester the spouse is limited to two courses not to exceed nine credits. The maximum credits in the summer are four. If the employee has been on a continuous half-time appointment more than four years, the benefit is unlimited. The fee rate is $20 plus $5 per credit. Spouses who are graduate or instructional assistants may not use a staff spouse waiver. The value of waived fees received for graduate work is taxable income to the employee (refer to information under the staff registration fee regarding the Internal Revenue Code).

Student Health Service Fees. Student Health Services provide a broad spectrum of outpatient medical care services. Please visit the Student Health Services website, http://www.uidaho.edu/shs for hours of operation, health insurance plans, scope of services, and fee for services. Student health insurance fees are also available on the Student Accounts website, http://www.baas.uidaho.edu/acctrac.

Thesis/Dissertation Binding Fee ($16). At the time the application for the degree is filed, every candidate for an advanced degree who is submitting a thesis or dissertation (including such terminal projects as musical compositions) pays this fee to have two copies of the document bound for the library.

Transcript Fee ($7). Every person who graduates from the UI is sent one student copy of their academic transcript with his/her diploma without charge. Official transcripts may be ordered at a cost of $7 per copy. For instructions on ordering transcripts, see the Registrar's website, http://www.uidaho.edu/registrar.
Deferred Payment of Fees
Students who have no delinquent accounts with the university and who are assessed registration fees or tuition in excess of $200 are eligible to defer payment of part of the fees and tuition in accordance with the following regulations:

1. At least 40 percent of fees and tuition, in addition to the service charge specified below, must be paid at the time of registration.

2. Special fees must be paid at the time of registration including deposits, special course fees, insurance, fines, penalties, special workshop fees, and other special charges or fees.

3. Service charges for the deferred payment plan are based upon the amount deferred. This charge is nonrefundable and must be paid at the time of registration. Service charges are assessed as follows:

<table>
<thead>
<tr>
<th>Amount Deferred</th>
<th>Service Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>to $200</td>
<td>$15</td>
</tr>
<tr>
<td>$201 - $400</td>
<td>$20</td>
</tr>
<tr>
<td>$401 - $700</td>
<td>$25</td>
</tr>
<tr>
<td>$701 - $1,000</td>
<td>$30</td>
</tr>
<tr>
<td>$1,001 - $1,500</td>
<td>$35</td>
</tr>
<tr>
<td>$1,501 - $2,000</td>
<td>$40</td>
</tr>
<tr>
<td>$2,000 - $2,500</td>
<td>$45</td>
</tr>
<tr>
<td>Over $2,500</td>
<td>$50</td>
</tr>
</tbody>
</table>

4. During the fall and spring semesters, the deferred balance is payable in three equal installments which are due approximately four weeks and eight weeks into the semester. For the summer, there are two equal installments.

5. Delinquent installments are assessed an additional $10 late charge, and the registration of the student concerned is subject to cancellation. If the terms of deferral are not fulfilled, the student loses the right to defer in the future.

6. Any aid received by a student for purposes of registration (scholarships, student loans, awards, etc.) must be applied toward the registration fees. If any aid funds remain, they are available for room, board, and books.

7. Students who wish to defer their registration fees, should check with the Student Accounts office to see if they can defer and, if so, a promissory note will be drawn up and signed.

8. In the event a student who owes deferred payments withdraws from school, the difference between the portion of charges that would normally be refundable, if any, and the amount paid on the deferred plan becomes immediately due and payable in full.

Refund of Fees
Students who withdraw in accordance with the regulations governing withdrawals are entitled to the following refund of tuition and fees. Refunds are calculated on total fees and tuition charged less a $50 administrative fee for full-time students and a $20 administrative fee for part-time students. Refunds are based on the official date of withdrawal, which is considered to be the date the student begins the withdrawal process. Reduced fees paid by individuals using the employee educational benefit are not eligible for refunds. Special lab and course fees are non-refundable after the second week of classes unless otherwise specified by the department charging the fee. Applicable federal Title IV financial aid funds will be returned to the Department of Education based on statutory regulations.

1. When the official date of withdrawal is prior to or on the first day of classes, 100 percent of fee and tuition charges is refunded.

2. When the official date of withdrawal is after the first day of classes but before the close of the second week of classes, 90 percent of fee and tuition charges less the applicable administrative fee is refunded.

3. When the official date of withdrawal is after the close of the second week of classes but before the close of the fourth week of classes, 50 percent of fee and tuition charges less the applicable administrative fee is refunded.

4. When the official date of withdrawal is after the close of the fourth week of classes but before the close of the eighth week of classes, 25 percent of fee and tuition charges less the applicable administrative fee is refunded.

5. When the official date of withdrawal is after the close of the eighth week of classes, no refund is given.

University Residences
The University of Idaho’s residence halls, graduate housing and family apartments are home to many students attending the University of Idaho. University Residences is creating success through living and learning communities. UI is a residential campus, giving students the opportunity to live on-campus and participate in a unique blend of social and academic activities. There are numerous student leadership positions, educational programming and social events. At UI, single students have the choice of 26 communities. For married students, one bedroom unfurnished apartments are available. For families, two-, three- and four-bedroom unfurnished apartments are available. For single graduate students, furnished studio apartments are available that include: In-house computer lab, all utilities, cable television hook-up, Internet hook-up and local telephone service. All of these options draw students closer to the campus environment allowing them to share in the on-campus experience.

Residence Halls
Living in the residence halls offers many conveniences and amenities. Every room has two Internet connections, local telephone service and cable hookup all provided at no extra charge. Computer labs, study lounges and TV lounges are available to all residents. Complete laundry facilities can be found in every building. The students in the Wallace Residence Center, Theophilus Tower, and McConnell Halls have easy access to a game room, cafeteria, convenience store and study lounges.

Theme Communities: Academic Traditional, Quiet, Alcohol-Free, Transfer and Non-traditional, First Year Communities, Engineering/Computer Sciences and the Fine Arts House offer students a strong tie to academics, success, and hall programs.

Living and Learning Communities
New Living and Learning Communities (LLC) is for today’s generation of students. The themed houses include a full kitchen for students to cook their own meals, community living rooms, dining rooms, dens and study areas with a fireplace for students to relax or form instant study groups. The suite layout of the rooms will house two to five people per suite. The suite offers a common living area with air conditioning, small kitchenette with sink, refrigerator and microwave, a shared bathroom and single, double, or super single beds. Some unique theme communities in the Residence Halls and the LLC include:

Living and Learning Communities: Scholars House, College of Natural Resources House, Engineering and Computer Sciences House, Global Village House and Academic Traditional House.

Co-operative Residences: The Ethel Steel House for women is a smaller community where students contribute a portion of their time doing house chores in exchange for reduced room and board costs. The house has its own in-house kitchen, dining room and meal plan.
Estimated 2004-05 rates for a residence hall double room with meal plan ranges from $2,537 to $2,757 per semester. Estimated 2004-05 rates for the LLC non-freshmen packages range from $2,349 to $2999 and freshman packages range from $2,787 to $3562 per semester. A $250.00 deposit is required when reserving for a room in the LLC and residence halls. For more detailed information and to reserve student housing, please contact University Residences at 208/885-6571 or 800/681-9361 or via e-mail at housing@uidaho.edu or apply online at http://www.students.uidaho.edu/housing

Graduate Student Housing
The university offers housing for graduate students who are enrolled in the College of Graduate Studies, College of Law, or WWAMI Program. These one-room studio apartments, located in the North Campus Center, are furnished with a bed, Microfridge®, air conditioning, and hot plates. Graduate Housing provides an in-house computer lab, Internet connection in each room, cable hookup, and local telephone service. Based on the proposed 2004-2005 rates, an apartment in Graduate Student Residences is expected to be $462-520 a month, all utilities included.

Family Housing
For married students and students with children, the university offers affordable housing options. Apartments in these communities are expected to be $472-724 a month in 2004-2005. One-, two-, three- and four-bedroom apartments are available. A $170.00 deposit, $30.00 application fee and last month's fees are required in advance. To apply for an apartment, e-mail us at housing@uidaho.edu, call 208/885-9361 or 208/885-6571, or write to University Residences/Apartment Housing PO Box 442010, Moscow, ID 83844-2010.

Elmwood
Single students 21 and over have the option of living in Elmwood. Located right in the heart of campus (behind the SUB) this housing community boasts their own parking lot. The lower level and the main floor are one bedroom apartments. The third floor are all one bedroom with a loft. Internet connection in each room and local telephone service are included in all units. Rates for 2004-05 are expected to be from $492 to 701. These units are unfurnished.

Off-Campus Living
Moscow offers a variety of off-campus housing options. Information sources for off-campus housing include: (1) the Off-Campus Housing List, published weekly by ASUI (UI's student government) and available at the Student Union Building, phone 208/885-6331, and (2) Moscow's daily paper, the Moscow-Pullman Daily News, phone 208/882-5561.

Quality Summer Conferences
The university houses numerous summer camps and conferences, bringing many participants to campus each year. Contact Conferences, Events, and Information Services at 208/885-6682 for more information on conference services.

Sororities
Nine national sororities have chapters on the University of Idaho campus. Each chapter owns and operates its own chapter house. These are: Alpha Gamma Delta, Alpha Phi, Delta Delta Delta, Delta Gamma, Gamma Phi Beta, Kappa Alpha Theta, Kappa Delta, Kappa Kappa Gamma, and Pi Beta Phi. The average cost for living in a sorority is $2,200 a semester, which includes charges for room, board, all activity fees, and house corporation building fund.

The Panhellenic Council, which is the representative body of the nine sororities, coordinates intersorority activities, formulates policies, and facilitates the Formal and Informal Sorority Recruitment processes.

Arrangements for Sorority Living. Membership in a sorority is done by mutual selection, where sororities extend invitations and potential members either accept or decline these invitations. Women who are interested in sorority living call 800/874-7335 or write a letter to Panhellenic Council, c/o Dean of Students Office. The selection of members in each sorority is made primarily during Formal Sorority Membership Recruitment, which is held in August before the beginning of the fall semester.

The Sorority Recruitment registration deadline is August 1 and the registration form should be sent to the Dean of Students Office. Formal Recruitment is not the only opportunity to become a member of a sorority, yet it is the only time when Recruitment is coordinated by Panhellenic Council and all sororities participate. If you are unable to participate in Formal Sorority Membership Recruitment but are interested in sorority membership, contact the Dean of Students Office, 208/885-6757; or askjoe@uidaho.edu.

Fraternities
Chapters of 19 national fraternities are maintained on the University of Idaho campus. These are: Alpha Gamma Rho, Alpha Kappa Lambda, Alpha Tau Omega, Beta Theta Pi, Delta Chi, Delta Sigma Phi, Delta Tau Delta, FarmHouse, Kappa Sigma, Phi Delta Theta, Phi Gamma Delta, Phi Kappa Tau, Pi Kappa Alpha, Sigma Alpha Epsilon, Sigma Chi, Sigma Nu, Sigma Phi Epsilon, Tau Kappa Epsilon and Theta Chi. Each of these groups is represented in the Interfraternity Council, which unites them in common service to the university and promotes a spirit of cooperation and self-government among fraternities.

Membership in a fraternity is done by mutual selection, where the fraternities extend invitations to join and potential members either accept or decline these invitations. The membership selection process is facilitated by each fraternity; the university does not make these arrangements. The average cost for living in a fraternity is $2,200 a semester, which includes room, board, and all activity fees.

Arrangement for Fraternity Living. Anyone interested in fraternity living should call 800/874-7335 or write a letter to Interfraternity Council, c/o Dean of Students Office. Those who indicate an interest in fraternity living will receive information from the various fraternities during the spring and summer before they arrive at the university. Fraternity Formal Recruitment is held before the beginning of the fall semester. If you are unable to participate in Formal Recruitment but are interested in fraternity membership, contact the Dean of Students Office, 208/885-6757; or askjoe@uidaho.edu.
The Student Support Services program offers participating students individualized tutoring (in most subject areas), educational planning, academic advising, and intensive learning and study skill development. Student Support Services also provides personal support. This support is particularly helpful for students with specific needs (e.g., delayed entry or re-entry, nontraditional preparation, disabilities which impact learning, academic probation and reinstatement, or provisional admission).

To be eligible for services, a student must be either a U.S. citizen or permanent legal resident, must have a need for academic services, and must be EITHER (1) low income (according to federal guidelines) OR (2) from a first generation family (neither parent/guardian has earned a baccalaureate degree) OR (3) have a documented disability which impacts learning. Consideration for a Grant Aid award will be given to each active program participant who is a PELL Grant recipient and who makes satisfactory academic progress. Students are accepted into the program on a first-come, first-served basis and are encouraged to contact the office as early in the semester as possible.

Disability Support Services dss@uidaho.edu The University of Idaho has established services for students with disabilities in accordance with Section 504 of the Rehabilitation Act of 1973, as amended, and with the Americans with Disabilities Act (ADA) of 1990, as amended. Disability Support Services (DSS) provides support services to students with temporary or permanent disabilities. Students requesting assistance must provide appropriate disability documentation (to be kept on file in the DSS office) and must provide adequate advance notice of such requests. Services include, but are not limited to, alternative media, note takers, sign language interpreters, disability parking and campus accessibility information, registration assistance, new student orientation, proctor and test-taking arrangements, or help with any other disability needs. Additional accessibility information is available on the website of the Office of Human Rights Compliance at www.webs.uidaho.edu/hrcom/.

Students are asked to notify Disability Support Services as soon as possible to discuss specific disability-related concerns and needs. This voluntary self-identification enables DSS to determine appropriate and reasonable accommodations to make classes, programs, services, and activities accessible to people with disabilities. Students with learning disabilities or students requiring learning assistance and/or tutoring are encouraged to work with Student Support Services. Information regarding disabilities will be kept in strict confidence and has no effect on admission to the university. Federal law prohibits the Admissions Office from making preadmissions inquiries about disabilities.

Alumni Association Alumni Center; 208/885-6154; alumni@uidaho.edu; http://www.uidaho.edu/alumni.

The University of Idaho Alumni Association exists to foster and coordinate the support of alumni and friends of the university in strengthening the academic, research, service, and leadership-building programs of the institution. It also provides individual alumni services to its non-dues paying members throughout the world.

All former UI students who earned a UI degree or at least 90 credits at UI, and associate and honorary alumni are members of the association. The director of alumni relations and staff, along with an elected board of directors, guide the many programs, services, and activities for the more than 75,000 members.

The Alumni Association strives to keep alumni informed about their alma mater, encourage university loyalty and material support, and apprise the university community of alumni opinion. Through a variety of awards, the association honors outstanding alumni, students, or other individuals who provide exceptional service to the institution or state of Idaho. Scholarships are given by the association to help both entering and continuing students at the university.

Alumni can maintain close ties with the university through Alumni Association services, such as travel tours, and campus, national, and worldwide gatherings for special UI occasions, including reunions and Silver and Gold Events. The association also provides and organizes support for the university through active organizations, such as the Student Alumni Relations Board and the UI Retirees Association.

Areas of recent emphasis for the association include recruiting and informing prospective students about the university, and increasing volunteer support through the development of alumni chapters and constituency groups. The association is also strengthening and expanding its membership services, through use of Internet and lifetime e-mail service.

Career and Professional Planning (CAPP) Idaho Commons 334; 208/885-6121; career@uidaho.edu; www.webs.uidaho.edu/careerservices

The university is committed to providing students with a comprehensive set of career exploration and professional development services, including assistance in identifying career and major interests, developing skills and experience through academically-relevant work and experiential learning opportunities, preparing professional job/intern application materials, educating students on job search strategies, and preparing students for interviews. In addition to serving UI students and alumni, CAPP also provides assistance to academic departments and employers.

Student Career and Professional Development Services are available to UI students and alumni of all majors. In today's job market, well-educated job candidates with relevant work experience are highly desired. CAPP Career Advisors help students prepare for employment by providing career education through workshops, group presentations, and individual advising sessions. CAPP serves students at all stages of career development, from making decisions on their major and career interests, to identifying and participating in experiential learning opportunities (internships, co-ops, research experiences, and service-learning courses), to applying for professional careers upon graduation. A strong emphasis is placed upon the value of experiential learning. Students are encouraged to participate in a variety of opportunities to apply classroom theory in a real-life environment, clarify their educational and career goals, gain practical skills and experiences, and learn more about themselves, their community, and their future professions.

CAPP also offers Employer Recruitment Assistance to employers who wish to hire UI students. The UI is Idaho's most heavily recruited campus, and employer representatives visit campus regularly to interview students for internship, career employment, and temporary/summer opportunities. A current listing of employment opportunities is available on the web at http://www.webs.uidaho.edu/careerservices.

The Career Expo of the Palouse is an all-university career fair hosted jointly with Washington State University each semester. This event attracts over 150 employers with opportunities for regular, summer, and internship positions, as well as representatives from graduate schools and professional programs.

CAPP also provides Assistance to Faculty and Academic Departments by providing training and support for faculty engaged in academic service-learning and internship supervision. In addition, faculty often invite CAPP advisors into their classrooms to teach lessons on a variety of career/experiential learning topics, facilitate resume and cover letter lessons and assignments, and lead reflection sessions before/after a service-learning project.

For more information, contact the Career and Professional Planning Office, Idaho Commons Room 334, 208/885-6121, career@uidaho.edu. Additional program information is available on the web at http://www.webs.uidaho.edu/careerservices.

Career counseling is also offered by the Counseling & Testing Center. All students face decisions about selecting a major and a career direction that is right for them. Counseling and testing are available through the Center to help students explore and define their interests, abilities, values, and other needs related to choosing a major and a career. For more information, see the Counseling & Testing Center section of this catalog.
Center for Academic Advising
Student Union Building, 138; 208/885-9831; http://www.uidaho.edu/advising.

Academic advising is performed at the department- or college-level. Students are assigned an advisor by the college or department for the major(s) a student has declared. The Center for Academic Advising (CAA) serves as a clearinghouse for academic advising information and is a point of contact where new and continuing students receive help in finding their way to the appropriate college and department advisors.

The CAA is also a center for delivery of training programs on academic advising for faculty and staff advisors and is the primary site for advising of BGS (Bachelor of General Studies) majors at the freshman and sophomore levels. CAA staff can assist students considering a change of major and consult with advisors and students who have questions regarding general education requirements.

Child Care Services
The UI Children’s Center offers childcare, early schooling, and after school programs for children from 6 weeks through 8 years of age. Accredited by the National Academy of Early Childhood Programs, the UI Children’s Center offers a safe and nurturing environment as well as programs which promote the physical, social, emotional, and intellectual development of young children. For more information, call 208/885-6414 or visit their website, http://www.uidaho.edu/uikids.

Computer Education
Re-entry students may find that they need to acquire or sharpen computer skills in order to complete class assignments. The Office of Enrichment Programs (885-6486) offers workshops in computer skills, for a nominal fee.

Counseling & Testing Center
Continuing Education Building, 3rd Floor; 208/885-6716; http://www.webs.uidaho.edu/ctc.

Many students find that it is helpful to discuss their concerns with a professional who takes the time to listen and understand. Counselors at the Counseling & Testing Center (CTC) are available to meet with students to discuss personal, educational, or career concerns. Counseling can help students learn more about themselves and develop new skills to deal more effectively with personal problems such as depression, anxiety, stress, eating disorders, sexual abuse, relationships, academic pressures, and problems with alcohol or other substances. Counseling sessions are confidential. The Counseling & Testing Center offers the following services: crisis intervention, individual counseling, group counseling, couples counseling, educational and career counseling, educational presentations, referral, testing, and assessment of learning disabilities. For students who wish to research issues on their own or in conjunction with a counselor, the Center has a self-help room with information to assist students with solutions to problems such as test anxiety, panic, depression, homesickness, relationship concerns, and a variety of other issues common to college students.

The CTC also offers the following career development and counseling services to help students select a major and a career direction that is right for them: (1) individual and group counseling for major and career decision making, (2) career interest testing and interpretation, (3) workshops and educational presentations regarding career development, (4) career information including books, pamphlets, and vocational biographies, and (5) computerized career exploration system (DISCOVER®).

The CTC offers a variety of assessment services. In addition to psychological and vocational testing, the Center coordinates and administers all of the national testing programs such as the, SAT, ACT, MCAT, LSAT MPRE, and FSO. As part of this service, the Center operates a Computer Based Testing Center for such testing programs as the GRE, TOEFL, GMAT, and the Praxis series. The Center also administers the COMPASS® test used for both English and Math placement and offers proctoring services for correspondence exams.

Counseling services are available without charge to full-time students. There is a fee for some assessment and proctoring services. For additional information on services provided by the Counseling & Testing Center, visit the web at http://www.webs.uidaho.edu/ctc.

Dean of Students
Admin 347; 208/885-6757; askjoe@uidaho.edu; http://www.uidaho.edu/dean.

The University of Idaho is comprised of a diverse student population: 25 percent of the students are married; 45 percent of the students live on campus in 19 fraternities, 9 sororities, and 23 living groups in 8 residence halls. Approximately 20 percent of the students are from out of state, and the international students who hold nonresident alien visas represent 40 different countries. Students spend two-thirds of their time in out-of-class activities including clubs, student government, studying, intramurals, and intercollegiate activities.

A diverse student population requires that UI have a diverse student services program. The Dean of Students Office provides a variety of services that focus on assisting students. Programs and services include advising students in living groups as well as those off campus, ethnic minority students, and veterans. In addition, the Dean of Students Office coordinates New Student Orientation, Women’s Center, Child Care Center, National Student Exchange Program, student leadership activities, fraternity/sorority programs, and student discipline/conduct activities.

This wide range of programs and services includes assisting families and students who may experience crisis situations that disrupt normal academic activities.

Staff members are trained to work with individuals and groups of students, or serve as a liaison between students, departments, and agencies on and off campus.

All of the services and programs are supportive of the academic mission of UI and are an integral part of the student’s total education at the university. A few of the services offered by the Dean of Students Office are highlighted below.

National Student Exchange. National Student Exchange (NSE) gives University of Idaho students the opportunity to attend one of 175 colleges or universities throughout the United States for one or two semesters. UI students pay UI fees or the resident fees of their host campus. Students normally need to apply by February for the next academic year. Credits earned on NSE fulfill University of Idaho resident-credit requirements.

To qualify for participation in the NSE, a student should: (1) be a full-time University of Idaho student; (2) be a sophomore, junior, or senior at the time of exchange; and (3) have a UI grade-point average of 2.5 at the time the application is filed. Information and applications may be obtained from the NSE Office in the Office of the Dean of Students, Admin 346 (208/885-7979).

Violence Prevention Programs & Resource Services. Resource Specialists provide violence prevention and risk reduction programming for students, staff and faculty on campus. Services include crisis intervention and referrals for on-going campus/community resources. Individual students, student leaders, university administrators, and community medical/legal professionals collaborate with Resource Specialists to create and implement positive campus policy. Risk reduction educational programs are available to all students at no cost. For more information call 208-885-2956 or come visit us in Administration Building room 337.

UI Children’s Center. See “Child Care Services” earlier in this section.

Veterans’ Benefits for Educational Assistance. The Office of Veteran Affairs assists veterans, dependents, reservists, and national guardsmen who are eligible for educational benefits through the Veterans Administration. Students expecting to receive veterans benefits must apply for benefits and should contact the Office of Veteran Affairs at least six weeks before the beginning of each semester.
To qualify for payments, all veterans must be released under honorable conditions. To receive full benefits, a veteran must be pursuing an approved course of study leading to a degree or other professional objective. To be considered full time, undergraduate students must carry 12 credits or the equivalent, and graduate students must carry 9 credits or the equivalent (see regulation O-1 in part 3).

An advisory service is available to veterans and additional information, advice on benefits, or application forms may be obtained by writing to the veterans’ advisor in the Office of the Dean of Students, PO Box 443179, Moscow ID 83844-3179 (208/885-7397); or online at www.uidaho.edu/dos.

Women’s Center. The Women’s Center staff is committed to providing a welcoming environment and a sense of community for all. At the Women’s Center, we foster personal and professional growth through a network of support and services including educational programming, gender equity issues, information, referrals, and outreach.

Programs and services at the Women’s Center include: brown-bag lunchtime programs (presentations and discussions covering a variety of topics); library (a circulating library of over 1,500 books and journals, primarily comprised of research, information, and literature regarding gender issues; information and referral to other agencies and services); lounge (a place to relax, read, study, get acquainted with others, and exchange ideas); newsletter (a publication announcing current programs and services, and news about women’s issues). The center also assists with nontraditional student services and programs. The Women’s Center is located in Room 109 of Memorial Gym.

Employment Services, Student and Temporary Hiring

415 W. 6th St; 208/885-3609; employment@uidaho.edu; http://www.hr.uidaho.edu

Employment Services, within the Human Resources Department, assists students in gaining employment experience to supplement financial support. Office hours are Monday through Friday from 7:30 a.m. to 5 p.m. Hiring departments across campus post available positions through the Employment Services office. All University of Idaho students are eligible to participate in the program. Hiring departments and students work together to identify a work schedule that emphasizes the student’s main objective, obtaining a higher education degree. Job vacancies, applications, and additional information are available online at http://www.hr.uidaho.edu. All employment and payroll forms for students are completed at the Human Resources office.

Off-Campus Employment. Job Location and Development (JLD) works with the local business community to develop off-campus part-time, full-time, and summer jobs for students. The JLD office is located on the first floor of the SUB in Room 137. JLD is a part of Student Financial Aid Services and all students may use the program. Phone: (208) 885-2778, website: http://www.students.uidaho.edu/jld.

In addition, the Idaho Job Service, located at 1335 Troy Highway, behind the Eastside Marketplace in Moscow, is a free service and lists jobs in the community. The classified sections of the Moscow/Pullman Daily News and the campus paper, The Argonaut, carry job listings.

Intercollegiate Athletics

Athletics Department; ASU Kibbie Dome 230; 208/885-0200; http://www.uiathletics.com/

Idaho has a proud athletic tradition and strong program in 16 sports for men and women. The teams are known as the Vandals and compete as a Division I member of the NCAA and Big West Athletic Conference. Football competes in the Sun Belt Conference in NCAA Division I-A.

Big West conference members include Cal Poly-San Luis Obispo, Cal State Fullerton, Cal State Northridge, Long Beach State, UC-Irvine, UC-Riverside, UC-Santa Barbara, Pacific, and Utah State.

The football playing members of the Sun Belt Conference are Middle Tennessee, Louisiana-Lafayette, Louisiana-Monroe, Arkansas State, North Texas, New Mexico State, Utah State, and Troy State.

The men’s program consists of teams in football, basketball, cross country, indoor and outdoor track and field, tennis, and golf. The women’s program consists of teams in basketball, volleyball, cross country, indoor and outdoor track and field, tennis, golf, and soccer, and swimming.

The athletic program enjoys splendid facilities. The Kibbie-ASU Activity Center, known as the “Kibbie Dome,” houses the Athletic Department offices, team locker rooms, weight room, athletic training facilities, and academic support unit. The Kibbie Dome itself is the site for football and men’s and women’s basketball games played in the newly created Cowan Spectrum within the Kibbie Dome. Historic Memorial Gymnasium is the home for Idaho volleyball. Track and field and tennis make great use of the Kibbie Dome’s indoor facilities for practice and competition as well, with the five-lane, 290-meter track and the nine indoor tennis courts. The women’s soccer team plays its home matches on Guy Wicks Field. The university’s 18-hole championship golf course and numerous outdoor tennis courts complete the facility picture.

Athletic Department Mission. The UI athletic program shall serve to inspire the pursuit of excellence through honest effort, fair play, and personal integrity. Its highest priority is to enhance the educational growth of UI’s young men and women. The primary purpose of the Athletic Department shall be to provide a successful, quality, competitive intercollegiate athletic experience for UI students that will enrich their lives, provide the necessary training ground for life growth, enhance the image of the institution, and build upon the academic mission of the university.

Athletic Program Goals. The goals of the UI athletic program are: (1) to encourage the motivation and commitment necessary for academic success leading to the graduation of student-athletes; (2) to maximize opportunities for student-athletes to participate in a quality athletic program, in a gender balanced manner, with special attention paid to their educational growth and physical welfare; (3) to maximize opportunities for student-athletes to acquire positive values from their competitive sports experience and life skills enrichment programs, preparing them for a productive life; (4) to be a leader in providing equitable programs and opportunities for student-athletes and staff that exemplify the highest principles of gender and minority equity; (5) to field teams that are capable of competing on equal footing with rival institutions and that are competitive for conference championships and the national opportunities that conference championships may bring; (6) to provide the atmosphere for participants to realize the importance of others, personal dignity, individual rights, and the value of cooperative teamwork to attain personal and team goals; (7) to maximize positive involvement by the various publics with the institution through the athletic program; (8) to foster the highest standards of ethical conduct and fair play; (9) to enhance the image of the University of Idaho; and (10) to maximize and stabilize the generation of revenue from all sources to fund the athletic program.

Multicultural Affairs

Office of Multicultural Affairs; ADMIN 342; 208/885-7716; http://www.uidaho.edu/oma.

UI is committed to establishing and maintaining a campus environment that promotes cultural diversity. This is accomplished through the provision of services that address specific needs of Asian American/Pacific Islander, African American, Hispanic American, and Native American students. OMA is fundamentally a campus wide resource meant to benefit the educational experience of the entire campus community.

The Office of Multicultural Affairs (OMA) provides assistance to multicultural students in the areas of advocacy, financial aid, and accessing university student support programs. OMA also maintains a group of student mentors designed to help new multicultural students connect with resources and learn from the experiences of more experienced U of I students. This mentor group is called P.A.C.E. (Peer Advising on the College Experience). OMA continuously works with other departments across the university to resolve issues that may hinder recruitment and retention of multicultural students.

Multicultural student organizations serve a vital role in retention and helping to promote cultural diversity on the UI campus. Some of the organizations that are currently active are the Asian American/Pacific
The Polya Math Center also offers drop-in assistance for students in Math a semester. Students have a choice of and review them as needed. Those who prefer a live lecture can attend by streaming video so that students can view them at their convenience about 45 advised by an instructor. Lectures are delivered at computers Polya. The students in these courses are divided into focus groups of by instructors and teaching assistants. Mathematical questions. The study and consultation room provides instructors and teaching assistants trained to answer a wide range of software and courseware and is staffed over 80 hours each week by The computer room offers students a wide range of mathematical Recreational, Social, Extracurricular, and Co-curricular Activities Idaho Commons; 208/885-2667 Student Union Building 208/885-4636; http://wwwcommons.uidahoedu. Many of the programs and activities at the Idaho Commons and Student Union are co-curricular in design, linking students’ academic endeavors with out-of-class learning experiences. Students can get involved in numerous functions and activities that meet their personal goals for individual growth and leisure time activity. UI student organizations in the Idaho Commons and Student Union are integral to the planning and implementation of educational, cultural, and recreational activities for the campus.

NEW STUDENT SERVICES
Student Union Bldg. Rm. 135; 208/885-6163; nss@uidaho.edu; http://www.nss.uidaho.edu.
The Office of New Student Services represents the University of Idaho to prospective students and assists those students and their counselors and parents with decisions about higher education. Staff members visit high schools and present programs about the university to interested students, attend college fairs, distribute a wide range of literature, coordinate the flow of information from UI’s colleges to students who express particular educational interests, and answer questions raised by students, counselors, and parents.

New Student Services also sponsors a campus visitation program that offers prospective students an opportunity to spend a day on campus. Visiting students and their families may tour campus and living groups. NSS can arrange for overnight lodging, arrange appointments with faculty members, and suggest classes and activities that prospective students may attend. NSS also hosts several major on- and off-campus events for prospective students and their parents, including Vandal Friday and Vandal Transfer Day in the spring and the Vandal Road Trip in the fall. For more information, call the Office of New Student Services, 208/885-6163, or 888-88-UIDAHO (888/884-3246).

Polya Mathematics Center
Brink/Phinney Hall, 1st floor; 208/885-5717; polya@uidaho.edu; http://www.its.uidaho.edu/polya.
The Polya Mathematics Center is a resource for students who take mathematics courses or who use mathematics in other courses. Polya is located on the ground floor of Brink/Phinney Hall in two large rooms. The computer room offers students a wide range of mathematical software and coursework and is staffed over 80 hours each week by instructors and teaching assistants trained to answer a wide range of mathematical questions. The study and consultation room provides space for individual and group study with readily available assistance by instructors and teaching assistants.
The pre-calculus courses Math 108, 143, and 144 are taught entirely in Polya. The students in these courses are divided into focus groups of about 45 advised by an instructor. Lectures are delivered at computers by streaming video so that students can view them at their convenience and review them as needed. Those who prefer a live lecture can attend the lecture series offered nine times a week. Students have a choice of working homework exercises by hand from a textbook or working very similar exercises at the computer. The computer exercises offer assistance and immediate detection of errors. The flexible organization of these courses offers students the option of working at a faster pace than required in order to complete the courses in less than a semester.
The Polya Math Center also offers drop-in assistance for students in Math 160, 170, 175, and 275. The hours for calculus assistance varies from semester to semester and are posted on the Polya web-site.
The Graduate Student Association (GSA) supports and promotes graduate student education and graduate student life at the University of Idaho. This includes creating programs and assisting graduate students during their transition from student life to professional life. GSA elections are held annually as a commitment to providing a collective voice for graduate students to the university and to the state. The GSA office is located in the Idaho Commons, Room 305, just off the Overlook Lounge. GSA can be reached at 208/885-9446 or gsa@uidaho.edu.

The Idaho Commons is the center of campus life and provides programs, amenities, and services to enhance the educational experience of UI students, their families, and guests. Located at the heart of campus, the Idaho Commons serves as the crossroads and meeting place for the University of Idaho. Services offered at the Idaho Commons include meeting rooms for nonacademic programs, a variety of student support services, a food court, coffee shop, convenience store, bookstore, copy service, credit union, ATMs, lounges, and administrative offices. Through various programs and services, the Idaho Commons cultivates and enhances the living and learning experience of students. Our students enjoy the many aspects of the building itself while gathering with friends to study, learn, and socialize with each other in a comfortable atmosphere. Cultural enrichment programs such as art exhibits, music, and speaker presentations are available to students, other members of the university community, and area residents. For information on Commons’ activities, call 208/885-CMNS (2667) or 208/885-2233.

Leadership Development starts from the moment students enroll at the University of Idaho. An annual Fall leadership retreat promotes student development and growth through campus involvement. Students can stay involved throughout the year through leadership training seminars, student organizations, and meetings between student leaders and university administrators. The Group Opportunities and Leadership (GOAL) program stretches both mind and body. Through activities such as ropes courses and team initiatives, students will develop knowledge of leadership styles, conflict resolution, communication skills, and problem solving. For more information about leadership development, contact the Student Activities and Leadership Programs Office, Idaho Commons Room 302, 208/885-6331.

Looking for an adventure experience? Outdoor Programs offers classes and informal instruction in some of today’s top outdoor activities; kayaking, rafting, rock climbing, mountain biking, skiing, and other winter sports. Take advantage of Outdoor Programs Resource Center and Climbing Center, which includes 6000 square feet of climbing surface and a 55 foot pinnacle. Want to experience the great outdoors, but lack the gear? The Outdoor Rental Center has the most extensive inventory of quality outdoor equipment in the Northwest. From rafts, kayaks, and canoes to skis, climbing gear, and camping equipment, the Outdoor Rental Center is ready to serve students and the Moscow community with their outdoor needs. The Outdoor Program, the Outdoor Rental Center, and the Climbing Center are located in the Student Recreation Center (SRC). For information, call the Outdoor Program 885-8810, Rental Center 885-6170, http://www.asui.uidaho.edu/outdoors.

Recreational facilities located on the Moscow campus include the new Student Recreation Center with approximately 85,000 square feet devoted to student health and recreation. In it are a climbing wall with a 55 ft. high pinnacle (the highest of any university), fitness equipment, indoor jogging track, 2 full-size gyms, a multi-purpose court, 2 multi-purpose/aerobic rooms, locker rooms, and a social lounge. Additional recreation facilities include the ASUI Kibbie Activity Center, the Swim Center, an 18-hole golf course, and indoor and outdoor tennis and handball courts.

Sound, Production, and Lighting Services (SPL) offers training and experiential opportunities for student employees. SPL provides professional sound, lighting, and multimedia production for student-sponsored performance and entertainment events. Employment opportunities exist for technicians to work with sound, lights, and film. Other employment is also available to students interested in computer and network support. SPL is located on the 3rd floor of the Student Union, 208/885-6847.

In Student Media, students utilize real-world technology in the various productions of the student newspaper, yearbook, FM radio, and advertising. Argonaut, the twice-weekly student newspaper, gives students the chance to gain real-world experience in media writing, computer graphics, photography, advertising, marketing, and broadcast management. Editors, page designers, reporters, and advertising representatives have the opportunity to work with the newest technological equipment to create a product comparable to many commercial newspapers. The Gem of the Mountains yearbook is about much more than putting out an annual; the most important commitment of the GEM staff has been their continued dedication toward preserving the UI legacy for students and alumni. KUOI-89.3 FM, the student-run campus radio station, provides a free-form alternative to other media in the Moscow-Pullman area. Students have the opportunity to serve as on-air announcers, music and programming directors, and station manager. All student media organizations are housed on the 3rd floor of the Student Union Building, 208/885-7825.

Variety is the spice of life, and there is no better place to find your niche than with the variety of Student Organizations available at the University of Idaho. With more than 150 campus-wide organizations, sports clubs, and Greek chapters, students have many choices when it comes to customizing involvement. Catch a glimpse of the options available on campus by attending the Student Involvement Fair and browsing the Student Organization Guide to Involvement. Not only is it easy to find a student organization, it is just as simple to start your own. Through resources in the Student Activities Office, new organizations can gain recognition, build membership, and apply for funding from the ASUI Activities Board. For more information, contact the Student Activities and Leadership Programs Office, Idaho Commons Room 302, 208/885-6331.

The Student Union, located at Sixth and Deakin Streets, is home to Enrollment Services; including the Registrar’s Office, Admissions, New Student Services, Student Accounts/Cashiers, Student Financial Aid; Student Employment; Student Media; Sound, Production, and Lighting; International Ballroom; Borah Theater; UI Lionel Hampton Jazz Festival office; and several meeting rooms. Services offered at the Student Union include student computer labs, a video center, a deli/espresso cafe, catering services, copy service, ATMs, and lounges. 208/885-4636.

Religious Activities

The university is served by three campus religious centers: Campus Christian Center (corner of University and Elm); LDS Institute of Religion (902 Deakin); and St. Augustine’s Roman Catholic Center (corner of Sixth and Deakin). These centers provide opportunities for the study and practice of religion as well as resources in counseling and guidance. In addition, all of Moscow’s churches provide opportunities for religious development for University of Idaho students.

Ronald E. McNair Post Baccalaureate Achievement Program

Morrill Hall Room 105; 208/885-6748; mcnair@uidaho.edu; http://www.uidaho.edu/mcnair.

The goal of McNair is to increase the attainment of the Ph.D. by students from underrepresented segments of society. The McNair Achievement Program is a federally funded educational assistance (TRIO) program designed to prepare undergraduate participants for doctoral studies through involvement in research and other scholarly activities.

McNair participants have demonstrated strong academic potential and are chosen from disadvantaged backgrounds. Program staff and faculty mentors guide these participants through their undergraduate experience, encourage their entrance into graduate programs, and track their progress to successful completion of advanced degrees.

Services provided by the program include: research opportunities for participants; mentoring; seminars and other scholarly activities designed for doctoral studies; summer internships; academic tutoring; academic counseling; assistance in obtaining student financial aid; assistance in securing admission and financial aid for enrollment in graduate programs.

To be eligible to apply for the McNair Achievement Program, a student must be either a U.S. citizen or permanent legal resident; must qualify as a low-income AND first generation (neither parent/guardian has earned a baccalaureate degree) college student, OR a member of a
group underrepresented in graduate education; must have obtained sophomore, junior, or senior status; must have at least a 2.80 GPA; and must be considering pursuing a doctoral degree (Ph.D.). All candidates must have completed at least their sophomore year of college. Students must apply and be accepted into the McNair Program. Potential Scholars should access the McNair website for more information and applications.

Statistics Assistance Center
Idaho Commons 346; 208/885-2929; http://www.uidaho.edu/LS/Stat/SAC.htm

The Statistics Assistance Center (SAC) was developed to give assistance to students taking lower level statistics courses. Statistics graduate students in the SAC provide help for students enrolled in Statistics 150, 251, 271, 301, and 401. The staff works to provide a friendly, non-threatening environment where students will feel comfortable to work, ask questions, and learn statistics outside of class.

The SAC is generally open for statistics tutoring Monday through Friday. Statistics tutoring hours vary each semester so please check with the Department of Statistics Office (Brink 415A; 208/885-2929) for scheduled times. Students can visit the SAC on a drop-in basis during scheduled times for help with homework problems. The SAC is next to a Student Computing Lab that has a number of computers that provide supporting software for statistics courses.

Student Financial Aid Services
Student Union Building: 208/885-6312; finaid@uidaho.edu; http://www.students.uidaho.edu/finaid

The office of Student Financial Aid Services assists students and their parents to qualify for financial assistance in the form of scholarships, grants, loans, and part-time work to help pay the cost of attending college. These programs may include scholarships, Federal Pell Grants, Federal Supplemental Educational Opportunity Grants (FSEOG), LEAP, Federal or Idaho State Work Study Programs (FWS or IDWS), Federal Perkins Loans, William D. Ford Federal Direct Loans, and Federal Direct Parent Loans to Undergraduate Students (PLUS). Financial aid is expected to supplement student and family resources. The office also assists students in finding part-time jobs off campus.

Application Process:
Priority Dates. Because funds are limited, to receive priority consideration for all funds the student applicant must submit the Free Application for Federal Student Aid (FAFSA) so it is received by the servicer by the priority date each year. The priority date is February 15. This priority date applies to students attending both fall and spring semesters. It is recommended that students file an electronic FAFSA form; the website link can be found on the Financial Aid homepage, http://www.students.uidaho.edu/finaid. If filing by paper, the FAFSA should be mailed no later than the end of January in order for it to reach the processor by the priority date. In addition to the FAFSA, all students who are new to the university must also have applied for admission by the February 15 priority date. Students who meet all of these priority dates will receive first consideration for all funds for which they qualify. Students who do not meet all of these priority dates will still be considered for Federal Pell Grants and William D. Ford Federal Direct Loans, which are available throughout the year.

Enrollment. Financial aid during the academic year is usually awarded in expectation of full-time enrollment: 12 credits per semester for undergraduate students, 10 credits per semester for law students, or 9 credits per semester for graduate students. If a student is receiving aid as a full-time student, he or she must be preregistered as a full-time student to receive the aid at registration. Students are required to enroll full-time to receive scholarships, unless the donor specifies special circumstances allowing part-time enrollment. Students who meet all priority dates, but who enroll less than full-time, will be considered for federal financial aid at a lower priority than those who are enrolled full-time. Any aid given for less than full-time enrollment is generally in proportion to the student's credit load. All students must enroll at least half-time (6 credits per semester for undergraduate students or 5 credits per semester for graduate or law students) to be considered for most types of financial aid.

Scholarships. Students who wish to apply ONLY for scholarships not based on financial need and no other types of financial aid must do one of the following in order to receive consideration: (1) Students who are attending the university for the first time only need to have a complete application for admission on file by the February 15 priority date; (2) Students who are enrolled at the university during the prior spring semester in at least 9 credits for undergraduate students, 10 credits for law students, or 6 credits for graduate students will be considered automatically (without completing any additional forms) for scholarships not based on financial need; (3) Students who are enrolled at the university for the prior spring semester but in less than 9 credits for undergraduate students, 10 credits for law students, or 6 credits for graduate students will need to notify the scholarship coordinator in Student Financial Aid Services by February 15 of their interest in scholarships not based on financial need; (4) Students who previously attended the university, but were not enrolled during the prior spring semester, must notify the scholarship coordinator in the Office of Student Financial Aid Services of their intent to enroll by the February 15 priority date.

Work Study. Students who are awarded Federal Work Study or Idaho State Work Study will be offered part-time employment in order to earn their financial aid. Applications for these programs are part of the general application for financial aid. Awards are made based on financial need to students who meet all the priority dates.

Direct Loans. The University of Idaho participates in the William D. Ford Federal Direct Loan Program. Students applying for loans will not need to complete a loan application from a lender or guarantee agency used with the Federal Family Educational Loan Program. Loan funds will be provided to the student directly from the U.S. Department of Education through the University of Idaho rather than from funds coming from a bank or lender. Students will be awarded these loans and asked to sign and return a master promissory note to UI. Students will need to sign a master promissory note only once during their career at the UI. Once the signed promissory note is received, the funds will be credited to the student's account.

Eligible Programs. Students who have one or more bachelor's degrees, who are working toward an additional undergraduate degree or a teaching certificate and who are not yet admitted to graduate school, are considered to be degree-seeking second undergraduates and are not eligible for federal grant programs (Pell, SEOG, or LEAP). They are restricted to undergraduate borrowing limits for loan programs. Graduate Students and students in the College of Law are eligible to apply for all financial aid programs except Federal Pell Grants and Federal Supplemental Educational Opportunity Grants. Non-degree-seeking students (those not enrolled in a degree program) may not be considered for any type of financial aid. Correspondence classes may not be funded by any type of federal financial aid.

Satisfactory Academic Progress. Students at the University of Idaho must maintain satisfactory academic progress to receive federal student financial aid. Satisfactory academic progress will be reviewed at the end of each spring semester. For purposes of satisfactory academic progress (SAP), the academic year is defined as summer, fall, spring. Therefore, the summer performance prior to the fall and spring will be included in the review of satisfactory academic progress. Students receiving financial aid for the first time will be considered as being in good academic standing until they reach the defined annual evaluation time for satisfactory academic progress. It should be noted that the eligibility criteria for financial aid differ from those for academic eligibility contained in regulation L-6.

Undergraduate Program. An undergraduate student must have a minimum cumulative grade-point average upon review of satisfactory academic progress. The required minimum cumulative grade-point average is as follows:

<table>
<thead>
<tr>
<th>Having completed</th>
<th>Minimum Cumulative GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(number of credits)</td>
<td></td>
</tr>
<tr>
<td>0-32</td>
<td>1.80</td>
</tr>
<tr>
<td>33 or more</td>
<td>2.00</td>
</tr>
</tbody>
</table>
Students must successfully complete 75 percent of the credits attempted, up to a maximum of 12 attempted credits each semester. All attempted credits (up to a maximum of 12 credits each semester) for the summer, fall, and spring semesters will be totaled and the required number to be successfully completed will be 75 percent of that total. If a student enrolls in one semester only, the student will be expected to complete 75 percent of attempted hours for that semester, up to a total of 12 attempted credits.

Successful completion is defined as receiving earned credit as defined by the UI Academic Policy. For students receiving federal financial aid, attempted credits will be defined as the number of credits enrolled in at the time the student’s financial aid is disbursed. For students not receiving federal financial aid, attempted credits will be defined as attempted hours recorded at the end of the semester in the registrar’s system.

A student is allowed to have attempted up to 150 percent of the required credits for a degree. Attempted credit hours is defined as the number of attempted credits in the registrar’s system or the number of earned credits, whichever is higher. For an undergraduate degree other than a Bachelor of Architecture, a student will be allowed 150 percent of the 128 minimum credit hours required for a total of 192 credits. Once a student reaches 192 credits attempted, he or she will no longer be making satisfactory academic progress. Students in the Bachelor of Architecture program will be allowed 150 percent of the 160 credits required for the five-year degree, for a total of 240 credits. Students working on a second bachelor’s degree will be allowed a total of 260 undergraduate credits.

Students suspended (other than those suspended due to 150 percent of attempted credits) from receiving aid may reinstate their aid eligibility by successfully completing 12 credits with a GPA of 2.00 or better during a single term without federal or state financial aid. The student must submit a written request for the reinstatement to the Student Financial Aid Services office.

Graduate Program. A graduate student must maintain a minimum cumulative grade-point average of 3.00 or better to continue to receive federal financial assistance.

Graduate students must successfully complete 75 percent of their credits attempted, up to a maximum of 9 attempted credits each semester. All attempted credits (up to a maximum of 9 credits each semester) for the summer, fall, and spring semesters will be totaled and the required number to be successfully completed will be 75 percent of that total. If a student enrolls in one semester only, the student will be expected to complete 75 percent of attempted hours for that semester, up to a maximum of 9 attempted hours.

Successful completion is defined as receiving earned credit as defined by the UI Academic Policy. For students receiving federal financial aid, attempted credits will be defined as the number of credits enrolled in at the time the student’s financial aid is disbursed. For students not receiving federal financial aid, attempted credits will be defined as attempted hours recorded at the end of the semester in the registrar’s system.

A graduate student in the master’s degree program (except M.Ed./M.S. Counseling and Human Services, M.F.A.) requires an average of 36 credits for graduation. Therefore, students will be allowed to accumulate up to 150 percent of the 36 credits, for a total of 54 credits. Once a student accumulates 54 attempted credits, he or she will be suspended from receiving further financial assistance. If a student is working on a second master’s degree, the student will be allowed to attempt 27 additional credits, for a total of 81 attempted credits, before financial assistance is suspended.

Students enrolled in the M.Ed./M.S. Counseling and Human Services, M.F.A., and all specialist degree programs require 60 credits for graduation. Students in these programs will be allowed to attempt up to 150 percent of the 60 credits for a total of 90 attempted credits. Attempted credit hours is defined as the number of attempted credits in the registrar’s system or the number of earned credits, whichever is higher.

All doctoral degree graduation requirements require a minimum of 78 credits. Students enrolled in doctoral degree programs will be allowed to attempt 150 percent of the 78 credits for a total of 117 credits.

Law Students. Any students enrolled in the law program will be required to make satisfactory academic progress, as defined by the academic requirements of the College of Law.

Any student enrolled in the law program whose cumulative grade-point average falls below 2.00 at the conclusion of their first semester will be placed on academic probation. If the student fails after one additional semester to obtain and maintain a 2.00 cumulative grade-point average, the student’s federal financial aid will be suspended. A student whose cumulative grade-point falls below 2.00 at the end of his or her second semester, or any semester thereafter, will be suspended.

Any student who is suspended due to a grade-point average below 2.00 may once again be eligible to receive assistance upon reinstatement by the dean.

A law student is expected to successfully complete 75 percent of all attempted credits, up to a maximum of 10 credits each semester. Successful completion is defined as receiving earned credits as defined by UI Academic Policy. For students receiving federal financial aid, attempted credits will be defined as the number of credits enrolled in at the time the student’s financial aid is disbursed. For students not receiving federal financial aid, attempted credits will be defined as attempted hours recorded at the end of the semester in the registrar’s system. If a student is enrolled in one semester only, he or she must successfully complete 75 percent of the credits attempted for that semester, one to a maximum of 10 attempted credits.

Students enrolled in law must have a minimum of 88 credits for graduation. Students who have attempted 150 percent of the minimum required for graduation, a total of 132 credits, will be suspended from receiving further financial assistance. Attempted credit hours is defined as the number of attempted credits in the registrar’s system or the number of earned credits, whichever is higher.

Petition for Reinstatement of Aid. Students wishing to appeal their suspension should contact the dean’s office in the college in which they are enrolled. Graduate students should contact the College of Graduate Studies and law students should contact the College of Law.

Upon receiving a written petition from the student, the student’s academic dean (or designee) may recommend a waiver of all satisfactory academic progress criteria due to special circumstances in a signed memorandum to the director of Student Financial Aid Services. The director will review the recommendation and make the final determination of whether to waive the suspension for the student. The decision of the academic college and the director of Student Financial Aid Services may be appealed to the Student Financial Aid Committee and then to the Administrative Hearing Board. Students may appeal to the academic college in which they were enrolled at the time of suspension or the academic college in which they are currently enrolled.

Any special circumstances concerning the student’s academic progress for student financial aid will be reviewed on an individual basis. The director of Student Financial Aid Services may reinstate a student based on special circumstances unique to that student.

A letter will be sent to the student informing him or her of the financial aid suspension. A copy of the notice of financial aid suspension will be forwarded to the academic dean of the college in which the student is enrolled.

Athletic Scholarship Appeal. Students who have had their athletic scholarship aid reduced or eliminated may appeal the loss of funds by submitting an appeal in writing to the chair of the Student Financial Aid Committee.

Financial aid policies and procedures are subject to change without notice to assure compliance with federal and university regulations. The Office of Student Financial Aid Services may be contacted for current
Students are urged to familiarize themselves with the Student Health Insurance Program and other locations around the campus. Students may waive enrollment in the Student Health Insurance Program by providing proof of valid insurance prior to the enrollment/waiver deadline. See the Student Health Services website for further information and a current schedule.

The Idaho State Board of Education requires health insurance as a condition of enrollment for all degree-seeking undergraduate and graduate students physically enrolled for classes or completing other required degree work within the State of Idaho. Students enrolled for four (4) credit hours on the Moscow campus or eight (8) credit hours at the UI centers must provide proof of valid health insurance or enroll in the Student Health Insurance Program. The health insurance requirement applies to all international students enrolled at either UI centers or the Moscow campus regardless of degree-seeking status or credit hours.

The Student Health Insurance Program features a $500,000 lifetime plan maximum, no pre-existing condition exclusion, and many benefit features that assure students receive an excellent benefit package at a very favorable cost. Students may waive enrollment in the Student Health Insurance Program by providing proof of valid insurance prior to the enrollment/waiver deadline. See the Student Health Services website for further information.

The Student Health Services, in partnership with Moscow Family Medicine, provides a broad spectrum of outpatient medical care services. The medical staff includes Board-certified physicians, physician assistants, and nurse practitioners. Services include pharmacy, lab and X-ray, nutrition counseling and psychiatry. Additional counseling services are available in cooperation with the Counseling and Testing Center.

Health education classes and wellness programs are available to students. These programs range from fitness and nutrition classes to substance abuse and smoking cessation courses. Group health education in classrooms, living areas and special interest groups is offered. A complete list of programs is available at the Student Health Services web site.

The Student Health Services web site is located at http://www.uidaho.edu/shs.

The hours of operation, scope of services, and fee-for-service charge schedule are subject to change during the academic year. Please look for changes notices at the Student Health Services web site.

The “Statement of Student Rights,” “Student Code of Conduct,” and “Student Records Policy” are published in the Faculty-Staff Handbook and in the booklet entitled “Policies and Information of Interest to Students.” The booklet is available from the Office of the Dean of Students (Administration Building 347), the Office of Academic and Student Affairs (Commons 301), and other locations around the campus. Members of the university community are urged to familiarize themselves with these basic documents.

Located on the third floor of the Idaho Commons, the English department’s Writing Center offers peer tutoring assistance in writing to all UI students. Writing Center tutors assist students with analyzing writing strengths and weaknesses, developing ideas, and improving focus, organization, grammar, and punctuation. The Writing Center offers weekday, evening, and weekend hours; stop by, telephone, or visit the website for further information and a current schedule.

The International Programs Office (IPO) has campus-wide responsibility for international activities, including international student recruitment, student and faculty exchanges, intensive English language training, long- and short-term study abroad, and serves as a liaison with the community regarding international interests. IPO also assists as a clearinghouse for international education activities, training, development programs, research agreements, for faculty and student Fulbright scholarships, and provides support for international activities in the colleges. IPO is located in the newly constructed Living and Learning Center at 901 Paradise Creek Street, Building #3, Ground Floor; phone 208/885-8984; fax 208/885-2859; e-mail ipo@uidaho.edu; website http://www.uidaho.edu/ipo.

The International Programs Office (IPO) has campus-wide responsibility for international activities, including international student recruitment, student and faculty exchanges, intensive English language training, long- and short-term study abroad, and serves as a liaison with the community regarding international interests. IPO also acts as a clearinghouse for international education activities, training, development programs, research agreements, for faculty and student Fulbright scholarships, and provides support for international activities in the colleges. IPO is located in the newly constructed Living and Learning Center at 901 Paradise Creek Street, Building #3, Ground Floor; phone 208/885-8984; fax 208/885-2859; e-mail ipo@uidaho.edu; website http://www.uidaho.edu/ipo.

International Students

International students are an integral part of the ethnic diversity of the University of Idaho. Representing more than 90 countries from around the world, international students contribute significantly to the rich cultural atmosphere of UI.

International student services are provided by international student advisors (ISAs) in IPO. All matters pertaining to students’ status with the U.S. Immigration and Customs Enforcement (USICE) in the Department of Homeland Security and the Exchange Visitor Program of the Department of State are handled by the ISAs, and they also serve as official liaisons between students and their consular offices or sponsoring agencies. ISAs are involved with the progress of international students at every stage of the educational process, and students are encouraged to visit an ISA regularly to discuss concerns or questions related to immigration matters and educational, financial, or cultural adjustments.

Once a student has been admitted, general information is provided about what to bring to the U.S., the U.S. educational system, and housing. A mandatory orientation before classes begin answers initial questions and provides new students with information and skills to succeed in their academic programs as well as tips on cultural adjustment. Community contacts are arranged through the International Friendship Association. The Students’ International Association, a group of U.S. and international students, and other international student groups sponsor additional social, cultural, and educational activities.

Insurance. International students holding nonresident alien status must either purchase the UI’s Student Health Insurance Plan (SHIP) for themselves and all accompanying dependents or document coverage of an equivalent insurance with the International Programs Office as part of their obligation to establish proof of financial responsibility for expenses incurred while attending the university. Failure to obtain and maintain the required insurance may subject students to sanctions, up to and including disenrollment. See the insurance section in this catalog for more information.

American Language and Culture Program

The American Language and Culture Program (ALCP) offers full-time courses in intensive English language and speaking. Courses are offered throughout the year, with two eight-week sessions during each of the fall and spring semesters and one eight-week session in the summer. The program also offers specialized short-term programs by arrangement.

Students wishing to improve their English or achieve the required level of English language proficiency for admittance to UI can work toward that goal while living on or off the UI campus and attending the American Language and Culture Program (ALCP). The curriculum emphasizes reading, writing, speaking, listening, and grammar skills at levels from beginner to advanced. At the University of Idaho, students who pass Level 5 may use their passing grades as a substitute for the English language proficiency examination at the level of the minimum university requirement. ALCP students take part in special cultural activities and learn about U.S. culture and U.S. university culture.
For more information and/or applications, contact ALCP through the International Programs Office located at the newly constructed Living Learning Center at 901 Paradise Creek Street, Building #3, Ground Floor; Phone: 208/885-5508; Email alcp@uidaho.edu; Website: http://www.webs.uidaho.edu/ipo/alcp.

Applicants to the University of Idaho, please note:
Deferred admission may be granted to applicants who qualify academically, but who have not yet met UI’s minimum English language proficiency requirement. In deferred status, students enroll in UI’s American Language and Culture Program to achieve their department’s English language requirement prior to being granted full admission and commencing their degree programs.

Concurrent Enrollment. Concurrent enrollment is available to ALCP students at Levels 5 and 6. With the consent of the ALCP coordinator and the instructor of the course(s), qualified ALCP students may take up to 7 credits of academic course work at the undergraduate and graduate levels while still remaining enrolled full time in ALCP.

Study Abroad
The University of Idaho has the largest study abroad program in the state of Idaho and one of the most extensive programs in the U.S. With access to 230 universities in 50 countries, students in virtually any field can enhance their UI education. For example, students can study wildlife in South Africa, education in Sweden, ecology in Costa Rica, architecture in Italy, or business in Hong Kong. Students can also study subjects not normally offered at UI. A student pursuing a computer science major might choose to study animation in England, a student interested in microbiology might study genome science in Australia, or a student undertaking a civil engineering major might choose to study ocean engineering in Scotland. Courses in many programs are taught in English so that students without foreign language skills are still able to study abroad. However, those students who are interested in learning a foreign language will find that there are also excellent opportunities for studying Spanish, French, German, Italian, Chinese, Japanese as well as other world languages.

Students participating on UI study abroad programs may also take advantage of exciting opportunities in international service learning, internships, and volunteerism. For example, students studying in Kathmandu might volunteer for a cooperative promoting women’s rights, health, and standing in Nepali society, students studying in Berlin might participate in an internship with Mercedes-Benz, and students in Quito might participate in a service learning course that explores the complex issues of development in the Amazonian region of Ecuador while they volunteer for the various agencies involved in these issues.

Program costs vary, but in many cases a study abroad experience will cost about the same amount as studying on campus. Students receiving federal or state financial aid may be able to apply their entire award to UI study abroad programs. UI full-time undergraduate students may also be eligible for International Experience Grants (IEGs) created through the Associated Students of the University of Idaho (ASUI). Approximately one hundred of these grants are awarded to UI undergraduate study abroad participants each year. Some study abroad programs such as the University Studies Abroad Consortium (USAC), and the Institute for Foreign Study Abroad (IFSA) at Butler, have established scholarship programs at UI, and a number of UI departments and colleges also provide study abroad scholarships.

Students may receive credit for study abroad or other experience overseas in the following ways:

1. Residency credit toward baccalaureate degree. Students are registered under the study abroad course number (SA 999). The “Advising - Credit Evaluation Agreement” form must be completed before departure to ensure proper evaluation when the program is completed. Upon receipt of an official transcript, courses are evaluated and recorded as transfer credit. However, credits earned through approved UI study abroad programs are included in the residency requirement for baccalaureate degrees.

2. Transfer credit. Students choosing independent study abroad programs must complete a “Financial Aid Consortium/Contract Agreement” form (signed by the study abroad institution and submitted to the Registrar’s Office before departure) for registration to be processed and financial aid to be disbursed. Students are registered under the independent study abroad course number (SA 998). Upon receipt of an official transcript, courses are evaluated and recorded as transfer credit. Credits earned through independent study abroad programs are not included in the residency requirement for baccalaureate degrees.

3. Directed study. Students may plan their own educational experiences abroad, and arrange in advance for credit from any appropriate department. This is for education comparable to that gained in other courses of that department, but it may be as general and inclusive as the department will allow.

4. Course challenge. Some courses may be challenged on the basis of knowledge gained abroad. See regulation I-2.

5. Experiential learning. Credit may be awarded to students for knowledge and/or competence gained in foreign travel. See regulation I-2. This option requires the submission of a portfolio demonstrating knowledge and competence.
UI Study Abroad Program Sites

All students who participate in UI study abroad programs do not pay their normal UI registration fees. Instead, they pay the program cost for each semester they are abroad.

Students participating in study abroad programs are required to be registered as full-time students unless special arrangements have been made.

PART TWO

<table>
<thead>
<tr>
<th>Countries</th>
<th>Number of Partner Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>3</td>
</tr>
<tr>
<td>Australia</td>
<td>40</td>
</tr>
<tr>
<td>Brazil</td>
<td>1</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>1</td>
</tr>
<tr>
<td>Canada</td>
<td>2</td>
</tr>
<tr>
<td>Chile</td>
<td>2</td>
</tr>
<tr>
<td>China</td>
<td>4</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>2</td>
</tr>
<tr>
<td>Cuba</td>
<td>1</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>1</td>
</tr>
<tr>
<td>Denmark</td>
<td>2</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>2</td>
</tr>
<tr>
<td>Ecuador</td>
<td>1</td>
</tr>
<tr>
<td>England (UK)</td>
<td>34</td>
</tr>
<tr>
<td>Estonia</td>
<td>1</td>
</tr>
<tr>
<td>Fiji</td>
<td>1</td>
</tr>
<tr>
<td>Finland</td>
<td>11</td>
</tr>
<tr>
<td>France</td>
<td>20</td>
</tr>
<tr>
<td>Germany</td>
<td>7</td>
</tr>
<tr>
<td>Ghana</td>
<td>1</td>
</tr>
<tr>
<td>Greece</td>
<td>1</td>
</tr>
<tr>
<td>Hungary</td>
<td>2</td>
</tr>
<tr>
<td>Iceland</td>
<td>1</td>
</tr>
<tr>
<td>India</td>
<td>2</td>
</tr>
<tr>
<td>Ireland</td>
<td>9</td>
</tr>
<tr>
<td>Israel</td>
<td>1</td>
</tr>
<tr>
<td>Italy</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Countries</th>
<th>Number of Partner Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>7</td>
</tr>
<tr>
<td>Jordan</td>
<td>1</td>
</tr>
<tr>
<td>Kenya</td>
<td>1</td>
</tr>
<tr>
<td>Korea, Rep. of</td>
<td>5</td>
</tr>
<tr>
<td>Latvia</td>
<td>1</td>
</tr>
<tr>
<td>Malta</td>
<td>1</td>
</tr>
<tr>
<td>Mexico</td>
<td>9</td>
</tr>
<tr>
<td>Nepal</td>
<td>1</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>9</td>
</tr>
<tr>
<td>New Zealand</td>
<td>6</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>1</td>
</tr>
<tr>
<td>Northern Ireland (UK)</td>
<td>1</td>
</tr>
<tr>
<td>Poland</td>
<td>1</td>
</tr>
<tr>
<td>Russia</td>
<td>1</td>
</tr>
<tr>
<td>Scotland (UK)</td>
<td>5</td>
</tr>
<tr>
<td>South Africa</td>
<td>3</td>
</tr>
<tr>
<td>Senegal</td>
<td>1</td>
</tr>
<tr>
<td>Spain</td>
<td>9</td>
</tr>
<tr>
<td>Sweden</td>
<td>5</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2</td>
</tr>
<tr>
<td>Taiwan</td>
<td>1</td>
</tr>
<tr>
<td>Thailand</td>
<td>2</td>
</tr>
<tr>
<td>Tunisia</td>
<td>1</td>
</tr>
<tr>
<td>Turkey</td>
<td>1</td>
</tr>
<tr>
<td>Uruguay</td>
<td>1</td>
</tr>
</tbody>
</table>

For more information on study, work abroad, or volunteering overseas, call, email, or visit the study abroad office in LLC Building #3, Ground Floor (tel: 208/885-4075, email: abroad@uidaho.edu). Information about the following programs can also be obtained from exchange program coordinators in the departments listed below:

<table>
<thead>
<tr>
<th>Countries</th>
<th>Number of Partner Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total International Institutions</td>
<td>230</td>
</tr>
</tbody>
</table>
UI participates in the following study abroad programs:

<table>
<thead>
<tr>
<th>Study Abroad Program</th>
<th>Placement Sites</th>
<th>Duration</th>
<th>Grades</th>
<th>Reqd GPA</th>
<th>Program Eligibility</th>
<th>Other Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Council on International Educational Exchange (CIEE)</td>
<td>43 institutions in 34 countries</td>
<td>Semester, year</td>
<td>A-F</td>
<td>2.50-3.00</td>
<td>X X X X X</td>
<td>8-19 credits foreign language *</td>
</tr>
<tr>
<td>International Student Exchange Program (ISEP)</td>
<td>122 institutions in 34 countries</td>
<td>Semester, year</td>
<td>P/F</td>
<td>2.75</td>
<td>X X X X X</td>
<td>19 credits foreign language*</td>
</tr>
<tr>
<td>International Studies Abroad (ISA)</td>
<td>Argentina, Australia, Chile, Costa Rica, England, France, Mexico, Spain</td>
<td>Semester, year, summer</td>
<td>A-F</td>
<td>2.50-3.00</td>
<td>X X X X X</td>
<td>3-19 credits foreign language*</td>
</tr>
<tr>
<td>University Studies Abroad Consortium (USAC)</td>
<td>Australia, Chile, China, Costa Rica, Czech Republic, Denmark, England, France, Germany, Ghana, Ireland, Israel, Italy, Malta, The Netherlands, New Zealand, Norway, Scotland, Spain, Sweden, Thailand</td>
<td>Semester, year, summer</td>
<td>A-F</td>
<td>2.50-3.00</td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>American InterContinental University</td>
<td>England, United Arab Emirates</td>
<td>Semester, year</td>
<td>P/F</td>
<td>2.50</td>
<td>X X X X X</td>
<td>Media, animation, graphic arts, interior design, English literature, political science, history majors</td>
</tr>
<tr>
<td>Autonomous University of Guadalajara</td>
<td>Mexico</td>
<td>Semester, year, summer</td>
<td>P/F</td>
<td>2.50</td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>Autonomous University of Yucatán</td>
<td>Mexico</td>
<td>Semester, year, summer</td>
<td>P/F</td>
<td>2.50</td>
<td>X X X X X</td>
<td>19 credits Spanish</td>
</tr>
<tr>
<td>College Year in Athens</td>
<td>Greece</td>
<td>Semester, year, summer</td>
<td>A-F</td>
<td>2.70</td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>Australian Education Connection</td>
<td>32 universities in Australia</td>
<td>Semester, year</td>
<td>P-F</td>
<td>2.50-3.00</td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>Deakin University</td>
<td>Australia</td>
<td>Semester, year</td>
<td>P/F</td>
<td>2.75</td>
<td>X X X X X</td>
<td>Environmental science, natural resources majors</td>
</tr>
<tr>
<td>Lincoln University</td>
<td>New Zealand</td>
<td>Semester, year</td>
<td>P-F</td>
<td>2.75</td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>Massey University</td>
<td>New Zealand</td>
<td>Semester, year</td>
<td>P-F</td>
<td>2.75</td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>Lancaster University</td>
<td>England</td>
<td>Semester, year</td>
<td>P-F</td>
<td>2.75</td>
<td>X X X X X</td>
<td>PE, dance, sport science, rec majors</td>
</tr>
<tr>
<td>University of Brighton, Chelsea School</td>
<td>England</td>
<td>Semester, year</td>
<td>P/F</td>
<td>2.75</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>Institute for Study Abroad – Butler University</td>
<td>25 universities in England, Ireland, and Scotland; 11 universities in Australia and New Zealand</td>
<td>Semester, year, summer</td>
<td>A-F</td>
<td>2.50-3.70</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>Ecole Supérieure de Commerce de Chambéry</td>
<td>France</td>
<td>Semester, year, summer</td>
<td>P/F</td>
<td>2.50</td>
<td>X X</td>
<td>Some business & economics</td>
</tr>
<tr>
<td>Fachhochschule für Technik und Wirtschaft Berlin (FHTW)</td>
<td>Germany</td>
<td>Semester, year</td>
<td>P/F</td>
<td>2.50</td>
<td>X X</td>
<td>Some business & economics</td>
</tr>
<tr>
<td>Haagse Hogeschool</td>
<td>Netherlands</td>
<td>Semester, year</td>
<td>P/F</td>
<td>2.50</td>
<td>X X</td>
<td>Some business & economics</td>
</tr>
<tr>
<td>Institut International d’Études Francaises</td>
<td>France</td>
<td>Semester, year, summer</td>
<td>P/F</td>
<td>2.50</td>
<td>X X X X</td>
<td></td>
</tr>
</tbody>
</table>
Study Abroad Program Placement Sites Duration Grades Reqd GPA Program Eligibility Other Requirements

KCP International Language Institute
Japan Semester, year, summer A-F 2.50 X X X Engr, geology, computer sci, business majors

Luleå University
Sweden Semester, year P/F 2.50 X X X Forestry, environmental science, business majors

Mikkei Polytechnic
Finland Semester, year P/F 2.50 X X X X

Monterrey Tec
Mexico Semester, year A-F 2.50 X X X X

Nagasaki University of Foreign Studies
Japan Semester, year A-F 2.50 X X X X

University of Pretoria/Ecolife
South Africa, Swaziland Summer, winter A-F 2.50 X X X X Architecture or landscape architecture majors/must have taken LArc 259 and LArc 260

Landscape Architecture in Cremolino
Italy Summer A-F 2.50 X X X X Architecture or landscape architecture majors

Architecture in Vincenza
Italy Summer A-F 2.50 X X X

Pontificia Universidad Católica del Ecuador (PUCE)
Ecuador Semester, year P/F 2.50 X X X 8 credits Spanish

Royal Veterinary and Agricultural University
Denmark Semester, year, summer P/F 2.50 X X X X Agriculture, animal science, plant science, forestry majors

Sann-Nepal/India
Nepal Semester, year, summer A-F 2.50 X X X X

Schiller International University
England, France, Germany, Spain, Switzerland Semester, year, summer A-F 2.50 X X X X

Southern Denmark University
Denmark Semester, year P/F 2.50 X X X X

Universidad de Zaragoza
Spain Semester, year P/F 2.50 X X X

University of the Sunshine Coast
Australia Semester, year P/F 2.50 X X X

Växjö University
Sweden Semester, year P/F 2.50 X X X Comm, educ, political sci, business majors

Not all sites require knowledge of foreign languages.

U. of Brighton, Chelsea School: HPERD (PE Bldg 206, 208/885-2187)
Chambéry: Foreign Languages and Literatures (Admin 312A, 208/885-7756)
FHTW: Business (ALB 312, 208/885-7342), and Foreign Languages & Literatures (Admin 314A, 208/885-8995)
Haagse Hogeschool: Business (ALB 312, 208/885-7342)
Institut International d’Études Française: Foreign Languages & Literatures (Admin 312A, 208/885-7756)
KVL-Denmark: Food Science & Toxicology (HRC 22, 208-885-9234)
Monterrey Tec: Business (ALB 312, 208/885-7342), Foreign Languages & Literatures (Admin 314A, 208/885-8995)
PUCE: Foreign Languages & Literatures (Admin 314A, 208/885-8995)
Schiller International University: International Studies Program (CEB 4, 208/885-2815)
Southern Denmark: Business (ALB 312, 208/885-7342)
Yucatán: Foreign Languages & Literatures (Admin 312A, 208/885-8995), and MMBB (FRC 105, 208/885-6580)
Zaragoza: Business (ALB 312, 208/885-7342), and Foreign Languages & Literatures (Admin 314A, 208/885-8995)
Mutual Responsibility Agreement

UI’s acceptance of a student for admission and the student’s enrollment in the university constitute an agreement of mutual responsibility. The student’s part of this agreement is to accept established UI policies and rules, to respect the laws of governmental units, and to act responsibly and in a manner appropriate to these laws, policies, and rules. UI’s part is to carry out its commitment to higher education, to fulfill its responsibilities in pursuit of the academic goals and objectives of all members of the university community, and to meet its obligation to provide an atmosphere in which students will have an opportunity to be heard in matters affecting their welfare as students. UI must take appropriate disciplinary action when it has been ascertained that a student’s action is contrary to UI regulations and thus that this agreement has been violated.

Student/Program Assessment

The University of Idaho, along with all other public institutions of higher education in Idaho, is required by policy of the State Board of Education to assess student learning in general education and in the academic majors. In late 1991, the Northwest Commission on Colleges and Universities, which provides institution-wide accreditation for the university, issued similar guidelines requiring assessment.

Effective teaching and learning are essential to meeting our long-held goal of producing responsible, well-prepared citizens and leaders in their professions. Our program of student outcomes assessment has been implemented to ensure that we continually improve the teaching and learning process and the programs that support that process.

Information vital to effective assessment includes student performance as well as student opinions on the quality of university academic programs and services. To provide this information, students may be required to participate in assessment activities; these may include, but are not limited to, examinations, performance assessments, interviews, surveys, focus groups, and follow-up studies after graduation.
General Requirements and Academic Procedures

PART THREE

General Requirements and Academic Procedures

The following procedures and regulations have been adopted to help students, faculty members, and administrators carry out UI's overall academic program successfully. Students have the ultimate responsibility for meeting university, college, and departmental graduation requirements and academic procedures. Students, with the help of faculty advisors, should check their records each time they prepare to register to ensure that they are correctly and systematically fulfilling their degree requirements. It is the responsibility of advisors, major professors, and deans to assist students in understanding and complying with these requirements and procedures. The registrar assists by checking students' records for compliance with the regulations in this section of the catalog. Requests to waive curricular requirements, academic provisions, or academic standards should be presented to the appropriate department and/or college.

Students may petition the appropriate committee for exceptions to the administrative and academic regulations of UI. Petitions are submitted to one of the following committees depending on the nature of the petition.

Academic Petitions Committee. Student petitions for exceptions to the requirements and procedures in this catalog section (Part 3) should be presented to the Academic Petitions Committee on forms available in college offices.

Academic Hearing Board. This committee hears student appeals from decisions made by college authorities concerning, but not limited to, such matters as (1) eligibility for advanced placement or credit by examination, (2) objectivity or fairness in making, administering, and evaluating class assignments, (3) maintenance of standards for conscientious performance of teaching duties, and (4) scheduling of classes, field trips, and examinations. The board does not hear appeals concerning requirements or regulations of the College of Graduate Studies or the College of Law.

Administrative Hearing Board. Students submit appeals to the Administrative Hearing Board on administrative decisions in such matters as residence status for tuition purposes, granting of student financial aid, and assessment of fees or charges (except in connection with parking regulations), and disputes involving interpretation and application of policies concerning such matters as student records, smoking, and treatment of disabled persons.

Appeals from decisions of the Academic Petitions Committee and the Academic Hearing Board are submitted to the provost. If the provost concurs with the body whose decisions was appealed, the appellant then may appeal to the president and regents if the president and regents consent to hear the appeal.

Decisions of the Administrative Hearing Board may be appealed to the president and regents when they consent to hear such appeals.

Rights Reserved to the University

Catalogs, bulletins, and course or fee schedules shall not be considered as binding contracts between UI and students. UI reserves the right at any time, without advance notice, to: (1) withdraw or cancel classes, courses, and programs; (2) change fee schedules; (3) change the academic calendar; (4) change admission and registration requirements; (5) change the regulations and requirements governing instruction in and graduation from UI and its various divisions; and (6) change any other regulations affecting students. Changes go into effect whenever the proper authorities so determine and apply not only to prospective students but also to those who are matriculated in UI. When economic and other conditions permit, UI tries to provide advance notice of such changes. In particular, when an instructional program is to be withdrawn, UI will make every reasonable effort to ensure that students who are within two years of completing graduation requirements, and who are making normal progress toward completion of those requirements, will have the opportunity to complete the program that is to be withdrawn.

UI also reserves the right, when a student has failed to discharge any obligation to UI, to deny that student the privilege of reregistering or to withhold the student's records or information based on the records. Students may verify the status of their accounts and be informed of any financial obligation to UI by inquiring at the cashier's window in the Student Union Building.

A – Matriculation

Applicants for enrollment in any course offered by UI for college credit, except correspondence study, submit personal data and credentials covering all previous academic work. (See “Undergraduate Admission to the University” or “Graduate Admission to the University” in Part 2.) After UI has received these credentials and approved the application, registration access is given to the applicant and the applicant’s first registration at UI concludes the matriculation process.

B – Registration

B-1. Registration Access. Registration access is given to new students as described above. It is also given to students who were previously enrolled within two years of the term in which they wish to register. Former students who have not been enrolled at UI within those two years must be re-admitted by the Undergraduate or Graduate Admissions Office at least one month prior to the term in which they wish to register. Such students will be required to submit transcripts from any institutions attended since their last registration at UI, and they may also be required to complete a residence questionnaire. Failure to meet the deadline may cause a delay in registration.

B-2. Admission to Classes.

B-2-a. Instructors do not admit anyone to class whose name does not appear on the class roster or for whom they have not signed an “add” card. UI professors are given the authority to grant or deny access to classes by visiting scholars.

B-2-b. Before the beginning of each academic session, students with their advisors’ aid complete a trial study list. The information is checked by such intracollege procedures as the student’s college may require. Once the advisor’s block is removed from an individual student’s record, the student registers for classes using the Web registration process. Signed “add” cards are taken to the Registrar’s Office for those courses that require permission of the instructor or department. On payment of fees, admission to classes is authorized.

B-3. Auditing Classes. Auditing a course consists of attendance without participation or credit. Only lecture classes may be audited. Audited courses are not recorded on a student’s permanent record, except as provided in the chart with regulation C-1.

B-4. Registration for Zero Credit. Any course offered for credit may be taken for zero credit. The implications of zero credit are:

B-4-a. Registrants are expected to do the assigned work and attend class sessions. Grades are received on the same basis as if the course were taken for credit and are entered on permanent records.

B-4-b. Students enrolled in a course for zero credit may take it P/F. This is separate from the “pass-fail option” outlined in B-11.

B-4-c. Courses taken for zero credit do not fulfill requirements.

B-4-d. Zero-credit grades have no effect on a student’s grade-point average. Neither do they affect academic eligibility, disqualification, or reinstatement.

B-4-e. Students enrolled for zero credit count as regular registrants for statistical purposes, such as listing course enrollments, computing instructors’ loads, and determining departmental services.

B-5. Independent Study Courses. A student enrolled in the regular program is permitted to carry independent study courses for college credit only with the prior written approval of his or her academic dean. Credit for correspondence-study courses will not be accepted without such approval.

B-6. Registration for Courses Without Completion of Prerequisites. Students who have not completed the prerequisites to a course for
which they are otherwise eligible may register for the course with the instructor’s approval.

B-7. Registration of Lower-Division Students in Upper-Division Courses. All academic programs give priority in the first two years to meeting the general requirements for the appropriate degree and acquiring the foundation for advanced study; therefore, freshman students may not take upper-division courses. Exceptions may be made for students who have fulfilled the prerequisites and who are well prepared in their field of study. In such cases, the instructor may, with the concurrence of the student’s advisor, authorize the exception.

B-8. Registration of Undergraduate and Non-degree Students in Graduate Courses. Undergraduate and non-degree students may register in graduate courses under the conditions outlined in the College of Graduate Studies section of Part 4 with the prior written approval of the instructor of the course, the student’s advisor, and the vice president for research and graduate studies.

B-9. Registration of Students with Baccalaureate Degrees as Undergraduates. To register as undergraduates, students with baccalaureate degrees must secure the permission of the dean of the undergraduate college and file a statement with the registrar indicating that they understand that the work will not be classified as graduate work and cannot be used toward a graduate degree at a later date. (See J-7-b and c.)

B-10. Registration for Accelerated and Other Short Courses. Students may register for accelerated and other short courses at any time up to and including the starting date of the course without petition.

B-11. Pass-Fail Option.

B-11-a. Undergraduate Students.

(1) After consultation with their advisors, undergraduates who have a cumulative grade-point average of 2.00 or higher are permitted to enroll in one course a semester under this P/F option. (The grade-point requirement is not applicable to students who are taking university-level courses for the first time.) This procedure is separate from taking courses that are regularly graded P/F. Within the limitations specified above, an undergraduate may enroll under the pass-fail option in any course EXCEPT: (a) courses listed by number and title in the student’s major curriculum as printed in Part 5; (b) courses taken to meet the distributional requirements of the college or curriculum, unless allowed for P/F enrollment by the department in which the student is majoring; (c) courses in the major subject field; and (d) courses in closely related fields that are excluded from this option by the student’s department. (See B-11-d for “Reporting of Grades.”)

(2) Students in officer education programs (OEP) may enroll under this regulation in courses required because of their affiliation with the OEP ONLY with the permission of the administrator of the OEP department concerned.

(3) A maximum of 12 credits earned in courses under this regulation may be counted toward a baccalaureate degree.

B-11-b. Graduate Students.

(1) With the approval of the major professor concerned (or advisor in the case of an unclassified student) and the vice president for research and graduate studies, graduate students may enroll in a limited number of courses under this P/F option. This procedure is separate from taking courses that are regularly graded P/F.

(2) Courses that may be taken by graduate students under this regulation are: (a) any course not in the student’s designated major and (b) any course required to remove a deficiency or to provide background for the student’s program, unless the major department stipulates that such deficiency courses must be taken on a regular-grade basis and completed with an A or B.

(3) Of the minimum number of credits required for a degree, no more than three credits in a master’s or specialist program or nine in a doctoral program may be taken under this P/F option.

(4) To have P recorded for courses taken under this regulation, a graduate student must earn a C or above. A grade of D will be converted to an F on the student’s records.

(5) An unclassified student may enroll for courses under this option with the approval of his or her advisor (if assigned) and the vice president for research and graduate studies. If, however, at a later date an unclassified student is admitted to a degree program, the above regulations apply and no changes to regular letter grades will be permitted.

B-11-c. Adds, Drops, and Changes. Students may add or drop a P/F option course in the same manner as a regular course, and they may change from P/F to regular-grade classification, or vice versa, if they do so no later than the deadlines stated in regulation C and the academic calendar. Students may make these changes by securing the signatures of the advisor or major professor and dean concerned.

B-11-d. Reporting of Grades. Instructors are not notified as to which students are enrolled in courses under this P/F option. Grades are reported in the same manner as grades in courses taken on a regular-grade basis. The registrar is responsible for converting Cs or above to Ps on students’ records and, for graduates, Ds to Fs. Grades of D reported for undergraduates are recorded on students’ records and are not converted.

B-12. Registration for Fewer Credits than Authorized. Students may register for a particular course for fewer credits than indicated in the Class Schedule (they may also register for zero credit under the conditions outlined in B-4); likewise, departments may list courses in the Class Schedule for fewer credits than the number authorized by this catalog.

C – Changes in Registration

C-1. Students may change their registration as provided in the “Semester Schedule for Changes in Registration” accompanying this regulation. All registration changes are effective on the date they are filed with the registrar. Students may not drop a course by simply staying out of class. Undergraduate students are expected to obtain the signature of their advisor on the drop form.

C-2. Credit Withdrawal Limitation.

C-2-a. The number of credits that may be dropped and recorded on the student’s permanent record is limited to 20 credits during a student’s undergraduate career at UI. Petitions must be submitted to the Academic Petitions Committee to drop more than 20 credits during a student’s undergraduate career at UI.

C-2-b. If a student attempts to drop a course that would bring the total credits he or she has dropped above 20, the student will not be allowed to do so. If a student attempts to drop two or more courses simultaneously and together they would bring his or her total credits dropped above 20, the student will be asked, through the dean’s office, to submit a revised request to drop only one course or a combination of courses that would not cause the limitation to be exceeded. If the student cannot be reached or fails to submit a revised request, the registrar will record dropping the course or combination of courses that bear the highest course numbers and not cause the limitation to be exceeded; the dropping of the remainder will not be allowed.

C-3. Adding a Course. As shown in the chart accompanying this regulation, a course may be added on line during the first six days of classes. Beginning with the seventh day of classes, the student must file a form with the registrar that includes the signature of the instructor (and the advisor for undergraduate students). A course may be added with permission as long as the number of instructional weeks left in the semester (not including final exam week) equals or is greater than the number of credits for the course.

D – Credit and Continuing Education Unit

D-1. Unit of Credit Defined. One unit of credit represents what a typical student might be expected to learn in one week of full-time study (40-45 hours including class time and preparation). Each course
Semester Schedule for Changes in Registration

See Academic Calendar in the front of the catalog for dates. The schedule for changes in enrollment in accelerated or short courses during summer session is prorated, based on the number of class meeting hours (see notes below). The calendar in the Summer Bulletin lists the dates for Summer Session.

<table>
<thead>
<tr>
<th>DESIRED CHANGE</th>
<th>First 6 days of semester*</th>
<th>7th day of class through 4th week*</th>
<th>5th week to end of 2nd week following midterms***</th>
<th>After end of 2nd week following midterms***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drop course</td>
<td>Drop course on-line, if permitted (see regulations C-1 and C-2). No grade recorded and credits do not count in 20-credit limit for withdrawal.****</td>
<td>Signature of advisor required for undergrad students. File form with registrar. Grade recorded as W (withdrawal) and counted in 20-credit limit for withdrawal.****</td>
<td>For compelling reasons only, upon successful petition to Academic Petitions Committee (file petition through dean’s office). Grade recorded as W (withdrawal) and counted in 20-credit limit for withdrawal.****</td>
<td></td>
</tr>
<tr>
<td>Add course (for regular credit or audit)</td>
<td>Add course on-line.</td>
<td>Signature of instructor required. File form with registrar.</td>
<td>Signatures of instructor and advisor required for undergrad students. Signature of instructor required for grad, law, and non-degree students. File form with registrar.</td>
<td></td>
</tr>
<tr>
<td>Change course section</td>
<td>Change section on-line.</td>
<td>Permission of instructor of new section is required. File form with registrar.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESIRED CHANGE</th>
<th>First 2 weeks of classes*</th>
<th>3rd and 4th weeks*</th>
<th>5th week to end of 2nd week following midterms***</th>
<th>After end of 2nd week following midterms***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change from regular credit to audit.</td>
<td>File form with registrar. No grade recorded.</td>
<td>Signatures of instructor and advisor required for undergrad students. Signature of instructor required for grad, law, and non-degree students. File form with registrar.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change from audit to regular credit.</td>
<td>File form with registrar.</td>
<td>Signatures of instructor and advisor required for undergrad students. Signature of instructor required for grad, law, and non-degree students. File form with registrar.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change from regular grading to pass-fail or reduce number of credit in course.</td>
<td>File form with registrar.</td>
<td>Not permitted.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change from pass-fail to regular grading.</td>
<td>File form with registrar.</td>
<td>Not permitted.</td>
<td>For compelling reasons only, upon successful petition to Academic Petitions Committee (file petition through dean’s office). Pay late-registration service charge and fee.</td>
<td></td>
</tr>
<tr>
<td>Withdraw from university. (see regulation G)</td>
<td>Obtain form from Dean of Students, academic deans, or Registrar’s Office. File form in academic dean’s office or Registrar’s Office. No grade recorded.</td>
<td>Obtain form from Dean of Students, academic deans, or Registrar’s Office. File form in academic dean’s offices or Registrar’s Office. Dean’s signature required for law students. Grade recorded as WU (withdrawal from university) and credits do not count in 20-credit limit for withdrawal.****</td>
<td>For compelling reasons only; complete medical withdrawal or petition the Academic Petitions Committee (file petition through dean’s office). Grade recorded as WU (withdrawal from university) and credits do not count in 20-credit limit for withdrawal.****</td>
<td></td>
</tr>
<tr>
<td>Change undergraduate curriculum/major. (Grad students consult the College of Graduate Studies section in Part 4)</td>
<td>Anytime. File form with registrar. The request to change must be approved by the dean of the college in which the new curriculum is offered. If the new curriculum is in a different college, students must meet the admission requirements of that college. Students must also see the dean of the college they are transferring out of for counseling and information purposes (not for permission to transfer). A UI cumulative grade-point average of 2.00 or better is normally required to transfer from one UI college or another; however, any student may transfer to the General Studies Program by consulting the director of the program (signatures certify that the student’s academic records have been forwarded). The change of curriculum is official when the student files the completed form with the registrar.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* For accelerated or short courses, the deadline is when no more than 12.5% of the class-meeting hours have been completed.
** For accelerated or short courses, the deadline is after 12.5% but less than 60% of the class-meeting hours have been completed.
*** For accelerated or short courses, the deadline is after 60% of the class-meeting hours have been completed.
**** In the College of Law, consult the dean’s office for information concerning grades assigned when students withdraw from law courses after the 2nd week of classes.

PART THREE

General Requirements and Academic Procedures
is evaluated by a system of credits related to time spent in class, lab, study-preparation, or field investigation. A semester credit is expected to require a total of three hours of scholarly activity each week. Ordinarily, one 50-minute hour of class attendance is scheduled for each credit, but any combination of class attendance, lab, study-preparation, or field investigation may be arranged. Credit for workshops and similar short courses is granted on the basis of one semester credit for at least 45 hours of scholarly activity. Exceptions to this policy for undergraduate courses must be approved by the University Curriculum Committee. Exceptions for graduate courses must be approved by the Graduate Council and the University Curriculum Committee.

D-2. Credit-Load Limitations. (Also see J-5.)

D-2-a. Fall and Spring Semesters, and Summer Session.

(1) During the Fall and Spring, an undergraduate student may register for no more than 20 credits in a semester. This number may be increased to 22 with specific written approval by his or her academic dean. Registration for more than 22 credits (except for students enrolled in the WAMI Medical Education Program) is permitted only on approval of a petition to the Academic Pensions Committee (petition forms are available in deans' offices). During the Summer Session, an undergraduate student may register for no more than 18 credits. A law student may register for no more than 18 credits in a semester without approval of the Associate Dean in the College of Law. See the College of Graduate Studies section in Part 4 for the credit limitation for a graduate student.

(2) Registration for courses with conflicting or overlapping meeting times is allowed only with the approval of the instructor of each affected course.

D-2-b. Full-Time Employees. A full-time UI employee may register for no more than six credits in a semester or three credits during the Summer Session. Written approval by the employee's departmental administrator and dean or director must accompany the registration form.

D-2-c. Non-degree Students. A non-degree student may register for no more than 7 credits each semester and may complete a maximum of 32 semester credits. Students on official UI exchange programs are not limited to 7 credits each semester. International exchange students must take 12 or more credits. Upon completion of 32 semester credits, the student must either be admitted as a degree-seeking student at UI or submit a letter of appeal to continue as a non-degree student.

D-2-d. Under Idaho State law, eligible high school students are given the opportunity to enroll in University of Idaho undergraduate courses and receive both college credit and credit towards high school graduation while still enrolled in high school. The number of credits for which a dual enrollment student may register in a given semester is determined by the student's high school counselor who must submit the enrollment form. However, the credit load limitations that apply to undergraduate students also apply to dual enrollment students.

D-3. Transfer Credit. Credit is accepted for work completed in accredited institutions of higher education as provided in the regulations covering the admission of transfer students. (See "Transfer Admission Requirements" in Part 2; also see E-4 and J-5.)

D-4. Review and Prerequisite Courses. Students will not receive credit for courses taken in review or for courses that are prerequisites of courses they have already completed in the same subject area. Exceptions: 1) As stated in I-1. 2) Students who transfer in a course for which the UI requires Biol 115 or 116 as a prerequisite (but who have not yet taken Biol 115 or 116), may take Biol 115 and 116 for credit.

D-5. Continuing Education Unit. Learning activities for which regular university-level credits are not awarded may be evaluated by a system of uniform continuing education units. Such units are granted in accordance with the following guidelines, which are set forth by the (national) Task Force on the Continuing Unit: A continuing education unit is expected to require 10 contact hours of participation in an organized continuing education experience under responsible sponsorship. Continuing education, as used in this definition, includes all instructional and organizational learning experiences in organized formats that impart noncredit education to post-secondary-level learners. These properties of continuing education may be applied equally under the system regardless of the teaching-learning format, program duration, source of sponsorship, subject matter, level, audience, or purpose. The number of units to be awarded is determined by considering the number of contact hours of instruction, or the equivalent, included in the educational activity. Reasonable allowance may be made for activities such as required reports, lab assignments, field trips, and supervised study.

E – Grades

E-1. Grading System.

E-1-a. For purposes of reporting and record, academic work is graded as follows: A-superior; B-above average; C-average; D-below average; F-failure; I-incomplete work of passing quality (see regulation F); W-withdrawal; WU-withdrawal from the university; P-pass (see below); IP-in progress (see E-2); N-unsatisfactory and must be repeated (used only in Engl 090, 101, and 102 and Chem 050); S-satisfactory (used only in CEU courses).

E-1-b. Grades of P may be reported at the option of the department on a course-by-course basis in noncompetitive courses such as seminar, internship, seminar, and directed study. Grades of P are also reported in courses carrying the statement, "Graded P/F;" in the course description. In courses in which Ps are to be used, the method of grading will be made known to the students at the beginning of the semester, and the grading system will be uniform for all students in the courses, except as provided in B-4-b. Grades under the pass-fail option are not affected by this regulation because the conversion of the regular letter grade is made by the registrar after instructors turn in the class rosters.

E-1-c. Midsemester grades in undergraduate courses must also conform to the above regulations. It is permissible to report Ps at midsemester ONLY in courses that have been approved for grading on this basis.

E-2. In-Progress (IP) Grades.

E-2-a. Grades in Undergraduate Senior Thesis or Senior Project. The grade of IP (in progress) may be used to indicate at least minimally satisfactory progress in undergraduate courses such as senior thesis or senior project that have the statement "May be graded IP" in the course description. When the thesis or project is accepted, the IP grades are to be removed (see E-2-c). Grades of IP in undergraduate courses are considered to represent grades of at least C or P. If, in any given semester, the instructor considers the student's progress unsatisfactory, an appropriate letter grade (D or F) should be assigned for that semester.

E-2-b. Grades in Graduate Research Courses. The grade of IP (in progress) may be used in courses 500 (Master's Research and Thesis), 599 (Non-thesis Master's Research), and 600 (Doctoral Research and Dissertation). When the thesis, dissertation, or other research document is accepted, or when a student ceases to work under the faculty member who is supervising his or her research, the IP grades are to be removed (see below). Grades of IP in graduate courses are considered to represent at least grades of B or P. If, in any given semester, the faculty member supervising the student's research considers the student's progress unsatisfactory, a regular letter grade (C, D, or F) should be assigned.

E-2-c. Removal of IP Grades. Departments may use on a department-wide basis either the P/F grading system, or regular letter grades, as well as P. When removing the previously assigned IP grades (e.g., a student who enrolled for six credits in course 500 one semester, four credits another semester, and five credits an additional semester could have 15 credits of IP grades removed with different grades for each of the blocks of credit registered for each semester, such as six credits of A, four credits of B, and five credits of P).

E-3. Grades in Law Courses. For additional provisions applicable to grades in law courses, see the College of Law section in Part 4.

E-4. Computing Grade-Point Averages. Grades are converted by assigning the following number of points per credit for each grade: A-4, B-3, C-2, D-1, F-0. In computing the grade-point average, neither credits attempted nor grade points earned are considered for the following:
courses graded I, IP, P, S, WU, or N, correspondence courses, continuing education units, credits earned under regulation I, or courses taken at another institution. Credit earned at non-U.S. institutions is recorded as pass (P) or fail (F), except for some courses taken through an approved study abroad program.

[The UI considers only the Institutional grade-point average official. Although both institutional and overall grade-point averages are printed on transcripts, the overall grade-point average (which includes transfer courses) is informational only. To calculate a grade-point average divide the Quality Points (course credits times the points assigned for the grade earned) by the GPA Hours (course credits attempted not including grades of I, IP, P, WU, or N). Earned Hours indicate the total number of semester credits successfully completed (course grades of A, B, C, D, or P earned). Grades of P are included in Earned Hours but do not earn any quality points; grades of F are included in GPA Hours, but not in Earned Hours.]

E-5. Replacing Grades.

E-5-a. Some courses are listed in this catalog as “repeatable” (i.e., the credits listed for the courses show a maximum number of credits that may be earned or show “cr” or “max cr” indicating that the courses may be repeated for credit without restriction as to maximum). Other courses show one credit entry for the course (e.g., “1 cr,” “1 cr.,” “cr.”, “cr.,” etc.) and may be taken only once for credit (see procedure for repeating to replace a grade below). Students, however, may repeat such “nonrepeatable” courses for zero credit. [See the section entitled “Credit Designations” at the beginning of Part 6 of this catalog for more information.]

E-5-b. Replacing a Grade by Repeating a Course. A student who has received a D or F in a course at UI may repeat the course at the UI provided credit has not been earned in a more advanced vertically related course in the same subject area. Although all grades remain on the record, the grade earned the second time in the course will replace the first grade in the student’s institutional GPA. However, all grades earned in subsequent repeats of the same course will be averaged in the student’s institutional GPA. (A student who repeated a course prior to Fall 1998 and earned a final grade of D or F may repeat the same course. The grade earned in this subsequent repeat will replace the previous final grade. However, all grades earned in subsequent repeats of the same course will be averaged into the student’s institutional GPA. (See the College of Law section in part 4 for the exception to this regulation applicable to students in that college.)

E-6. Reports of Grades and Grade Corrections.
Grades are reported to the registrar for all courses at the end of each academic session and at mid semester for undergraduate courses (see deadlines in the academic calendar). The assignment of grades and corrections of grades are the sole prerogative of the instructor and are reported by the instructor directly to the Registrar’s Office via the UI Faculty Web. All grades except I and IP (see regulation F and E-2) are considered final when assigned by an instructor at the end of a term. An instructor may request a grade correction when a computational or procedural error occurred in the original assignment of a grade. No final grade may be revised as a result of re-examination or the submission of additional work after the close of the semester. Grade corrections must be processed within one year of the end of the term for which the original grade was assigned. In the event the instructor leaves the university, the departmental administrator may assign the final grade.

F – Grades of “Incomplete”

F-1. A grade of “Incomplete” is assigned only when the student has been in attendance and has done passing work up to a time within three weeks of the close of the semester, or within one week of the close of the summer session. It may be assigned only upon agreement of the student and the course instructor when extenuating circumstances make it impossible for the student to complete course requirements on time. Extenuating circumstances include serious illness, car accidents, death of a family member, etc. It does not include lateness due to procrastination, the student’s desire to do extra work to raise his/her grade, allowing a student to retake the course, etc.). Graduate students on probation, see College of Graduate Studies section on Probation, Disqualification, and Reinstatement (Part 4). If a grade of “Incomplete” is submitted, the instructor will assign a reversion grade in the event the missing work is not completed. The instructor must also specify conditions and requirements for completing the deficient work, as well as any deadline shorter than the maximum time period allowed in F-2. The end of each semester, the Registrar’s Office will send an Incomplete Grade Report (IGR) to departmental administrators detailing every I grade submitted by their faculty that semester and the conditions for student completion.

F-2. Completion of “Incomplete” Grades. Final grades for incompletes received in the Fall semester or Intersession, must be assigned by the last day of the following Summer semester. Final grades for incompletes received in the Spring semester or Summer Session, must be assigned by the last day of the following Fall semester. When a student has completed the deficient work, the instructor will assign a final grade. An incomplete that is not completed within the time limit specified sized would automatically be changed to the reversion grade assigned by the instructor at the time the incomplete was submitted. Instructors may assign a final grade anytime within the time period specified above. In the event the instructor leaves the university, the departmental administrator may assign the final grade. An incomplete remains on the student’s permanent record and is accompanied by the final grade (i.e. I/A, I/B, I/C).

F-3. “Incomplete” Grades on Record at End of Final Term. A student cannot graduate with a grade of “Incomplete” on his or her record. At the end of the term in which the student will graduate, a grade of “Incomplete” in any UI course on that degree level (undergraduate, graduate, law, etc.) reverts to the grade that the instructor had specified on the on-line grade roster (see F-1). Reverted grades are included in the computation of the student’s cumulative grade-point average at graduation. Nonetheless, a student who has graduated may make up the incomplete work during the usual time limit in an effort to raise the grade on the permanent record.

G – Withdrawal Procedures.

G-1-a. A student who wishes to withdraw from UI before the end of the second week following midterms may begin the process of withdrawal by contacting the Registrar’s Office. Withdrawal forms can be picked up at the college dean’s office or the Registrar’s Office. The official last date of attendance is indicated on the form and the request is not official until it is processed in the Registrar’s Office. See regulation G-1-b for withdrawal from the university after the end of the second week following midterms.

G-1-b. A student is permitted to withdraw from UI after the end of the second week following midterms for compelling reasons only and after approval by the Academic Petitions Committee or after completing a medical withdrawal as explained in G-2. Examples of compelling reasons are: serious illness or injury of the student or death or serious illness or injury in the student’s immediate family. Requests for permission to withdraw after the end of the second week following midterms are forwarded via the student’s academic dean to the Academic Petitions Committee on forms available in department and college offices. If the student’s petition is approved, the Academic Petitions Committee will determine the effective date of the withdrawal. (See “Refund of Fees” in Part 2.)

G-2-a. The medical director of the Student Health Service, University Psychiatrist or the director of the Counseling and Testing Center is authorized to grant or require a student’s withdrawal from UI for medical reasons.

G-2-b. Voluntary Medical Withdrawal. Students desiring to withdraw from UI for medical reasons will consult the medical director of the Student Health Service, University Psychiatrist, or the director of the Counseling and Testing Center who will evaluate the request. If granted, the dean of students will be notified in writing to process the medical withdrawal.

G-2-c. Emergency Transfer to Institutional Care. The medical director of the Student Health Service or University Psychiatrist is authorized to act as the representative of the president in emergencies that, under Idaho laws, require the transfer of a student to a community or state health facility. The student may be granted a medical withdrawal from UI at the discretion of either director.
G-2-d. Mandatory Medical Withdrawal. It is the responsibility of the dean of students to order a medical examination of a student if the dean has reason to believe that the student has a serious medical or psychiatric condition that substantially threatens or interferes with the welfare of the student, other members of the university community, or the educational processes of the university. The dean notifies the student and the director of the Student Health Service that such an examination is to be conducted. This process may be started by the director of the Student Health Service, University Psychiatrist or the director of the Counseling and Testing Center for patients under care or counseling by notifying the student and the dean of students in writing.

(1) Request for Evaluation. On notification from the dean of students, the medical director of the Student Health Service requests the student to undergo immediate professional evaluation by the medical director or the medical director's designee, or, at the student’s request and expense, by a private physician or psychiatrist deemed appropriate by the medical director. A report of this evaluation is presented to the medical director with a specific recommendation as to whether a medical withdrawal is warranted.

(2) Evaluation Conference. The medical director of the Student Health Service provides the student written notice of a time and place at which the medical director and student will confer or the final determination as to mandatory withdrawal. The student may have the assistance of a representative at this conference. The medical director refers to reports, recommendations, and evaluations pertinent to the case and is empowered to request additional relevant medical or psychiatric examinations of the student.

(3) Determination of Director. Based on the evaluation and the conference, the medical director of the Student Health Service may determine: (a) that mandatory withdrawal is warranted by the student’s medical or psychiatric condition; (b) that mandatory withdrawal is not warranted by the student’s medical or psychiatric condition; or (c) that the student may remain enrolled subject to conditions specified by the medical director. The medical director transmits this decision in writing to the student and the dean of students. If withdrawal is ordered, the dean will process it.

(4) Finality of Determination. Decisions made by the medical director of the Student Health Service pursuant to these procedures are final.

(5) Refusal of Evaluation. If, after a request by the medical director of the Student Health Service, the student refuses to consult with a physician or psychiatrist, the director will, if practicable, seek the help of the student’s family in persuading the student to seek appropriate professional assistance. Should these efforts not result in the student taking the desired action, the director summarizes the steps taken to secure needed information and the reasons for the withdrawal and instructs the dean of students to process the withdrawal. A copy of this order for withdrawal is sent to the student. The dean will process the withdrawal as mandatory, but involuntary.

(6) Appeal. A student may appeal to the Vice Provost for Academic and Student Affairs either (a) to revoke the order of the dean of students for a medical examination or (b) in case a procedural error is alleged, to order the determination of the medical director of the Student Health Service reopened.

G-2-e. Any student placed on medical withdrawal may, if appropriate, be informed, in writing, by the medical director of the Student Health Service, University Psychiatrist or the director of the Counseling and Testing Center that he or she is eligible to return to UI at a later date on the favorable recommendation of one of the above. When applying for re-admission the student has responsibility for providing one of the above with evidence of satisfactory treatment of the condition that necessitated medical withdrawal. Medical withdrawals are subject to the same refund rules and procedures as other withdrawals (see “Refund of Fees” in Part 2).

G-3. Grades for Students Who Withdraw. Grades for a student who withdraws are recorded as provided in C and F-1. A student who withdraws from, or leaves, UI without official approval will receive Fs in all courses in which he or she is registered and for which the grade has not already been assigned.

H – Final Examinations

H-1. The last five days of each semester are scheduled as a final exam week (two-hour exams) in all divisions except the College of Law. The following provisions apply:

H-1-a. No quizzes or exams may be given in lecture-recitation periods during the week before finals week. Exams in lab periods and in physical education activity classes, final in-class essays in English composition classes, and final oral presentations in speech classes are permitted.

H-1-b. Instructors must meet their classes during the exam period for which they are scheduled in the finals week, either for an exam or for a final class session.

H-1-c. Final exams or final class sessions are to be held in accordance with the schedule approved by the Faculty Council and published in the Class Schedule. Instructors may deviate from the schedule only on the recommendation of the college dean and prior approval by the provost or provost’s designee.

H-1-d. Where exams common to more than one course or section are required, they must be scheduled through the Registrar’s Office and are regularly held in the evening.

H-1-e. Students with more than two finals in one day are permitted, at their option, to have the excess final(s) rescheduled to the conflict period or at a time arranged with the instructor of the course.

H-1-f. Final grades for each course must be filed with the registrar within 72 hours after its scheduled exam period.

H-1-g. Athletic contests are not to be scheduled during finals week; further, if a change in the calendar causes a scheduled athletic contest to fall within finals week, every reasonable effort must be made to reschedule the athletic contest.

H-2. Students who miss final exams without valid reason receive Fs in the exams. Students who are unavoidably absent from final exams are required to present evidence in writing to the instructor to prove that the absence was unavoidable.

H-3. Instructors, with the concurrence of their departments, may excuse individual students from final exams when such students have a grade average in the course that will not be affected by the outcome of the final exam. In such instances, the grade earned before the final exam is to be assigned as the final grade.

H-4. Early final exams are permitted for students, on an individual basis, who clearly demonstrate in writing that the reasons for early final exams are compelling (such requests require approval by the instructor and by the administrator of the department and the dean of the college in which the course is offered).

I – Other Credit Opportunities

I-1. Credit opportunities for exams/high school courses taken prior to becoming a degree-seeking undergraduate student at UI. (See regulation J-5-b for credit limitations.)

I-1-a. College Board Advanced Placement Exams (AP). Credit is granted for advanced-placement courses completed in high school in which a rating of 5, 4, or 3 is attained in College Board advanced-placement tests. For details, see Registrar’s website, http://www.students.uidaho.edu/default.aspx?pid=19556.
I-1-b. College Level Examination Program (CLEP). UI grants credit for the successful completion of tests under the College Level Examination Program, approved for specific courses by UI departments. For minimum scores needed to earn credit, see Registrar’s website, http://www.students.uidaho.edu/default.aspx?pid=19556.

I-1-c. Other Exams. UI grants credit for students who achieve specific scores on the ACT, SAT, and COMPASS exams. Credit from these exams for Engl 101 will be granted after the successful completion of Engl 102. For the minimum scores needed to earn credit, see Registrar’s website, http://www.students.uidaho.edu/default.aspx?pid=19556.

I-2. Credit opportunities while a degree-seeking student at UI. (See regulation J-5-b for credit limitations.)

I-2-a. Challenged Courses (Credit by Examination). Degree-seeking students may challenge UI lecture and associated laboratory courses (earn credit by examination) as follows:

(1) Students must receive permission from the course instructor, from the administrator of the department in which the course is offered, and from his/her academic dean to challenge a course. Applications to challenge a course are available on the Registrar’s Website. The application must be signed and the application fee paid to the Student Accounts/Cashiers Office (see Part 2 for special fees for extramural credits). The form is then returned to the Registrar’s Office. The registrar checks the student’s record to confirm if the student is eligible to challenge the course and notifies the instructor or student accordingly.

(2) Undergraduates must score C or higher to pass and obtain credit. Graduate students must score A or B to pass and obtain credit. A passing grade is entered as P and is not included in grade-point computations. The student's account will be charged the appropriate per-credit fee at the time the credits are recorded on the student's transcript (see Part 2 for special fees for extramural credits). If a student does not meet these standards, no entry is made on their record and no per-credit fee is charged to their account.

(3) Results of the challenged courses must be forwarded to the registrar no later than the beginning of the last week of the semester.

(4) No examinations under this regulation may be conducted during the last two weeks of any academic session.

(5) Students are not permitted to challenge a prerequisite course after having completed the advanced course.

(6) Credit in courses offered by the College of Law may not be obtained by this procedure.

I-2-b. Experiential Learning Credit. With the approval of an ad hoc committee consisting of representatives from the colleges and departments involved (convened by the registrar) and payment of the applicable fees (see Part 2 for special fees for extramural credits), an undergraduate may be awarded lower-division and/or upper-division (100–499 series) credit in recognition of university-level knowledge or competence gained in work and life situations outside of UI’s jurisdiction, mass media, and independent reading and study. Examples of work and life situations outside UI’s jurisdiction include knowledge or competence gained in business, industry, government, or community agencies; or through travel or private study; or while studying at a proprietary or non-accredited institution. Petitions for such credit must be approved by the student’s departmental administrator and academic dean, and must be supported by such evidence as is needed to provide a sound basis for evaluating the student’s achievements. Credits granted under this regulation are recorded as P (Pass). A grade of P is assigned. The University department through which the degree is to be granted will determine the applicability of credits earned through experiential learning toward the satisfaction of specific degree requirements. (See J-5.) Petition forms for experiential learning credit are available on the Registrar’s website, http://www.uidaho.edu/registrar.

I-2-c. Technical Competency Credit. Technical competency credits may be gained from experience in areas of concentration related to bachelors degrees in professional-technical education or industrial technology. Grades of P for the successful completion of PTTE 470, PTTE 480, and PTTE 490, are normally recorded on a student’s transcript during their last semester or upon completion of all degree requirements. A maximum of 32 credits may be earned in a combination of PTTE 470, 490 or PTTE 480. Applications and instructions for technical competency credits are available at the Division of Adult, Counselor, and Technology Education. See Part 2 for special fees for extramural credits.

I-2-d. Vertically Related Course Credit. Undergraduate degree-seeking students may bypass an elementary course and enroll in a higher vertically related course. Student with a C or better in the advanced course are eligible to receive credit and a grade of P for the lower vertically related courses in the same subject matter. Vertically related courses are listed at the beginning of each subject in Part 6. Applications to receive credit for vertically related courses are available on the Registrar’s website, http://www.uidaho.edu/registrar. See Part 2 for special fees for extramural credits. Advisors should make sure that students are aware of this opportunity for obtaining credit.

I-3. Students who have completed courses at other institutions after bypassing lower vertically related courses, but have not been awarded credit for those bypassed courses, will be granted such credit on completion of a yet higher vertically related course at UI.

I-4. With the exception of experiential learning credit, other credit opportunities (such as those listed in I-2 and I-2) granted by other accredited institutions will be honored on transfer to UI. Students with similar credits from non-accredited educational sources may submit a petition to have the credit reviewed for transfer to UI.

J – General Requirements for Baccalaureate Degrees

Candidates for baccalaureate degrees must fulfill the following requirements. (See the College of Graduate Studies section of Part 4 for the requirements for graduate degrees. See the College of Law section in Part 4 for the requirements for the degree of Juris Doctor.)

J-1. Credit Requirements.

J-1-a. Students must have earned a minimum of 128 credits to be granted a baccalaureate degree from the University of Idaho. Some programs require a higher minimum. For the minimum number of credits required in each degree program, see the major curricula of the various degree-granting units in Part 5.

J-1-b. A minimum of 36 credits in upper-division courses (numbered 300 or above) is required for a baccalaureate degree.

J-2. Residency Requirements.

J-2-a. A student must earn a minimum of 32 upper-division credits in UI courses. No credits awarded for independent study, bypassed courses, credit by examination, College Level Examination Program (CLEP), or experiential learning can be counted among these 32 UI credits. Study abroad and student exchange credits may be counted toward this requirement with prior approval by the student’s academic department and dean.

J-2-b. Candidates for the B.S.Ag.Ec. degree with a major in agricultural business at the University of Idaho Center, Idaho Falls, are exempt from the requirement stated in J-2-a. Instead, they must complete a minimum of 32 of the last 64 credits in courses taught at the University of Idaho Center, Idaho Falls, and they must complete a minimum of 18 of the last 64 credits in courses taught by the University of Idaho.

J-3. Subject Requirements (Core Curriculum). A university education is a preparation both for living and for making a living. It offers an opportunity not only to lay the foundations of a career, but also to develop the mind to its highest potential, to cultivate the imagination as well as the power to reason, and to gain the intellectual curiosity.
that makes education a life-long enterprise. A central component of this preparation is the requirement that a student working toward a baccalaureate degree must complete the necessary course work in the four categories described below. This requirement is to be satisfied by earning the minimum number of credits specified for each category. (Transfer students have two options for fulfilling this requirement; these are described under “General Education Requirements for Transfer Students” in the Undergraduate Admission section in Part 2 of this catalog. Courses that fulfill requirements in each category are reviewed each year and the list is updated in the Spring. Students and advisors are encouraged to check the list when it is published in the Spring to be aware of any additional courses that have been added to meet specific requirements. Courses that are approved to satisfy a core requirement can be used to satisfy those requirements even if the course is completed prior to being approved as a core course.

Note: Remedial courses may not be used to satisfy any of this requirement. Degree-seeking students must be enrolled in Engl 090, 101, or 102 in their first semester in residence and in each subsequent semester until they have passed Engl 102. They must also be enrolled in Math 108 or in a course that meets the core requirement in mathematics, statistics, or computer science in their first year in residence and in each subsequent semester until the core requirement in mathematics, statistics, or computer science has been satisfied.

J-3-a. Communication (5-7 cr). The purpose of this requirement is to develop the ability to organize one’s thoughts, to express them simply and clearly, to observe the standards and conventions of language usage, and to suit tone to audience. The requirement is proficiency in written English equal to that needed for the completion of UI course Engl 102 and the completion of one additional course in this category.

Public Speaking. Students who receive a passing grade in Comm 101, Fundamentals of Public Speaking, are expected to develop and demonstrate the ability to make oral presentations in one-on-one settings, small groups, and large groups. Students should be able to demonstrate basic competency in (1) organization and preparation, (2) oral language use and presentation, and (3) addressing audience needs and interests.

Written English. Students who receive a passing grade in any of the six English classes included in the core are expected to develop and demonstrate competencies in their writing in (1) organization and development, (2) sentence variety and word choice, and (3) language usage conventions.

The following specific provisions apply to the English composition component:

(1) Students who attain a satisfactory score on the College Board English Achievement or Scholastic Aptitude (Verbal) Test or the American College Testing (ACT) English Test will be awarded credit and grades of P for Engl 101 and 102. Also, students who attain a score of 4 on the Advanced Placement Test in English will be awarded credit and a grade of P for Engl 101 and students who attain a score of 5 on the Advanced Placement Test in English will be awarded credit and grades of P for Engl 101 and 102.

(2) Students who do not meet the conditions stated in paragraph (1) will be tentatively placed, on the basis of their scores on the tests cited above, in either Engl 101 or 102.

(3) UI accepts credits earned in comparable writing courses taken at other accredited institutions. (See credit limitation in J-5-d.)

Comm 101 Fundamentals of Public Speaking (2 cr)
Engl 207 Persuasive Writing (3 cr)
Engl 208 Personal and Exploratory Writing (3 cr)
Engl 209 Inquiry-Based Writing (3 cr)
Engl 313 Business Writing (3 cr)
Engl 316 Environmental Writing (3 cr)
Engl 317 Technical Writing (3 cr)
Phil 102 Reason and Rhetoric (2 cr)

J-3-b. Natural and Applied Science (8 cr which include two accompanying labs OR 7 cr which includes a CORS course and one course with lab). The purpose of this requirement is to develop a better understanding of the physical and biological world by learning some of the principles that explain the natural phenomena of the universe, the experimental method used to derive those principles, and their applications.

Study in this area is undertaken as part of the general education requirements in order to promote scientific literacy, that is, the ability to read and understand the science issues being debated in society. Scientific literacy is essential if citizens are to make informed judgments on the wide range of issues that affect their everyday lives. Students receiving passing grades in the natural and applied science courses of the core curriculum will demonstrate competency in the following areas: (1) knowledge of scientific principles; (2) the ability to write clearly and concisely using the style appropriate to the sciences; (3) the ability to interpret scientific data; (4) the ability to analyze experimental design critically; and (5) the development of laboratory skills.

Biol 102 Biology and Society (4 cr)
Biol 115 Cells and the Evolution of Life (4 cr)
Biol 116 Organisms & Environments (4 cr)
Chem 100 Chemistry and the Citizen (4 cr), OR Chem 101 Introduction to Chemistry I (4 cr), OR Chem 111 Principles of Chemistry I (4 cr)
Chem 112 Principles of Chemistry II (5 cr)
CORS 205-297 Integrated Science (3 or 4 cr)
Ent 211 Insect Biology (4 cr)
EnvS 101 Introduction to Environmental Science, and EnvS 102 Field Activities in Environmental Sciences (4 cr)*
Geol 101 Physical Geology (4 cr)
Geol 102 Historical Geology (4 cr)
BBMB 154, 155 Introductory Biology of Bacteria and Viruses (4 cr)*
BBMB 250, 255 General Microbiology and Lab (5 cr)*
Phys 100 Fundamentals of Physics (4 cr)
Phys 103, 104 General Astronomy and Lab (4 cr)*
Phys 111 General Physics I (4 cr)
Phys 112 General Physics II (4 cr)
Phys 211 Engineering Physics I (4 cr)
Phys 212 Engineering Physics II (4 cr)
Soil 205, 206 The Soil Ecosystem and Lab (4 cr)*

*To be counted toward satisfaction of this requirement, the full four or five credits (that is, both the lecture course and the accompanying laboratory course) must be completed.

J-3-c. Mathematics, Statistics, or Computer Science (3 cr). Mathematical reasoning as a skill and as a theoretical structure has played a crucial role in modern civilization as well as in the everyday lives of individuals. The core curriculum requirement in mathematics, statistics, or computer science should, therefore, foster both an appreciation for the aesthetic and historical dimensions of these areas and a sense of their practical necessity.

Mathematics, statistics, and computer science courses help students develop analytical, quantitative, and problem solving skills by involving them in doing mathematics, statistics, or computer science and by focusing on understanding the concepts of these disciplines.

Students receiving passing grades in mathematics, statistics, or computer science will have: (1) an understanding of key terms and concepts including a historical perspective of their origins and (2) the ability to recognize, analyze, and solve problems.

CS 101 Introduction to Computer Science (3 cr)
CS 112 Introduction to Problem Solving and Programming (3 cr)
Math 123 The Spirit of Mathematics (3 cr)
Math 130 Finite Mathematics (3 cr)
Math 137 Algebra with Applications (3 cr)
Math 143 Pre-calculus Algebra and Analytic Geometry (3 cr)
Math 160 Survey of Calculus (4 cr)
Math 170 Analytic Geometry and Calculus I (4 cr)
Stat 150 Introduction to Statistics (3 cr)
Stat 251 Statistical Methods (3 cr)
J-3-d. General Core Studies (GCS). 18 credits from the following:

1. Core Discovery: One course from CORE 103-149 (open to freshmen only) and one course from CORE 153-199 (open to freshmen and sophomores only).

2. Cluster Courses: Three courses (minimum 8 credits) chosen from one approved core cluster. (Students in the University Honors Program are not restricted to the core cluster courses, but may elect to choose Honors courses.) The three courses must include at least two different disciplines and at least one upper-division course. Note: CORE and CORS courses may not count toward the two discipline requirement.

3. International Course: One approved international course with a contemporary international or global focus.

4. Humanities/Social Sciences: 14 credits in a combination of humanities and social science courses with a minimum of six credits in humanities and six credits in social sciences.

Additional credits to total the required 18 credits may be selected from courses in any core cluster, the international course listing and the approved listing of fine arts and capstone courses.

A course may be used toward more than one of the above requirements but may count only once toward the required 18 credits.

J-4. Grade Requirements. To qualify for the baccalaureate degree, a candidate must have a UI grade-point average of 2.00 or better. See exceptions under E-4 and E-5.

J-5. Credit Limitations. A candidate may count toward a baccalaureate degree no more than:

J-5-a. Seventy credits earned at junior or community colleges, or one-half of the total credits required for a student’s intended baccalaureate degree, whichever is the higher number.

J-5-b. Forty-eight credits in any combination of credits granted for the following types of courses: credit based on test scores (for CLEP, College Board advanced-placement tests, ACT, SAT, COMPASS), credit by examination (challenge), experiential learning, independent study, technical competence, vertically-related course credit, and vocational-technical or military school courses. This 48-credit limitation may be exceeded for good cause with the approval of the Academic Petitions Committee (file petition through dean’s office). Note: credits earned through any combination of external study and technical competence cannot exceed a maximum of 32 of the allowable 48 credits.

J-5-c. Twelve credits earned under the pass-fail option (see B-11).

J-5-d. Six credits in English composition.

J-5-e. Six credits in remedial-level courses; to be counted, these credits must have been earned before the fall semester 1983; no such credits earned after summer session 1983 may be counted.

J-6. Assignment of Curricular Requirements (Catalog Issue). In addition to fulfilling the general university requirements for degrees, candidates for baccalaureate degrees must satisfy the particular requirements specified for their curricula. The pertinent requirements are those contained in the most recent UI catalog issue that was in effect at the time of, or subsequent to, the candidate’s initial enrollment as a degree-seeking student at UI. The earliest catalog issue available to students re-admitted as a degree-seeking student at the UI, is the most recent catalog at the time of re-enrollment. A catalog issue is valid for a maximum of seven years from its effective date. The effective date of a catalog issue is the first Monday following spring graduation.

J-7. Second Baccalaureate Degree.

J-7-a. Students may concurrently pursue two different majors leading to two different baccalaureate degrees (e.g., B.A. and B.S.Ed.) from UI by working to fulfill the general university requirements for one degree and the departmental and college subject-matter require-
the degree is posted to the student’s academic record based upon the student’s grade point average at that time. Grade corrections subsequent to the posting of the degree will be processed by the Registrar’s Office but will not impact the honors designation for the student.

1. Their cumulative UI grade-point averages are as specified in K-1-a, K-1-b, or K-1-c and they have earned at least 56 credits in UI courses OR

2. Both their cumulative UI grade-point averages AND their grade-point average from all sources (the overall GPA on Banner) are as specified in K-1-a, K-1-b, or K-1-c, and they have earned at least 32 credits in UI courses.

No credits earned through correspondence study, bypassed courses, credit by examination, College Level Examination Program, experiential learning, or technical competence may be counted among these 56 or 32 credits. Candidates for the degree of Juris Doctor are graduated with honors under the same conditions, except the grade-point average considered is based exclusively on the student’s record in the College of Law. Honors are not awarded with degrees earned through the College of Graduate Studies.

K-1-a. Candidates whose grade-point averages would place them within the top 3 percent of graduates from their respective colleges over the preceding five years are graduated summa cum laude (with highest distinction).

K-1-b. Candidates whose grade-point averages would place them within the top 6 percent (but below the top 3 percent) of graduates from their respective colleges over the preceding five years are graduated magna cum laude (with great distinction).

K-1-c. Candidates whose grade-point averages would place them within the top 10 percent (but below the top 6 percent) of graduates from their respective colleges over the preceding five years are graduated cum laude (with distinction).

K-2. Dean’s List. Undergraduate students who are registered for at least 12 credits (10 in the College of Law) and attain a grade-point average of 3.50 (3.00 in the College of Law) for a given semester are placed on lists prepared for the college deans. [Note: The 3.50 GPA is based on 12 graded credit hours (GPA hours) and does not include courses graded pass/fail.] These lists are publicized within UI and are distributed to news agencies.

L – Academic Standing, Probation, Disqualification, and Reinstatement

L-1. Academic Standing for Undergraduate Students. Students are considered to be in good academic standing when they have a semester and a UI cumulative grade-point average of 2.00 or higher.

L-2-a. At the end of a semester, undergraduate students who do not attain a UI cumulative grade-point average of 2.00 are placed on academic probation for the next semester of enrollment and are referred to the appropriate academic dean for advising. The effect of this probationary status is to serve notice that if a student’s cumulative record at the end of the next semester in residence is unsatisfactory he or she will be disqualified and ineligible to continue at UI.

L-2-b. Students on academic probation who attain a UI cumulative grade-point average higher of 2.00 or higher are automatically removed from probation.

L-2-c. Students on academic probation who attain a semester grade-point average of 2.00 or higher during the next or subsequent semester after being placed on probation, but whose cumulative grade-point average is still below 2.00 remain on academic probation.

L-2-d. Because final grades for a probationary term may not be available until after a student has registered for an ensuing term, such registration must be considered tentative until the student’s academic standing may be determined. If the student is disqualified at the end of the probationary term, the registration for the ensuing term is invalid and will be cancelled unless the student is reinstated (see L-4).

L-3. Disqualification for Undergraduates.

L-3-a. Students on academic probation with less than 33 cumulative net credits will be disqualified if their semester grade-point average falls below a 2.00 and their UI cumulative grade-point average falls below a 1.80. Students in this group with a semester grade-point average below a 2.00 and a UI cumulative GPA between 1.80 and 1.99 will remain on probation.

L-3-b. Students on academic probation with 33 or more cumulative net credits will be disqualified at the end of a probationary term if both their UI cumulative grade-point average and their semester grade-point average are below 2.00.

L-3-c. To reregister after being academically disqualified, students must be reinstated

L-3-d. Because final grades for a probationary term may not be available until after a student has registered for an ensuing term, such registration must be considered tentative until the student’s academic standing may be determined. If the student is disqualified at the end of the probationary term, the registration for the ensuing term is invalid and will be cancelled unless the student is reinstated (see L-4).

L-4. Reinstatement for Undergraduates.

L-4-a. After a first disqualification, students may be reinstated (i.e., have their eligibility to continue restored) by petition to and favorable action by the college in which they are enrolled OR by remaining out of UI for at least one semester. Summer does not qualify for a semester lay-out period.

L-4-b. After a second disqualification, students may be reinstated at any time only by petition to and favorable action by the college in which they are enrolled.

L-4-c. Students disqualified for a third time may be reinstated only after successful petition to the college in which they are enrolled and the Academic Petitions Committee.

L-4-d. Students who have been reinstated may continue to register on probation so long as they attain a 2.00 or better grade-point average for each semester following a disqualification.

L-4-e. Students who are disqualified and reinstated are reinstated on academic probation.

L-5. Academic Warning for Undergraduates. Students not on probation who attain a grade-point average below 2.00 during a given semester without dropping below a UI cumulative grade-point average of 2.00 receive an academic warning. Although this does not affect their academic standing or their eligibility to register, the students are referred to the appropriate academic dean for advising.

L-6. Summer Session. Disqualification at the end of a spring semester does not affect a student’s eligibility to continue in the immediately ensuing summer, but to register in any subsequent term the student must be reinstated.

L-7. Fresh Start. Qualified undergraduate students who wish to reenter the university in a specific degree program after a period of absence will be allowed a “Fresh Start” as described below.

L-7-a. To qualify for a Fresh Start, students (1) must not have been enrolled in any college or university as a full-time matriculated student for at least the five years immediately before applying for the program, (2) must have a UI cumulative GPA of less than 2.00, and (3) must be approved for the program by the college dean that administers the academic program they wish to pursue.

L-7-b. Once the student has completed an additional 24 credits of course work with a Fresh Start cumulative GPA of at least 2.00 and has been in the program at least two semesters, the cumulative GPA
PART THREE

General Requirements and Academic Procedures

will be reset to 0.00 as of the time of admission to the Fresh Start Program.

L-7-c. Students in the Fresh Start Program will be allowed a maximum of six credits of “W” during the first two semesters after admission to the program. If the Fresh Start is successfully completed, the count for the 20-credit limit on withdrawals (see C-2) will be reset to 0 as of the time of admission to the Fresh Start Program.

L-7-d. University probation and disqualification regulations apply throughout the Fresh Start process.

L-7-e. To graduate with honors, a student in the Fresh Start Program must have at least 56 credits in UI courses after the Fresh Start (see K-1). Fresh Start Program participants are eligible for the dean’s list (see K-2) on a semester-by-semester basis.

L-7-f. Application forms and explanatory materials are available at the Registrar’s Office.

L-8. Regulation L does not apply to graduate or law students. See the College of Graduate Studies section of Part 4 for information on probation, disqualification, and reinstatement of graduate students. See the College of Law Announcement for information for law students.

M – Attendance, Repeated Absences, Field Trips, and Official Student Travel

M-1. Attendance. Students are responsible for class attendance; in all cases of absence, students are accountable for the work missed. In the case of officially approved absence and on the request of the student, the instructor is obligated to provide an opportunity for the student to make up for missed work. In general, an absence is considered “official” when the student is: (a) participating in an approved field trip or other official UI activity (e.g., athletic, debate, music, or theatre arts); (b) confined under doctor’s orders; (c) called to active military duty during emergency situations; or (d) granted a leave of absence from UI for reasonable cause by his or her academic dean.

M-2. Repeated Absences. In courses where a substantial amount of the content can be mastered only or primarily through class participation, regular and punctual attendance is essential and may, therefore, be reflected in grading. Instructors will make clear at the beginning of each course the extent to which grades are dependent on attendance. Instructors may report to the registrar students who are repeatedly absent from classes (a form is available from departmental and college officials). Absences may be considered excessive when their number equals or exceeds the number of credits in a particular course.

M-3. Field Trips and Official Student Travel. “Field trip” is defined as any required, course-related student travel that exceeds 25 air miles from the campus or conflicts with other classes that the students involved are taking. (A trip taken within 25 air miles during the class scheduled for the particular class or at a time that does not conflict with other classes the students involved are taking is a “local trip,” not a “field trip.”)

M-3-a. Missed Class Work. Students participating in field trips, as defined above, or other official UI activities are responsible for notifying the registrar through the registrar when extenuating circumstances not covered as an officially approved absence as defined in M-1 prevent their attendance during the first week of the semester. Instructors may drop from classes students who have not attended class or laboratory meetings or notified the instructor through the registrar by the end of the first week of classes. Valid reasons for missing classes do not relieve the student of making up the work missed.

M-3-b. Approval of Course-Related Field Trips. Administrative approval for course-related field trips will be obtained by the person in charge of the trip as follows:

(1) Each field trip as identified in the catalog course description requires prior approval by the department in accordance with divisional procedures (application for approval should be made at least one week before the expected departure).

(2) Each field trip NOT identified in the catalog course description requires prior approval by the departmental administrator, the dean of the college, and the provost (application for approval should be made at least two weeks before the expected departure).

M-3-c. Approval of Other Official Student Travel. Administrative approval for official student travel that is NOT course related is obtained from the vice president for student affairs (application for approval should be made at least two weeks before the expected departure).

M-3-d. Costs. When a college can cover all or part of the cost of a course-related field trip from allocated funds, the college should do so. If the college cannot cover the cost, or a portion thereof, the cost (or remaining portion) must be borne in proportionate share by the students in the course. Students missing required field trips identified in the catalog course description must pay their proportionate shares.

M-3-e. Field-Trip Completion Deadline. All field trips and other UI-approved student travel must be completed before 7:30 a.m. on the fifth day of classes before the start of final examinations.

M-3-f. Unofficial Student Travel. UI student accident insurance does not cover injuries sustained in the course of travel unless the travel has been officially authorized by the appropriate UI agent.

M-3-g. Vehicle Information. Information concerning privately owned vehicles (registration, insurance, driver’s license, etc.) to be used for field trips or other official student travel must be filed with the Business and Accounting Services Office (Rm. 101, Ad. Office Bldg.). Administrators of departments and divisions are responsible for ensuring that the required information is filed before the initial use of each privately owned vehicle in a given academic year.

M-4. Accommodation of Religious Observances in the Administration of Examinations. When tests or examinations fall on days objectionable to a student because of religious beliefs, the student should contact the instructor as soon as possible. The instructor may require the student to submit a concise, written statement of the reasons for the request. If the request appears to be made in good faith, the instructor should make alternative arrangements for the administration of the examination or test. If the instructor believes the request not to be in good faith, or if the instructor and the student are unable to agree on arrangements, the student or the instructor should seek the assistance of the departmental administrator, dean, or provost, in that order.

M-5. Drop for Non-attendance. Students are responsible for notifying their instructors through the registrar when extenuating circumstances not covered as an officially approved absence as defined in M-1 prevent their attendance during the first week of the semester. Instructors may drop from classes students who have not attended class or laboratory meetings or notified the instructor through the registrar by the end of the first week of classes. Valid reasons for missing classes do not relieve the student of making up the work missed.

N – Class Rating

Class ratings of undergraduates are determined as follows: Sophomore-26 credits, Junior-58 credits, and Senior-90 credits.

O – Miscellaneous

O-1. Credit Requirements for Full-Time Students.

O-1-a. For purposes other than fees, UI students in all divisions except the College of Graduate Studies and the College of Law must carry 12 credits each semester or summer session to be classified as full time.

O-1-b. For fee and tuition purposes only, students carrying eight or more credits (or equivalent in audits and zero-credit registrations) and all teaching/research assistants on full appointment, regardless of the number of credits they register for, are classified as full-time students.

O-1-c. Students in the College of Graduate Studies are considered full time: (1) when registered for nine credits (or equivalent) of course and/or thesis work; or (2) when on regular appointments as teaching assistants or research assistants.

O-1-d. Veterans and war orphans attending UI on the G.I. Bill must carry certain minimum credit loads to be considered by the Veterans’ Administration for benefits as indicated in the table accompanying this regulation. (Audits do not count; repeats and reviews may be
In addition when the student’s advisor certifies that the course is required in the student’s curriculum or is needed to remove a deficiency or to provide essential background for the student’s program; file a copy of the program with the veterans’ clerk at the Office of Dean of Students.

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Academic Year Undergraduate</th>
<th>Academic Year Graduate</th>
<th>Summer Session Undergrad & Grad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>12 or more</td>
<td>9 or more</td>
<td>Fewer than 4</td>
</tr>
<tr>
<td>Three-fourths</td>
<td>9-11</td>
<td>6-8</td>
<td>Must be Arranged</td>
</tr>
<tr>
<td>Half</td>
<td>6-8</td>
<td>4-5</td>
<td>Fewer than 6</td>
</tr>
<tr>
<td>Fees and tuition only</td>
<td>Fewer than 6</td>
<td>Fewer than 4</td>
<td></td>
</tr>
</tbody>
</table>

O-8. Confidentiality of Academic and Counseling Records. See the student records policy in the booklet entitled “Policies and Information of Interest to Students,” available from the Office of the Dean of Students (UCC 241), the Office of the Vice President for Student Affairs (Student Union Building), and other locations around the campus.

O-9-a. The provost periodically reminds deans and departmental administrators of their responsibility to ensure that classes meet in conformity with the course descriptions and Class Schedule. (It is the responsibility of the University Curriculum Committee to see that the time requirements stated in new or revised course descriptions satisfy general regulation D-1, “Credit Defined”; it is the responsibility of the registrar to see that listings in the Class Schedule conform to the respective course descriptions.)

O-9-b. The cancellation of a particular class session or sessions on an occasional basis, normally due to unusual circumstances affecting the instructor of or the students in the class, is a matter for the instructor’s discretion. Nonetheless, instructors should keep such cancellations to a minimum, be satisfied that the grounds for cancellation are defensible, give as much advance notice of the cancellation as is possible, and, if time permits, obtain the concurrence of the departmental administrator in advance. Frequent failure of an instructor to meet classes, except for reasons clearly recognizable as adequate, may be grounds for disciplinary action.

O-9-c. The scheduling of required class meetings at times other than those specified in the Class Schedule or authorized in the course descriptions (e.g., field trips) requires approval by the provost. In addition to securing the provost’s approval, the instructor must give the students at least two weeks’ notice, provide alternative means of completing class requirements for students who have irreconcilable conflicts with the irregular meetings, and, normally, cancel regularly scheduled class meetings equivalent to the irregular meetings. (If it is proposed that such irregular meetings be made a continuing practice, they are to be incorporated in the course description and the revised description submitted to the University Curriculum Committee for routine faculty approval.)

O-9-d. Authorized class meetings at times other than those shown in the Class Schedule is one of the topics that instructors are to discuss at the first or second class session.

O-5. Limitations on Class Size.

O-5-a. Limitations on class size must have prior approval by the dean of the college in which the course is offered. If it becomes necessary to limit the size of a class on a continuing basis (more than two semesters), the limitations must be approved through faculty channels—University Curriculum Committee and university faculty—and be made part of the catalog description of the course.
College of Agricultural and Life Sciences

John E. Hammel, Dean (53 Idings Wing, Ag. Sc. Bldg.; 208/885-6681); Charlotte Eberlein, Dean and Director of the University of Idaho Extension; Greg Bohach, Associate Dean and Director of the Idaho Agricultural Experiment Station; John Foltz, Interim Associate Dean and Director of Academic Programs; Robert J. Haggerty, Director of International Programs.

The College of Agricultural and Life Sciences provides quality programs in agricultural, food, family and consumer sciences, and related areas to all of Idaho. In addition to academic programs, the college also advances knowledge in these areas by research conducted through the Idaho Agricultural Experiment Station and provides information transfer and application of new knowledge to the state and the nation through the Cooperative Extension System. The college also actively participates in international development and student and faculty exchange programs around the world. The College of Agriculture was established in 1901 and was renamed to the College of Agricultural and Life Sciences in 2001. The Margaret Ritchie School of Family and Consumer Sciences became part of the college in 1983.

Advantages

The College of Agricultural and Life Sciences offers a quality education in a professional and friendly atmosphere. Each student has a faculty advisor who is readily available to assist in academic and career planning. There is also a peer advising program to help first-time students become acquainted with the college and the university. Undergraduate students often have the opportunity to experience their major by working on research projects and internships directed by faculty members. The college also offers leadership opportunities through 25 departmental and college student organizations.

Faculty

The faculty are the key to quality education. In the College of Agricultural and Life Sciences, there is a low student/teacher ratio and most classes are taught by faculty members. They bring to their students a strong commitment to teaching and a richness of depth, experience, and research.

Units

The College of Agricultural and Life Sciences offers 21 majors through 8 academic units. The units are Agricultural Economics and Rural Sociology; Agricultural and Extension Education; Animal and Veterinary Science; Biological and Agricultural Engineering; Family and Consumer Sciences; Food Science and Toxicology; Microbiology, Molecular Biology and Biochemistry; and Plant, Soil and Entomological Sciences.

Facilities of the College

The College of Agricultural and Life Sciences is housed in five buildings on campus and in many other facilities around the state. Some of the unique facilities include a child development laboratory, student computer laboratories, a state-of-the-art biotechnology research laboratory, an agricultural engineering laboratory, a food science and toxicology research center, and research farms of more than 2,500 acres for beef, dairy, sheep, plant science, and other programs. In addition to facilities at Moscow, there are offices in 42 counties and research and extension centers at 10 locations throughout Idaho.

Agricultural Experiment Station

The Idaho Agricultural Experiment Station was established in 1892 as the research function of the College of Agricultural and Life Sciences and has the responsibility to conduct applied and basic investigations leading to problem solving and new knowledge for agricultural industries, rural communities, and family living. The Idaho Agricultural Experiment Station is coordinated with and provides research for teaching and extension to more effectively meet the needs of Idaho citizens.

The Idaho Agricultural Experiment Station is integrated into all departments of the college. Thus, most of the college’s teaching faculty also have partial research appointments in the experiment station. Other faculty members have combined extension and research appointments and some are assigned to full-time research.

The Idaho agricultural research program is statewide. Research is conducted in a number of areas related to agriculture and on all major agricultural commodities. The center for the research program is located on the Moscow campus. In addition, there are 10 research and extension centers in strategic agricultural areas around the state where resident research and extension personnel are located.

The Idaho Agricultural Experiment Station shares the responsibility of developing and educating future scientists through undergraduate research and graduate assistantship programs. Currently, there are approximately 177 graduate students enrolled in the College of Agricultural and Life Sciences, most are on assistantships or stipends. These appointments are generally for two years at the Master of Science level and for three years in Ph.D. programs, during which time the students conduct research as a part of their graduate education.

University of Idaho Extension

The Cooperative Extension System was established by the Smith-Lever Act, signed May 8, 1914, to help extend research to the people of the United States in order to improve their farms, families, and communities. The Idaho legislature approved the Cooperative Extension concept in 1915. In 1917, additional state legislation brought the county boards of commissioners into the cooperative three-way federal, state, and county partnership.

The Extension System is an integral part of the University of Idaho and the College of Agricultural and Life Sciences and is administratively coordinated with the teaching and research functions of the college. The extension function is organized to extend the knowledge created through research to the people of the state of Idaho so that they can apply the findings to their particular situations, thereby solving their problems and improving their quality of life.

The headquarters of the University of Idaho Extension is in Moscow. District offices are located at Coeur d’Alene, Boise, Twin Falls, and Idaho Falls. The state is the campus for University of Idaho Extension.

Educators live and work in the areas to which they are assigned by mutual agreement of the university and the counties involved. Agricultural, family and consumer sciences, and youth educators are located in 42 of Idaho’s 44 counties and are also involved in multi-county programming.

Backstopping the county faculty are state Extension specialists located at Idaho Falls, Parma, Caldwell, Aberdeen, Coeur d’Alene, Boise, Sandpoint, Soda Springs, Twin Falls, Moscow, and Kimberly. These specialists, in turn, keep up to date by cooperating with research scientists of the College of Agricultural and Life Sciences and the U.S. Department of Agriculture.

Extension educational programs are conducted in five broad areas. These are: (1) Competitive Agriculture, (2) Natural Resources and the Environment, (3) Youth and Families, (4) Health, Food Safety and Quality, and (5) Community Development. Programs are both disciplinary and interdisciplinary and are designed to address the issues facing Idahoans. Major programming issues include water quality, 4-H, youth at risk, waste management, food quality, nutrition, and agricultural sustainability.

The University of Idaho Extension helps people improve the social, economic, and environmental qualities of their lives through research-based education and leadership development focused on issues and needs. To accomplish this mission, the University of Idaho Extension works under the basic philosophy that programs planned with people will achieve greater success than programs planned for them. Extension takes the resources and research of the land-grant university out into the state so that Idaho’s citizens can benefit from their university.

Degrees and Curricula Offered

Students in the College of Agricultural and Life Sciences are encouraged to pursue a broad education. In each curriculum, minimum requirements are specified in agriculture, life or family and consumer
Undergraduate. Baccalaureate degrees and major curricula offered by the College of Agricultural and Life Sciences include Bachelor of Science degrees in Agricultural Education; Agricultural Economics (with majors in agricultural economics and agribusiness, Agricultural Science and Technology; Agricultural Systems Management (with options in agricultural information systems, water and waste management systems, agricultural production management, and agricultural machinery systems); Animal Science (with options in production, business, and dairy science); Entomology; Family and Consumer Sciences (with majors in child, family, and consumer studies; clothing, textiles, and design; and food and nutrition); Food Science (with emphases in processing, business, science, and nutrition); Medical Technology; Microbiology; Molecular Biology and Biochemistry; Plant Science (with a major in horticultural and crop sciences with options in crop management, horticultural plant production, plant protection, and urban landscape and turf management); Range Livestock Management; Veterinary Science; and Soil and Land Resources. Baccalaureate degrees in Agricultural Engineering and Biological Systems Engineering are offered through the College of Engineering. See the departmental sections below for the programs of study leading to these degrees.

Graduate. Graduate study leading to the degree of Master of Science is offered in Agricultural Economics; Agricultural Education; Animal Science; Entomology; Family and Consumer Sciences; Food Science; Microbiology; Molecular Biology and Biochemistry; Plant Science; Soil and Land Resources; and Veterinary Science. Graduate study leading to the degree of Doctor of Philosophy is offered in Animal Physiology; Entomology; Food Science, Microbiology, Molecular Biology and Biochemistry; Plant Science; and Soil and Land Resources. Both M.S. and Ph.D. programs in Agricultural Engineering are offered through the College of Engineering. Students must fulfill the requirements of the College of Graduate Studies and the units in which they study.

General Requirements for Graduation

University Requirements. See regulation J in Part 3 for requirements that all students in the university must meet.

College Requirements. See Part 5 for specific degree requirements within each department.

Major Curricula

The specific requirements for the undergraduate majors are listed in Part 5. Each student is assigned an advisor who assists in the planning of his or her program; however, the student has the final responsibility for the completion of all university, college, and departmental requirements.

College of Business and Economics

Byron J. Dangerfield, Dean; J. A. Albertson, Bldg.; 208/885-6478; John S. Morris, Associate Dean; Dana Wekerle, Administrative Coordinator; Cheryl A. Wallace, Secretary of the College Faculty.

The college was established as a professional division of the university in 1925. Long known as the College of Business Administration, it became the College of Business and Economics (CBE) in 1969. Its principal objective is to provide a sound background in the basic business principles that will help graduates as they advance into positions of responsibility. As part of a state-supported land grant university, the CBE also aims to give its students an appreciation of the social importance and responsibilities of businessmen and businesswomen, and both the values and the knowledge to discharge those responsibilities. The college’s mission is to deliver undergraduate and selected graduate and professional programs that prepare individuals to excel in a competitive marketplace. Its goals and objectives are to: (1) be the residential institution of choice for undergraduate management education in the Northwest, (2) seek continuous improvement in the quality of programs and teaching, (3) nurture a faculty engaged in scholarship and publication, having a primary focus on relevant applied research, (4) attract, maintain, and nurture outstanding faculty, staff, and students, (5) improve our university, the state of Idaho, the Northwest region, and our professions through service, and (6) enhance program quality by involving interested constituencies including students, alumni, and businesses.

Through the Center for Business Development and Entrepreneurship, the college contributes to business development and the advancement of knowledge about our state’s economy and its business activities. The center conducts management development programs for business and governmental organizations and funded research projects that involve CBE and other UI faculty members and students in solving practical problems in Idaho and the Northwest.

International Business Programs. There are various programs by which a UI student can pursue international business. The following programs are available in connection with a B.S.Bus. degree: a major or minor in a foreign language; a major or minor in international studies; a major or minor in political science. For students seeking a B.S.Bus. degree, a minor is offered in international business (see Department of Business below). In addition, a student may have a dual major in business and foreign languages or major in foreign languages (B.A.) with a business option. A third option is the international studies program (B.A.), which may be selected by itself or as a dual major with business. Contact the Dean’s Office in the College of Business and Economics for further information on international business programs.

Curricula and Degrees Offered

Undergraduate. The degree of Bachelor of Science in Business is offered with seven majors through two departments, as follows: Department of Accounting (accounting); Department of Business (business economics, finance, management and human resources, information systems, marketing, and production/operations management).

Specific requirements for each major are described in Part 5, “Departments of Instruction,” under the appropriate department. The program of study includes three principal components: the general university requirements, the business and economics core, and the requirements for the selected CBE major field. Detailed statements of college requirements are under “General Requirements for Graduation.”

Graduate. The CBE, through the College of Graduate Studies, offers the degrees of Master of Accountancy (M.Acct.) in accounting and the Master of Science (M.S.) in economics. The M.Acct. degree qualifies students to enter the public accounting profession in auditing, tax, or other positions ultimately requiring a Certified Public Accountant (CPA) license. The M.S. in economics provides students with a firm background in theory, and then emphasizes training in policy analysis and applied studies.

Graduate students must fulfill the requirements of the College of Graduate Studies and the department in which they study.

Standing of the College

Fully accredited by The Association to Advance Collegiate Schools of Business, and the Northwest Association of Schools and Colleges (AACSB International), the College of Business and Economics keeps pace of developments in business through membership in various professional organizations and by consultation with Idaho business leaders, particularly through the CBE Advisory Board. The quality of the program has been recognized by Idaho leaders through the awarding of the Idaho Quality Award. In addition, the outstanding achievements of CBE graduates in business and government, and in professional certification examinations, such as the CPA exam, also attest to the quality of the programs.
General Requirements for Graduation

University Requirements. See regulation J-3 in Part 3 for requirements that all students in the university must meet.

College Requirements. Before proceeding to upper-division work, students registered in the College of Business and Economics must: (1) complete at least 58 semester credit hours with a minimum cumulative grade-point average of 2.00, and (2) pass each of the following predictor courses and earn at least a 2.35 grade-point average in Econ 272 Foundations of Economic Analysis or Econ 201-202 Principles of Economics; Acct 205 Fundamentals of Accounting or Acct 201-202 Introduction to Financial Accounting and Introduction to Managerial Accounting; BLaw 265 Legal Environment of Business; and Stat 271 Statistical Inference and Decision Analysis, or Stat 251 Statistical Methods. Students who enroll in Stat 251 must also complete Stat 262 Decision Analysis, before or during their first semester of upper-division CBE course work; however, the grade received in Stat 262 is not included in the minimum 2.35 grade-point average requirement.

Undergraduate students enrolled as majors in the College of Business and Economics may not take any course required for the major on a pass/fail basis, with the exception of those courses offered only on a P/F basis.

Courses completed at a two-year college for transfer into the CBE core or major must be validated before they will be accepted for upper-division course requirements. Validation procedures are established by the faculty members of the CBE department offering these courses. Validation techniques include a proficiency examination, CLEP testing, or successful completion of an additional advanced course in the given field.

Before enrolling in upper division College of Business and Economics courses, a CBE student must apply and be accepted into the college’s junior or senior level curriculum.

Candidates for the B.S.Bus. degree must be accepted officially as majors in the College of Business and Economics for at least their last two semesters before graduation, excluding summer sessions, and complete at least the last 24 credit hours applicable toward their degree during this period.

At least 27 upper division College of Business and Economics credits applied to a B.S. Bus. Degree must be earned in residence on the University of Idaho campus.

All majors require the completion of at least 128 credit hours. The required program of study includes: (1) 34 credit hours in the business and economics core, and (2) the major-specific required credit hours in the selected CBE major field. Additional undesignated electives are included in the 128 required credit hours.

A. UNIVERSITY/CBE GENERAL CORE REQUIREMENTS:

Communication:
Comm 101 Fundamentals of Public Speaking (2 cr)
Engl 101 Introduction to College Writing (3 cr)
Engl 102 College Writing and Rhetoric (3 cr)
Engl 207 Persuasive Writing or Engl 208 Personal and Exploratory Writing or Engl 209 Inquiry-Based Writing or Engl 313 Business Writing or Engl 317 Technical Writing (3 cr)

Mathematics:
At least two courses in mathematics numbered 130 or higher including at least one course in calculus (7-8 cr)
Stat 271 Statistical Inference & Decision Analysis; or Stat 251 Statistical Methods and Stat 262 Decision Analysis (4 cr)

Social Sciences:
Econ 272 Principles of Econ Analysis or Econ 201, 202 Principles of Econ (4-6 cr)
Social science elective** (3 cr)

Humanities:
Phil 103 Ethics (3 cr)
Humanities elective** (3 cr)

Literature elective (3 cr)

Natural and Applied Sciences:
Natural and applied sciences electives** (8 cr)

Other courses:
Acct 205 Fundamentals of Accounting or Acct 201-202 Intro to Financial Acct and Managerial Accounting (4-6 cr)
Bus 100 The Business Profession (1 cr)
BLaw 265 Legal Environment of Business (3 cr)
Nonbusiness electives (8-10 cr)

* Students selecting Econ 272 must take one additional UI core course in humanities or social science.

** To be chosen from courses that will satisfy regulation J-3.

B. CBE COMMON PROGRAM REQUIREMENTS:

Acct 310 Accounting for Business Decisions I (2 cr)
Acct 311 Accounting for Business Decisions II (2 cr)
Bus 340 Team Building and Group Dynamics (2 cr)
Bus 341 Business Systems (4 cr)
Bus 342 Product and Process Planning (3 cr)
Bus 343 Planning and Decision-Making in Organizations (2 cr)
Bus 344 Managing the Firm’s Resources (3 cr)
Bus 345 Business Operating Decisions (3 cr)
Bus 490 Strategic Management (3 cr)
Econ 340 Managerial Economics (2 cr)
Upper-division economics electives (3 cr)

C. REQUIREMENTS IN MAJOR (major-specific required credits).

D. ELECTIVES. Chosen in consultation with the student’s advisor.

Undeclared Status

A student may enter CBE as a freshman in an undeclared status. Because the first two years are nearly equivalent programs in all CBE majors, he or she may remain in the undeclared status until reaching junior level (completion of 58 credits). At that time, a major in the college should be selected. The undeclared status allows a student time to become acquainted with the majors within the college and to solidify career objectives before choosing a major.

College of Education

Jeanne S. Christiansen, Dean (301 Educ. Bldg.; 208/885-6772); Jerry L. Tuchscherer, Associate Dean.

The College of Education was organized as an independent unit of the university in 1920. It is the principal teacher-education unit and consists of the Division of Adult, Counselor, and Technology Education, Division of Health, Physical Education, Recreation and Dance, and the Division of Teaching, Learning, and Leadership. Undergraduate programs leading to degrees in teaching fields are offered in elementary education, industrial technology education, physical education, school and community health education, secondary education, special education, and professional-technical education (teacher training). Programs leading to non-teaching degrees include: athletic training, dance, industrial technology, office administration, physical education, recreation, and sport science.

The education of professional personnel for the public schools constitutes a critical service to the state and its people and to the education profession. The college screens for admission to programs leading to educational service to assure that they are qualified by preparation and personal attributes for this important work. Once admitted, the student completes a program in which competence in a broad, general education, the professional functions of the teacher, and the subjects and/or skills to be taught are demonstrated and applied in P-12 schools.

Besides preparing personnel for the schools, the college provides educational leadership for the people of Idaho, to the state’s education system, and to the teaching profession through consultation, participation in organizational activities, and research. Preparation is provided in all of the major areas of professional education.
Accreditation and Program Approval

The College of Education is fully accredited by the National Council for the Accreditation of Teacher Education and its school preparation programs are approved by the State Board of Education. The programs of study in education are planned to meet certification requirements in Idaho, those of most other states, and the requirements of the various accrediting agencies, such as the Northwest Commission of Colleges and Universities.

Admission Requirements

Admission to the University. For a statement of general undergraduate and graduate admission requirements, see Part 2 of this catalog.

Transfer Students. Students who have attended college, whether at another institution or in another division of the university, before matriculation in the College of Education, must have a grade-point average of 2.00 (C) or better.

Degrees and Programs Offered

Undergraduate. Baccalaureate degrees offered in the College of Education include the Bachelor of Science in Education, Bachelor of Science in Dance, Bachelor of Science in Office Administration, Bachelor of Science in Physical Education, Bachelor of Science in Recreation, and Bachelor of Science in Technology. See Part 5 for the programs of studies leading to these degrees.

Graduate. The College of Graduate Studies offers work toward advanced degrees in several disciplines of the college. Students must fulfill the requirements of the Graduate College and of the division in which they intend to study. Consult the College of Graduate Studies section of Part 4 for further information.

Upon the completion of the appropriate programs of study, the following degrees are conferred: Master of Science, Master of Education, Education Specialist in Adult Education, Education Specialist in Counseling and Human Services, Education Specialist in Education, Education Specialist in Educational Leadership, Education Specialist in School Psychology, Education Specialist in Special Education, Education Specialist in Professional-Technical Education, Doctor of Education, and Doctor of Philosophy.

Studies at the master’s level are offered in adult education, counseling and human services, curriculum and instruction, educational leadership, educational technology, industrial technology education, physical education, recreation, special education, and professional-technical education.

Doctoral candidates majoring in education may concentrate in adult education, counseling and human services, education, educational leadership, elementary education, higher education, physical education, secondary education, special education, or professional-technical education.

Teacher Education Programs

At the University of Idaho, the preparation of teachers is a cooperative enterprise between the College of Education and other colleges. Coordination is achieved through the Teacher Education Coordinating Committee. The screening of all applicants for admission to Teacher Education Programs is the responsibility of the College of Education, and the dean of the College of Education is the recommending authority for certification.

Students preparing for a career in secondary teaching have the option of completing their bachelor’s degrees in the College of Education (except for agricultural education, family life education, and music education) or in the department of their subject major.

Secondary teacher education students have an advisor from the College of Education who is the primary advisor on teacher education requirements, and an advisor from the academic discipline. When a student identifies teacher education as his or her objective (this could be as early as the freshman year and certainly no later than admission to Teacher Education Programs), the education advisor is designated.

Entry into teacher education programs is a multiple step process. Prospective teacher education candidates work closely with academic advisors to assure that they meet the criteria for each step in the process.

Admission to, Continuation in, and Exit from Teacher Education Programs. Prospective teacher education candidates work closely with academic advisors to assure that they meet the criteria for each step in the admission and continuation process.

Admission to Teacher Education Programs. Upon completion of the first semester of the sophomore year and a minimum of 36 credits, all students who plan to enter teacher education programs must make application for admission to the program. Criteria for admission to teacher education programs include: 1) completion of 100 hours of experience working with children and/or youth (form available from advisor); 2) recommendation of the ED 201 Diverse Learners in Schools and Social/Cultural Context course team based on an evaluation of basic skill use, course performance, and characteristics for teaching; 3) demonstrated competence in computer technology; 4) cumulative grade point average of 2.75 or better with a minimum of 36 credits; and 5) signature of authorized advisor. The approval of the College Admission, Petition, and Retention Committee is required for admission to teacher education programs.

Continuation in Teacher Education Program. Students seeking to continue in teacher education programs must have the recommendation of the ED 301 course team based on an evaluation of basic skill use, course knowledge, and characteristics for teaching.

Eligibility for Internship Year. Prospective teachers seeking to enter the internship year must meet the following criteria: (1) cumulative grade-point average of 2.75 or higher, (2) recommendation of the ED 302 course team based on an evaluation of standards and dispositions for teaching, (3) completion of background check, (4) completion of content test(s), (5) completion of the Idaho Technology Performance Assessment, and (6) recommendation of program faculty.

Exit from Program. Prospective teachers seeking a recommendation for a teaching credential must meet the following criteria: (1) cumulative grade-point average of 2.75 or higher, (2) completion of an exit interview at the conclusion of the internship year, and (3) recommendation from internship team.

The College of Education does not permit students enrolled in any student teaching or internship course to concurrently function as head coach in any school sponsored sport at any grade level, whether paid or voluntary. Students who desire to function as assistant coaches must have written approval of the division chair and the director of clinical experiences (adopted 1996).

Graduate Practicum and Internship in School Positions

Admission. Admission to practicum and internship courses is conditioned upon acceptance in a graduate program and approval of the major professor and/or student’s committee.

The Program. Graduate students are provided clinical experience in the study of teaching and learning and in the performance of other school positions through graduate practicum and internships (see courses 597 and 598 in the various subject fields in the college).

Teacher Certification

Students who complete Teacher Education Programs at the university are eligible to receive the Idaho Elementary School Certificate, the Secondary School Certificate, the Exceptional Child Certificate, or the Professional-Technical Certificate. Students who complete the certification program in school counseling or school psychology qualify for the Idaho Pupil Personnel Services Certificate. Students completing a master’s degree, specialist degree, or doctorate in educational administration may qualify for an administrator’s certificate. The College of Education reserves recommendations for initial teacher certification to students who have completed the approved teacher preparation program and hold a
bachelor’s degree. The student initiates the certification process through the dean’s office in the College of Education.

Certification-Only for Elementary, Secondary, and Special Education

Elementary Education Certification. Students who are seeking certification as an elementary teacher satisfy the requirements for the Idaho Elementary School Certificate, endorsed grades K-8, by meeting the general education requirements outlined by the state, completing the professional education core, and by completing the elementary major and professional year.

Secondary School Teaching Certification. Students who are seeking certification while enrolled in an academic major or after completion of a degree normally satisfy the requirements for the Idaho Secondary School Certificate by including Psyc 101 Intro to Psychology or Psyc 305 Developmental Psychology, and the professional education core as electives in their program for the baccalaureate degree, and by completing one of the following options: (1) one 45-credit teaching major; or (2) one 30-credit teaching major and one 20-credit teaching minor, and the professional year.

Special Education Certification. Students who are seeking certification as a special education teacher satisfy the requirements for the Idaho Exceptional Child Certificate, endorsed grades K-12, by meeting the general education requirements outlined by the state, completing the professional education core, completing the special education major, and by meeting the requirements for the elementary or secondary education major, and the professional year.

Certification Checklists. Checklists for the elementary, secondary, and special education certification programs are available through the Division of Adult, Counselor, and Technology Education, the Division of Health, Physical Education, Recreation, and Dance, and the Division of Teaching, Learning and Leadership. See the Academic Majors list in this section to locate the appropriate division.

Application for Certification. See procedures listed under Teacher Certification in this section.

General Requirements for Graduation

University Requirements. See regulation J in Part 3 for requirements that all students in the university must meet. When appropriate, courses listed in J-3 may satisfy both the university requirements and the college requirements.

College Requirements. All candidates for a baccalaureate degree in the College of Education must complete 128 semester credits, of which at least 36 must be in upper-division courses. (In Part 5, see the Division of Health, Physical Education, Recreation and Dance, and the Division of Teaching, Learning and Leadership. See the Academic Majors list in this section to locate the appropriate division.)

Elementary and Secondary Teaching Common Requirements:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idaho Technology Competency Certification</td>
<td>Literacy methods course (EDTE 320 Foundations of Literacy Development or EDTE 463 Literacy Methods for Content Learning (3-4 cr)</td>
</tr>
<tr>
<td>Professional Education Core Requirements:</td>
<td>ED 201 Diverse Learners in Schools & Social/Cultural Contexts (3 cr)</td>
</tr>
<tr>
<td></td>
<td>ED 301 Principles of Learning & Development in Education (3 cr)</td>
</tr>
<tr>
<td></td>
<td>ED 302 Curriculum, Instruction, & Assessment Strategies (3 cr)</td>
</tr>
<tr>
<td></td>
<td>ED 401 Professional Role Development (3 cr) Internship (14-28 cr)</td>
</tr>
</tbody>
</table>

General Studies Requirements for Elementary School Teaching:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications (8 cr)</td>
<td>including essay writing, Engl 102 (3 cr); advanced composition, Engl 207, 208, 209, 291, 292, 309, 313, 317 or 401 (3 cr); and speech, Comm 101 (2 cr)</td>
</tr>
<tr>
<td>Humanities (7 cr)</td>
<td>including literature (3 cr); art (non-methods course) (2 cr); and music (2 cr) (non-methods course)</td>
</tr>
<tr>
<td>English (3 cr)</td>
<td>English composition (excluding Engl 101) or literature</td>
</tr>
<tr>
<td>Developmental Psychology (3 cr)</td>
<td>Psyc 305</td>
</tr>
<tr>
<td>Social Science (12 cr)</td>
<td>including Hist 101 or 102 (3 cr); Hist 111 or 112 (3 cr); and 6 other credits from social sciences (other than psychology)</td>
</tr>
<tr>
<td>Science (12 cr)</td>
<td>including Intr 103 (4 cr); and 4 credits each from the areas of (a) life sciences, and (b) earth sciences or physical sciences</td>
</tr>
<tr>
<td>Mathematics (9 cr)</td>
<td>including Math 143 (3 cr), Math 235 & 236 (6 cr)</td>
</tr>
</tbody>
</table>

General Studies Requirements for Secondary School Teaching:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications (8 cr)</td>
<td>including essay writing, Engl 102 (3 cr); advanced composition, Engl 207, 208, 209, 291, 292, 309, 313, 317 or 401 (3 cr); and speech, Comm 101 (2 cr)</td>
</tr>
<tr>
<td>Psychology (3 cr)</td>
<td>Psyc 101 or Psyc 305</td>
</tr>
<tr>
<td>Mathematics (3 cr)</td>
<td>A university core mathematics or statistics course</td>
</tr>
</tbody>
</table>

Major Curricula

Students in the College of Education must complete a major curriculum that leads to a degree granted by the college (B.S.Dan., B.S.Ed., B.S.Bus.Ed., B.S.P.E., B.S.Rec., B.S.Tech., or B.S.O.Ad.). These major curricula (with the degree goal identified) are listed in Part 5.

Careful distinction should be made between a student’s “academic major” and any additional “teaching majors” or “teaching minors” leading to certification.

Academic Majors Leading to Teacher Certification

Ag Education (B.S.Ag.Ed.) – Department of Agricultural and Extension Education
Art Education (B.S.Art.Ed.) – Department of Art and Design
Elementary Education (B.S.Ed.) – Division of Teaching, Learning and Leadership
Family and Consumer Science Education (B.S.F.C.S.) – Margaret Ritchie School of Family and Consumer Science
Music Education (B.Mus.) – Lionel Hampton School of Music
Physical Education (B.S.Ed.) – Division of Health, Physical Education, Recreation and Dance
Professional-Technical and Technology Education (B.S.Ed.) - Division of Adult, Counselor and Technology Education
School and Community Health Education (B.S.Ed.) – Division of Health, Physical Education, Recreation and Dance
Secondary Education (B.S.Ed.) – Division of Teaching, Learning and Leadership (see list below)
Special Education (B.S.Ed.) – Division of Teaching, Learning and Leadership

Teaching Majors and Minors in the B.S.Ed. Secondary Education Program

45-CREDIT TEACHING MAJORS

<table>
<thead>
<tr>
<th>Subject</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art</td>
<td>Physical Science-Life Science (60 cr)</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>Physical Sciences</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Physics</td>
</tr>
<tr>
<td>Earth Science</td>
<td>Social Science</td>
</tr>
<tr>
<td>English</td>
<td>Social Science Through American Studies (45 or 60 cr)</td>
</tr>
<tr>
<td>French</td>
<td>Spanish</td>
</tr>
<tr>
<td>German</td>
<td>Theatre Arts</td>
</tr>
<tr>
<td>History</td>
<td>Theatre Arts-Speech</td>
</tr>
<tr>
<td>Latin</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
</tr>
</tbody>
</table>
30-CREDIT TEACHING MAJORS

- English
- Geography
- History Through American Studies
- Journalism
- Mathematics
- Political Science
- Psychology
- Speech

20-CREDIT TEACHING MINORS

- Art
- Biological Sciences
- Business Education
- Chemistry
- Computer Science
- Consumer Economics
- Dance
- Economics
- English
- English As a Second Language
- French
- Geography
- Geology
- German
- Health Education
- History
- Industrial Technology
- Journalism
- Latin
- Library Science
- Mathematics
- Music: Vocal
- Physical Education (Secondary)
- Physics
- Political Science
- Psychology
- Sociology/Anthropology
- Spanish
- Speech
- Theatre Arts

Centers and Institutes

Centers and institutes affiliated with the College of Education support the mission of the college and extend services to the state, region, and nation. Programs offered through the college are enriched and extended as a result of these initiatives. Historically, the College of Education established the Center for Educational Research and Public Service (CERPS) to conduct research, to facilitate research by College of Education faculty members and graduate students, and to be of assistance to local school districts and other educational units. More recently, additional centers and institutes have been established. They are listed below; additional information about them can be accessed at the college website:

- Center for Disabilities and Human Development
- Center for Economic Education
- Center for ETHICS
- Idaho Teaching Resource Center for Professional Technical Education
- Institute for Mathematics, Instructional Technology, and Science Education
- TRIO Programs
- University Wellness Program

The College of Engineering

Charles Peterson, Interim Dean (125 Janssen Engr. Bldg.; 208/885-6479); Howard S. Peavy, Associate Dean, Academic and Student Affairs; Steven G. Penoncello, Associate Dean, Research and Graduate Programs; Barry Willis, Associate Dean, Outreach, Jean Teasdale, Director of Administrative Services.

The mission of the college is to: (1) prepare students for professional practice, admission to advanced degree programs, leadership in the profession, and lifelong learning; (2) to promote the discovery, development, and dissemination of knowledge through excellence in research; and, (3) to contribute to the economic development of the state, region, and nation. To this end, the college provides statewide access to high quality educational programs leading to baccalaureate and advanced degrees in engineering and computer science as described below.

The Engineering Profession

Members of the engineering profession use their knowledge of mathematics and the sciences to create useful and economic devices, structures, and systems for the benefit of the earth and its inhabitants. The engineer’s talents are used in many ways: design, construction, and operation of public works and utilities systems; planning, construction, and operation of industrial processes and equipment; application of technical products; and creation of devices and systems needed for the support of all human activity, such as food production, transportation, communication, and the enhancement of the environment. Many engineers hold responsible managerial positions; others are key members of the interdisciplinary teams that solve the complex technical, economic, and social problems of the world.

The engineering profession recognizes that social, economic, political, and cultural, as well as technical considerations are involved in most of the works in which the modern engineer is engaged. A part of an engineer’s education is devoted to the humanities and the social sciences to help relate the technical preparation received to the world today, and to enhance the engineer’s role as an educated, responsible citizen.

To qualify as an engineer, one usually undertakes a four-year college program leading to a Bachelor of Science (B.S.) degree in one of the major branches of engineering practice. Bachelor of Science graduates may either go directly into engineering employment or proceed to graduate study to pursue a given area of interest in depth. As the technology of engineering includes a wide range of subject matter that can be explored only to a limited extent in an undergraduate program, more and more students undertake graduate study for better preparation in a specific field before seeking employment as practicing engineers.

All states require that engineers engaged in work affecting public health and welfare be licensed or registered. This requires a qualifying examination in fundamentals of engineering, usually taken during the last year of undergraduate study, and a period of practical experience followed by a second qualifying examination in the practice of engineering. Many industries, while not legally required to use registered engineers, encourage registration as evidence of professional stature of their engineering employees.

The Computer Science Profession

Computer science is a discipline that involves the understanding and design of computers and computational processes. In its most general form it is concerned with the understanding of information transfer and transformation. Computer science is evolving rapidly and includes theoretical studies, experimental methods, and engineering design all in one discipline. In computer science there is an inherent intermingling of the theoretical concepts of computability and algorithmic efficiency with the modern practical advancements in electronics that continue to stimulate advances in the discipline. It is this close interaction of the theoretical and design aspects of the field that binds them together into a single discipline.

Because of the rapid evolution it is difficult to provide a complete list of computer science areas. Yet it is clear that some of the crucial areas are theory, algorithms and data structures, programming methodology and languages, and computer elements and architecture. Other areas include software engineering, artificial intelligence, computer networking and communication, database systems, parallel computation, distributed computation, computer-human interaction, computer graphics, operating systems, numerical and symbolic computation, and computer security.

A professional computer scientist must have a firm foundation in the crucial areas of the field and will most likely have an in-depth knowledge in one or more of the other areas of the discipline, depending on the person’s particular area of practice. Thus, a well-educated computer scientist should be able to apply the fundamental concepts and techniques of computation, algorithms, and computer design to a specific design problem. The work includes detailing of specifications, analysis of the problem, and provides a design that functions as desired, is reliable and maintainable, and meets desired cost criteria. Clearly, the computer scientist must not only have sufficient training in the computer science areas to be able to accomplish such tasks, but must also have a firm understanding in areas of mathematics and science, as well as a broad education in liberal studies to provide a basis for understanding the societal implications of the work being performed.

Equal Opportunity

The degree programs of the college and the professions they represent actively seek out women and under-represented minorities. Opportunities are unlimited and an increasing number are entering the professions.
Preparation and Admission
A statement of undergraduate and graduate admission requirements is included in Part 2. A student may be admitted with less than the requirements listed, but the deficiency must be made up before he or she can progress very far in a college engineering course of study.

Students who contemplate entering the College of Engineering with advanced standing from other institutions should complete as many of the freshman and sophomore requirements listed in the curricula as possible. Calculus and the various introductory engineering courses are prerequisites to many advanced courses, and their omission may delay graduation.

Students from out-of-state institutions who wish to transfer to a degree program offered by the College of Engineering are invited to apply. Those whose cumulative GPA is below 2.8 for all previous college-level courses, including any courses taken at UI, may be admitted on approval of the College of Engineering Admissions Committee.

Admission to Classes
As a prerequisite to any upper-division course normally taken in the junior or senior year and offered by the College of Engineering, students in the College of Engineering must have completed selected courses from the required courses in chemistry, computer science, engineering, mathematics, and physics that are normally to be taken by them during their first two years, and must have attained a grade of C or better in each of those courses.

Scholarships and Awards
Many scholarships and awards are available to College of Engineering students and prospective students. See "Student Financial Aid Services" in the student service section of Part 2.

Courses of Study and Degrees
The College of Engineering includes the degree-granting Departments of Biological and Agricultural Engineering, Chemical Engineering, Civil Engineering, Electrical and Computer Engineering, Materials and Metallurgical Engineering, Mechanical Engineering, and the Department of Computer Science. Careful attention is given to curriculum content and educational philosophy to keep all programs attuned to rapidly changing technology.

Programs in the college lead to the Bachelor of Science in the following disciplines: Agricultural Engineering, Biological Systems Engineering, Chemical Engineering, Civil Engineering, Computer Engineering, Electrical Engineering, Geological Engineering, Material Science and Engineering, Metallurgical Engineering, Mechanical Engineering, and Computer Science.

All engineering B.S. degree programs are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (EAC/ABET). The Bachelor of Science program in computer science is accredited by the Computer Science Accreditation Commission of the Computer Science Accreditation Board (CSAC/CSAB). Minor programs are offered in several programs but are not accredited.

Most of the courses taken by freshmen and sophomores are the same in all curricula. The student may postpone a final decision on a branch of study for a year or more with little, if any, consequence, thus allowing ample opportunity for professional orientation. The junior and senior years are devoted to application of basic principles in the various fields of practice.

Courses of study leading to the degrees of Master of Science (M.S.), Master of Engineering (M.Engr.), and Doctor of Philosophy (Ph.D.) are offered in agricultural, chemical, civil, electrical and mechanical engineering. The M.S. and M.Engr. degrees are available in computer engineering, and the M.S. and Ph.D. degrees are available in computer science. Master of Science degrees are available in geological engineering, material science and engineering, and metallurgical engineering. The Ph.D degree is also available in Material Science and Engineering. The Master of Engineering in engineering management and in system engineering is available at the Idaho Falls Center and through Engineering Outreach. Through the UI Center at Idaho Falls, the M.S., M.Engr., and Ph.D. degrees are available in nuclear engineering.

Faculty
The faculty is the key to the quality of the engineering program. All faculty members in this college hold advanced engineering degrees and all but two hold the Ph.D. degree. Recognition in such publications as Who’s Who in America, Who’s Who in the West, Who’s Who in Engineering, and American Men and Women of Science is common.

A distinguishing feature of the faculty is a blend of academic and practical experience. Many faculty members have extensive experience in practice that they bring into the classroom, preserving a balance between theoretical and practical aspects of engineering.

Facilities
The facilities of the College of Engineering are among the finest in the country. Work is centered in the two-block-square engineering complex, which includes the Allen S. Janssen Engineering Classroom Building, the J. E. Buchanan and recently renovated Gauss–Johnson Engineering Laboratories, McClure Hall, and the Engineering/Physics Building. These facilities are supplemented by agricultural engineering laboratories at other locations on the campus. In total, more than 250,000 square feet of floor space is available for the special use of the College of Engineering. Laboratories include modern equipment for teaching and research in all areas of instruction with recent additions for computerized drafting, CAD/CAM, computerized VLSI design, and robotics. Some of the equipment is of advanced design found in only a few institutional laboratories. Students also have access to over 20 general purpose open-access computer laboratories across the campus, with over 600 computers. There are over 100 software applications available, as well as the web, email, and other network services. An assortment of Hewlett Packard minicomputers and engineering work stations, and various types of smaller computers are available within the engineering complex.

Standing and Advantages
With a tradition of excellence dating from the founding of the University of Idaho, the College of Engineering has developed engineering bachelor’s degree programs on the Moscow campus that are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology. For over 40 years, graduate programs in several disciplines have been available at off-campus sites as well. Since 1896, when it granted its first degrees, graduates of the college have spread throughout the world. The large number of firms and agencies from throughout the country that send interviewers to the campus each year seeking to hire Idaho engineering graduates attest to the reputation of the university’s engineering program.

The size of the college is near the median of engineering colleges in the country. While it is not so large that the importance of the student as an individual is lost; it is large enough to support the faculty and facilities needed for top quality education.

Attention is given to both undergraduate and graduate programs. New concepts and knowledge resulting from the graduate program feed into the undergraduate program to keep it up to date. Undergraduate students have an opportunity to observe and/or contribute effort to graduate projects to help them ascertain their interest in graduate work.

Engineering Experiment Station
The function of the Engineering Experiment Station is to encourage and coordinate the College of Engineering’s research and extension programs that are integral parts of the college’s academic and service efforts.

The research program in engineering is conducted by the regular faculty and students of the college. There is neither a separate research faculty nor a separate research staff. The College of Engineering requires that any research it undertakes have academic significance. A large part of the college’s research program deals with developing new knowledge that is applicable to Idaho’s economy or devising new methods or applications for using existing knowledge to the benefit of the state.
Most of the funds in support of research come from sources other than legislative appropriations. These funds are the result of research contracts and grants with various local, state, and federal agencies and private industry. Information regarding research capabilities is available upon request.

Believing that education is a never-ending need of mankind, the College of Engineering, through the means of short courses, workshops, seminars and forums, and pertinent publications, attempts to ascertain and meet the specific continuing education needs of Idaho’s graduate engineers, computer scientists, and the technical community. Staff members also endeavor to provide information to the entire population of Idaho that may contribute to the successful solving of societal problems.

Off-Campus Programs

To fulfill its charge to provide engineering education to the people of Idaho, the College of Engineering provides several degree programs off campus. Graduate degrees in all disciplines are available through the Resident Instructional Centers at Boise, Idaho Falls, and Coeur d’Alene, using a combination of resident faculty and web-supported DVD and video courses. The Engineering Outreach program uses a variety of technologies to provide graduate and advanced undergraduate course work, including some complete master’s degrees, at any location. For more information, see “Resident Instructional Centers” in Part 4.

General Requirements for Graduation

University Requirements. See regulation J in Part 3 for requirements that all students in the university must meet.

College Requirements. The minimum credit requirement for university curricula is 128 credits. Some engineering curricula require a higher number of credits (See individual curricula in Part 5).

Note: In calculating the credit total for each degree, the College of Engineering does not include credits that a student may have been required to earn in Engl 101, Math 143, and any courses taken to remove deficiencies.

Major Curricula

The curriculum for each major is listed in Part 5 by department. Each curriculum provides for electives to be arranged in consultation with the student’s advisor in accordance with the student’s interest and consistent with current department and college policies. The electives are intended to provide flexibility in the student’s program. Undesignated electives will usually be taken outside of the student’s major field of study.

College of Graduate Studies

Charles R. Hatch, Vice President for Research and Graduate Studies (104 Morrill Hall; 208/885-6243); Margrit von Braun, Associate Dean.

The College of Graduate Studies was formally organized in 1925 (then designated as the Graduate School), but the university has awarded advanced degrees since 1897. The Graduate College encompasses all divisions of the university, but does not supervise programs in the College of Law. This coverage of all regular disciplines and professional fields provides a wide variety of academic programs. Enrollments are large enough to make possible the vital interchange of ideas among students and between students and faculty that is necessary for graduate programs, and yet enrollments are sufficiently small to permit close faculty-student relationships. Interdepartmental cooperation is an important factor on the Idaho campus. The university is the chief research center for the state and as such operates active graduate programs in most areas providing a broad research base upon which graduate programs have been built.

Graduate Council

The Graduate Council is the representative body of and is empowered to act for the Graduate Faculty. It is responsible to and reports to the Graduate Faculty, which retains the authority to review actions of the council. Its function is to promote graduate instruction and research, to formulate policies and long-range plans for the graduate program, and to review and act on student appeals and petitions that involve exceptions to accepted regulations and procedures of the Graduate College.

The Graduate Council is constituted of one member elected by and from the constituent graduate faculty of each of the college-level divisions that offer programs leading to graduate degrees (except the J.D. degree), four members of the Graduate Faculty appointed by the president of the university, two graduate students, the vice president for research and graduate studies, who serves as chair, and the assistant or associate graduate dean, who serves as vice chair.

Undergraduate Enrollment in the College of Graduate Studies

A senior who has a cumulative grade-point average of 2.80 or higher may register for 500-level courses. Courses will automatically be recorded on the undergraduate transcript. However, seniors desiring to have courses placed on a graduate transcript must submit to and have approved by the Graduate College a “Course Level Adjustment Form” that specifies the courses to be placed on the graduate transcript, thereby allowing a student to gain graduate credit. Graduate students who are in their last year can thus begin limited graduate work, up to a total of nine credits, at an earlier date than would otherwise be possible. A “Course Level Adjustment Form” must be completed each semester that transcript separation is desired. Students who have courses placed on a graduate transcript and later wish to be admitted to the graduate college for work on a degree must apply for admission to the Graduate College following the usual procedures. The deadline for filing the “Course Level Adjustment Form” is the tenth day of class for that semester or session. All courses placed on the graduate transcript, regardless of course level, will be assessed graduate fees.

General Graduate Regulations

The regulations described in this section are the minimum standards established by the faculty of the College of Graduate Studies. Departments may establish additional regulations, including additional residence requirements, above the minimums set by the College of Graduate Studies. Departmental requirements are described in Part 4.

Each student working for a degree through the Graduate College will be advised by a major professor and a supervisory committee (committee is optional for non-thesis degrees except for interdisciplinary students). Unclassified students may request the associate dean of the College of Graduate Studies to appoint an advisor to provide guidance.

Student Responsibilities. The student is responsible for complying with all rules, procedures, and time limits, as established by the graduate faculty.

Petitions. Students and major professors are advised that the right of petition exists to waive or modify some university regulations. Academic petitions request waiver or modification of regulations in Part 3. Graduate petitions request waiver or modification of regulations in this section. However, favorable action can be expected only when circumstances and the presentation clearly justify an exception. Precedents are not set by previous actions and may not form the basis of a petition; rather the situation concerning the student involved is given consideration on an individual basis. A $10 fee is charged for each petition submitted to the Academic Petitions Committee or Graduate Council.

Registration and Enrollment Requirements. Graduate students engaged in ANY activity requiring faculty or staff time and consultation, or the use of any UI facilities, must register for the number of credits appropriate to the degree of activity involved during the semester of activity. Such activity includes, but is not limited to: writing, defending, or submitting a thesis or dissertation; working on a non-thesis requirement; or taking a preliminary examination.

Change of Major. A student is admitted for work in a specified major or program and may not change without approval of the new department. Such procedure is formalized by a Change of Curriculum form signed by the chair of the program the student is leaving and the chair of the
PART FOUR
College of Graduate Studies

Colleges and Related Units

department in which the student wishes to enroll. The form must be approved by the associate dean of the College of Graduate Studies before it is forwarded to the Registrar’s Office.

Academic Loads

Credit Requirements for Full-Time Students. A student is considered to be engaged in full-time study when registered for nine credits of course and/or thesis/dissertation work. (A student pays full-time fees when taking eight credits, but is nonetheless considered a part-time student.) See also specific credit guidelines under “Financial Aid.”

Regular Semester or Summer Session. The credit limit for a graduate student is 16 credits a semester or summer session (excluding courses taken for audit and including the credits for courses taken for the zero credit option).

Correspondence Courses. Credits earned in University of Idaho correspondence courses are applied to a graduate program only with the prior written approval of the associate dean of the College of Graduate Studies. Correspondence courses do not satisfy the residence requirements for final semester registration, and a limited amount of such work can be applied toward a degree. Subject to approval by the appropriate department(s) and/or college, correspondence credits from other institutions that are accepted for graduate credit by that institution may be accepted toward degree requirements. Grades earned in correspondence courses are not calculated into the student’s GPA.

Probation, Disqualification, and Reinstatement. A graduate student is placed on probation after any semester or summer session in which a grade-point average of less than 3.00 is earned in courses placed on the graduate transcript, regardless of the student’s cumulative GPA. The student will be disqualified if a GPA of less than 3.00 is earned on courses placed on the graduate transcript during the second, consecutive semester or summer session in which regular grades of A, B, C, D, or F are received. Students on academic probation who attain a semester grade point average of 3.00 or higher during the next or subsequent semester or summer session after being placed on probation, but whose cumulative grade point average is still below a 3.00, will remain on academic probation until the cumulative GPA is a 3.00 or higher. If a graduate student who is on probation receives an Incomplete during a semester, the revert grade listed for the Incomplete will be used to calculate the GPA for that semester. If the calculated semester GPA is 3.00 or higher, the student will be allowed to register for a current or future semester. If the calculated semester GPA is less than a 3.00 GPA, the student will not be allowed to register for current or future semesters or sessions. If the student has pernance registered pending receipt of the revert grade, the student will be disenrolled. Once the work is completed and a final grade is given, the GPA will be automatically recalculated. In all other cases, he or she may be reinstated as a graduate student under the following conditions: The student may not enroll as a graduate student for at least one regular semester (fall or spring), must get the positive recommendation of his or her departmental administrator, must get Graduate College permission, and must receive at least a 3.00 grade-point average the first semester back in the Graduate College. Reinstatement is granted for a specific semester only. If a student does not register for that semester, he or she must again seek Graduate College permission for reinstatement. A student will remain on probation as long as the cumulative GPA is below a 3.00.

Grade Requirements. A candidate for an advanced degree must have a cumulative GPA, based on his or her graduate record, of at least 3.00 (A = 4.00). The relevant GPA is calculated as stated in regulation E (Part 3) except that it is based only on grades received: in all courses taken at UI while the student was enrolled in the particular program (major) leading to the degree sought whether or not those courses are on the student’s study plan; in courses that were taken at UI before the student enrolled in his or her current program and have been included in that program by the student’s committee; and, in the case of candidates for the master’s degree, in UI courses 500 and 599 for an aggregate of not more than 10 credits or the department’s allowance of research credits, whichever is less. The lower grade (or F) received in these courses for credits in excess of this limitation are treated as if the courses were graded P or F. Though courses in which grades of D are received may not be counted toward the satisfaction of degree requirements, those grades are included in the GPA.

Deficiencies. Courses that are needed to provide background for the student’s program may be taken for zero credit and/or under the pass/fail option, unless the programs advise otherwise. Letter grades obtained in courses taken for zero credit will appear on the student’s transcript but, not calculated into the grade point average. See rules for the pass/fail option under regulation B-11 in Part 3. When deficiency courses are taken for regular credit the resulting grade will be included in the computation of the grade-point average.

Catalog Issue. The pertinent requirements for graduate degrees are those contained in the most recent UI catalog issue that was in effect at the time of, or subsequent to, the candidate’s admission into a specific program as a degree-seeking student. A catalog issue is valid for a maximum of seven years from its effective date. The effective date of a catalog issue is the first Monday following spring graduation.

General Requirements for Master’s Degrees

Credits. All master’s degree programs require a minimum of 30 credits. Some master’s degree programs may require more. Additional work may be stipulated in individual cases to meet particular objectives or need for additional background. Courses used toward an undergraduate degree, professional development courses, or courses on a professional development transcript are not available to be used toward a graduate degree. No more than three credits of workshop or workshop equivalent courses may be used toward the graduate degree. Credit in course 500 (Research and Thesis) cannot be counted toward the minimum of 30 credits for a non-thesis master’s degree. Although based on the number of credits that may be earned in course 500 (Master’s Research and Thesis) for degrees with thesis, only a maximum of 10 credits in course 500 can be used to fulfill master’s degree requirements (a lower limit may be set by the department). Up to five credits of course number 599 are allowed to count towards a non-thesis master’s degree; however, if a thesis program exists for a department, no more credits of 599 are allowed toward the non-thesis master’s degree than half the number of credits allowed for course number 500 toward the department’s master’s degree.

Transfer, Correspondence Study, Non-degree Credit, and Over-aged Credit Limitation. The combined total of transfer credits, correspondence credits, non-degree credits, and approved credits more than eight years old at the time the degree is awarded shall not exceed 12 credits for master’s programs requiring 36 or fewer credits, and shall not exceed one-third of the total credits in programs requiring more than 36 credits. The student’s department may set a lower limitation. Credits can be transferred to UI, with the consent of the student’s committee and the associate dean of the College of Graduate Studies, only if the institution from which the course credits are being transferred has a graduate program in the course’s discipline or, should there be no graduate program in the course’s discipline, if an exception has been granted by the associate dean of the College of Graduate Studies. All credits used toward graduate degrees must be from regionally accredited American institutions or from non-US institutions recognized by the appropriate authorities in their respective countries. Transfer credits are subject to all other Graduate College rules and regulations.

Procedures for Over-aged Credits. To be acceptable toward a master’s degree, over-aged credits beyond the limitation above must be approved by taking the final examination in the equivalent UI course (as determined by the departmental administrator of the area in which the course is offered) and receiving an A or B grade from the instructor of the course. The results of the examination are submitted to the Graduate College in writing by the departmental administrator of the department in which the course is offered.

Foreign Language. There is no Graduate College foreign language requirement for a master’s degree; however, some departments require a language examination or special course work.

Subsequent Graduate Degrees. An applicant who has a master’s degree or is working on a master’s degree may obtain a second master’s degree, subject to the approval of the assistant dean of the College of Graduate Studies. Up to six credits of course work used to satisfy the requirements for the first degree may be applied to the second; all other catalog requirements and credit requirements in UI courses must be fulfilled. A student who is enrolled in a doctoral program or who has
a doctorate may obtain a master’s degree in a different field and use a number of common credits subject to approval by the Graduate Council. A student who has a doctorate may not subsequently obtain a master’s degree in the same field.

Concurrent Graduate/Law Degrees. UI law courses used toward an approved UI concurrent graduate degree must be approved by the College of Graduate Studies and included in the graduate student’s study plan. Courses with grades and credits earned in these approved law courses will be posted to the student’s graduate academic record upon completion of the courses and receipt of the approved study plan in the UI Registrar’s Office. Grades and credits earned in these approved courses will be calculated into the student’s institutional graduate GPA for the appropriate level. See the Accounting and Environmental Science sections in Part 5 for additional information on concurrent degrees.

Specific Requirements for Master’s Degrees

Master of Architecture. The M.Arch. degree requires a design project. Refer to the Department of Architecture section in Part 5 of this catalog for a definition of specific admission and degree requirements. Of the minimum 30 credits required for the degree, 18 must be at the 500 level; the remainder may include 400 level courses in the major, and 300 or 400 level courses in supporting areas. All credits toward the degree must be earned in residence at UI or during internship and study abroad. A final design project must be accepted.

Master of Arts. In some fields, all candidates for the M.A. degree are required to present a thesis; in others the thesis is optional or not required. Consult the departmental section for specific descriptions. Of the minimum 30 credits required for the degree, at least 18 credits must be at the 500 level; the remainder may include 400 level courses in the major and 300 or 400 level courses in supporting areas. For the thesis student, a thesis is required. For the non-thesis student, a non-thesis requirement must be met.

Master of Arts in Teaching. The M.A.T. is primarily for certified teachers who wish to strengthen their subject-matter preparation. Enrollment in this program of study requires the consent of the chair of the subject-matter department. The major professor is from the subject-matter department; the co-advisor is from the College of Education. The general requirements of the Graduate College apply except that, of the minimum 30 credits required, only six must be in courses at the 500 level, at least six must be in courses offered by the College of Education at the 400/500 level, excluding workshops, and at least 20 must be in courses taken in the subject field. These courses must be at the 500 level, including 300 level courses in the major field if they are a part of the logical sequence of study. A non-thesis requirement in the subject field must be met.

Master of Education. To complete the M.Ed., a non-thesis degree program, the student must fulfill the program’s non-thesis requirement (NTR). Of the minimum 30 credits required, at least 18 must be in courses at the 500 level; the remainder may include 400 level courses in the major and 300 or 400 level courses in supporting areas.

Master of Engineering. The M.Engr. is a non-thesis degree. A minimum of 30 credits is required; at least 18 must be in courses at the 500 level and the remainder may include 400 level courses in the major and 300 or 400 level courses in supporting areas. A non-thesis requirement must be met. Majors are offered in agricultural, chemical, civil, computer, electrical, mechanical, and (at the University of Idaho Center, Idaho Falls, only) nuclear engineering. The prospective student should consult the specific department for special entrance requirements.

Master of Music. The M.Mus. degree, depending on the concentration selected, requires a thesis, public graduate recitals, or a final project. No credit is granted for the final project in a non-thesis degree plan and the project is subject to approval of the supervisory committee. Both written and oral non-thesis requirements must be met in all degree options. Of the minimum 30 credits required for the degree, at least 18 must be in courses in the School of Music at the 500 level; the remainder may include 400 level courses in the School of Music and 300 or 400 level courses in other areas.

Master of Natural Resources. The M.N.R. program is intended to provide broad-based, advanced training in natural resource management and administration. The M.N.R. degree requires 30 semester credits beyond the bachelor’s degree: 20 credits of core courses and 10 credits of restricted electives. Only course work at the 400 or 500 level counts toward the degree. At least 18 of the 30 credits must be at the 500 level. A comprehensive final examination is required.

Master of Natural Science. The M.Nat.Sc. is a non-thesis degree primarily for students who are currently engaged in, or planning to enter, secondary-school or junior-college teaching. Courses at the 300, 400, and 500 levels may be included. Of the minimum 30 credits required for the degree, 18 must be earned in one major field, or nine credits in each of two fields. The remaining credits are to be chosen so that the entire program is consistent and serviceable to the student. A major paper must be written in a major area of the program, and a written and/or oral non-thesis requirement is also part of the program. The student’s committee consists of at least three members: the major professor and a representative from the major area or areas, and a representative from outside the major area(s).

Master of Public Administration. The M.P.A. program includes thesis and non-thesis options. Of the minimum 30 credits required for the degree, at least 18 must be in courses selected from prescribed core areas and 12 in designated optional areas of emphasis as described in the Department of Political Science section in part 5 of this catalog; at least 18 of the 30 credits must be in courses at the 500 level. A public service internship is required of students with no appropriate work experience. For the thesis student, a thesis is required. For the non-thesis student, a non-thesis requirement must be met.

Master of Science. In some fields, all candidates for the M.S. degree are required to present a thesis; in others the thesis is optional or not required. Consult the departmental section for specific descriptions. Of the minimum 30 credits required for the degree, at least 18 credits must be at the 500 level; the remainder may include 400 level courses in the major, and 300 or 400 level courses in supporting areas. For the thesis student, a thesis is required. For the non-thesis student, a non-thesis requirement must be met.

Procedures for Master’s Degrees

Appointment of Major Professor and Committee. The major professor, a member of the Graduate Faculty, is appointed or chosen as early as possible during the student’s first semester. The committee is recommended by the major professor and the student and approved by the departmental administrator and the associate dean of the College of Graduate Studies. At least one-half of the members of the committee must be members of the Graduate Faculty. A faculty member may not serve on a committee for a student who is seeking a degree higher than the faculty member has attained. Except for an interdisciplinary program, which requires at least four members, the committee for a thesis degree will consist of at least the major professor as chair, a second faculty member from the major department, and a faculty member representing a discipline outside the major department’s discipline(s). A department faculty member who has an adjunct appointment to another department cannot be considered an outside committee member for a student in the faculty member’s primary department. The committee advises on the thesis research and conducts examinations as required. Except for students enrolled in an interdisciplinary program, a committee for a non-thesis degree is optional or is often a departmental or college committee. Any changes in the committee membership must receive the approval of the Graduate College on a change in committee form.

Qualifying Examination. If such an examination is required, it is conducted according to departmental procedures and is a prerequisite to the preparation of a study plan. A report of this examination is not submitted to the Graduate College.

Preparation of Study Plan. Early in the student’s academic career, the student prepares in conference with the major professor (and committee, if applicable) a master’s degree study plan outlining all course work to be completed to fulfill the requirements for the degree. Normally the study plan will include some work to be taken outside the major department.
PART FOUR
Colleges and Related Units

The study plan is prepared on forms provided by the Graduate College and is approved by the student’s committee, departmental administrator, and associate dean of the College of Graduate Studies. Any subsequent changes in the study plan must be submitted for approval to the Graduate College on a standard form for study plan changes.

Application for Advanced Degree. The Application for Advanced Degree, obtained through the Registrar’s Office website (www.uidaho.edu/registrar), is submitted to the College of Graduate Studies office according to the deadline outlined in the academic calendar.

Before filing the application, the candidate and the major professor must jointly ascertain that the candidate has met all degree requirements or will do so by completion of the semester in which, graduation is intended.

Registration Requirements. A graduate student defending and/or submitting a thesis must be registered for thesis credit. A graduate student in a non-thesis program must be registered during the semester in which the non-thesis requirements are completed. Note that correspondence courses do not satisfy the residence requirements for final semester registration. See also “Registration and Enrollment Requirements” under general regulations. A student who was registered during a term and did not complete all requirements by the end of that term, but does so before the official opening date of the new term, is awarded the degree at the end of the following term without further registration.

Non-thesis Requirement (Non-thesis Degree). This examination, presentation, or project is completed after the completion of most or all of the degree requirements. The department establishes format and time frame, and reports the results of the non-thesis requirement to the Graduate College using the Non-Thesis Report form. The examination, presentation, or project, if failed, may with departmental approval be repeated once. The interval before the second attempt may not be less than three months or longer than one year. Up to one credit received for completing an examination and up to three credits for a presentation or project may be used toward the degree. If a student fails the examination, presentation, or project twice, or the department does not allow the student to repeat the examination, presentation, or project after the first failure, or the student does not retake the examination or redo the presentation or project within a year, the student is automatically moved to unclassified enrollment status, and is no longer in the degree program.

Final Defense (Thesis Degree). Before the defense, the Authorization to Proceed with Final Defense form, a page from the “Graduate Handbook for Theses and Dissertations,” is submitted to the College of Graduate Studies. The defense is usually oral, but part may be written. The candidate is required to defend his or her work and show a satisfactory knowledge of the major and supporting fields. A recommendation of a majority of the committee is necessary for a candidate to pass this defense. The defense, if failed, may with departmental approval be repeated once. The interval between the second attempt may not be less than three months or longer than one year. Following a successful defense of his or her thesis, the candidate must submit the final copies within six months; otherwise, the candidate must defend the thesis again and may be required to revise it or write an entirely new one. If a student fails the final defense twice, or the department does not allow the student to repeat the defense after the first failure, or the student does not repeat the defense within a year, the student is automatically moved to unclassified enrollment status, and is no longer in the degree program.

Thesis. Two reproduced copies of approved quality and an additional copy of the title page must be deposited in the Graduate College by the date specified in the Class Schedule for the semester in which, graduation is intended.

A “Graduate Handbook for Theses and Dissertations,” which describes the requirements and makes suggestions for the preparation of theses, should be obtained through the Graduate College website. Students must conform to current rules and regulations of the Graduate College when preparing theses.

The University of Idaho awards the degree of Master of Fine Arts in recognition of high achievement in art, creative writing, or theatre arts. The M.F.A. is the professionally recognized terminal degree in the fine arts.

The major professor and department offering a particular M.F.A. program specify the philosophy of the degree program, the objectives of the courses and seminars, the creative areas of concentration available, and requirements peculiar to the department. Admission to an M.F.A. program is granted only to those applicants who have demonstrated abilities and achievements that are judged by the departmental faculty to exhibit the potential for completing the degree.

Requirements for M.F.A. Degree
Credit Requirements. See the specific program requirements in Part 5.

Transfer, Correspondence Study, Non-degree Credit, and Overaged Credit Limitation. The use of transfer, correspondence study, non-degree, and overaged credits is subject to the limitations of each program but cannot exceed Graduate College limitations. Credits can be transferred to UI with the consent of the student’s committee and the associate dean of the College of Graduate Studies, only if the institution from which the course credits are being transferred has a graduate program in the course’s discipline. All credits used toward graduate degrees must be from regionally accredited American institutions or from non-US institutions recognized by the appropriate authorities in their respective countries. Transfer credits are subject to all other Graduate College rules and regulations. Courses listed on an undergraduate record or on a professional degree transcript are not available to be used toward a graduate degree.

Time Limit. At the time the master’s degree is conferred, no courses used toward the degree can be older than eight years.

Subsequent Graduate Degrees. An applicant who has a master’s degree or is working on a master’s degree may obtain a second master’s degree, subject to the approval of the associate dean of the College of Graduate Studies. Up to six credits of course work used to satisfy the requirements for the first degree may be applied to the second; all other catalog requirements and credit requirements in UI courses must be fulfilled. A student who is enrolled in a doctoral program or who has a doctorate may obtain a master’s degree in a different field and use a number of common credits subject to approval by the Graduate Council. A student who has a doctorate may not subsequently obtain a master’s degree in the same field.

Awards M.F.A. Degrees to Members of the Faculty. A University of Idaho faculty member with rank of senior instructor or above may not be awarded an M.F.A. degree through the department or corresponding unit in which he or she is employed, unless that faculty member had been admitted to that degree program before attaining such academic rank.

Procedures for M.F.A. Degree
Appointment of Major Professor. Generally the student will be advised initially by the departmental administrator or departmental graduate coordinator. As soon as feasible, with respect to the availability of faculty members in the student’s area of concentration, but within three semesters of registration in an M.F.A. program, the student and departmental administrator or graduate coordinator nominate the major professor, who must be a member of the Graduate Faculty.

Graduate Reviews. Following departmental procedures, graduate reviews may be conducted annually by department graduate faculty members. The initial graduate review may normally be conducted within the first two semesters of registration in an M.F.A. program, and serves to assess the background of the student in both major and supporting fields and to provide in part the basis for preparation of the student’s study plan.
Selection of Graduate Committee. The graduate committee consists of at least the major professor as chair, a second faculty member from the major field, and a member from a discipline outside the major department’s discipline(s). A department faculty member who has an adjunct appointment to another department cannot be considered an outside committee member for a student in the faculty member’s primary department. At least one-half of the members of the committee must be members of the Graduate Faculty. A faculty member may not serve on a committee for a student who is seeking a degree higher than the faculty member has attained. The committee is approved by the associate dean of the College of Graduate Studies in accordance with nomination procedures of the department concerned. The committee assumes the responsibility for directing the student’s program under the leadership of the committee chair.

Preparation of Study Plan. Within two semesters (or two summer sessions for those attending in the summer only) of registration in an M.F.A. program, the student and major professor or graduate coordinator prepare a study plan, on forms provided through the Graduate College, for approval by the student’s committee, the departmental administrator, and the associate dean of the College of Graduate studies. Changes later deemed desirable may be made on a Change of Study Plan form and approved by the committee and the Graduate College. Awarding the degree is partially based on completion of all items required by the study plan.

Application for Advanced Degree. The Application for Advanced Degree, obtained through the Graduate College, is submitted to the College of Graduate Studies office according to the deadline printed in the academic calendar.

Before filing the application, the candidate and the major professor must jointly ascertain that the candidate has met all degree requirements or will do so by completion of the semester for which, graduation is intended.

Requirements Registration. A graduate student defending and/or submitting a thesis must be registered for thesis credit. A graduate student in a non-thesis program must be registered during the semester in which the non-thesis requirements are completed. Note that correspondence courses do not satisfy the residence requirements for final-seminar registration. See also ‘Registration and Enrollment Requirements’ under general regulations. A student who was registered during a term and did not complete all requirements by the end of that term, but does so before the official opening date of the new term, is awarded the degree at the end of the following term without further registration.

Final Defense (Thesis) or Non-thesis Requirement (Examination, Project, or Presentation). Before the thesis defense or the non-thesis examination, project, or presentation, the appropriate form is obtained through the Graduate College. The thesis defense is usually oral but may be written. The actual time for the defense of the thesis is set by the department, and is scheduled on completion of the thesis work; the candidate is required to defend his or her work and show knowledge of the major and supporting fields. A recommendation of a majority of the committee is necessary for a candidate to pass the defense or non-thesis requirement. The defense or non-thesis requirement, if failed, may with departmental approval be repeated once. The interval between the defense or examination must be at least three months or longer than one year. If the student fails the final defense or non-thesis requirement twice, or the department does not allow the student to repeat the defense or non-thesis requirement after the first failure, or the student does not retake the defense or non-thesis requirement within a year, the student is automatically moved to unclassified enrollment status, and is no longer in the degree program. Following a successful defense of his or her thesis, the candidate must submit the final copies within six months; otherwise, the candidate must defend the thesis again and may be required to revise it or write an entirely new one.

Thesis. Two reproduced copies of approved quality and an additional copy of the title page must be deposited in the Graduate College by the date specified in the Class Schedule.

A “Graduate Handbook for Theses and Dissertations,” which describes requirements for the preparation of theses, should be obtained through the Graduate College website.

Education Specialist Degrees

The University of Idaho awards the degree of Education Specialist for students who want an organized program of graduate studies beyond the master’s degree, but who may not wish to pursue a doctoral program. Programs are available leading to the degrees of Education Specialist in Adult Education, Education Specialist in Counseling and Human Services, Education Specialist in Education, Education Specialist in Educational Leadership, Education Specialist in School Psychology, Education Specialist in Special Education, and Education Specialist in Professional Technical Education. General requirements for the education specialist degree are described in this section.

Requirements for Education Specialist Degree

Credit Requirements. An acceptable program of at least 60 upper-division and graduate-level semester credits beyond the bachelor’s degree is required. Additional credits may be required for those who have master’s degrees in other areas of emphasis or who have deficiencies. Credits listed on an undergraduate record, professional development courses, or courses on a professional degree transcript are not available to be used toward a graduate degree. No more than three credits of workshop or workshop-related courses may be used toward a graduate degree. Each student, following advising, will submit for approval to the appropriate department or division a study plan for meeting degree requirements. The study plan then is submitted to the associate dean of the College of Graduate Studies for approval.

Transfer, Correspondence Study, and Non-degree Credit Limitation.

No more than 12 of the last 30 credits may be taken as transfer courses, correspondence courses (with prior written approval of the associate dean of the College of Graduate Studies), or non-degree courses. Transfer credits must be from institutions offering graduate programs in the discipline(s) of the course(s) being transferred. All credits used toward graduate degrees must be from regionally accredited American institutions or from non-US institutions recognized by the appropriate authorities in their respective countries.

Time Limit. The last 30 credits must have been taken in the eight years preceding the semester in which the degree is awarded.

Non-thesis Requirement. The candidate must pass a non-thesis requirement after completion of most of the degree requirements.

Procedures for Education Specialist Degree

Appointment of Major Professor. The major professor, a member of the Graduate Faculty, is appointed as early as possible during the student’s first semester in residence.

Preparation of Study Plan. Early in the student’s academic career, the student prepares, in conference with the major professor, a degree program outlining all work to be completed to fulfill the requirements for the degree. The study plan is prepared on forms provided on the Graduate College website and becomes effective on approval by the student’s major professor, departmental administrator, and associate dean of the College of Graduate Studies. Any subsequent changes in the study plan must be submitted to the graduate college on a standard form.

Application for Advanced Degree. The Application for Advanced Degree, obtained through the Registrar’s Office website (www.uidaho.edu/registrars), is submitted to the College of Graduate Studies office according to the deadline printed in the Academic Calendar.

Before filing the application, the candidate and the major professor must jointly ascertain that the candidate has met all degree requirements or will do so by the conclusion of the semester in which graduation is intended.

Final Semester Registration. A graduate student must be registered during the semester in which the degree requirements are completed. (See also “Registration and Enrollment Requirements” under regulations.) Enrollment in correspondence study courses does not fulfill this regulation. A student who was registered during a term and did not complete all requirements by the end of that term, but does so before...
the official opening date of the new term, is awarded the degree at the end of the following term without further registration.

Non-thesis Requirement. This written and/or oral examination, project, or presentation is taken after the completion of most or all of the degree requirements. The department establishes time, date, and place, and reports the results of the non-thesis requirement to the Graduate College. Up to one academic credit received for completing the non-thesis examination requirement or up to three credits for the presentation or project may be used toward the degree.

Doctoral Degrees

The University of Idaho awards the degree of Doctor of Philosophy in recognition of high achievement in scholarly and research activity. The degree of Doctor of Education is granted for high scholarly attainment and in recognition of the completion of academic preparation for professional practice.

The major professor and department offering a particular doctoral program indicate the general philosophy of the degree program, the objectives of courses and seminars, the research specialties available, and requirements unique to the department. Admission to the doctoral program is granted only to those who have a recognized potential for completing the degree. In order to effect an integration of course and research work, students are advised to begin research shortly after entering the program and not wait until much of the course work has been completed.

Requirements for Doctoral Degrees

Credit Requirements. A minimum of 78 credits beyond the bachelor’s degree is required; of these, at least 52 credits must be numbered 500 and above, and at least 33 of the 78 credits must be in courses other than 600 (Doctoral Research and Dissertation). Courses numbered below 300 may not be used to fulfill the requirements for a doctoral degree; courses numbered 300-399 may be used only in supporting areas. Individual departments may require additional course work. **Applicants having a doctoral degree may obtain a second doctoral degree subject to the approval of the Graduate Council.** The Graduate Council will establish the requirements for the second degree.

Transfer, Correspondence Study, and Non-degree Credit Limitation. A doctoral student must complete at least 39 of the 78 required credits at UI while matriculated in the College of Graduate Studies. Credits can be transferred to UI, with the consent of the student’s committee and the associate dean of the College of Graduate Studies, only if the institution from which the course credits are being transferred has a graduate program in the course’s discipline. All credits used toward graduate degrees must be from regionally accredited American institutions or from non-US institutions recognized by the appropriate authorities in their respective countries. Transfer credits are subject to all other Graduate College rules and regulations. Correspondence study courses may be applied to the degree only with the prior written approval of the associate dean of the College of Graduate Studies. Courses used toward an undergraduate degree, professional development courses, and courses on a professional degree transcript are not available to be used toward a graduate degree.

Time Limits. Of the credits submitted to satisfy the requirements for a doctoral degree, a maximum of 30 may be more than eight years old when the degree is conferred, provided the student’s committee and department determine that the student has kept current in the subjects concerned. Graduation must occur no later than five years after the date on which the candidate passed his or her preliminary or general examination. These time limitations can be extended only on recommendation of the committee and approval by the Graduate Council.

Awarding Doctoral Degrees to Members of the Faculty. A University of Idaho faculty member with rank of senior instructor or above may not be awarded a doctoral degree earned through the department or corresponding unit in which he or she is employed, unless the faculty member had been advanced to candidacy for the degree before attaining such academic rank.

Foreign Language Requirement for the Ph.D. Degree. Whether there is a foreign language requirement and, if so, the number of languages required, the method of examination, and the level of competency, are departmental options. Refer to departmental descriptions in part 5 of this catalog.

Particular Requirements for the Ed.D. Degree. A period of professional practice is required for the Doctor of Education degree; the period involved is determined by the student’s supervisory committee. The Ed.D. degree is awarded only through divisions in the College of Education; therefore, the student should consult the appropriate divisional office for additional requirements.

Procedures for Doctoral Degrees

Appointment of Major Professor and Committee. A major professor (a member of the Graduate Faculty) is appointed as early as possible during the first two semesters of study. A supervisory committee consists at least of four people: the major professor as chair, a second faculty member from the major department, one faculty member from a minor or supporting area, and a faculty member from a discipline outside the major department’s discipline(s). A departmental faculty member who has an adjunct appointment to another department cannot be considered an outside committee member for a student in the faculty member’s primary department. The committee is approved by the associate dean of the College of Graduate Studies in accordance with nomination procedures of the department concerned. At least one-half of the members of the committee must be members of the Graduate Faculty. A faculty member may not serve on a committee for a student who is seeking a degree higher than the faculty member has attained. The committee assumes responsibility for directing the student’s program under the leadership of the committee chair, who is also the research advisor.

Qualifying Examination. The qualifying examination, is a departmental option and serves to assess the background of the student in both the major and supporting fields and to provide partially the basis for preparation of the student’s study program. A particular department may or may not require a master’s degree as a prerequisite for the qualifying evaluation. As soon as departmental qualifications are met, a supervisory committee is appointed.

Preparation of Study Plan. Within two semesters (or two summer sessions for those attending summer sessions only) of registration in the doctoral program, the student, major professor, and committee prepare a study plan, on forms provided through the Graduate College, for approval by the student’s supervisory committee, the department administrator, and the associate dean of the College of Graduate Studies. Changes later deemed desirable may be made on a Change of Study Plan form and approved by the committee.

Preliminary Examination for Ph.D. Degree. The preliminary examination should be scheduled only after the student has completed the majority of the courses on his or her study plan. The student is required to be registered during the semester the Preliminary Exam is be taken. The student’s committee certifies to the Graduate College the results of the preliminary examination and if passed, the student is advanced to candidacy. Graduation must occur no later than five years after the date on which the candidate passed his or her examination. If the preliminary examination is failed, it may be repeated only once; the repeat examination must be taken within a period of not less than three months or more than one year following the first attempt. If a student fails the preliminary examination a second time, or the department does not allow the student to repeat the examination after the first failure, or the student does not retake the examination within one year, the student is automatically moved to unclassified enrollment status, and is no longer in the degree program.

General Examination for Ed.D. Degree. When the student approaches the end of his or her course work, has completed the professional experience requirement, and has outlined the dissertation subject in detail, the supervisory committee approves the holding of the general examination. This is both a written and oral examination and is intended to assess progress toward degree objectives. The student’s committee certifies to the Graduate College the results of the general examination and if passed, the student is advanced to candidacy. Graduation must occur no later than five years after the date on which
the candidate passed his or her examination. If the general examination
is failed, it may be repeated only once; the repeat examination must be
taken within a period of not less than three months or more than one
year following the first attempt. If a student fails the general examination
a second time, or the department does not allow the student to repeat
the examination after the first failure, or the student does not retake
the examination within one year, the student is automatically moved to
unclassified status, and is no longer in the degree program.

Application for Advanced Degree. The Application for Advanced
Degree, obtained through the Registrar’s Office website (www.uidaho.
edu/register), is submitted to the College of Graduate Studies according
to the deadline printed in the Academic Calendar.

Before filing the application, the candidate and the major professor must
jointly ascertain that the candidate has met all degree requirements or will
do so by completion of the semester in which, graduation is intended.

Registration Requirements. A student graduate defending and/or
submitting a dissertation must be registered for dissertation credit.
See also “Registration and Enrollment Requirements” under general
regulations. A student who was registered during a term and did not complete
all requirements by the end of that term, but does so before
the official opening date of the new term, is awarded the degree at the
end of the following term without further registration.

Final Defense. Before the defense, the Authorization to Proceed with
Final Defense form, a page from the “Graduate Handbook for Thesis
and Dissertation,” is submitted to the College of Graduate Studies. The
final defense for a doctoral degree normally is not taken earlier than five
months after passing the preliminary or general examination. However,
the actual time for the final defense is set by the student’s committee.
It is held upon completion of the dissertation and after authorization
forms have been issued by the Graduate College, but not earlier than
ten working days after approval by the Graduate College to schedule
the defense. A recommendation of a majority of the committee is
necessary for a candidate to pass this defense. The defense, if failed,
may be repeated once. The interval between the second attempt may
not be less than three months or longer than one year. If a student fails
the final defense a second time, or the department does not allow the
student to repeat the defense after the first failure, or the student does
not retake the defense within one year, the student is automatically
moved to unclassified enrollment status, and is no longer in the degree
program. Following a successful defense of his or her dissertation, the
candidate must submit the final copies within six months; otherwise,
the candidate must defend the dissertation again and may be required to
revise it or write an entirely new one.

Dissertation. Two reproduced copies of approved quality and two
additional copies of the title page and abstract (not to exceed 350 words)
must be deposited in the Graduate College by the date specified in the
Academic Calendar. Doctoral candidates pay a fee for the publication of
the abstract in Dissertation Abstracts and for microfilming the dissertation
by University Microfilms.

A “Graduate Handbook for Theses and Dissertations,” which describes
requirements and make suggestions for the preparation of dissertations,
should be obtained through the Graduate College website. Students
must conform to current rules and regulations when preparing dissertations.

Assistantships and Research Fellowships
Assistantships are open to domestic and international students who
hold a baccalaureate degree from any university or college of recognized
standing and who are regularly enrolled students in the College of
Graduate Studies.

Students in the provisional enrollment category or in the unclassified
enrollment category are NOT eligible to receive assistantships.

An inquiry for a position or award should be addressed to the administrator
of the department in which the applicant plans to enroll for graduate study.
Appointments include a work requirement of up to 20 clock hours a week.
Assistants are considered students and do not pay social security if
registered for 9 or more credits. Assistants who provide classroom and/
or laboratory instruction or assistance under the supervision of a full-time
member of the faculty are teaching assistants. Assistants who provide
research service, grade papers, and perform other non-teaching duties
are research assistants. Those appointed to assistantships supported
by the university are advised that the appointments are tenable only in
the unit of the major field of study, except where prior written exceptions
are made. Annual leave, sick leave, and health insurance benefits are
not available for graduate assistants.

Continuation of the assistantship after the first semester is contingent
upon satisfactory performance, progress toward degree, and abiding
by the department’s and University’s policies and procedures. UI policies
are available on-line in the Faculty-Staff Handbook.

Assistants are required to sign a Patent and Copyright Agreement for
University of Idaho Employees, attend assistantship training during the
first year in attendance, and, as with all students, have personal health
insurance coverage or enrollment in the Student Health Insurance
Program.

Salaries for assistantships vary depending upon the department, length
of graduate service, and whether they are for an academic year or for
12 months. Assistantships at the University of Idaho are competitive
with those at like institutions and current salary levels will be provided
by the college or department upon inquiry.

In addition, nonresident tuition will be waived for persons holding full
appointments, and a pro rata portion of nonresident tuition will be waived
for persons holding partial appointments. However, each person who
holds a full appointment as an assistant is required to pay graduate
tuition and the uniform student fee charged to registered full-time
students, regardless of the number of credits for which the student
is registered. Persons accepting part-time assistantships will be
required to pay graduate tuition and student fees based on the number of
credit hours for which the person is registered.

A full-time assistant cannot use a staff or staff spouse fee waiver.

Research fellowships are awarded by various colleges. Research
conducted on fellowships may or may not be used for dissertation
purposes. Credit enrollment and stipends vary according to the particular
fellowship. Fees and tuition are charged, but in some cases may be
remitted, depending on the type of fellowship and the availability of funds.
Inquiries should be addressed to the administrator of the department in
which the applicant plans to enroll.

College of Law
Donald L. Burnett, Jr., Dean: D. Benjamin Beard, Associate Dean (101 Law Bldg.;
208/885-4977).

The College of Law was organized in 1909 and is the only school devoted
to the study of law in the state of Idaho. The college is a member of the
Association of American Law Schools and is approved by the Council
of the Section of Legal Education and Admissions to the Bar of the
American Bar Association.

Purpose of the College
The role of the College of Law is to educate students for the legal
profession with its many facets and its involvement in the whole range
of society. The curriculum is designed to provide instruction over three
academic years in principles generally applicable in the United States.
The responsibilities assumed by the professional man or woman are
emphasized, as are solutions to ethical problems. The study of law
is also an asset to those who wish to hold positions of leadership in
government or business.

Methods of instruction are adapted to the development of each student’s
highest potential and vary with the professor and the course. Basic
instruction is accomplished primarily by way of the case method, a
study of the actual decisions of appellate courts, supplemented by
selected readings that provide insight into the nature of judicial and
legislative processes. Problem and simulation methods are used in
advanced courses. Techniques that encourage individual initiative and develop perception and communication abilities are emphasized. In the third year, clinical training provides contact with clients. Because law changes rapidly, mere accumulation of information is subordinated to the more important ends of individual development and training in critical habits of thought.

Admission to the Bar
The College of Law is fully accredited by the American Bar Association and the Association of American Law Schools, and its degree is accepted by all state bar associations. Educational prerequisites vary among states, and the secretary of the bar examiners in the state in which the applicant intends to practice should be contacted to determine the existence of special requirements.

Suggestions for Pre-legal Study
The subject matter of pre-legal education is less important than the quality of work performed. Although the most common pre-law majors are English, social sciences, or business, law students are drawn from a broad range of undergraduate programs from agriculture and engineering to English and philosophy. The study of law requires logical analysis and effective written and oral communication. Any rigorous course of study that develops these skills is good preparation for law school. Beyond that, a well-rounded education is best. American government and international political philosophy are important in public law; economic and accounting concepts are basic to much business and commercial law; history, literature, philosophy, and psychology all provide useful insights into cultural tradition and human motivation which are important to the interpretation and application of law.

Most universities have a pre-law advisor, often through the Political Science Department, to advise students in selecting appropriate pre-law courses. At UI, a pre-law advisor is available through the Political Science Department to guide students in selecting courses within the particular college or university that will meet these objectives. The dean’s office at the College of Law is also available for general consultation in program planning.

Application for Admission
Admission Requirements. Applicants for admission must have a bachelor’s degree from an accredited four-year college or university by the date of enrollment at the College of Law. In special cases, it may be possible to be admitted after three years of undergraduate study (contact the College of Law for more information). Applicants must also arrange for a complete Law School Data Assembly Service (LSDAS) report, which consists of a Law School Admission Test (LSAT) score, copies of transcripts, and other relevant information.

Arrangements for taking the LSAT must be made by the individual applicant directly with the Law School Admission Council (LSAC) well in advance of the dates set for the LSAT. The dates and places for the test, application blanks, and a bulletin of information about the test may be obtained by writing directly to LSAC, Box 2000-R, Newtown, PA 18940-0998, by calling LSAC at 215/968-1001, or on their web site at http://www.lsac.org. This information may also be obtained from the pre-law advisor of most colleges and universities.

Commercial materials on the LSAT are available at most bookstores and LSAT preparation courses may be found in many locations. Applicants are advised to study for the test ahead of time. Old LSAT scores are acceptable as long as an LSDAS Report can be assembled by the testing service. If the student is in the area, the University of Idaho Enrichment Program offers LSAT preparatory classes and can be reached at 208/885-6486 for scheduling information.

Registration with the LSDAS is required of all applicants. Instructions concerning registration for the LSDAS report and an application blank for the purpose are contained in the same bulletin that describes the LSAT. Applicants should accomplish this registration at the same time they register for the LSAT. It is the applicant’s responsibility to assure that LSDAS has all required information and that the applicant’s LSDAS Report is complete for release to the College of Law. Be advised that it may take up to six weeks for an LSDAS Report to reach the College of Law.

Application Deadline. While the College of Law considers applications upon completion, all required admission credentials listed below should be received no later than March 1 to be assured timely consideration for admission in the fall. The College of Law will request an LSDAS Report from LSAC on receipt of an application and application fee. The college is unable to consider the application until an LSDAS Report has been received. This requires applicants to take the LSAT no later than the preceding December. However, in order to assure timely application, the October LSAT, almost a year before admission, is recommended. If the college receives any of the required information later than March 1, the application will be considered late. The college cannot be responsible for delays in the mail or at the LSDAS.

Decision on Admission
Admissions decisions are made by a three-member faculty committee chaired by the associate dean. The college receives many more applications than it can accept. Consequently, the Admissions Committee must deny admission to many who are otherwise qualified to study law. In general, offers of admission are extended to those judged to present the greatest promise for success in law school. Matters relating to character are also considered in the admissions process.

Although UGPA and LSAT scores are the most important factors used to arrive at this judgment, the committee will consider any additional information that an applicant believes is important in assessing his or her ability to perform law school work. A personal statement often provides insight into an applicant’s motivation for attending law school, as well as functioning as a sample of writing ability, and is probably the most helpful additional item for most applicants. Graduate work and/or work experience may provide evidence of achievement and capabilities inadequately addressed by standard credentials. Letters of recommendation and prior written work may also be of assistance in assessing an applicant’s relative promise. Letters of recommendation should be limited to three, and should address the applicant’s ability to engage in critical analysis and to communicate orally and/or in writing. An applicant’s cultural background may also be judged relevant, either because it suggests that an applicant will supply diversity to the student body or because it bears on the evaluation of standard credentials.

As a state-supported institution, the College of Law extends a preference to timely applicants who are Idaho residents. It is possible to establish Idaho residency while a student. Residency determinations are made by the Undergraduate Admissions office and inquiries about residency should be directed to that office at 208/885-6326.

In recent years the median UGPA has been approximately 3.4 and the median LSAT has been approximately 155.

Ordinarily, timely applicants will be notified of a decision no later than April 1. For most, this decision will be either positive or negative. However, some may be placed in a “stand-by pool” and will be admitted thereafter if we have a sufficient number of withdrawals by previously admitted applicants. Those in the stand-by pool may not receive final word about admission until mid-summer. The dean’s office will consult with wait-listed applicants on request and attempt to provide as much information about their status as possible.

Upon acceptance, a $200 deposit is required to secure a place in the fall entering class. This deposit will be applied to student fees upon registration. It is fully refundable until June 1. In cases of special need, the deposit may be waived.

Transfers from Other Schools
Space is limited, and only a few transfers into the second year class can be accommodated. Special standards apply, and within these standards, a degree of preference is extended to residents of Idaho. Students transferring into our program are expected to complete at least three semesters at Idaho. Students desiring to study here for a lesser period should arrange to have credits at Idaho accepted toward a degree from the law college in which they are currently enrolled. Before a transfer applicant is considered, we must have on file a final transcript of all work that will have been undertaken at other law schools by the time of transfer. We also require a letter from the dean or associate dean following the completion of all such work that states that the applicant
remains in good standing, is eligible to continue without any condition or qualification, and ranks in the top 50 percent of his or her law school class. Consequently, for an applicant currently enrolled in a law school, no decision on transfer will be possible until June or later, when all grades from current work are in. If an applicant attends a summer session of a school of law, it will not be possible to process a final acceptance until the close of the summer session. If an applicant needs some guidance before results of his or her spring semester’s work become available, a tentative opinion about probable admissibility may be given.

Non-degree Candidates

Students who are not non-degree candidates in the College of Law but are enrolled elsewhere at the UI are permitted to register for a course offered by the College of Law if the permission of the dean or associate dean of the College of Law and the instructor of the course are both granted. Such courses cannot be credited toward a law degree even if the student is later admitted to the College of Law.

Fees

See the section on “Fees and Expenses” in Part 2.

Grading System

Grades for courses taken in the College of Law shall be awarded on the basis of A, A-, B+, B, B-, C+, C, C-, D+, D, D-, and F; provided, however, that by resolution the law faculty may designate any course, or courses, to be graded on a pass-fail basis. Any approved course work taken at any other law school will be recorded on the transcript as a “P” if the student earned a “C” or better in that course. No credit will be awarded for work done at another law school if the student earned less than a grade of “C.” Up to 6 credit hours of UI graduate level courses may be taken with special permission of the associate dean.Credits will be recorded as “P” for course work in which the student earns a “B” or better. Grades of “P” are not included in calculating a student’s grade-point average or class ranking in the College of Law. Exceptions to the above may be made for UI graduate level courses used in the approved UI law/graduate concurrent degree programs.

Grade-point averages of students in the College of Law shall be computed by assigning the following numerical point values per semester hours: A = 4.00; A- = 3.67; B+ = 3.33; B = 3.00; B- = 2.67; C+ = 2.33; C = 2.00; C- = 1.67; D+ = 1.33; D = 1.00; D- = 0.67; F (or “fail” under the pass-fail basis) = 0.00. The cumulative grade-point average is the quotient of total points assigned, divided by total hours undertaken. Courses in which marks of I, W, or P (pass) have been given shall be disregarded in the computation. Courses in the College of Law may be repeated only with the approval of the faculty in the College of Law. All course grades shall be included on the transcript and (except for marks of I, W, or P) in the calculation of the grade-point average, even if courses have been repeated.

This grading system applies in determining: (a) eligibility for continuing study in the College of Law; (b) compliance with requirements for the Juris Doctor degree; and (c) class ranking within the College of Law.

Grades in most courses offered by the College of Law are awarded on the basis of performance in a single written examination conducted at the end of the semester. In courses where it is so announced, grades on written projects or classroom participation may be included.

Unless arranged in advance by the professor, students receiving an “incomplete” grade for a course must remove that grade within six weeks after the first day of classes of the following fall or spring semester. Incompletes not made up before that date automatically revert to the grade indicated by the professor as the “permanent” grade, usually an “F.” The grade ultimately given will be computed in the GPA for the semester in which the class was begun.

Concurrent J.D./M.S., J.D./M.Acct., and J.D./M.B.A. Degrees

Graduate-level courses used toward an approved concurrent law degree must be approved by the College of Law. Grades and credits earned in these approved graduate courses will not be calculated in the student’s institutional College of Law GPA or College of Law class ranking.

For information on the concurrent J.D./M.ACCT. AND J.D./M.S. degrees, see the Accounting and Environmental Science sections, respectively, in Part 5. UI graduate-level courses will be recorded on the law student’s academic record as a comment only.

A concurrent J.D./M.B.A. is available in cooperation with the College of Business and Economics at Washington State University. WSU graduate-level courses will be recorded on the law student’s academic record as transfer work. For more information, contact MBA@wsu.edu (phone 509/335-7617) and jlawadmit@uidaho.edu (phone 208/885-6423).

For the concurrent J.D./M.Acct. and J.D./M.S. degrees, a student will be required to complete both degrees for the College of Law to count twelve credits towards the JD degree. If a student fails to receive the M.ACCT. or M.S. degree a maximum of six semester credits earned in the M.ACCT. or M.S. program may count towards the JD degree with the approval of the College of Law associate dean.

Additional Information

For detailed information about the College of Law, see the College of Law Catalog or visit their website, http://www.uidaho.edu/law.

College of Letters, Arts and Social Sciences

Joseph R. Zeller, Dean (112 Admin. Bldg.; 208/885-6426); Sandra L. Haarsager, Associate Dean (113 Admin. Bldg.; sandrah@uidaho.edu); Kristine A. Roby, College Advisor, (krob@uidaho.edu).

The largest division of the university, the College of Letters, Arts, and Social Sciences (CLASS) has four goals: 1) to prepare individuals for an array of careers and professions; 2) to foster scholarly inquiry, creative activity, and the generation of knowledge; 3) to serve the public, and 4) to provide the cultural and contextual foundation on which other academic and professional colleges depend. The college through its 14 departments and several interdisciplinary programs prepares broadly educated individuals capable of open inquiry, critical thinking, and effective communication, who understand and are responsive to the needs of individuals and society. The college values the integration of learning and discovery in its efforts to develop and support distinctive programs that enhance the land grant mission of the university within the context of the arts, humanities, and social sciences. Students are prepared to become knowledgeable, contributing citizens in a world of diverse cultures and contexts. Beyond learning how to discover, analyze, and integrate knowledge across disciplines, graduates come to value lifelong learning as the basis for excellence in any endeavor.

Departments and Programs of Instruction

At both the undergraduate and graduate level, the curricula of CLASS emphasize the aesthetic, historical, ethical, and social dimensions and interpretations of human existence. Included within CLASS are the Departments of Architecture, Art, English, Foreign Languages and Literatures, Landscape Architecture, History, Philosophy, Political Science and Public Affairs Research, Psychology and Communication Studies, Theatre Arts and Film, and Sociology/Anthropology/Justice Studies. The School of Journalism and Mass Media, the Lionel Hampton School of Music, and the Martin School of International Studies also function as departments of the college. Other programs offering degrees through the CLASS include American Studies, Environmental Science, General Studies, Interdisciplinary Studies, Interior Design, and Latin American Studies. The departments and schools in CLASS provide dozens of curricula and curricular options leading to certificates, minors, and baccalaureate degrees as well as programs of graduate study leading to master’s and doctoral degrees.

Undergraduate. See departmental sections in Part 5.

Graduate. The College of Graduate Studies offers work toward advanced degrees in many disciplines in CLASS. Work leading to a master’s degree is currently available in the fields of anthropology, architecture,
creative writing, English, environmental science, French, German, history, music, political science, psychology, public administration, Spanish, theatre arts. The degree of Doctor of Philosophy is available in history and political science. For specific degrees available, see the list of programs compiled in Part 1 (also see the online version of the catalog for the most recent degree and course information).

General Studies. The college also serves those students who have not decided upon a particular program of study by offering general education courses which support other curricular and providing a course of study and degree that allow students to explore a broad-based university curriculum without specialization. For details, see the program in general studies described in Part 5.

Non-degree. A non-degree program is offered in which each student’s course of study is worked out to meet his or her special needs. The program is intended primarily for students who (1) do not plan to obtain degrees at the University of Idaho, (2) plan to transfer to other institutions, or (3) have objectives that are not provided for by any of the established curricula in the college.

Interdisciplinary Studies. Students who have broad educational goals that necessitate work in several disciplines or departments may present an interdisciplinary curriculum for the B.A. or B.S. degree. For details, see the program in interdisciplinary studies in Part 5.

Admission to the College
Students who expect to enter CLASS should plan their high school electives carefully, both to lay the foundation for their general education, which will be continued in the university, and to ensure that they are adequately prepared to begin their study at the college level. Students should select subjects in English, foreign language, social sciences, natural sciences, mathematics, and fine arts that will provide a well-rounded preparation for further study. For a statement of general undergraduate and graduate admission requirements, see Part 2.

Fees
Students admitted to the professional programs in architecture, interior design, and landscape architecture pay a professional fee to support the special needs of these curricula. See “Fees and Expenses” in Part 2 of this catalog.

Regular Enrollment in a Program of Studies
Students in CLASS must enroll in regular programs unless they are attending on a part-time basis (seven-credit maximum), or they are admitted to non-degree programs. Except for the two-year program in prenursing studies, a regular program is one that leads to a degree that the college offers. However, it is not necessary to select a major curriculum until the beginning of the junior year. This permits the undecided student to take courses in a wide range of fields in order to choose a major more wisely.

Teacher Education Program
Students in CLASS who are preparing for secondary-school teaching should consult the section on the College of Education in this Part 4.

Laboratory of Anthropology
The Alfred W. Bowers Laboratory of Anthropology, established in 1968, serves as the research arm of the College of Letters, Arts and Social Sciences for investigations in archaeology, ethnohistory, linguistics, and physical anthropology. The laboratory serves as the main clearinghouse and repository for all northern Idaho archaeological collections and records.

Modern and well-equipped facilities for the cleaning, preservation, and analysis of both historic and prehistoric artifacts are contained in the laboratory. The metal artifact cleaning facilities are among the largest and best equipped in the country. The laboratory also provides space and facilities for research associates, graduate student research, teaching and comparative collections, and a regionally oriented library.

General Requirements for Graduation
Each student working toward a baccalaureate degree from the college must satisfactorily complete 128 semester credits (unless a higher number is specified in the particular curriculum), including at least 36 credits in courses numbered 300 and above, the Core requirements (see regulation J-3 in Part 3), and the college and departmental requirements for the degree sought. The college requirements applicable to the B.A. and B.S. degrees are listed in Part 5. The requirements for the various professional degrees (i.e., B.F.A., B.Mus., and B.N.S.) are listed by academic unit in Part 5. The college B.A. and B.S. requirements do not apply to these professional degrees.

College Requirements for the B.A. and B.S. Degrees

Objectives. The college requirements for the B.A. and B.S. degrees are designed to ensure a broad, liberal education through the attainment of the following objectives: (1) proficiency in written and spoken English; (2) appreciation of great literature, music, and art; (3) knowledge of human development, the growth of social and economic institutions, and an understanding of the rights and responsibilities of the individual citizen; (4) perspective of American culture in the world at large; (5) sense of historical perspective; (6) acquaintance with moral, ethical, and aesthetic values; (7) familiarity with scientific thought and method; (8) ability to use and interpret basic mathematical concepts; (9) understanding of ecology; and (10) a continuing attitude of intellectual curiosity.

Requirements for the B.A. Degree:

1. **Humanities.** 6 credits (two courses) in addition to the minimum university-wide core requirement of 14 credits in humanities/social sciences.

2. **Social Sciences.** 3 credits (one course) in addition to the minimum university-wide core requirement of 14 credits in humanities/social sciences.

3. **Foreign Language.** 0-16 credits (zero-four courses), i.e., competence in one foreign language equivalent to that gained by the completion of four semesters of college courses (through the intermediate level). This requirement may be satisfied by the completion of either of the following options: (1) 16 credits or four high-school units in one foreign language, or (2) 12 credits in one foreign language, and one three-credit course in literature translated from the same language. The 12 credits may be satisfied by three high-school units in one foreign language.

Requirements for the B.S. Degree:

1. **Humanities.** 3 credits (one course) in addition to the minimum university-wide core requirement of 14 credits in humanities/social sciences.

2. **Social Sciences.** 3 credits (one course) in addition to the minimum university-wide core requirement of 14 credits in humanities/social sciences.

3. **Natural Sciences, Mathematics, and Statistics.** 6 credits (two courses) in addition to the minimum university-wide core requirement of 11 credits in natural sciences/math.

For the B.S. degree, the student may substitute the successful completion of an academic minor or area of emphasis of at least 18 credits approved by the department in which the student is majoring.

Courses satisfying the **humanities** requirement are those dealing with the arts, literature, and philosophy. Courses satisfying the **social sciences** requirement are those dealing with a person’s social condition including social relations, institutions, history, and participation in an organized community. **Mathematics and statistics** requirements can be met by taking courses in the Department of Mathematics and the Department of Statistics. **Natural science** requirements can be met by taking courses in life sciences and physical sciences.
College of Natural Resources

Steven B. Daley Laursen, Dean; Alton G. Campbell, Associate Dean (202 College of Natural Resources Bldg.; 208/885-6442).

Professional education leading to a degree in forestry began at the University of Idaho in 1909. To the initial curriculum in forest resources have been added those in forest products (1914), rangeland ecology and management (formerly range resources) (1917), wildlife resources (1942), fishery resources (1951), resource recreation and tourism (formerly wildland recreation management) (1974), and natural resource ecology and conservation biology (1999).

The academic objective of the college is to provide its students with opportunities to become better prepared for lives of responsibility and fulfillment and to acquire competence for entry into professional careers in natural resource science and management. Each of the curricula offered by the college acquaints the student with the physical, biological, and social sciences and with the humanities, thus establishing a basis of general education and preparing the student for the scientific-professional courses addressing the use of forest and range lands and related resources. In addition to the most modern technical and academic classroom instruction, the college prides itself in “hands-on” training taking advantage of its outstanding field facilities and its emphasis on communications and student activities to enhance leadership potential.

Advantages of Location

The university is ideally located for preparing students for the renewable natural resources professions. Forest and range lands comprise 90 percent of the state’s area. Forested areas include many types from the ponderosa pine in southern Idaho to the mixed coniferous and famous white pine of northern Idaho. Range lands vary from spring-fall and winter ranges in the sagebrush-grass and bunchgrass zones to summer ranges in several of the forested zones. Within the forest and range lands are hundreds of lakes and streams and extensive wilderness areas that provide habitat for fish and wildlife and opportunities for wildland recreation.

The values derived from these resources include wood products of all types; cattle and sheep in great numbers; abundant wildlife of many species; world renowned game fish; water for domestic use, power, and irrigation; and recreational activities. These natural study areas and resources enhance students’ professional preparation.

Facilities

A modern three-story, 90,000-square-foot building, the Natural Resources Building incorporates classrooms, laboratories, scientific equipment, plant and animal collections, computer access, and other support functions into an ideal environment for natural resources education and research.

A university experimental forest includes 7,200 acres of forest land located about 25 miles from the campus and is managed by the college as a working forest for demonstration, research, and education. The forest properties include a 200-acre recreation area, a 33-acre privately owned nature preserve, and two smaller tracts closer to Moscow that serve as outdoor classrooms. The Frank Pitkin Forest Nursery site includes 40 acres and three greenhouses that produce 700,000 seedlings annually for student training and research purposes. On the university campus, the Shattuck Arboretum, with over 60 species of trees, provides an outdoor classroom for studies in dendrology. Other field facilities include the McCall Field Campus located on Payette Lake in the mountains of west-central Idaho, the Taylor Ranch Wilderness Field Station in the heart of the Frank Church River-of-No-Return Wilderness, and the Lee A. Sharp Range Experimental Area in southern Idaho. In addition, Idaho’s 37 million acres of public forest and range lands constitute a vast natural laboratory for students in all of the college’s curricula.

To take advantage of these facilities and implement “hands-on” training, the college employs student logging, surveying, planting, and controlled burning crews.

Standing of the College

To assure high professional standards several curricula in the college are periodically evaluated and rated as accredited or not accredited. Forest resources curricula at UI have been accredited since the Society of American Foresters first began accreditation in 1935. Similarly, in 1985 the rangeland ecology and management curriculum became one of the first in the nation to be accredited by the Society for Range Management. The curriculum of the Department of Conservation Social Sciences is accredited by the National Recreation and Parks Association. The curriculum in forest products is accredited by the Society of American Foresters and the Society of Wood Science and Technology.

Departments

The college has five departments: Fish and Wildlife Resources, Forest Products, Forest Resources, Rangeland Ecology and Management, and Conservation Social Sciences. Although these departments are separate administrative entities, they share a common philosophy, integrated resource management. Many college faculty hold joint appointments in more than one department; degree programs include courses from multiple departments; and the teaching, research, and service missions of all the departments are integrated and coordinated at the college level. This integration is enhanced by the Forest, Wildlife and Range Experiment Station, described below.

Degrees

Curricula leading to the following degrees are offered by the college: Bachelor of Science in Fishery Resources (B.S.Fish.Res.) with emphases in management and aquaculture; Bachelor of Science in Forest Products (B.S.For.Prod.) with options in forest products business management, timber harvesting, and wood construction and design; Bachelor of Science in Forest Resources (B.S.For.Res.) with options in forest ecosystem management, administration, and science; Bachelor of Science in Ecology and Conservation Biology (B.S.Ecol.Cons.Biol.) with options in natural resources ecology and conservation biology; Bachelor of Science in Rangeland Ecology and Management (B.S.Rangeland Ecol.-Mgt.) with options in rangeland ecology, environmental assessment, and rangeland management; Bachelor of Science in Range Livestock Management (B.S.R.L.M.) in cooperation with the College of Agriculture; Bachelor of Science in Resource Recreation and Tourism (B.S.Res.Re.); and Bachelor of Science in Wildlife Resources (B.S.Wildl.Res.); Master of Science (thesis and non-thesis options); Master of Natural Resources; and Doctor of Philosophy in natural resources, with dissertation topics
in any of the five departments. Academic minors offered include forest products, forest resources, Fire Ecology and Management, natural resource communication, outdoor recreation leadership, parks, protected areas, and wilderness conservation, rangeland ecology and management, and sustainable tourism and leisure enterprises.

Admission Requirements

General. For a statement of undergraduate and graduate admission requirements, see Part 2.

Transfer Students. Students who propose to complete a portion of their undergraduate studies at a junior college, or elsewhere, before entering UI, should follow as closely as possible one of the curricula for the first two years set forth in Part 5. A student whose program does not closely approximate one of these will not be able to graduate in four years. Transfer to UI before the end of the sophomore year is usually to the student’s advantage. Correspondence with the dean of the college should be initiated at least three months before the date on which the student plans to enroll.

Undergraduate Program

The undergraduate curricula are designed to provide both a general and a professional education. The objective in the first two years is to provide students with a good foundation in the biological, physical, and social sciences and in writing and speaking skills. The basic philosophy of the college is to educate according to the principles of integrated natural resource management while providing specialization in the student’s major area of interest. Because of the emphasis placed on the integrated approach, all curricula in the college, except two options in forest products, have incorporated a common 9-credit set of core courses as follows: Natural Resources Ecology, Society and Natural Resources, and Interdisciplinary Natural Resources Planning.

The curricula in each department offer as many courses in common with those in other departments as possible, while ensuring that specific professional education requirements are met. Flexibility and individuality in each student’s program are provided by curriculum choice, by options within curricula, and by elective credits. Provision is also made for advanced training leading to a military commission.

A variety of scholarships are available to undergraduate students based on need and merit.

Graduate Program

Programs leading to advanced degrees are offered in each of the fields represented by the undergraduate curricula of the college and in natural resources. Both the master’s and the doctor’s degree, with emphasis on conducting a research project and preparing a thesis or dissertation, are available. A non-thesis master’s degree may also be obtained in each department. An interdisciplinary Master of Natural Resources degree focused on management and administration is also available.

Excellent facilities and opportunities are available for graduate study and research in the subject-matter areas. Research in the college is organized through the Idaho Forest, Wildlife and Range Experiment Station. Research is also supported by the Idaho Cooperative Fish and Wildlife Research Unit, the Cooperative Park Studies Unit, the Wilderness Research Center, and by various state, federal, and private organizations.

Assistantships and fellowships are available to assist highly qualified students in their graduate programs. More information on graduate studies may be obtained by writing to the College of Graduate Studies. Information on available specializations and current projects may be obtained by writing the College of Natural Resources.

Requirements for Graduation

University Requirements. See regulation J in Part 3 for general university requirements for degrees.

College Requirements. Credits for the baccalaureate degree vary from 128 to 132 semester hours, depending on the option selected. A minimum cumulative grade-point average of 2.00 in all courses taken in this college is required for graduation. Courses in the college numbered above 299 are not open to any undergraduate student who is on academic probation.

The college may permit substitutions or grant waivers of specified requirements. Thus, for a student with special aptitudes or interests, a program can be devised that will provide a foundation for advanced study or research or meet other acceptable and well-defined career objectives.

Internship, and Employment Requirements. Students in Fishery Resources, Natural Resource Ecology and Conservation Biology, Resource Recreation & Tourism, and Wildlife Resources have an internship or summer work experience requirement. Specific information is contained in the respective departmental sections in Part 5.

Idaho Forest, Wildlife and Range Experiment Station

All members of the college faculty are on the staff of the experiment station. Other members of the station staff include full-time research associates and technicians, as well as graduate-student appointees.

The program of the experiment station is closely connected with the graduate training program of the college. Many of the graduate students enrolled in the college are on assistantships associated with station projects.

The station staff conducts research on a wide variety of renewable natural resource management problems in the areas of forestry, forest products, range, resource-based recreation, resource-based tourism, wildlife, and fisheries. Several projects are interdisciplinary. Funds for the station are provided by the university, by some departments of the state of Idaho, and by grants from federal, other state, and private sources. Currently a majority of these funds comes from non-university sources. More information on station activities may be obtained by writing to the associate director, Idaho Forest, Wildlife Range Experiment Station, College of Natural Resources.

College of Science

Judith Totman Parrish, Dean; Joseph G. Cloud, Associate Dean (321 Mines Building; 208/885-6195; www.sci.uidaho.edu; email sciences@uidaho.edu)

The College of Science was established in 2002. The mission of the college is to provide a superior education in the sciences, to advance knowledge through research and scholarship, and to serve the university, state and nation.

Faculty and Staff

The college has some 140 faculty and staff supporting its academic and research programs. Approximately 700 undergraduate students and 215 graduate students are enrolled in programs offered by the College of Science.

Departments and Programs of Instruction

The college includes the departments of Biological Sciences, Chemistry, Geography, Geological Sciences, Mathematics, Physics, and Statistics. Cooperating units from other administrative divisions include the Department of Microbiology, Molecular Biology and Biochemistry in the College of Agricultural and Life Sciences, Department of Psychology and Communication Studies in the College of Letters, Arts and Social Sciences and the Program in Environmental Science.

Undergraduate Programs. The College of Science offers bachelor’s degrees in biology, chemistry, geography, geology, mathematics and physics. See departmental sections in Part 5 for details.
Graduate programs. The College of Graduate Studies offers advanced degrees in many disciplines in the College of Science. A master’s degree is available in biology, chemistry, earth science, geography, geology, geophysics, hydrology, mathematics, physics, and statistics. The degree of Doctor of Philosophy is available in biology, chemistry, geography, geology, mathematics, and physics. Please see the list of programs offered in Part 1 for details.

Preparatory Programs in Medicine and Dentistry. Premedical and predental programs are administered by the Health Studies Committee through the Department of Biological Sciences. See the Department of Biological Sciences section in Part 5 for details.

Admission to the College
Students who would like to attend the College of Science should plan their high school electives carefully to ensure that they are adequately prepared to begin their study at the college level. Students should select subjects in science and mathematics that will provide a well-rounded preparation for further study. For a statement of general undergraduate and graduate admission requirements, see Part 2.

Teacher Education Program
Students preparing for secondary-school teaching should consult the section on the College of Education in this Part 4.

General Requirements for Graduation
Each student working toward a baccalaureate degree from the college must satisfactorily complete 128 semester credits (unless a higher number is specified in the particular curriculum), including at least 36 credits in courses numbered 300 and above, the Core requirements (see regulation J-3 in Part 3), and the departmental requirements for the degree sought. The departmental requirements applicable to the B.A. and B.S. degrees are listed in Part 5.

Major Curricula
Major Requirements. The departmental requirements are stated under the respective curricula in Part 5.

Facilities and Equipment
The college is housed in several buildings across campus with most of the disciplines housed in their own facility. All facilities contain teaching and research laboratories, classrooms, and faculty and administrative offices. An extensive array of analytical and other scientific equipment ensures state-of-the-art hands-on training in all aspects of the sciences.

Scholarship and Loan Funds
Students interested in scholarships should refer to the “Student Financial Aid Services” section in Part 2. Individual scholarships (totalling approximately half a million dollars) are awarded each year by the College of Science. In general, there is no application process for these awards — all students majoring in the college will be considered for scholarships for which they are eligible. To be considered for need-based scholarships, students must have completed the Free Application for Federal Student Aid (FASFA). The deadline for priority consideration for scholarships is February 15. Details on specific awards can be obtained by writing to: Associate Dean, College of Science, PO Box 443025, University of Idaho, Moscow, ID 83844-3025 or by sending e-mail to science@uidaho.edu.

Certificates of Completion
The University offers Certificates of Completion in various academic disciplines. The Certificate of Completion is a coherent body of work designed to reflect specialized knowledge in a specific discipline or area.

Certificate Requirements. To receive a Certificate of Completion, a student must: (1) complete at least 12 credits of course work as determined by the administrative unit offering the certificate (six of which may be for work completed at another regionally accredited institution, course work must not be more than five years old unless it is being used in conjunction with the completion of a graduate degree); and (2) complete these courses with a grade of “C” or better unless otherwise specified (some certificates require grades of “B” or better).

In order to enroll in 500-level courses, students must hold an undergraduate degree from a regionally accredited institution with a minimum 2.80 cumulative grade-point average. See Part 1 for a complete list of current offerings. Course requirements for certificates offered by a department may be obtained at the relevant department. Currently, the UI offers one university-wide certificates which a student may receive from any UI college. The requirements for this certificate is listed below.

University of Idaho Leadership Certificate
The Leadership Program develops general leadership skills that are needed and valued in the workplace and community but not commonly taught in the traditional college classroom. This 18-credit program, open to all undergraduates, consists of courses and structured practicum that provide academic knowledge mixed with practical, hands-on experience. An application form must be filed in their college office. The college associate deans or other college designees will advise students and approve applications, study plans, practicum, and course substitutions.

General Leadership and Communication Courses (12 cr). Students must complete 12 credits with a minimum of 6 cr in leadership and 3 cr in communication courses.

Leadership courses (minimum of 6 cr): AgEd 252 Developing Organizational (1cr) AgEd 253 Parliamentary Procedure (1cr) AgEd 450 Developing Leaders (2 cr) Bus 311 Introduction to Management (3 cr) Bus 413 Leadership and Organizational Behavior (3cr) Bus 418 Organization Design and Changes (3 cr) MS 101/111 Introduction to Military Science/Leadership Lab (2 cr) MS 102/112 Fundamentals of Leadership and Management /Leadership Lab (2 cr) MS 201/211 Applied Leadership and Management/Leadership Lab (3 cr) MS 202/212 Applied Leadership and Management/Leadership Lab (3 cr) NR 310 Leadership for Natural Resource Management (1 cr) PEP 460 Competition and Social Values (3 cr) REC 254 Camp Leadership (2-3 cr)
Engineering Outreach Program

The University of Idaho offers a variety of courses for individuals to continue their education whether in Moscow or not. Continuing education courses fall into four categories: (1) conferences, courses, seminars, or workshops offered by academic departments; (2) noncredit courses offered by the Community Programs; (3) credit and non-credit courses offered by the Engineering Outreach Program; and (4) Independent Study in Idaho courses. All are explained below.

Courses Offered by Academic Departments. Several academic departments offer conferences, courses, seminars, and workshops throughout the region where students can earn UI credit or Continuing Education Units (CEU) (see regulation D-5 for information on CEU's). These conferences, courses, seminars, or workshops are taught by UI faculty members or by qualified local instructors who are approved by the respective college in which the course is offered.

Students earning UI credit for these conferences, courses, seminars, and workshops must be admitted by the UI Admissions Office; students earning CEUs do not. In most cases, registration and payment is done at the initial class session of the conference, course, seminar, or workshop. In some cases, advance registration is necessary.

Each college and department is responsible for developing and administering these courses as well as registering students. Those interested in taking such courses should contact the respective college for courses available in their geographic area.

Community Programs

Noncredit Courses. The Conference Services & Community Programs office develops and administers most of the noncredit courses for the UI campus, Moscow, and the surrounding communities. During the fall, spring, and summer terms, over 100 courses are offered per semester with enrollments each year of over 6,000 participants, including children, youth, and adults. The program consists of classes in the arts, dance, music, recreation and hobbies, languages, health and fitness, foods and cooking, humanities, self-improvement, nature and the environment, computers, test preparation, and career development. Programs are developed with consideration given to the needs and desires of the general public, as well as to the economic times. Each class and instructor is independent in content, teaching style, duration, and fees; however, all have the common bond of extending the opportunities and resources of the university to the surrounding area. Classes are held both on campus and in the business community. These evening and weekend classes are scheduled to complement the working person’s schedule.

For additional information, call Community Programs at 208/885-6486 or visit their website at http://www.uidaho.edu/ceop.

Life on Wheels RV Conference. This unique program, located on the UI campus, offers present and prospective RVers opportunities to learn directly from experts about the vehicles and the RV lifestyle so they can enjoy more fully this important means of recreation and travel. The conference features over 100 different classes of interest to RVers. More information is available from Conference Services & Community Programs or online at http://www.rvlifeonwheels.com.

Certificate Programs

The College of Engineering’s Engineering Outreach (EO) Program was founded in 1975. A variety of media resources, including DVD, videotape, e-mail, the Internet, and print materials, is used to deliver courses to more than 350 students worldwide each semester. EO offers more than 80 continually updated courses each fall and spring semester.

Master’s Degree Programs. Engineering Outreach courses carry regular UI credit and may be used toward a degree program at UI or transferred to other institutions accepting credit from UI. The degree earned at a distance through Engineering Outreach upon completion of program requirements is the same degree earned by on-campus students, and there are no notations on students’ transcripts indicating the courses were completed at a distance. Courses required for master’s degrees in the following fields are offered through Engineering Outreach.

- Biological and Agricultural Engineering – emphasis in water management (M.S., M.Engr.)
- Civil Engineering (M.Engr.)
- Computer Engineering (M.S., M.Engr.)
- Computer Science (M.S.)
- Electrical Engineering (M.S., M.Engr.)
- Geological Engineering (M.S.)
- Mechanical Engineering (M.Engr.)
- Psychology – emphasis in human factors (M.S.)
- Teaching Mathematics (M.A.T.)

Certificates. A certificate signifies that a student has successfully completed a series of courses in a specific emphasis area predetermined by the academic department. Typically 12 credits, a certificate consists of a combination of required and elective courses. With graduate committee approval, certificate courses may be included in a graduate student’s study plan. Non-degree students can enhance their knowledge in an area without seeking a graduate degree, and simultaneously build a strong foundation for a master’s degree at a future date. All required coursework can be completed at a distance through Engineering Outreach. Certificates in the following areas are currently available:

- Advanced Materials Design
- Analog Integrated Circuit Design
- Applied Geotechnics
- Communication Systems
- Electric Machines and Drives
- HVAC Systems
- Power System Protection and Relaying
- Secure and Dependable Computing Systems
- Structural Engineering
- Water Resources Engineering
Courses Offered in Selected Areas. Engineering Outreach delivers credit courses that support many degree programs. These courses provide additional flexibility and may be applied toward a degree at UI or another university. Credit courses are available in the following areas:

- Business
- Engineering Management
- Six Sigma Innovation and Design
- Statistics

Short Courses on CD. Noncredit short courses are specifically designed for background study or professional advancement. Admission to the university is not required; therefore, a short course will not appear on a University of Idaho grade transcript. Short courses may be ordered at anytime throughout the semester. Visit the EO Web site for details about the following short courses: General Computer Security Overview, Host Space Defense, Network Intrusion Detection, Programming in JAVA, CMOS Analog Circuit Design, and Data Conversion.

Course Delivery and Services

Engineering Outreach courses are semester-based, with definite start and end dates. All courses offered through EO are recorded in studio classrooms at UI. Engineering Outreach students receive the same course lectures, notes, homework, project assignments, and exams that students receive on campus. Courses are delivered using an integrated approach: lectures are delivered by DVD or videotape, while most course materials and handouts are accessible via the Internet. The due dates for course assignments and exams for EO students are typically two weeks after the due dates on campus, to allow time for mailing. Students may keep the videotapes or DVDs for personal reference; they may not be sold or re-distributed, and reproduction is prohibited under copyright law.

Academic Support. Engineering Outreach offers individual assistance to EO students with questions about course delivery and also general university policies, procedures, and services. Our registration coordinator [eoreg@uidaho.edu or (800) 824-2889, press 2] provides assistance with admission, registration, fee payments, ID numbers and PINs, grades, and VandalMail. Other staff members can help track lectures, course material and exam shipments; and answer technical questions about DVD delivery.

Instructor Contact. Instructors for all courses are available to answer questions throughout the semester. Students can reach instructors by e-mail, fax, or by toll-free telephone, and contact information is provided on the EO Web site.

Homework. Students send completed homework directly to the instructor by mail, fax, or e-mail depending on the instructor’s preference. Engineering Outreach returns graded homework to students, but does not track or record grades for homework or projects, although exams are tracked by barcode.

Exams. An examination coordinator (proctor) is responsible for supervising the processing and returning exams to Engineering Outreach. The selection of an independent, non-biased proctor protects the student from allegations of academic dishonesty. Engineering Outreach reserves the right to withhold exams until a suitable proctor is selected by the student. The proctor may not be a personal friend, family member, work subordinate, or another EO student. Most proctors belong to one of the following groups: a) faculty or staff member at a local educational institution; b) work supervisor or training coordinator; c) military education officer; or d) public librarian.

E-mail and Internet Access. E-mail and Internet access are required for all Engineering Outreach students and their exam proctors. Most Engineering Outreach students are required to use an official University of Idaho (UI) e-mail address, ending with “@uidaho.edu”, for all UI e-mail correspondence, including messages between Engineering Outreach students, instructors, and EO staff. Students will be held responsible for complying with any rules and policies contained in correspondence sent to their UI e-mail address. Students can check their UI e-mail using VandalMail, a free Web-based delivery program. VandalMail can be accessed at http://www.vandalmail.uidaho.edu, and activation information is available at http://www.support.uidaho.edu/faq/accounts/activateaccount.htm.

E-mail Confidentiality. UI considers e-mail addresses directory information. Directory information is not protected by the Family Educational Rights and Privacy Act (FERPA), and a student must specifically request that it be confidential. A student’s directory information will be kept confidential ONLY if the student submits the Request to Prevent Disclosure of Directory Information form to the Registrar’s Office by the first day of class. This form can be downloaded at http://www.uidaho.edu/registrar/forms.html. If this form is not filed with the registrar, students’ e-mail addresses will be released to the other students in the same course.

Library Services. The University of Idaho Library offers its services to Engineering Outreach students by toll-free telephone at (800) 294-8097 or via the Web at http://www.lib.uidaho.edu. There are separate links to Distance Learning and Reserve. The Reserve section contains listings of electronic and library-only resources which supplement course textbooks. A library barcode is required to borrow materials and access the subscription databases, and an application can be filled out electronically on the library’s Web site.

Disability Support Services. UI’s Disability Support Services Office (DSS) provides academic support services to students with temporary or permanent disabilities. Students requesting disability-related accommodations should contact DSS directly, either by e-mail or by phone, and must provide appropriate disability documentation. For information about Disability Support Services, visit the Web at http://www.webs.uidaho.edu/aap.

Final Grade Reports. Final grades and transcripts are available online via the University of Idaho’s secure information system at http://max.csrv.uidaho.edu. A student ID and PIN are required for access; contact Engineering Outreach at (800) 824-2889, press 2, for assistance. For more information about grades and transcripts, visit the Web at http://www.webs.uidaho.edu/registrar.

Incompletes. A grade of “I” (Incomplete) can only be assigned if students have performed passing work, but extinguening circumstances prevent completion of the course on time. Both the instructor and the student must agree upon the “I” grade (see Part III, Regulation F for more information). To request a grade of “I,” contact the instructor to determine if support documentation will be required. Online and downloadable request forms are available on the EO Web site.

Admission

Engineering Outreach students must be admitted to the University of Idaho as undergraduate, non-degree or graduate students; applications can be submitted online at http://www.students.uidaho.edu/admissions. Non-U.S. citizens residing in the United States and other international students have additional admission requirements, which may include TOEFL scores, and verification of current visa status.

Registration and Fees

After students have been admitted to the university, they submit a registration form specifically designed for Engineering Outreach courses. This form is available in the EO catalog and on the EO Web site, and can be submitted electronically, mailed or faxed to Engineering Outreach. Courses offered through EO are not available on UI’s online registration system, and may have different registration deadlines from other UI courses.

Engineering Outreach students are encouraged to register early, especially for graduate-level courses that are scheduled for production during the current semester. Some of these courses have enrollment caps, and all are subject to change without notice by insufficient enrollments. Engineering Outreach courses may not be added or exchanged after the registration deadline has passed without paying additional late fees.
Independent Study in Idaho

Barry Willis, Associate Vice President for Educational Outreach (PO Box 441014, Moscow ID 83844-1014; phone (208) 885-6637; outreach@uidaho.edu).

Independent Study in Idaho (ISI) was created in 1973 by the Idaho State Board of Education as a consortium of four accredited Idaho institutions led by the University of Idaho. Other consortium members include Boise State University (BSU), Idaho State University (ISU), and Lewis-Clark State College (LCSC); the ISI Office is located at the University of Idaho North Campus Center in Moscow, Idaho.

Independent Study in Idaho offers undergraduate, graduate, and high school courses to students throughout the U.S. and abroad. Students take ISI courses to begin college programs early, resolve on-campus or off-campus class time conflicts, satisfy prerequisites, pursue professional development, and for personal enrichment. Courses are self-paced and available to students anytime, anywhere; Idaho residency is not required, and students do not need to be admitted to a university. Admission to any of the ISI consortium institutions is not automatically granted upon registering in an ISI course. Although ISI does not offer degrees, course credits earned upon completion may be applied toward a degree at an institution that accepts ISI credits. Courses offered through ISI parallel their on-campus counterparts in content and completion standards.

Courses are delivered via online and/or print formats and may be supplemented by videotapes or CDs. Some courses require the use of a computer with a CD drive or word processing software, and online courses require a computer and Internet access. Most courses, including online courses, require a proctor to supervise exams. Although it is not required for either print-based or online courses, e-mail is recommended for submitting lessons and communicating with ISI staff to expedite processing time.

Courses are offered on an open registration basis and do not follow the academic school year. After registering, students must purchase the textbook(s), if required, and study guide, which includes course procedures, lessons, and policies. Study guides for online courses are accessible via the Web but may also be purchased from the UI Bookstore, if desired. Courses must be completed within one calendar year from the registration date, or a course extension must be purchased; most courses take a minimum of four months to complete. Upon course completion, a transcript can be requested from the registrar’s office of the credit-granting institution, which is indicated in the study guide and with the course description in the ISI Catalog and on the Web site.

Visit the ISI Web site at http://www.uidaho.edu/isi, or contact the ISI Office, indepst@uidaho.edu; (208) 885-6641 or toll-free (877) 464-3246.

Cooperative Programs

The university participates in a number of cooperative arrangements in the state and region to extend resources and take advantage of special facilities.

Associated Western Universities Program

The university is a member of Associated Western Universities, which is a cooperative venture of certain institutions to make use of national laboratories located in the west. Financial support is available from the U.S. Department of Energy for graduate students and faculty to spend periods of time, up to one year, pursuing research projects at a number of these laboratories.
Cooperative Programs with Other Universities

Located only eight miles apart, the University of Idaho and Washington State University, in order to take advantage of unique strengths of each institution, have for some time operated a cooperative graduate and undergraduate course program. Courses available on either campus are identified in departmental listings, and offerings are listed in the Class Schedule. In addition, the two schools cooperate in programs in medicine, veterinary medicine, and food science and technology.

In 2002, the University of Idaho, in cooperation with Lewis Clark State College located in Lewiston, Idaho, began offering cooperative courses in Nez Perce language. Courses available on either campus are identified in departmental listings, and offerings are listed in the Class Schedule.

Interuniversity Program in Public Administration

The University of Idaho, with Idaho State University and Boise State University, offers a cooperative graduate program leading to the M.P.A. degree to provide present and prospective public administrators with a professional education and to prepare them to understand and adjust to a changing and challenging environment. Courses in core areas and in optional areas of emphasis, such as general public administration, natural resources administration, public works administration, and public finance, management, and budgeting, may be taken at any of the participating institutions without restriction. For further information, consult the Department of Political Science and Public Affairs Research.

Medical Education (WWAMI Program)
Andrew L. Turner, Director, WWAMI (Washington, Wyoming, Alaska, Montana, Idaho) Medical Education Program (304 Student Health Services Bldg. 83844-4207; phone 208/885-6696; brendah@uidaho.edu). Faculty: Gregory A. Bohach, Doug Cole, Mark E. DeSantis, Victor P. Eroschenko, Linda Fearn, Lee Fortunato, Mike B. Lackowski, Kathy Magnussen, Thomas A. McKean, Scott A. Minnich, Philip J. Mohan, Chris Williams.

WWAMI is a cooperative medical education program designed to enhance the training capability of the University of Washington School of Medicine (UWSOM) by utilizing the facilities of Washington State University (WSU), University of Alaska, Montana State University, University of Wyoming (UWY), and the University of Idaho (UI). The WWAMI program utilizes the physicians’ expertise in the states by providing clinical clerkships in the four-state area via a network of community training units for third- and fourth-year medical students. The WWAMI program at UI offers first-year medical students an ideal opportunity to study basic medical courses. Because of the small class size, there is a splendid opportunity to interact closely with the faculty and area physicians.

The WWAMI program allows access to medical education for Idaho residents by providing positions at UWSM that are reserved exclusively for Idaho residents. Beginning in 2001, 18 first-year students are admitted annually.

The WWAMI program was developed in Idaho to train Idaho residents in medical studies, to address the need for more primary care physicians practicing in rural areas, to extend the resources and facilities of an excellent medical school into Idaho, to improve the quality of patient care, and to minimize the cost of medical education by the use of existing facilities.

Eligibility for consideration as a WWAMI medical student requires certification as an Idaho resident. UI’s Undergraduate Admissions Office is responsible for residency certification.

Students interested in WWAMI apply directly to UWSOM. Idaho residents take their first year of medical studies at UI. First-year courses are offered conjointly by UI and WSU in parallel with courses at UWSOM. All participating faculty at UI and WSU are subject to the approval of UWSOM and are eminently qualified scientists and scholars.

Many of the physicians in the Moscow-Pullman-Lewiston area are involved in the preceptorship program in which the students work with local physicians and observe their practice in the office and at the hospital.

Since 1972, community clinical units in Boise and Pocatello have been training upper-division medical students. Students may continue their third and fourth years of clinical education through the WWAMI Clinical Center at Boise.

Participants in the WWAMI program are matriculated students of the University of Washington Medical School. Upon completion of their studies, they receive the M.D. degree. Following graduation, a postgraduate (internship/residency) training period of three to five years is considered the normal pathway to private practice. Medical students may also be approved for graduate studies at the University of Idaho or UWSOM leading to the M.S. or Ph.D. degree. The M.D.-Ph.D. curriculum usually requires a minimum of six years of study.

Summer Programs

Summer Session is an integral part of the year-round instructional program at the University of Idaho. A fourteen-week summer session begins about the third week of May. The flexible summer schedule includes a session that begins the Monday following Commencement, a second session that starts in mid-June, and a late four-week session. Summer session ends the Friday prior to the start of fall semester. The summer schedule of classes is designed to provide students with the opportunity to complete their academic programs in a timely manner. Special and innovative programs are offered to meet the needs of in-service professionals and other clientele throughout the state and nation.

Academic regulations included in this catalog are applicable during the summer session. Anyone interested in enrolling is invited to write the Summer Programs Office for a copy of the summer catalog that is published each year in late February or early March. The catalog contains complete information needed to register for the summer session. For more information, call (208) 885-6237 or visit the web, http://www.uidaho.edu/summer.

University Honors Program

Stephan P. Flores, Director (315 Idaho Commons; phone 208/885-6147; http://www.uidaho.edu/honors_program); Mark S. Warner, Associate Director; Cheryl Wheaton, Program Advisor.

Established in 1983, the University Honors Program (UHP) fosters academic excellence in undergraduate education by offering a stimulating course of study and the advantages of an enriched learning community for students from all colleges and majors.

The program’s diverse curriculum serves a variety of student needs and interests. Through honors core courses in general education and innovative seminars, honors faculty work to enhance each student’s
knowledge, initiative, and creativity. Most honors classes are small, so that honors students benefit from close intellectual contact and discussion with their instructors and fellow students. As part of a dynamic, broad-based education, members are encouraged to participate in domestic or international exchange programs; appropriate credit is determined within the honors curriculum for academic work completed while on exchange. Students are also encouraged to take advantage of opportunities to engage in laboratory or field-based research programs as well as internships and other forms of cooperative education. The program director, associate director, and program advisor act as supplemental academic advisors to all students who qualify for honors study.

Beyond the classroom, the program’s extracurricular opportunities include concerts, plays, films, lectures, and other excursions that support cultural enrichment, friendship, and learning. The great majority of the approximately 550 students active in the program are able to participate without adding to the total number of credits needed for graduation.

Admission Process. Admission to the University Honors Program is selective. Initial application criteria for prospective freshmen are based on a correlation between the student’s high school GPA and an ACT composite score or the SAT combined score. For example, students who have received a 26 ACT composite score, or a 1250 SAT combined verbal and math score, and a 3.7 high school GPA meet the initial minimum criteria. The correlation is based on a sliding scale: students with test scores higher than those noted may have GPAs below 3.7 and still meet the minimum criteria, and students with higher GPAs may have test scores lower than the examples offered above. To be considered for admission, students applying from high schools at submit a two-page essay as part of the application. Each student admitted to the program receives specific comments on the admission essay from the UHP director and the associate director. The directors evaluate all applications to determine admission.

Students who do not meet the initial admission criteria are encouraged to write to the honors director to explain their interest in the program and their reasons for seeking admission. Two former teachers must also send letters of recommendation to the director; students may then be asked to proceed with writing the admission essay. Current students who achieve a minimum 3.5 GPA at the University of Idaho (UI) may also apply for admission. Transfer students with a 3.5 GPA are considered for admission on a case-by-case basis. Students in good standing in an honors program at their previous school are considered for admission based on a review of their previous honors course work. Their transcripts are evaluated and appropriate credit given toward courses in the honors curriculum.

Participation Requirements. A member of the University Honors Program must complete, on average, one honors course every second semester and maintain a minimum 3.2 cumulative GPA. Students in the program who have averaged at least one graded honors course each semester and have a cumulative GPA of 3.2 are allowed to register with the first group of seniors.

Students may use Honors sections of UI General Core Studies (GCS) courses to count toward satisfying university core requirements in general education. Depending on which courses students select, as many as 26 honors credits satisfy university core requirements in the humanities, social sciences, and sciences. Under the Cluster Course requirements in General Core Studies (GCS), it is important to note that UHP students are not restricted to cluster courses. Students in the University Honors program can elect to use 8-9 credits in HON-designated courses outside of any Core Discovery sequence to satisfy the cluster requirement: the three courses must include at least two different disciplines (CORE and CORS may not count toward the two-discipline requirement) and at least one course which must be upper-division (300 to 400 level). Additional honors credits to total the required 18 credits for General Core Studies may also be selected from honors courses in any core cluster or other honors courses to count for general elective credit. As students fulfill the university’s 18 GCS credits requirement through Core Discovery courses, honors cluster-level or regular courses in a Cluster—and also fulfill the International Course requirement—they must complete at least 14 honors humanities or Social Science (Hum/SS) credits with at least six Humanities credits and at least six Social Science credits. At present, honors seminars do not carry designated GCS Humanities or Social Science credits.

University Honors Program Core Award requirements: Three honors humanities credits, three honors social science credits, three honors science credits; additional credits as needed to reach 19 credits, including at least 16 credits with the HON designation, with an average GPA of 3.0 or above in honors coursework completed, and with an overall cumulative GPA of 3.2 or above.

University Honors Program Certificate requirements: Six honors humanities credits and six honors social science credits, selected from at least three different disciplines; three honors science credits; Math 315 or honors Philosophy 202 (honors section or via Honors Elective Agreement); six upper-division honors course or seminar credits; additional credits as needed to reach 27 credits, including at least 20 credits with the HON designation, with an average GPA of 3.0 or above in honors coursework completed, and with an overall cumulative GPA of 3.2 or above.

Members of the program may take honors courses even if they decide not to work for a certificate or core award. Most honors courses are designated with an “HON” on the transcript to indicate that the course work is of a special nature. Students who receive the “Honors Core Award” or the “University Honors Program Certificate” have these distinctions noted on their official UI transcripts.

Scholarship Availability. Each year scholarships are offered to a select number of students entering the program; these awards are applied to resident fees. No additional application form is required. Likewise, a select number of UHP out-of-state tuition waivers are offered to non-Idaho residents. The awards are renewable, contingent on satisfactory progress toward and completion of an honors certificate while maintaining an overall GPA of 3.3. In addition, members of the University Honors Program have been successful in taking advantage of mentorship and advice regarding prestigious national scholarship opportunities.

University of Idaho, Boise

The University of Idaho Center, Boise, was established to serve certification and graduate program needs for persons involved in elementary, secondary, and higher education, and engineering within Boise Area. Certification programs are available in adult, counselor, and technology education; education leadership; and special education administration.

Graduate programs in education include the master’s and doctorate with an emphasis on professional-technical education, educational leadership, and adult education. Sixth year professional programs may be completed in educational leadership, special education, school psychology, and professional-technical education. Graduate programs in counseling include a master’s degree with an emphasis in rehabilitation counseling and a specialist program in school psychology.

The center also houses the College of Engineering, Boise. The center offers outstanding graduate engineering instruction, research, continuing education, and outreach services for individuals and businesses in the Treasure Valley. The focus of educational activities is on innovative master’s and doctoral programs uniquely suited for the engineer in industry or full-time students. Externally funded research is solicited from both government and industry sources, with an emphasis on application of advanced design and manufacturing processes. Thesis topics and projects for degree requirements can be tied to ongoing industry activity. Short courses in specialized areas are provided to help practicing engineers gain additional skills and stay professionally current. The following degree programs are available using a combination of resident faculty and video courses: Agricultural, Biological Systems, Civil, Computer, Electrical, and Mechanical Engineering (M.Engr., M.S., Ph.D.) and Engineering Management (M.Engr.).

Persons representing a variety of University of Idaho programs are housed in the center. They include a College of Agriculture communication
specialist, an agricultural education supervisor, a nutrition specialist, a family development specialist, a pesticide specialist, the college’s regional office for off-campus research and cooperative extension programs, the regional development director for Vandal Boosters, the director of development for southern Idaho, a media relations specialist, the associate director of New Student Services, the project coordinator for CDHD, the special assistant to the president’s office, the statewide staff development coordinator for Adult Basic Education, the director of the Quality Schools Consortium, a professional staff development program for school administrators, the Idaho Administrators’ Assistance Center, College of Law director of development, and the external programs coordinator.

University of Idaho, Coeur d’Alene
Jack Dawson, Dean (1000 W. Hubbard Ave, Suite 242, Coeur d’Alene, Idaho 83814-2277; phone 208/667-2588, Fax (208) 664-1272; http://www.uida.uidaho.edu, cdactr@uidaho.edu)

The University of Idaho Coeur d’Alene was established to bring UI programs to the people of northern Idaho and eastern Washington. Cooperative relationships with other state of Idaho institutions, as well as those in eastern Washington, allow our students to finish various degrees without leaving the area. Over 150 University of Idaho courses are offered through the Coeur d’Alene Center each semester. Courses are taught on-site by resident and affiliate faculty or offered via interactive video, videotape, and the Internet. Many of our degree programs are designed for working professionals seeking a college education. Undergraduate degrees offered at University of Idaho Coeur d’Alene are education, computer engineering, environmental science, psychology, and technology. Undergraduate programs in education include Elementary Education with K-8 certification, Physical Education with 1-12 certification, and Elementary/ Special Education K-12 certification. Graduate degrees may be attained in education, environmental science and engineering. Masters programs in education include Adult Education, Counseling and Human Services, Curriculum and Instruction, Education Technology, Educational Leadership, and Professional-Technical Education. Education Specialist is offered for those seeking administrative positions up to and including the superintendency. Graduate programs in counseling include an emphasis in Rehabilitation-Community Counseling and School Counseling. Engineering courses are offered through Engineering Outreach. Certificate programs are offered in Environmental Science and Geographical Information Systems (GIS).

Certification only in Secondary Education is available for those students that hold a bachelor’s degree and seek a teaching certificate. The College of Agriculture and Life Sciences District I and Extension Office at the Coeur d’Alene Center provide extension programming including competitive agriculture, community development, nutrition and food safety, family and youth, and natural resources. The Extension Director’s office provides support for faculty in the ten northern counties.

The University of Idaho Research Park (UIRP) in Post Falls is home to several businesses, which have an opportunity to participate in university research partnerships.

University of Idaho, Idaho Falls

The University of Idaho, in partnership with Idaho State University, operates the Center for Higher Education at University Place in Idaho Falls. University Place serves over 3,000 undergraduate and graduate students in southeast Idaho. The center is ideally located on the banks of the Snake River and adjacent to the Idaho National Engineering and Environmental Laboratory (INEL). Yellowstone and Teton National Parks, scenic forests, pristine wilderness areas, and world-class recreational activities are located nearby.

Over 150 University of Idaho courses are offered at the center each semester. Courses are taught on-site by resident and affiliate faculty and are offered via interactive video, videotape, and the Internet. Students may complete undergraduate degrees in agribusiness, computer science, computer engineering, environmental science, general studies, horticulture, plant science, and industrial technology. Graduate degrees are available in adult education, biological and agricultural engineering, chemical engineering, chemistry, civil engineering, computer science, computer engineering, electrical engineering, engineering management, environmental engineering, environmental science, hydrology, industrial safety, interdisciplinary studies, MAT mathematics, mechanical engineering, metallurgy, nuclear engineering, plant science, and systems engineering.

The College of Agriculture District IV Research and Extension Office at the Idaho Falls Center provides extension programming and agriculture related activities. The center is also home to the Science Mechanics Materials (SiMML) Laboratory and the Idaho Falls office of the Idaho Water Resources Research Institute (IWRRI).

Veterinary Medical Education (WOI)
The University of Idaho cooperates with Washington State University and Oregon State University in a program of veterinary medical education, research, and service. When accepted in the WOI program, students from Idaho take the first three years and most of their fourth year of professional training in veterinary medicine at Washington State University. In the fourth year of the program, students also receive part of their training at the UI Caine Veterinary Teaching Center at Caldwell, Idaho, where they can specialize in food animal production medicine. Cooperative graduate programs leading to M.S. and Ph.D. degrees are also available. Idaho students seeking to enter the professional program must complete a Washington State University Uniform Undergraduate Application Form as well as a WOI Program application. Both may be obtained from and returned to the Office of Student Services, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-7012. In addition, Idaho applicants must secure certification of Idaho residency status by completing and submitting the appropriate residency certification forms available through the University of Idaho Undergraduate Admissions Office.
Department of Accounting

Marcia S. Niles, Dept. Head (125A J. A. Albertson Bldg. 83844-3161; phone 208/885-6453). Faculty: Steven V. Campbell, Karin Hathaway-Dial, Teresa P. Gordon, Jeffrey L. Harkins, Maria A. Kraut, Marcia S. Niles, Heather S. Rogers, Glen G. Utzman.

The goal of the accounting program is to prepare graduates to enter the accounting profession in public accounting, industry, or the public sector. The program develops and enhances a student’s thinking, judgment, and communication skills, while providing a sound technical foundation. The accounting program is fully accredited by the AACSB.

The department offers two degrees, a bachelor of science in business and a master of accountancy.

The 128-credit bachelor’s degree in accounting has a managerial or controllership emphasis, designed to prepare students for professional positions as employees. Graduates are qualified for jobs as cost accountants, as accountants within a governmental unit, as production accountants for a manufacturer, as project managers, or as internal auditors.

The M.Acct. degree program has primary emphasis areas that include auditing and financial accounting, corporate accounting management and controllership, government and not-for-profit fiscal management, international accounting, accounting information systems analysis and design, and taxation. Other emphasis areas or tracks are permitted, subject to approval by the departmental graduate committee.

Admission to the M.Acct. degree requires (1) a B.S., B.A., or B.B.A. degree from an accredited college or university, (2) acceptable GRE or GMAT examination score, (3) an undergraduate grade-point average of at least 3.00, and (4) a minimum TOEFL score of 550 (if applicable).

The department, in conjunction with the College of Law, offers a concurrent J.D./M.Acct. degree. See the College of Graduate Studies and the College of Law sections in Part 4 for general requirements applicable to the M.S. degree.

Students seeking the M.Acct. degree will develop a degree plan in consultation with their advisors, complete at least 30 credits of course work, and successfully complete a comprehensive written examination.

Required courses include Acct 561, 570, 590, and 592, plus one course chosen from Acct 510, 530, 545, 585, 586, 598, and 599 (students must have taken at least one tax class at the undergraduate or graduate level). An additional 15 credits are chosen from approved options, which must include 9 credits outside of accounting. Those electing the thesis option include 6 credits of Acct 500 in the additional 15 credits.

Courses

See Part 6 for courses in Accounting (Acct).

Undergraduate Curricular Requirements

ACCOUNTING (B.S.Bus.)

Required course work includes the university requirements (see regulation J-3) the general requirements for graduation from the College of Business and Economics (see Part 4), and:

Acct 275 Accounting Information Systems (3 cr)
Acct 315 Corporate Accounting and Reporting I (3 cr)
Acct 414 Intermediate Accounting and Reporting II (3 cr)
Acct 483 Federal and State Taxes I (3 cr)
Acct 486 Accounting for Management Decision Making and Control (3 cr)
Acct 492 Auditing and Controls (3 cr)

Accounting electives chosen from the following (6 cr):

Acct 415 Advanced Financial Accounting and Reporting (3 cr)
Acct 430 Accounting for Public Sector Entities (3 cr)
Acct 484 Federal and State Taxes II (3 cr)
Acct 485 Estate Planning (3 cr)
BlAw 420 Commercial Law (3 cr)
BlAw 421 Legal Environment of Business (3 cr)
BlAw 427 Taxation (3 cr)
BlAw 500 Practicum in Legal Applications (6 cr)
BlAw 552 Advanced Taxation (3 cr)
BlAw 596 Special Topics (3 cr)

Academic Minor Requirements

ACCOUNTING MINOR

Acct 205 Fundamentals of Accounting (4 cr) or Acct 201-202 Intro to Financial Accounting & Intro to Managerial Accounting (6 cr)
Acct 275 Accounting Information Systems (3 cr)
Acct 310-311 Accounting for Business Decisions I-II or Acct 381 Accounting for Managers and Investors (3-4 cr)

Courses selected from the following to total at least 18 cr:

Acct 315 Corporate Accounting and Reporting I (3 cr)
Acct 414 Corporate Accounting and Reporting II (3 cr)
Acct 415 Advanced Financial Accounting and Reporting (3 cr)
Acct 430 Accounting for Public Sector Entities (3 cr)
Acct 483 Federal and State Taxes I (3 cr)
Acct 484 Federal and State Taxes II (3 cr)
Acct 485 Estate Planning (3 cr)
Acct 486 Accounting for Management Decision Making and Control (3 cr)
Acct 492 Auditing and Controls (3 cr)
BlAw 420 Commercial Law (3 cr)

Graduate Degree Program

The Master of Accountancy degree requires 30 semester credits beyond the bachelor’s degree, and is designed to meet the 150-credit requirement for taking the CPA examination in Idaho. Completion of this degree qualifies students to enter the public accounting profession in auditing, tax, or other positions ultimately requiring a CPA license.

Candidates must fulfill the requirements of the College of Graduate Studies and the Department of Accounting. See the College of Graduate Studies section of Part 4 for the general requirements applicable to the M.S. degree.

Division of Adult, Counselor, and Technology Education

The professional degree majors in Adult, Counselor, and Technology Education provide the opportunity and relevant skills, knowledge, and dispositions to enable teachers, administrators, counselors, and business and industry personnel to work effectively with today’s organizations, youth, and adults. Learners benefit from the realistic relationships between course experiences and work required by educational institutions, business, industry, agriculture, and family life.

Preservice teaching degree majors are offered in: Professional-Technical and Technology Education (PTTE) with options in Business and Marketing Education, Technology Education, and Professional-Technical Education (PTE) in the College of Education; and Agriculture Education (B.S.Ag.Ed.) and child, family, and consumer studies (Family and Consumer Science Education option) (B.S.F.C.S.) in the College of Agriculture. (See Admission to Teacher Education Programs.)

For all undergraduate teaching degrees listed below the student should consult an advisor concerning state requirements for the professional-technical education certificate.

Two nonteaching undergraduate majors are available in office administration (B.S.O.Ad.) and technology (B.S.Tech.) through the College of Education for students who wish to capitalize on their secretarial and office management skills or technical and professional skills in industry or business.

Agricultural Education. Graduates with this degree (B.S.Ag.Ed.) are qualified for a standard secondary teaching certificate and are qualified to teach secondary agricultural science and technology. Schools, government, and agribusiness agencies that seek persons with training in agriculture and education provide employment opportunities for graduates of this curriculum. (See Agricultural and Extension Education for program and course descriptions.)

Business and Marketing Education. The business and marketing education option is for students interested in teaching business, marketing and business technology subjects at the high school or post-secondary level. Completers of this option may apply for Idaho secondary teacher certification in business technology education, marketing technology education, and consumer education.

Family and Consumer Science Education. Family and consumer science education (B.S.F.C.S.) is offered through the Margaret Ritchie School of Family and Consumer Sciences. (See Family and Consumer Sciences for program and course descriptions.) The program prepares students for teaching child, family, and consumer issues in the public schools, in community settings, or to business audiences. Graduates of the major include teachers in public and private institutions either at the secondary or post-secondary level as well as private agencies.

Professional-Technical Education. Professional-technical education option is designed primarily for teachers in area professional-technical schools and secondary trade and industry programs who do not hold degrees. It does not qualify one for teaching in a public K-12 system unless a person also holds a secondary endorsement or a professional-technical specialist certificate.

Professional-Technical Certification. In collaboration with the Idaho State Division of Professional-Technical Education, sequential inservice undergraduate professional-technical education degree courses, as well as selected graduate professional-technical courses, are offered each semester at area professional/technical schools located at Coeur d’Alene, Lewiston, Boise, and Twin Falls.

Technology Education. The undergraduate program in technology includes two degree programs. One is the Bachelor of Science in Technology (B.S.Tech.), which prepares students for technical and professional careers in industry or business. The other (B.S.Ed.) is a degree with a major in Professional-Technical and Technology Education with an option of Technology Education and provides opportunities for students to develop skills in several technical teaching areas and prepares them for certification as technology teachers in the secondary schools.
The master’s level for individuals seeking preparation as counselors who want to work in school, and rehabilitation settings. Specialist-level programs meet Idaho certification requirements in school psychology and advanced work in counseling. All programs are designed to assist the student toward meeting the requirements for counselor licensure.

Counseling and School Psychology. The counseling program offers course work at the master's level for individuals seeking preparation as counselors who want to work in school, and rehabilitation settings. Specialist-level programs meet Idaho certification requirements in school psychology and advanced work in counseling. All programs are designed to assist the student toward meeting the requirements for counselor licensure.

The Council for Accreditation of Counseling and Related Educational Programs (CACREP) is a specialized accrediting body recognized by the Council on Post-secondary Accreditation (COPA) in School Counseling (M.Ed., M.S.). The school counseling and school psychology programs are accredited by the National Council for the Accreditation of Teacher Education (NCATE) and the National Association of State Directors of Teacher Education and Certification (NASDTEC). The school psychology program is also accredited by the National Association for School Psychology (NASP). The rehabilitation counseling graduate program is accredited by the Council on Rehabilitation Education (CORE). All programs afford the graduate the opportunity to take the National Board for Certified Counselor Examination (NBCC) and its subtests.

Counseling and school psychology are fields that prepare professionals to work with children, adolescents, and adults to enhance academic, social, emotional, occupational, and personal growth. Students are provided with theoretical knowledge bases as well as practical application of skills in carefully selected field placements.

School Counseling. The graduate program in school counseling (M.Ed., M.S., and Ed.S.Couns.-Hum.Serv.) may be used to meet state certification for school counseling (school and vocational). Graduates usually seek positions in K-12 schools, post-secondary institutions, vocational counseling programs (either school or agency), employment agencies, and career centers.

School Psychology. The school psychology program offers the education specialist degree (Ed.D.Sch.Psych.) for those preparing to be school psychologists. Curricular requirements in the program include: course work in psychological foundations, educational foundations, interventions/problem solving, statistics/research methodologies, professional school psychology, practica, and internship.

Rehabilitation Counseling. The combination online and traditional instruction vocational rehabilitation counseling program has graduate degrees available at the master's and occupational therapy levels. Students seeking the special education option may apply for graduate study in Professional-Technical and Technology Education (PTTE) with an option in Business and Marketing Education. An additional 20 quarter hours in business and marketing education is required for this option. Successful completion of these courses will provide the graduate with the knowledge and skills necessary to perform the duties of a counselor in vocational rehabilitation agencies, hospital rehabilitation centers, community rehabilitation programs, and as private rehabilitation practitioners.

Technology Management. The Technology Management degree offers study in advanced technology related to Business and Industrial activities. This is a non-teaching degree for application in business and industry.

Professional-Technical and Technology Education. The graduate program is designed with flexibility to permit each student to pursue an individualized concentration in an area of emphasis in Professional-Technical and Technology Education. These areas include: Business and Marketing Education, Professional-Technical Education, and Technology Education. The graduate program offers students an opportunity to prepare for other responsibilities. Among the various career objectives a graduate student may choose are positions as curriculum coordinator, cooperative education coordinator, administrator of adult basic education program, human resource development specialist, work-based learning coordinator, supervisor of instruction, and administrator of professional-technical programs. In addition to seeking these local staff opportunities, many graduates of the professional-technical education program prepare for master-teacher assignments at the secondary level or as post-secondary (two-year college) instructors.

The graduate degrees of Master of Science (M.S.), Master of Education (M.Ed.), and Educational Specialist (Ed.S.P.-T.Ed.) in Professional-Technical and Technology Education (Ed.T.E.-T.Ed.) are offered through the division.

The doctoral program in the division is an emphasis in Adult and Organizational Learning and is offered under the major “Education.”

A student with a baccalaureate degree from an accredited college or university with a major in one of the following related areas may apply for graduate study in Professional-Technical and Technology Education: Agricultural Science and Technology, Business Occupations, Health Occupations, Family and Consumer Science, Industrial Technology, Technology Management, Marketing Education, Technology (engineering), Trade and Industrial/Technical Education, or Career Development.

A student with a baccalaureate degree with a major in a nonrelated area must have work experience appropriate to a related area in order to apply for graduate study in Professional-Technical and Technology Education and/or (1) certification by the Idaho State Division of Professional-Technical Education as a professional-technical teacher in Idaho, (2) baccalaureate degree in a recognized professional-technical field, (3) a baccalaureate degree in a related occupational area, and current employment as a professional-technical teacher, or (4) a baccalaureate degree, occupational experience, and current work toward employment as a professional-technical teacher--with approval of the division’s graduate committee.

A Master of Science (M.S.) or a Master of Education (M.Ed.) program is available in Professional-Technical and Technology Education (PTTE) with an option in Business and Marketing Education. The curriculum requires the following courses in the major: Principles and Philosophy of Professional-Technical Education; Instructional Strategies and Learning Styles; Instructional Design and Curriculum Development; Issues in Business and Marketing Education; and technology electives. Graduates of this program generally are employed as master teachers in secondary and post-secondary institutions.

Graduates of a Master of Science (M.S.) or a Master of Education (M.Ed.) program in Professional-Technical and Technology Education (PTTE) with an option in Technology Education generally are employed in secondary and post-secondary teaching programs as master teachers or as mid-level managers and technical consultants in business and industry. The curricular requirements in the major include the following courses: Principles and Philosophy of Professional-Technical Education and Instructional Strategies and Learning Styles., Each master's student must demonstrate a proficiency in the five industrial technology cluster areas of power, energy, and transportation; communication; manufacturing; construction; and principles of technology.

Students may seek a Master of Science (M.S.), Master of Education (M.Ed.), or Educational Specialist (Ed.S.P.-T.Ed.) in Professional-Technical and Technology Education. Graduates are generally employed as administrators, master teachers, or program directors in educational institutions or business and industry. Curriculum requirements in the major field include: Principles and Philosophy of Professional-Technical Education, and Instructional Strategies and Learning Styles.

Courses
See Part 6 for courses in Adult and Organizational Learning (AdOL), Counseling and School Psychology (CASP), and Professional-Technical and Technology Education (PTTE).

Undergraduate Curricular Requirements

PROFESSIONAL-TECHNICAL AND TECHNOLOGY EDUCATION (B.S.Ed.)

Required course work includes the university requirements (see regulation J-3) and the following:

General Professional-Technical and Technology Education Requirements

PTTE 351 Principles and Philosophy of Professional-Technical Education (3 cr)
PTTE 426 Instructional Design and Curriculum (3 cr)
PTTE 430 Leadership and Student Organizations (2 cr)
PTTE 431 Supervising PTTE Student Organizations (1 cr)
PTTE 447 Diverse Populations and Individual Differences (2 cr)
PTTE 484 Career Guidance and Transition to Work (3 cr)
PTTE 472 Professional-Technical & Technology Education Teaching Methods (3 cr)

Completion of one of the following three options:

A. Business and Marketing Education Option

Students whose primary interest is in secretarial and clerical subjects and who wish to qualify for professional-technical certification elect this major. Consult the business education advisor concerning state requirements for the professional-technical education certificate.

The Business and Marketing Education option is for students interested in teaching business, marketing, and business technology subjects at the high school or post-secondary level. Completers of this option may apply for Idaho secondary teacher certification in business technology education, marketing technology education, and consumer economics.

Requirements include the General Professional-Technical and Technology Education Requirements, the Idaho Technology Competency Certification, the satisfactory completion of the PRAXIS II Content Area Test, and the following:

Acct 201 Introduction to Financial Accounting (3 cr)
Acct 202 Introduction to Managerial Accounting (3 cr)
BLaw 265 Legal Environment of Business (3 cr)
Bus 101 Introduction to Business Enterprises (3 cr)
Bus 311 Introduction to Management (3 cr)
Bus 321 Marketing (3 cr)
Comm 101 Fundamentals of Public Speaking or Comm 111 Introduction to Communication Studies (3 cr)
Econ 201, 202 Principles of Economics (6 cr)
ED 201, 203 Diverse Learners in Schools and Social/Cultural Contexts (3 cr)
ED 301 Principles of Learning and Development in Education (3 cr)
ED 302 Curriculum, Instruction, and Assessment Strategies (3 cr)
ED 401 Professional Role Development (3 cr)
EDTE 463 Literacy Methods for Content Area Learning (3 cr)
Engl 313 Business Writing (3 cr)
FCS 448 Consumer Economic Issues (3 cr)
Psych 101 Intro to Psychology or Psych 305 Developmental Psychology (3 cr)
PTTE 102 Advanced Keyboarding & Document Preparation (2 cr)
PTTE 205 Business Computer Concepts (3 cr)
PTTE 211 Communication Skills for Workforce Development (2 cr)
PTTE 415 Microcomputer Applications (3 cr)
IMPORTANT: Please refer to the Graduate Programs section of Part 4 for the general requirements applicable to each degree.

Master of Education and Master of Science. Master’s and education specialist degree candidates must fulfill the requirements of the College of Graduate Studies and of the Division of Adult, Counselor, and Technology Education. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Education Specialist. Offered in adult and organizational learning, counseling and human services, school psychology, and professional-technical and technology education.

Doctor of Education and Doctor of Philosophy. The Ed.D. and Ph.D. programs are designed for those persons who show promise in theory development and research, and who appear likely to provide leadership in the profession. The programs aim to develop a comprehensive understanding of the field and the ability to identify and resolve pertinent problems.

Division minimum requirements for the Doctor of Education (Ed.D.) degree are: 15 credits in research competency, including statistics and research design; practicum and field experience; 18 to 25 credits in dissertation; 18 to 20 credits in a cognate area; and 30 credits in a major area of competency.

Division minimum requirements for the Doctor of Philosophy (Ph.D.) degree are: 21 credits in research competency, including statistics and research design; practicum and field experience; 18 to 25 credits in dissertation; and 20 to 30 credits in a major area of competency.
Aerospace Studies

The Air Force Reserve Officer Training Corps (AFROTC) offers eligible students education and training that leads to a commission as a second lieutenant in the U.S. Air Force. AFROTC students may major in any degree program offered at UI; they supplement their major curricula with the specialized aerospace studies courses to prepare for active commissioned service.

Four-Year Program (General Military Course and Professional Officer Course). A formal application is required for all students entering the four-year program. They may register for the program at the same time and in the same manner as they enroll in other college courses. During their freshman and sophomore years, students enroll in the General Military Course (GMC), and there is NO MILITARY OBLIGATION. They then may compete for entry into the Professional Officer Course (POC), which is normally taken during the last two years of college. Selection into the POC is highly competitive and is based on qualification on an Air Force medical examination, a physical fitness test, scores achieved on the Air Force Officer Qualifying Test (AFOQT), successful completion of a paid four-week field training course at an Air Force base, and the recommendation of the professor of aerospace studies.

Two-Year Program (Professional Officer Course). The two-year program consists of the Professional Officer Course (POC), the last two years of the four-year program. It is designed to provide greater flexibility to meet the needs of the students desiring Air Force opportunities. The basic requirement is that applicants have at least two academic years remaining at either the undergraduate or graduate level, or a combination of both.

After being nominated by the professor of aerospace studies, applicants seeking enrollment in the two-year program are evaluated on scores achieved on the AFOQT, the Air Force medical examination, a physical fitness test, and a personal interview. Because of processing procedures, interested applicants should contact the Department of Aerospace Studies no later than November 1 of the year prior to entering the program. Application should be made in writing or by a personal visit to the professor of aerospace studies, UI Shoup Hall or WSU Kruegel Hall. After successfully completing a paid six-week field training course at an Air Force base during the summer, applicants meeting all requirements may then enroll in the Professional Officer Course.

AFROTC also offers financial assistance to selected students in the form of scholarships and subsistence allowances. The students compete for the scholarships through a national screening process. The Air Force offers 1- to 4-year scholarships that cover tuition, fees, and a book allowance, and also provide a subsistence allowance ($250-$350 per month) for each month, depending on their grade level. Each September, a student is on scholarship. Students interested in applying for scholarships should get in touch with this department. Non-scholarship students receive a subsistence allowance ($350-$440 per month) while in the POC.

Air Force places a strong emphasis on physical fitness, and all AFROTC cadets are required to participate at least twice a week in an organized, early morning fitness program with other cadets as part of the Leadership Laboratory requirements.

Field Training. Air Force ROTC field training is offered during the summer months at selected Air Force bases throughout the U.S. Students in the four-year program participate in four weeks of field training, usually between their sophomore and junior years. Students applying for entry into the two-year program must successfully complete six weeks of field training before enrollment in the Professional Officer Course. The major areas of study in the six-week field training program include junior officer training, aircraft and aircrew training, career orientation, survival training, base functions and Air Force environment, and physical training. The major areas of study included in the six-week field training program are essentially the same as those conducted at four-week field training and in the General Military Course including Leadership Laboratory.

Leadership Laboratory. Leadership Laboratory is taken an average of two hours a week throughout the student’s enrollment in Air Force ROTC. Instruction is conducted within the framework of an organized cadet wing with a progression of experiences designed to develop each student’s leadership potential. Leadership Laboratory involves a study of Air Force customs and courtesies, drill and ceremonies, career opportunities in the Air Force, and the life and work of an Air Force junior officer. Students develop their leadership potential in a practical, supervised laboratory, which typically includes field trips to Air Force installations throughout the U.S. In addition, students are required to participate at least twice a week in an organized, early morning fitness program with other cadets.

Courses

See Part 6 for courses in Aerospace Studies (Aero).

Programs

The following programs are designed to provide students with a good military and leadership foundation so students completing them can serve as effective Air Force officers. They are not designed to be academic majors and thus no bachelor’s degree is offered.

For a student to receive an Air Force commission, he or she must have completed either the Four-Year Program or the Two-Year Program. Students may enter the program at points other than the two and four year points, however this requires a specialized academic program and department head approval. Contact the department head for more information. Prior-service students should consult the department to find out what course of study will be required for them.

Four-Year Program

- Aero 101-102 Foundations of the U.S. Air Force (4 cr)
- Aero 201-202 Evolution of U.S. Air Force Air and Space Power (4 cr)
- Aero 291 Four-Week Field Training Course (2 cr)
- Aero 311-312 Air Force Leadership and Management (8 cr)
- Aero 411-412 National Security Affairs/Preparation for Active Duty (8 cr)

Two-Year Program

- Aero 292 Six-Week Field Training Course (6 cr)
- Aero 311-312 Air Force Leadership and Management (8 cr)
- Aero 411-412 National Security Affairs/Preparation for Active Duty (8 cr)

Academic Minor Requirements

AEROSPACE STUDIES MINOR

Courses selected from the following (at least 12 credits must be in courses numbered 300 and above) (18):

- Aero 101-102 Foundations of the U.S. Air Force (1 cr)
- Aero 201-202 Evolution of U.S. Air Force Air and Space Power (1 cr)
- Aero 292 Six-Week Field Training Course (cr arr)
- Aero 311-312 Air Force Leadership and Management (3 cr)
- Aero 411-412 National Security Affairs/Preparation for Active Duty (3 cr)

Program in Aging Studies

The Aging Studies Minor connects different knowledge bases across many disciplines. The program offers an interdisciplinary approach that uses the concept of growing older to examine such cultural variables as class, ethnicity, nationality, gender, and developmental processes. The courses encourage students to develop critical thinking skills that will empower them as active learners and that will lead them to having a better understanding of what it means to grow old in a new age. Field and applied experiences will enable students to demonstrate new knowledge and to refine their competence in working with real life community and family problems. Fields such as mass communications, gerontology, economics, health services, social work, law, psychology, education, and family and consumer studies are increasingly offering special career opportunities to students with a background in aging studies.

Academic units that cooperate to offer this minor include the School of Family and Consumer Sciences, the Division of Health, Physical Education, Recreation and Dance, and the Departments of Architecture, Psychology, and Sociology/Anthropology/Justice Studies.

Academic Minor Requirements

AGING STUDIES MINOR

Psych 419 Adult Development and Aging (3 cr)
- Rec 365 Leisure and the Aging Process or Arch 412 Environment and Aging or FCS 428 Housing America’s Families (3 cr)
- Soc 431 Personal and Social Issues in Aging (3 cr)
- Additional courses selected from the following (if not taken above) or other courses with at least 50% aging content as approved by a co-coordinator or an advisor (9-10 cr):
- Arch 412 Environment and Aging (3 cr)
- Arch 498 Internship (3-6 cr)
- FCS 436 Personal and Family Finance Management (1-2 cr)
- FCS 440 STAdult Development (3 cr)
- FCS 440 Growing Old in a New Age (3 cr)
- FCS 428 Housing America’s Families (3 cr)
- FCS 488 Internship (3-6 cr)
- H&S 150 Wellness Lifetyles (3 cr)
- H&S 498 Internship in Health/Safety (3-6 cr)
- PEP 201 Fitness Activities and Concepts (2 cr)
- PEP 498 Internship in Physical Education (3-6 cr)
- Rec 365 Leisure and the Aging Process (3 cr)
- Rec 498 Internship in Recreation (3-6 cr)
- Soc 396 Social Work in the Aging (3 cr)
- Soc 431 Personal and Social Issues in Aging (3 cr)
- Soc 498 Internship (3-6 cr)

Department of Agricultural and Extension Education

Lou E. Riesenberg, Dept. Head (Agricultural and Extension Education Bldg., P.O. Box 442040, 1314 West 6th, 83844-2040; phone 208/685-6358; lriese@uidaho.edu; http://aee.ag.uidaho.edu). Faculty: Lou E. Riesenberg, Lori L. Moore. Adjunct Faculty: Robert J. Haggarty. Affiliate Faculty: Michael G. Rush.

The mission of the Department of Agricultural and Extension Education includes teaching, research, and service. The specific objectives of the department are: (1) to prepare educators for employment in teaching agriculture and extension programs; (2) to provide service and direction to FFA in Idaho; (3) to prepare for careers in general learning/
PART FIVE

Department of Instruction

Department of Agricultural and Extension Education

81

ranching or entry level positions in agricultural industry and agribusiness; (4) to provide an opportunity for graduate study in the areas of agricultural and extension education; (5) to assist in providing inservice education for agricultural educators in Idaho; (6) to provide service to related agencies and organizations for the support of education and the improvement of human resources; (7) to conduct quality research in agricultural and extension education; (8) to assist in maintaining viable agricultural education programs; and (9) to assist in the development of information and instructional materials for the support of agricultural educators and extension personnel.

Courses in animal science, agricultural economics, agricultural mechanics, entomological science, plant science, horticulture, and soil science will prepare graduates to teach these areas as secondary agriculture instructors and develop educational programs as county extension faculty. The agricultural education curriculum is approved by the State Board for Professional-Technical Education. Graduates who have completed a minimum of 28 credits in agricultural education and who meet the state certification requirements for a standard secondary teaching certificate are qualified to teach secondary agriculture. Graduates of agribusiness agencies that seek persons with training in agriculture and education provide employment opportunities for graduates of this curriculum. Courses provide students an opportunity to develop employment opportunities in teaching agriculture, cooperative extension, and agribusiness occupations.

The department provides opportunities for professional growth and development to agricultural educators through a planned program of graduate study. The pursuit of an M.S. degree allows for the development of problem-solving skills through scientific investigation of appropriate research topics. Graduate work in agricultural and extension education is offered with the opportunity for students to elect options in agricultural sciences, extension education, professional-technical teacher education, international agricultural education, or other areas that parallel their career goals. Because of the diversity of research efforts by departmental faculty members, a graduate student has a wide variety of specializations from which to choose a thesis topic. Students with this degree are well prepared to move into a job market or to pursue a Ph.D. program at another institution.

Admission to a graduate program requires an undergraduate degree with a major in agricultural education or a closely related field. The department may require the Graduate Record Examination if there is insufficient information available to indicate that the student will be successful in graduate work.

The department welcomes inquiries about its programs and suggests that anyone interested in possible pursuit of a degree in agricultural and extension education should contact the department (telephone 208/885-6358).

Courses

See Part 6 for courses in Agricultural Education (AgEd) and Agricultural Science and Technology (Ag).

Undergraduate Curricular Requirements

AGRICULTURAL EDUCATION (B.S.Ag.Ed.)

Required course work includes the university requirements (see regulation J-3) and one of the following options:

A. Teaching Option

The following option is approved by the State Board of Professional-Technical Education for the preparation of high school agriculture instructors. Graduates who have completed at least 28 credits in agricultural education, and who meet the state certification requirements for a Standard Secondary Teaching Certificate, are eligible to teach secondary agricultural science and technical agriculture. Students in this curriculum must take a minimum of 28 credits in the Department of Agricultural Education, which includes a grade-point average of at least 2.75, before being allowed to enroll in upper-division teacher education courses and participate in student teaching. Technical agriculture instruction areas include: agricultural economics and rural sociology; agricultural science and technology; agricultural systems management; animal and veterinary sciences; plant, soils, and entomological sciences; and food science and toxicology. A maximum of 8 cr of foreign language can be completed in lieu of 8 credits of technical subject matter courses with departmental approval. (36 cr)

Electives to total 128 cr or for the degree

AGRICULTURAL SCIENCE AND TECHNOLOGY (B.S.Ag.Sc.Tech.)

The agricultural science and technology major is designed for students interested in a broad education with emphasis on extension and agribusiness. The curriculum’s flexibility enables students to prepare for careers in general farming/ranching or entry-level positions in agricultural industry and agribusiness. Students who have not decided on a major in agriculture may enroll in this curriculum and take courses in a number of departments to decide on a departmental major. Note: No student may become a candidate for the B.S.Ag.Sc.Tech. degree who has already earned a degree in the College of Agricultural and Life Sciences or who is a candidate for another degree offered by the college.

Required course work includes the university requirements (see regulation J-3) and:

Act 201 Introduction to Financial Accounting (3 cr)
AgEc 278 Farm and Agribusiness Management (4 cr)
AgEc 289 Agricultural Markets and Prices (3 cr)
AgEc 356 Agricultural and Rural Policy or AgEc 361 Farm and Natural Resource Appraisal (3 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
Eng 207 Persuasive Writing or Eng 209 Inquiry-Based Writing or Eng 313 Business Writing or Eng 317 Technical Writing or Eng 207 Persuasive Writing or Eng 209 Inquiry-Based Writing (3 cr)
AgEc 450 Developing Leaders (4 cr)
Math 130 Finite Math (3 cr)
Math 143 Pre-calculus Algebra & Analytical Geometry (3 cr)
Math 160 Survey of Calculus (4 cr)
Math 170 Analytical Geometry & Calculus I (4 cr)
Math 220 Elementary Linear Algebra (3 cr)
Math 270 Analytical Geometry & Calculus II (4 cr)
Computer applications course or Idaho Technology Certification (3 cr)
Ag elective, which includes a minimum of 6 cr in Ag Econ, 6 cr in Animal Sci, 6 cr in Plant Sci, 3 cr in Horticulture, and 4 cr in Soils (40 cr)

Natural and applied science electives, which include Chem 101 or 111 and Biol 115 (16 cr)
Horticulture and social sciences electives, which include Econ 202 and Psy 101 (14 cr)
Electives to total 132 cr or for the degree

B. Agricultural Industry Management and Communications Option

The Agricultural Industry Management and Communications option is designed for students who desire a career in non-formal instruction, human resources development, and training in the food, fiber, and natural resource system. Graduates of this program will have a strong foundation in education, communications, and presentation and communications skills.

AgEd 451 Communicating in Agriculture (2 cr)
AgEd 498 Internship (max 10 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
Comm 431 Professional Presentation Techniques (3 cr)
Eng 313 Business Writing (3 cr)
Communications and agribusiness electives chosen from the following (11 cr):

AgEd 180 Introduction to Agricultural Education (1 cr)
AgEd 181 Introduction to Elementary Education (1 cr)
AgEd 252 Developing Organizations (1 cr)
AgEd 253 Parliamentary Procedure (1 cr)
AgEd 308 Exploring International Agriculture (2 cr)
AgEd 359 Developing 4-H Youth Programs (2 cr)
AgEd 448 Principles and Practices of Extension Education (3 cr)
AgEd 450 Developing Leaders (2 cr)
Business and accounting electives chosen from the following (6 cr):

Acct 201 Introduction to Financial Accounting (3 cr)
Bus 311 Introduction to Business Management (3 cr)
Bus 321 Marketing (3 cr)
BLaw 265 Legal Environment of Business (3 cr)

One course from the following (3-4 cr):

Math 130 Finite Math (3 cr)
Math 143 Pre-calculus Algebra & Analytical Geometry (3 cr)
Math 160 Survey of Calculus (4 cr)
Math 170 Analytical Geometry & Calculus I (4 cr)

Advisor approved communications electives, which include at least one upper division course (9 cr)

Computer applications course, or Idaho Technology Certification, or equivalent (3 cr)

Natural and applied science electives, which include Chem 101 or 111, and Biol 115 (16 cr)

Humans and social science electives (14 cr)

Technical subject matter courses must include breadth across four technical agriculture instruction areas (6 cr. minimum per area) and depth in one or two of these areas (6-12 additional credits per area). Technical agriculture instruction areas include: agricultural economics and rural sociology; agricultural science and technology; agricultural systems management; animal and veterinary sciences; plant, soils, and entomological sciences; and food science and toxicology. A maximum of 8 cr of foreign language can be completed in lieu of 8 credits of technical subject matter courses with departmental approval. (36 cr)

Electives to total 128 cr or for the degree

Agricultural science and technology courses - both technical agriculture instruction areas (6 cr. minimum per area) and depth in one or two of these areas (6-12 additional credits per area). Technical agriculture instruction areas include: agricultural economics and rural sociology; agricultural science and technology; agricultural systems management; animal and veterinary sciences; plant, soils, and entomological sciences; and food science and toxicology. A maximum of 8 cr of foreign language can be completed in lieu of 8 credits of technical subject matter courses with departmental approval. (36 cr)

Electives to total 128 cr or for the degree
Agricultural economics is an applied branch of economics. It is a social science that deals with economic problems in agriculture, the food industry, rural communities, and the use and conservation of our natural resources. Economic principles and theories are used to determine maximum economic efficiency in the production and marketing of agricultural commodities and in the use of natural resources.

The agricultural economics program prepares students to address problems faced by farmers and ranchers, agricultural marketing and supply companies, natural resource agencies, and rural communities. The department offers the degree of Bachelor of Science in Agricultural Economics with majors in agribusiness and agricultural economics. Areas of study within the majors include agricultural finance, agricultural policy, marketing, farm and ranch management, rural community development, international trade and development, economic use of natural resources, and management of agribusiness firms. The department also offers two minors: agribusiness and natural resource economics & community development.

The agribusiness major prepares students in the management functions of farms, ranches, and businesses involved with the production and marketing of farm commodities and farm production inputs. The agricultural economics major prepares students to become professional economists for commercial agricultural firms and governmental agencies or to pursue advanced degrees in this field before entering the profession.

Graduate training in agricultural economics encompasses commercial agricultural, natural resource, and rural development economics. Agricultural development and international trade are also emphasized.

The commercial agriculture area includes the economics of production and distribution, agribusiness management, and agricultural policy. Natural resource economics involves the evaluation of alternative uses of such resources as land (including resources obtained from land), air, and water.

Students initiating graduate work in agricultural economics should have a background in economics and quantitative methods. The following specific course areas are recommended: economic principles, six credits; intermediate microeconomics, three credits; statistics, three credits; mathematics, through introductory calculus; applied economics and/or agricultural economics, nine credits. Individual graduate programs are tailored to allow students to take courses and develop thesis proposals in line with their professional interests.

The department welcomes inquiries about its program and suggests that anyone interested in possible pursuit of a degree in agricultural economics should contact the department (telephone 208/885-6264 or visit the website at http://www.ag.uidaho.edu/aers).

Undergraduate Curricular Requirements

The agricultural economics area has two programs designed to prepare students for careers in the agricultural economics profession. The agribusiness major provides students with training related to management, finance, and marketing in the agribusiness sector. The agricultural economics major provides students with the theory and decision-making skills needed for the agribusiness environment.

Department of Agricultural Economics and Rural Sociology

Faculty:

Courses

See Part 6 for courses in Agricultural Economics (AgEc).

Graduate Degree Program

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Agricultural Economics and Rural Sociology. See the College of Graduate Studies section of Part 4 for the applicable general requirements.

The M.S. program in agricultural economics is designed to prepare students for management, research, and policy positions in the public and private sectors of the economy, and for further graduate study. Specific departmental requirements for the thesis option include 25 credits of course work including the following: AgEc 507; AgEc 509; AgEc 510; AgEc 525; two courses selected from AgEc 528, AgEc 524, and AgEc 551; and 9 cr of electives. In addition to the 25 credits of course work, six thesis credits (AgEc 500) are used to complete the total of 31 credits required for the degree. Students may take a non-thesis option M.S. degree. Under this option a student will take a minimum of 28 credits of course work including departmental course requirements. In addition, a three-credit paper will be written and presented by the student addressing a topic determined jointly by the student and the student’s graduate committee. This option is available for students not receiving financial support from research funds.
Program in American Indian Studies

Roderick P. Frey, (116 Phinney Hall 83444-1102; phone 208/885-6411; rfrey@uidaho.edu; http://www.webpages.uidaho.edu/~rfrey/indianminor.html). Faculty: Dennis Colson, Harold Crook, Rodney Frey, Georgia Johnson, Jan Johnson, Bill Ramsey, R. Lee Sappington, Debbie A. Storrs, Aaron Thomas, Mark S. Warner, J.D. Wulfhorst. Affiliate Faculty - Tribal Teacher: Felix Aripa, D’Lissa Penny Pinkham.

The American Indian Studies Program is based on the following objectives: (1) recruitment and retention – enhance the recruitment and retention of Indian students, as well as other students of ethnic heritage, attending and graduating from UI; (2) intercultural communication – provide an opportunity for face-to-face Indian/non-Indian exchange of ideas, perceptions, and misperceptions about Indian and Euro-American culture, including a meaningful context for intercultural communications and understanding, and solution of problems of bias and stereotyping; (3) cultural appreciation – foster a better understanding of and appreciation for the vitality, breadth, depth, and rich diversity of components of contemporary Indian cultures (e.g., arts, economics, literature, government, and social and religious life), as well as their histories; (4) rigorous curriculum with an interdisciplinary approach – enable students to acquire the knowledge, critical methods, and research skills of the academic fields that comprise the minor, including but not limited to anthropology, English, history, sociology, and teacher education; (5) application – provide an Indian pedagogy and knowledge base, i.e., an Indian perspective, that would complement and be integrated with students’ other academic fields of study (e.g., business, education, engineering, forestry and natural resources, health care, humanities, or social sciences), better preparing students with the skills and expertise to address and successfully meet the various issues and challenges faced in Indian communities; (6) collaboration – build partnership relationships between UI and regional tribes (Idaho and adjacent western states), especially the Coeur d’Alene and Nez Perce Tribes, improving communications, educational delivery, the sharing of expertise, and ability to address common concerns and problems; (7) institutional growth – advance the concerns and issues faced in Indian communities, as well as an Indian pedagogical and knowledge perspective within the university and academic communities; and (8) inclusivity – serve both Indian and non-Indian students and communities alike.

Courses

See Part 6 for courses in American Indian Studies (AmSt).

Academic Minor Requirements

AMERICAN INDIAN STUDIES MINOR

AIST 401 Contemporary American Indian Issues (3 cr)
Engl 484 American Indian Literature (3 cr)
Hist 431 History of Indian-White Relations (3 cr)
Elective courses selected from the following (6 cr):
AIST 320 The Celulloid Indian: American Indians in Popular Film (3 cr)
AIST 404 Special Topics (3 cr)
AIST 495 Practicum (cr arr)
AIST 498 Internship (cr arr)
AIST 499 Directed Study (cr arr)
Anth 422 Plateau Indians (3 cr)
Anth 436 North American Prehistory (3 cr)
Anth 443 Plateau Prehistory (3 cr)
Hist 313 Red, White, and Black: The Peopling of Early America (3 cr)
Hist 404 ST: The Nez Perce: Then and Now (3 cr)
Hist 105-102 Elementary North American (2 cr)
Soc/Anth 427 Racial and Ethnic Relations (3 cr)

Courses in American Studies

Courses

See Part 6 for courses in American Studies (AmSt).

Undergraduate Curricular Requirements

AMERICAN STUDIES (B.A. or B.S.)

Required course work includes the university requirements (see regulation J-3), general CLASS requirements for the B.A. or B.S. degree, and:

1. AmSt 201, 301, and a three credit designated upper-division American Studies course or a three credit capstone course in a major area of emphasis; and
2. Completion of one of the following major areas of emphasis:
 A. Literature Emphasis

Engl 343-344 Survey of American Literature (6 cr)

Courses selected from the following list (12 cr):
Engl 380 Introduction to U.S. Ethnic Literatures (3 cr)
Engl 427 American Fiction, 1914-1945 (3 cr)
Engl 429 Contemporary Fiction (3 cr)
Engl 441 Introduction to the Study of Language (3 cr)
Engl 470 American Literature to 1830 (3 cr)
Engl 471 American Literature, 1830-1865 (3 cr)
Engl 473 Literature of the American West (3 cr)
Engl 474 American Literature, 1865-1914 (3 cr)
Engl 480 Ethnic and Minority Literature (3 cr)
Engl 483 African American Literature (3 cr)
Engl 484 American Indian Literature (3 cr)

Courses in history and social science, which include at least 6 cr in each (selected from courses listed under the social science emphasis and from upper-division courses listed under the history emphasis) (18 cr)

B. History Emphasis

Hist 111-112 Introduction to U.S. History (6 cr)
Four courses selected from the following list (12 cr):
Art 302 Modern Art and Theory (3 cr)
Hist 313 Red, White and Black: The Peopling of Early North America (3 cr)
Hist 315 Comparative African-American Cultures (3 cr)
Hist 411 Colonial North America, 1492-1763 (3 cr)
Hist 412 Revolutionary North America and Early National Period, 1763-1828 (3 cr)
Hist 415 Civil War and Reconstruction, 1828-1877 (3 cr)
Hist 416 Rise of Modern America, 1877-1900 (3 cr)
Hist 417 United States, 1900-1945 (3 cr)
Hist 418 Recent America, 1945-Present (3 cr)
Hist 419 Twentieth-Century American West (3 cr)
Hist 420 History of Women in American Society (3 cr)
Hist 422 The American Landscape (3 cr)
Hist 423 Idaho and the Pacific Northwest (3 cr)
Hist 424 American Environmental History (3 cr)
Hist 428 History of the American West (3 cr)
Hist 430 U.S. Diplomatic History (3 cr)
Hist 431 History of Indian-White Relations (3 cr)
Hist 435 Latin America: The Colonial Era (3 cr)
Hist 438 Modern Mexico and the Americas (3 cr)
Hist 439 Modern Latin America (3 cr)
Hist 440 Social Revolution in Latin America (3 cr)
Hist 441 Comparative Slavery and Emancipation in the Atlantic World (3 cr)
MusH 440 Studies in American Music (3 cr)

Courses in literature and social science, which include at least 6 cr in each (selected from courses listed under the social science emphasis and literature emphasis) (18 cr)

C. Social Science Emphasis

Three of the following courses (9 cr):
Anth 329 North American Indians or Hist 431 Hist of Indian-White Relations (3 cr)
Geog 240 Economic Geography (3 cr)
PolS 235 Political Research Methods and Approaches (3 cr)
Soc 230 Social Problems (3 cr)

Courses from at least two different academic disciplines (at least 12 cr must be upper division) (18 cr):
AgEc 407 Economics of Rural Community Development (3 cr)
Anth 100 Introduction to Anthropology (3 cr)
Anth 422 Plateau Indians (3 cr)
Anth 431 Historical Archaeology (3 cr)
Anth 436 North American Prehistory (3 cr)
Anth 443 Plateau Prehistory (3 cr)
Arch 483 Urban Theory and Issues (3 cr)
Arch 489 American Architecture (3 cr)
Dan 421 Dance History (3 cr)
Econ 201, 202 Principles of Economics or Econ 272 Foundations of Economic Analysis (4 cr)
Econ 385 Environmental Economics (3 cr)
Econ 407 Public Finance (3 cr)
Econ 441 Labor Economics (3 cr)
Geog 163 Human Geography (3 cr)
Geog 330 Urban Geography (3-4 cr)
Geog 360 Population Dynamics and Distribution (3-4 cr)
Jamm 445 History of Mass Communication (3 cr)
MusH 440 Studies in American Music (3 cr)
Phil 472 Social and Political Philosophy (3 cr)
PolS 275 American State and Local Government (3 cr)
PolS 331 American Political Parties and Elections (3 cr)
PolS 332 American Congress (3 cr)
PolS 333 American Political Culture (3 cr)
PolS 360 Law and Society (3 cr)
PolS 437 American Presidency (3 cr)
PolS 438 Conduct of American Foreign Policy (3 cr)
PolS 467 Constitutional Law (3 cr)
PolS 468 Civil Liberties (3 cr)
Soc 101 Introduction to Sociology (3 cr)
Soc 313 Collective Behavior (3 cr)
Soc 322 Racial and Ethnic Relations (3 cr)
Soc 325 Sociology of the Family (3 cr)
Soc 414 Development of Social Theory (3 cr)
Soc 423 Social Stratification (3 cr)
Soc 424 Sociology of Gender (3 cr)
The department offers graduate programs leading to the Master of Science degree with a major in animal or veterinary science and a Doctor of Philosophy degree with a major in animal physiology. The department offers areas of specialization in nutrition, reproductive physiology, embryo physiology, animal growth and development, meat science, and animal diseases with orientation towards beef cattle, dairy cattle, horses, sheep, and fish. The department also participates in university interdisciplinary programs in reproductive biology, and molecular and agricultural genetic engineering.

Graduate work in the department is designed to prepare the student for work in research, extension, teaching, and industry. Thesis projects are diverse in scope and range in design from studying very fundamental biological questions to application of scientific knowledge to animal production and management. Facilities available for graduate student research include herds and flocks of major livestock breeds, ruminant nutrition and physiology laboratories, biomedical research laboratories, a university-operated dairy, meat science laboratory, and a 500-head experimental feedlot. Active cooperation is maintained with federal research agencies located on and off campus.

Graduate student assistantships are available on a competitive basis each year. Inquiries should be directed to the department’s graduate program coordinator.

Courses
See Part 6 for courses in Animal and Veterinary Science (AVS) and Veterinary Science (VS).

Undergraduate Curricular Requirements

ANIMAL SCIENCE (B.S.An.Sc.)

Required course work includes the university requirements (see regulation J-3) and:

AVS 101 Animal and Veterinary Orientation (2 cr)
AVS 109 The Science of Animals that Serve Humanity (3 cr)
AVS 110 Animal Husbandry Lab I (1 cr)
AVS 208 Science of Animal Husbandry (3 cr)
AVS 210 Animal Husbandry Lab II (1 cr)
AVS 221 Molecular and Cellular Biology (4 cr)
AVS 305 Animal Nutrition (4 cr)
AVS 306 Feeds and Ration Formulation (4 cr)
AVS 371 Anatomy and Physiology (4 cr)
AVS 450 Issues in Animal Agriculture (1 cr)
AVS 452 Physiology of Reproduction (4 cr)
Biol 115 Cells and the Evolution of Life (4 cr)
Chen 111 Principles of Chemistry I (4 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
Engl 313 Business Writing or Engl 317 Technical Writing (3 cr)
Math 143 Pre-calculus Algebra and Analytical Geometry (3 cr)
Stat 251 Statistical Methods (3 cr)
Computer applications course (3 cr)

Complete one of the following four options:

A. Business Option
Acct 201 Introduction to Financial Accounting (3 cr)
Acct 202 Introduction to Managerial Accounting (3 cr)
AgEc 278 Principles of Farm and Ranch Management (4 cr)
AgEc 289 Agricultural Markets and Prices (3 cr)
AgEc 301 Agricultural Economics I or AgEc 302 Agricultural Economics II (3 cr)
AVS 222 Animal Reproduction and Breeding (3 cr)
AVS 363 Animal Products for Human Consumption (3 cr)
AVS 472, 474, 476, or 478 Species Production (3 cr)
Blaw 265 Legal Environment of Business (3 cr)
Chem 275 Carbon Compounds (3 cr)
Econ 201 Principles of Economics (3 cr)
Econ 202 Principles of Economics (3 cr)
Business electives (6 cr)
6 crs of Upper Division Ag Econ
Electives to total 132 for the degree

B. Dairy Science Option
AgEc 278 Principles of Farm and Ranch Management (4 cr)
AgEc 289 Agricultural Markets and Prices (3 cr)
AVS 172 Principles and Practices of Dairy Science (2 cr)
AVS 222 Animal Reproduction and Breeding (3 cr)
AVS 330 Genetics of Livestock Improvement (3 cr)
AVS 411 Ruminant Nutrition (3 cr)
AVS 413 Physiology of Lactation (3 cr)
AVS 472 Dairy Cattle Management (3 cr)
AVS 475 Advanced Dairy Cattle Management (3 cr)
Chem 275 Carbon Compounds (3 cr)
Econ 202 Principles of Economics (3 cr)
FST 429 Dairy Products (4 cr)
MMB 154 Introductory Microbiology (3 cr)
MMB 155 Introductory Microbiology Laboratory (1 cr)
PLSc 407 Field Crop Production (3 cr)
Electives to total 132 for the degree

C. Production Option
AgEc 278 Principles of Farm and Ranch Management (4 cr)
AgEc 289 Agricultural Markets and Prices (3 cr)
AVS 222 Animal Reproduction and Breeding (3 cr)
AVS 330 Genetics of Livestock Improvement (3 cr)
PART FIVE
Departments of Instruction

Department of Animal and Veterinary Science

AVS 363 Animal Products for Human Consumption (3 cr)
AVS 411 Ruminant Nutrition (3 cr)
AVS 471 Animal Disease Management (3 cr)
AVS 472, 474, 476, or 478 Species Production (6 cr)
Chem 275 Organic Compounds (3 cr)
Econ 202 Principles of Economics (3 cr)
MMBB 154 Introductory Microbiology (3 cr)
MMBB 155 Introductory Microbiology Laboratory (1 cr)
Rnge 251 Principles of Range Resource Management (2 cr)
Life science elective (4 cr)
Electives to total 132 for the degree

D. Science/Preveterinary Option

AVS 330 Genetics of Livestock Improvement (3 cr)
AVS 471 Animal Disease Management (3 cr)
AVS 472, 474, 476, or 478 Species Production (3 cr)
Biol 116 Organisms and Environments (4 cr)
Chem 112 Principles of Chemistry II (5 cr)
Chem 277, 278 Organic Chemistry I and Lab (4 cr)
Chem 372 Organic Chemistry II (3 cr)
Gene 314 General Genetics (3 cr)
MMBB 154, 155 Introductory Microbiology or MMBB 250, 255 General Microbiology (4-5 cr)
MMBB 300 Survey of Biochemistry (3 cr)
Phys 111-112 General Physics I-II (8 cr)
Biol or MMBB elective, 300-level or above (3 cr)
Electives to total 132 for the degree

RANGE LIVESTOCK MANAGEMENT (B.S.R.L.M.)

The major in range livestock management provides training in animal science with a sound background in the relationships between animals and plants and is intended primarily for students interested in the management or operation of range and pasture beef cattle or sheep operations.

Required course work includes the university requirements (see regulation J-3) and:

ASM 240 Computer Applications in Biological Systems (or advanced placement test by department) (3 cr)
AVS 101 Animal and Veterinary Orientation or Rnge 200 Seminar (1-2 cr)
AVS 109 The Science of Animals that Serve Humanity (3 cr)
AVS 209 Science of Animal Husbandry (3 cr)
AVS 222 Animal Reproduction and Breeding (3 cr)
AVS 305 Animal Nutrition (4 cr)
AVS 306 Feeds and Ration Formulation (4 cr)
AVS 450 Issues in Animal Agriculture (1 cr)
AVS 474 Beef Cattle Science or AVS 476 Sheep Science (3 cr)
Biol 116 Cells and the Evolution of Life (4 cr)
Biol 116 Organisms and Environments (4 cr)
Biol 213 Principles of Biological Structure and Function (4 cr)
Biol 341 Systematic Botany (3 cr)
Chem 111 Principles of Chemistry I (4 cr)
Chem 275 Organic Compounds (3 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
CSS 287 Foundations of Conservation Leadership and Management (2 cr)
Econ 201, 202 Principles of Economics (6 cr)
Engl 317 Technical Writing (3 cr)
For/CSS 235 Society and Natural Resources (3 cr)
Math 119 Pre-calculus and Analytic Geometry or Math 160 Survey of Calculus (3-4 cr)
Rnge 221 Natural Resources Ecology (3 cr)
Rnge 251 Principles of Range Resource Management (2 cr)
Rnge 354 Wildland Vegetation Management and Restoration (3 cr)
Rnge 357 Rangeland and Riparian Habitat Assessment (3 cr)
Rnge 430 Riparian Ecology and Management (2 cr)
Rnge 456 Integrated Rangeland Management (3 cr)
Rnge 459 Rangeland Ecology (3 cr)
Soil 205, 206 The Soil Ecosystem and Lab (4 cr)
Stat 251 Statistical Methods (3 cr)
Courses selected from the following (a minimum of 3 cr in each college) (8 cr):
AVS 218 Artificial Insemination and Pregnancy Detection (2 cr)
AVS 263 Live Animal and Carcass Evaluation (3 cr)
AVS 330 Genetics of Livestock Improvement (3 cr)
AVS 371 Anatomy and Physiology (4 cr)
AVS 411 Ruminant Nutrition (3 cr)
AVS 452 Physiology of Reproduction (4 cr)
AVS 456 Horse Production (3 cr)
AVS 476 or 478 if not taken above (3 cr)
Fish/WLF 200 Fish and Wildlife Ecology, Mgt, and Conservation (3 cr)
For 270 Principles of Forest Ecosystem Mgt (2 cr)
Rnge 353 Rangeland Plant Identification and Ecology (3 cr)
Rnge 454 Rangeland Weed Management (3 cr)
Electives to total 132 cr for the degree

SCIENCE/PREVETERINARY (B.S.Vet.Sc.)

Departmental consultation REQUIRED prior to enrollment.

Required course work includes the university requirements (see regulation J-3) and:

AVS 101 Animal and Veterinary Orientation (2 cr)
AVS 109 The Science of Animals that Serve Humanity (3 cr)
AVS 110 Animal Husbandry Laboratory I (1 cr)
AVS 209 Science of Animal Husbandry (3 cr)
AVS 210 Animal Husbandry Laboratory II (1 cr)
AVS 221 Growth and Development of Farm and Companion Animals (3 cr)
AVS 305 Animal Nutrition (4 cr)
AVS 371 Anatomy and Physiology (4 cr)
AVS 452 Physiology of Reproduction (3 cr)
Biol 115 Cells and the Evolution of Life (4 cr)
Biol 213 Principles of Biological Structure and Function (4 cr)
Chem 111-112 Principles of Inorganic Chemistry I-II (9 cr)
Chem 277, 278 Organic Chemistry I and Lab (4 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
Engl 313 Business Writing or Engl 317 Technical Writing (3 cr)
Gene 314 General Genetics or Biol 210 Genetics (3-4 cr)
Math 143 Pre-calculus Algebra and Analytic Geometry (3 cr)
MMBB 154, 155 Introductory Microbiology or MMBB 250, 255 General Microbiology (4-5 cr)
MMBB 300 Survey of Biochemistry (3 cr)
Phys 111-112 General Physics I-II (8 cr)
Stat 251 Statistical Methods (3 cr)
Computer application course (3 cr)
Electives to total 132 cr for the degree

First year in veterinary school (32 cr)

Academic Minor Requirements

ANIMAL SCIENCE MINOR

AVS 109 The Science of Animals that Serve Humanity (3 cr)
AVS 222 Animal Reproduction and Breeding (3 cr)
AVS 305 Animal Nutrition (4 cr)
AVS 306 Feeds and Ration Formulation (4 cr)
AVS 363 Animal Products for Human Consumption (3 cr)
AVS 452 Physiology of Reproduction (4 cr)
Two of the following (6 cr)
AVS 472 Dairy Cattle Management (3 cr)
AVS 474 Beef Cattle Science (3 cr)
AVS 476 Sheep Science (3 cr)
AVS 478 Swine Production (3 cr)

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Animal and Veterinary Science. See the College of Graduate Studies section of Part 4 for the general requirements applicable to all degrees.

Master of Science. The M.S. degree may be earned in either animal science or veterinary science. Qualifying for full admission, candidates must fulfill the requirements of the Graduate College and have an overall grade-point average of 3.0 or better (4.0 scale) for their undergraduate study. Acceptance of students not having this minimum grade-point average is possible, subject to recommendation by the department’s Graduate Committee. Applicants must submit scores received on the Graduate Record Examination general (aptitude) test.

The M.S. degree requires a minimum of 30 credits, at least 18 of which must be in courses numbered 500 and above. No more than 10 of the 500-level credits may be from research products course; and one animal production and management course. Specific animal production courses may be required as determined on an individual candidate basis.

Doctor of Philosophy. The Ph.D. degree may be earned in animal physiology. To qualify for admission, candidates must fulfill the requirements of the Graduate College and have an overall grade-point average of 3.25 or better (on a 4.00 scale) for their undergraduate and graduate work. Applicants must submit scores received in the Graduate Record Examination (aptitude test).

Prospective students for the M.S. degree in veterinary science are expected to have either the D.V.M. degree or equivalent or have completed the requirements for the B.S. degree that was the equivalent of a major in biology, bacteriology, animal science, or other biological science.

Doctor of Philosophy. The Ph.D. degree in animal physiology requires a minimum of 78 credits beyond the B.S. or professional degree, at least 52 credits of which must be in courses numbered 500 and above. Thirty-nine credits of the 78 must be in courses other than AVS 600 (doctoral research and dissertation). Courses at the 300 level may not be used as part of the Ph.D. degree program. Doctoral students are required to complete the departmental graduate seminar each semester it is offered during the degree program. Students are also required to assist with teaching during their graduate training. Doctoral students must demonstrate competence in experimental design and data analysis prior to completion of the degree.

The Ph.D. degree in animal physiology requires a minimum of 78 credits beyond the B.S. or professional degree, at least 52 credits of which must be in courses numbered 500 and above. Thirty-nine credits of the 78 must be in courses other than AVS 600 (doctoral research and dissertation). Courses at the 300 level may not be used as part of the Ph.D. degree program. Doctoral students are required to complete the departmental graduate seminar each semester it is offered during the degree program. Students are also required to assist with teaching during their graduate training. Doctoral students must demonstrate competence in experimental design and data analysis prior to completion of the degree.
The Department of Architecture offers three programs: the Professional Program in Architecture (B.S.Arch & M.Arch degrees), the Interior Design Program (B.F.A.), and the Research Program in Architecture (M.S. Arch).

The combined B.S.Arch & M.Arch degrees constitute a five-plus professional program degree program accredited by the national Architectural Accrediting Board and is designed to prepare students for a professional career in architecture. The professional program includes courses in architectural design, history and theory of architecture, environmental control, structures, materials and methods of construction, urban theory, and professional practice. The B.S.Arch. can be completed after fulfilling the requirements of the fourth year. Qualified students may work toward completion of both the B.S.Arch. & M.Arch. requirements during their fourth, fifth, and sixth years, receiving both degrees upon completion of the curriculum. They may apply for graduate status while taking fourth-year studio (Arch 454) (application deadline is February 15). Graduate students must be classified in their fifth and sixth years.

Transfer students with prior four-year non-professional bachelor's degrees in architecture may be accepted into the M.Arch. program based on their transcripts. In the United States, state registration boards require a degree from an accredited professional degree program as a prerequisite for licensure. The National Architectural Accrediting Board (NAAB), which is the sole agency accredited to award US professional degrees, recognizes two types of degrees: the Bachelor of Architecture and the Master of Architecture. A program may be granted a six-year, three-year, or two-year term of accreditation, depending on its degree of conformance with established educational standards.

Computer Technology. Students in the professional programs of architecture and interior design are required to have their own computer and appropriate software for use in their studies. Specific technology requirements as well as guidelines and recommendations are posted on each program's web site.

Applications. Architecture and Interior Design are both professional programs, a design emphasis is enjoyment of assignments whose graduates require a license or a comprehensive professional qualifying exam to practice. The architecture and interior design professional programs have special needs for which the State Board of Education has granted approval to charge a professional fee to students on a semester basis over and above general tuition and fees. This fee is used to directly support technology and computing for students and faculty, supplement operating budgets, hire temporary faculty, support the college's visual and design resource centers, cover professional accreditation costs, and partially support student field trips and guest lectures.

Idaho Urban Research and Design center (IURDC). The University of Idaho's Idaho Urban Research and Design Center is located in Boise. The program offers 4th year and graduate Architecture and Landscape Architecture students an opportunity to live, work, and study in an urban environment. The students work centers on urban architecture, urban design, and community planning, often with neighborhoods and cities in the Treasure Valley. The IURDC offers outreach, education, and research projects with local design professionals, agency staffs and non-profit organizations.

Graduate students can apply to complete their fifth and sixth years of study in Boise, Idaho, where the Department of Architecture maintains a design studio and offers support courses. This option allows students to complete their graduate project in an urban setting, work on funded research and community service projects, and simultaneously pursue internship opportunities with local architectural firms.

Courses
See Part 6 for courses in Architecture (Arch) and Interior Design (ID).

Professional Architecture Program: B.S.Arch. & M.Arch.

The Professional Program is a six-year seamless program that involves fulfilling the requirements of both the B.S. Arch. and the M.Arch. concurrently.

ARCHITECTURE (B.S. Arch.)

The four-year pre-professional curriculum leading to a B.S.Arch. degree is not an accredited professional architectural degree. After the first year of study, academic achievement is reviewed to determine eligibility for continued study in architecture. Only students with an average of 2.0 or higher grade-point average are eligible for study in the second year.

Another review is conducted at the end of the second year of study. Applicants to the third year are required to submit a portfolio containing examples of graphic work in art and architecture. The portfolio, of no more than 10 pages, should be submitted in an 8-1/2 x 11" format. The submission should also contain a transcript of any college work outside the UI. The deadline for third year applications is May 20. Results of the evaluation are made known to applicants by the end of June.

Students accepted into the years three and four of the curriculum are required to maintain a minimum GPA of 3.0 and to receive a grade of "C" or higher in architectural design courses. Students who do not meet these criteria are ineligible for acceptance to the M.Arch. degree and the College of Graduate Studies. Provisional admittance to the M.Arch. Program can be granted, with permission, for students with GPAs of 2.8 cumulatively, or 3.0 over the last 60 credit hours. See below for M.Arch. degree requirements.

Note: Students who have not been accepted into the professional program of the curriculum may not enroll in architectural design courses. Students who have left the program may only re-enter the curriculum by application to the departmental admissions committee.

Required course work includes the university requirements (see regulation J-3) and:

Arch 151 Introduction to the Built Environment (2 cr)
Arch 154 Introduction to Architectural Graphics (2 cr)
Arch 253 Architectural Design I (3 cr)
Arch 254 Architectural Design II (3 cr)
Arch 266 Materials and Methods (3 cr)
Arch 353-354 Architectural Design III-IV (10 cr)
Arch 366 Building Technology I (3 cr)
Arch 385 History of Architecture I: Pre-Modern (3 cr)
Arch 386 History of Architecture II: Modern (3 cr)
Arch 450 Architectural Programming (2 cr)
Arch 453-454 Architectural Design V-VI (10 cr)
Art 100 Visual Art (3 cr)
Art 110 Visual Communication (2 cr)
Art 111 Drawing I (2 cr)
ForP 365 Wood Building Technology (3 cr)
LArc 383 Architectural Site Design (3 cr)
Math 134 Pre-calculus Algebra and Analytic Geometry (3 cr)
Math 160 Survey of Calculus or Phi 202 Intro to Symbolic Logic or Stat 251 Statistical Methods or CS 112 Intro to Problem Solving and Programming (3-4 cr)
Phys 111 General Physics I (4 cr)
Vit 244 Introduction to 3D Modeling (3 cr)
Arch 463-464 Environmental Control Systems (8 cr)
Arch 465-466 Building Technology II (6 cr)
Arch 483 Urban Theory and Issues (3 cr)
Electives to total 128 cr for the B.S.Arch. degree (including at least 6 cr of 200-level or above courses taken outside the disciplines of architecture, landscape architecture, art, and interior design and 6 cr of 200-level or above courses taken within the disciplines; credits earned in completion of an academic minor may be substituted).

INTERIOR DESIGN (B.F.A.)

The Interior Design program is a four-year professional program that leads to the professional degree of Bachelor of Fine Arts in interior design. The mission of the program is to serve as Idaho's professional interior design program by providing a strong interdisciplinary design and visual art culture through a professionally recognized curriculum, allied research, and outreach opportunities, and to prepare graduates to serve society through their professional and community work.

Due to the unique configuration and relationship between Architecture and Interior Design, students in the interior design program graduate with a major in interior design (ID) and a minor in architecture. Students can also minor in other disciplines of their choice. Students also have the option of double majoring in interior design and architecture over the period of seven years, thus graduating with a B.F.A. in interior design and an M.Arch. in architecture. Students must hold a minimum GPA of 2.50 with a grade of “C” or better in all required Interior Design, Art and Architecture courses to be accepted into the sophomore year. A portfolio review will be conducted in the spring of the sophomore year. The portfolio, of no more than 10 pages, should be submitted in an 8-1/2 x 11" format. Results of the evaluation are made known to applicants by the end of June.

Required course work includes the university requirements (see regulation J-3) and:

Arch 151 Introduction to the Built Environment (2 cr)
Arch 154 Introduction to Architectural Graphics (2 cr)
Arch 253 Architectural Design I (3 cr)
Arch 254 Architectural Design II (3 cr)
Arch 353-354 Architectural Design III-IV (10 cr)
Arch 366 Building Technology I (3 cr)
Arch 385 History of Architecture I: Pre-Modern (3 cr)
Arch 386 History of Architecture II: Modern (3 cr)
Arch 450 Architectural Programming (2 cr)
Arch 453-454 Architectural Design V-VI (10 cr)
Art 100 Visual Art (3 cr)
Art 110 Visual Communication (2 cr)
Art 111 Drawing I (2 cr)
ForP 365 Wood Building Technology (3 cr)
LArc 383 Architectural Site Design (3 cr)
Math 134 Pre-calculus Algebra and Analytic Geometry (3 cr)
Math 160 Survey of Calculus or Phi 202 Intro to Symbolic Logic or Stat 251 Statistical Methods or CS 112 Intro to Problem Solving and Programming (3-4 cr)
Phys 111 General Physics I (4 cr)
Vit 244 Introduction to 3D Modeling (3 cr)
Arch 463-464 Environmental Control Systems (8 cr)
Arch 465-466 Building Technology II (6 cr)
Arch 483 Urban Theory and Issues (3 cr)
Electives to total 128 cr for the B.F.A. degree (including at least 6 cr of 200-level or above courses taken outside the disciplines of architecture, landscape architecture, art, and interior design and 6 cr of 200-level or above courses taken within the disciplines; credits earned in completion of an academic minor may be substituted).
Academic Minor Requirements

ARCHITECTURE MINOR

- Arch 151 Introduction to the Built Environment (2 cr)
- Arch 385 History of Architecture I: Pre-Modern (3 cr)
- Arch 386 History of Architecture II: Modern (3 cr)
- Course selected from the following (15 cr)
 - Arch 154 Introduction to Architectural Graphics (2 cr)
 - Arch 253 Architectural Design I (3 cr)
 - Arch 254 Architectural Design II (3 cr)
 - Arch 268 Materials and Methods (3 cr)
 - Arch 463 Environmental Control Systems (3 cr—no lab)

INTERIOR DESIGN MINOR

- FCS 123 Textiles (3 cr)
- ID 151 Introduction to Interior Design (3 cr)
- ID 281-282 History of Interiors I-II (6 cr)
- ID 308 Materials and Specifying (3 cr)
- ID 478 Professional Practice for Interior Design (3 cr)

WOOD CONSTRUCTION AND DESIGN

- LArc 383 Architectural Site Design (3 cr)

Graduate Degree Programs

Master of Architecture

Candidates must fulfill the requirements of the College of Graduate Studies and the Department of Architecture. Twenty-four of the 45 credits required for this degree must be at the 500 level, including the following courses: Arch 501, Arch 266, Arch 571, Arch 575.

Graduate Seminar (2 cr)

- Arch 553 Architectural Design VII (5 cr)
- Arch 554 Architectural Design VIII (5 cr)
- Arch 556 Architectural Design IX (6 cr)

Directed Electives

Equivalents must be approved by the chair of the Department of Architecture. Transfer students are placed in the program according to their academic qualifications. Depending on the backing provided to the transfer student, up to six years of study may be required to complete the degree requirements. Candidates must fulfill the requirements of the College of Graduate Studies and the Department of Architecture. Master of Architecture degree requirements are listed above.

Master of Science in Architecture

The Master of Science in Architecture offers a research program open to candidates who hold a professional degree in architecture, B.S. Arch., M.Arch., or other degree holders who desire to embark on a career in architectural research and scholarship. The program is designed for independent study within one or more of the following areas of specialization: Computing and Visualization, Environmental and Behavior, Urban Design, Community Design and Planning, and Sustainable Architecture and Planning. Graduate students work closely with their graduate committee to develop a detailed program of study. Acceptance into the program is contingent on the Graduate Program Committee’s review of the candidate’s statement of intent describing the area of specialization in which the candidate will focus, three letters of recommendation, and a portfolio. The Graduate School requires a completed application, university transcripts, and an official TOEFL score. Prospective students are encouraged to first correspond with the Chair of the Graduate Program about their intentions. The chair will then direct the applicant to further sources if needed. The M.S. degree requires the completion of 30 credits of course work including a research thesis.

Architectural Design (3 cr)

- Arch 502/504 Graduate Seminars and Special Topics (e.g. Urban Morphology, Non-Western Architecture, Urban Design [Build] and, Environmental and Behavior)
- Arch 412 Environmental and Aging
- Arch 520 Architecture Research Methods
- Arch 568 Technical Integration
- Arch 570 Natural Lighting
- Arch 571 Building Vital Signs

Equivalents must be approved by the chair of the Department of Architecture. Transfer students are placed in the program according to their academic qualifications. Depending on the backlog provided to the transfer student, up to six years of study may be required to complete the degree requirements. Candidates must fulfill the requirements of the College of Graduate Studies and the Department of Architecture. Master of Architecture degree requirements are listed above.

Department of Art and Design

William Wooloston, Department Chair (204B Art and Arch. 83844-2471; phone 208/885-6851).

Department Faculty

Affiliated Faculty:

- John A. Larkin, Marilyn Lysohir, Jon Ochs, Melissa Rockwood.

The art curriculum at UI leads to a B.A., B.S.Art Ed., or B.F.A. with a major in studio art degree. This curriculum provides a broad base from which students may pursue a number of different career options. Students are required to complete a core of courses (the art core) designed to ensure an understanding of the historical and theoretical bases of art and design, while developing general competency in various media.

The B.F.A. degree is designed for those students who wish to develop professional careers in art. Requirements for the degree are stringent, and include intense involvement in studio work in the senior year, closely monitored by all faculty members, culminating in the development of a portfolio and written statement in support of a professional exhibition. Because the B.F.A. degree is a professional degree, often preparatory to pursuit of a Master of Fine Arts (M.F.A.) degree, students must maintain a minimum 2.5 GPA.

The B.S.Art Ed. degree is designed for those students intending to pursue a career in teaching in the public schools. In addition to the studio course requirements, students take a range of courses in the College of Education that lead to teacher certification. The B.S.Art Ed. is a rigorous degree specializing in studio art and design.

The B.A. degree with a major in art is designed to ensure a broad, liberal education with an emphasis in art. Students pursuing this degree must meet the B.A. degree requirements listed in the College of Letters, Arts, and Social Sciences section of this catalog.

The Art and Design Department offers two graduate degree programs: M.F.A. and M.A.T.

Graduate students are assigned studio space in the department’s Graduate Art Studio (GAS House), as space and individual requirements permit. Priority is given to full-time graduate students.

Admission requirements for the M.F.A. include a minimum grade-point average of 2.80 and an undergraduate degree in a studio area, or its equivalent as determined by the Art and Design Department graduate faculty. Fewer than 60 credits in studio courses, and 12 in art history (or criticism, theory, or history in a related field) at the undergraduate level is considered a deficiency. Applicants with these deficiencies who are admitted to the M.F.A. program may be required to include deficiency course work as part of their graduate program. Deficiency courses are required but do not count towards satisfying degree requirements.

Admission to the M.A.T. degree requires an approved undergraduate degree, or its equivalent as determined by the Art and Design Department graduate faculty, at least 20 credits of undergraduate art course work, and a minimum grade-point average of 2.80. Fewer than 20 credits in art courses at the undergraduate level is considered a deficiency. Applicants with these deficiencies who are admitted to the M.A.T. program may be required to include deficiency course work as part of their graduate program. Deficiency courses are required but do not count towards satisfying degree requirements.

All applicants for the graduate programs are required to present a comprehensive portfolio of work, a written statement of goals or intent, and three letters of recommendation. Portfolios are normally in slide form, 20 clearly labeled slides, and must include a postage-paid return envelope.

Graduate applicants should direct all correspondence to the UI Department of Art and Design graduate program.

The Department of Art and Design is accredited by the National Association of Schools of Art and Design (NASAD).

Courses

See Part 6 for courses in Art (Art).

Undergraduate Curricular Requirements

ART CORE

- Art 100 Visual Art (3 cr)
- Art 110 Visual Communication (2 cr)
- Art 111-112 Drawing I-II (5 cr)
- Art 121-122 Visual Communication and the Design Process (5 cr)

STUDIO ART (B.F.A.)

The B.F.A. is a four-year degree divided into two parts: the preprofessional program (freshman and sophomore years) and the professional program (junior and senior years). Majors are eligible to apply for the professional program when they have completed the art core and the 200-level art course requirements, and earned a minimum 2.5 GPA. Applications for the professional program may be made during the semester the student is completing these requirements. Applications for the professional B.F.A. program will be requested each semester. Transcripts and a portfolio of the student’s art work must accompany the application. Students accepted into the professional program must complete 15 credits of 300-level studio courses with at least 6 of the 15 credits in one sequential studio area and 12 credits of art history before enrolling in Art 490 and Art 495. Students must maintain a minimum GPA of 2.5 and receive a grade of C or better in the 300- and 400-level art courses. Students may reapply for entry into the professional program any semester after their sophomore year.
Required course work includes the university requirements (see regulation J-3), the art core (except Art 100), and a studio emphasis (all the 200-level and 300-level courses in a specific studio area) in one of the following areas: drawing, graphic design, interface design, painting, sculpture, printmaking, photography/digital imaging, or ceramics, and:

Art 408 Readings in Art (3 cr)
Art 410 Professional Practices (2 cr)
Art 480 Art Studio (12 cr)
Art 495 BFA Senior Thesis (4 cr)
Art history courses (200-400 level) (15 cr)
200-level studio courses selected from the following (15 cr): Art 211 Drawing III (3 cr)
Art 221-222 Graphic Design I-II (3 cr)
Art 231 Painting I (3 cr)
Art 241 Sculpture I (3 cr)
Art 251 Printmaking I (3 cr)
Art 261 Ceramics I (3 cr)
Art 271-272 Interface Design I-II (3 cr)
Art 280 Understanding Photography (3 cr)
Art 282 Color Photography/Digital Imaging (3 cr)
300-400 level studio courses selected from the following (at least 6 cr must be taken in one studio area, i.e., Art 330, no more than 6 cr is one studio area may be counted toward this requirement) (15 cr):
Art 321-322 Graphic Design III-IV (3 cr, max 6)
Art 330 Intermediate/Advanced Painting (3 cr, max 6)
Art 340 Intermediate/Advanced Sculpture (3 cr, max 6)
Art 350 Intermediate/Advanced Printmaking (3 cr, max 6)
Art 360 Intermediate/Advanced Ceramics (3 cr, max 6)
Art 370 Advanced Interface Design (3 cr, max 6)
Art 380 Digital Imaging (3 cr)
Art 381 Advanced Imaging Concepts (3 cr)
Art 390 Mixed Media (3 cr, max 6)
Art 491 Information Design (3 cr)
Electives to total 128 cr for the degree

No more than a combined total of 9 credits of the following courses may be applied toward a B.F.A. degree: Art 404, 488, 497, 498, and 499.

ART (B.A.)

Required course work includes the university requirements (see regulation J-3), the general requirements for a B.A. degree, the art core, and a studio emphasis (all the 200-level and 300-level courses in a specific studio area) in one of the following areas: drawing, graphic design, interface design, painting, sculpture, printmaking, photography/digital imaging, or ceramics, and:

Art 408 Readings in Art (3 cr)
Art 410 Professional Practices (2 cr)
Art History courses (200-400 level) (15 cr)
200-level studio courses selected from the following (students pursuing a studio emphasis in graphic design must include Art 122; and interface design majors must include Art 272) (15-18 cr):
Art 211 Drawing III (3 cr)
Art 221-222 Graphic Design I-II (3 cr)
Art 231 Painting I (3 cr)
Art 241 Sculpture I (3 cr)
Art 251 Printmaking I (3 cr)
Art 261 Ceramics I (3 cr)
Art 271-272 Interface Design I-II (3 cr)
Art 280 Understanding Photography (3 cr)
Art 282 Color Photography/Digital Imaging (3 cr)
300-400 level studio courses selected from the following (at least 6 cr must be taken in one studio area, i.e., Art 330, no more than 6 cr is one studio area may be counted toward this requirement) (15 cr):
Art 321-322 Graphic Design III-IV (3 cr, max 6)
Art 330 Intermediate/Advanced Painting (3 cr, max 6)
Art 340 Intermediate/Advanced Sculpture (3 cr, max 6)
Art 350 Intermediate/Advanced Printmaking (3 cr, max 6)
Art 360 Intermediate/Advanced Ceramics (3 cr, max 6)
Art 370 Advanced Interface Design (3 cr, max 6)
Art 380 Digital Imaging (3 cr)
Art 381 Advanced Imaging Concepts (3 cr)
Art 390 Mixed Media (3 cr, max 6)
Art 491 Information Design (3 cr)
Electives to total 128 cr for the degree

ART EDUCATION (B.A.Ed.)

Required course work includes the university requirements (see regulation J-3), the art core, a studio emphasis (all the 200-level and 300-level courses in a specific studio area) in one of the following areas: drawing, graphic design, interface design, painting, sculpture, printmaking, photography/digital imaging, or ceramics, and the courses listed below.

Note: For registration in upper-division courses in the field of education, students must have been admitted to the teacher education program and have a GPA of 2.5, unless a higher average is stated as a prerequisite in the course description. For admission criteria, refer to "Admission to the Teacher Education Program" in the College of Education section of Part 4 of this catalog.

Art 301 Early Modern Art and Aesthetics (3 cr)
Art 302 Modern Art and Theory (3 cr)
Art 408 Readings in Art (3 cr)
Art 410 Professional Practices (2 cr)
History elective selected from Arch 385 or 386, Art 382, FCS 329, ID 281 or 282, Jamm 445, LArc 389, Phil 421 (3 cr)

200-level studio courses selected from the following (students pursuing a studio emphasis in graphic design must include Art 222; and interface design majors must include Art 272) (18 cr):
Art 211 Drawing III (3 cr)
Art 221-222 Graphic Design I-II (3 cr)
Art 231 Painting I (3 cr)
Art 241 Sculpture I (3 cr)
Art 251 Printmaking I (3 cr)
Art 261 Ceramics I (3 cr)
Art 271-272 Interface Design I-II (3 cr)
EDTE 427 Research Methods (3 cr)
EDTE 428 Secondary Art Methods I (3 cr)
EDTE 446 Secondary Art Lab (1 cr)
EDTE 450 Reading and Study in Art Education (3 cr)
Electives to total 128 cr for the degree

Academic Minor Requirements

ART MINOR
Art 100 Visual Art (3 cr)
Art 110 Visual Communication (2 cr)
Art 111-112 Drawing I-II (5 cr)
Art 121-122 Visual Communication and the Design Process (5 cr)
200- and 300-level art studio classes and/or art history (9 cr)

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and the Department of Art and Design. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Fine Arts. The Master of Fine Arts degree is a 60-credit degree designed for students wishing to prepare themselves for a career as a professional artist or art teacher at the college or university level.

The M.F.A. is the terminal degree in studio art and requires a thesis. The major portion of the student's thesis consists of a one-person exhibition of professional quality work supported by a written statement on the nature of the work. The statement includes an explanation of the evolution of the conceptual or theoretical basis for the work (including historical and contemporary examples and influences), and a discussion of the experiments, processes, and technical experiments that were used in the evolution of the work.

Areas of concentration are: painting, drawing, sculpture, ceramics, graphic design, textile design, printmaking, and interface design, or a direction may be developed that combines two or more of these areas. Students wishing to work in an area other than those listed above must clearly state their intention in their statement of goals or intent upon application for admission to the M.F.A. program.

A final oral examination is required (and may be supplemented with a written examination at the discretion of the graduate committee).

Master of Arts in Teaching — Major in Art. The Master of Arts in Teaching degree is a 30-credit degree designed for those students who are certified teachers wishing to strengthen their experience in studio art.

Of the 30-credit total, 20 credits must be in art courses and 6 in professional courses in education. At least 6 credits must be at the 500 level.

300- and 400-level courses in art may be counted towards the degree. M.A.T. students are encouraged to prepare themselves to take at least 6 credits, in 500-level art studio (Art 515, Art Faculty Studio), and to participate fully in graduate activities.

Areas of concentration are: painting, drawing, sculpture, ceramics, graphic design, textile design, printmaking, and interface design, or a direction may be developed that combines two or more of these areas. Students wishing to work in an area other than those listed above must clearly state their intention in their statement of goals or intent upon application for admission to the M.A.T. program. Students wishing to work in a studio in which they lack adequate preparation may be required to take deficiency courses as prerequisites.

A final oral examination is required (and may be supplemented with a written examination at the discretion of the graduate committee). The M.A.T. final examination may require a written statement as a basis for the oral examination. Such determination is at the discretion of the graduate committee.
PART FIVE
Departments of Instruction
Program of Bioinformatics and Computational Biology

Bioinformatics and computational biology are new disciplines emerging from the application of mathematics, statistics, and computer science. They explain the vast quantities of biological data that modern technical techniques have made available. The advent of powerful computer data acquisition in the biological sciences, an example of which is the recent completion of a draft of the entire human and mouse genomes, has created far more data than can be analyzed with current techniques. In order to understand and use these data to improve human health, natural and agricultural resource management, and to simply understand the natural world better—will require new techniques and tools. Moreover, industries depend on that understanding, such as health, pharmaceuticals, agriculture, and forestry will require workers who understand this new knowledge. This is what the Bioinformatics and Computational Biology (BCB) degree program provides.

The University of Idaho offers M.S. and Ph.D. degrees in Bioinformatics and Computational Biology (BCB). The BCB program is offered on-campus in Moscow at the University of Idaho, and is administered by the College of Graduate Studies. A degree in BCB will require coursework and practical experience in biology, mathematics, statistics, and computer science. The focus of the degree will be on learning to develop and use computational and mathematical tools to analyze biological data.

BCB is a highly interdisciplinary program. It requires students and faculty to bridge biological, computational, and mathematical disciplines. BCB faculty members are drawn from the departments: Biological Sciences, Plant Soils and Entomological Sciences, Fish and Wildlife, Forest Resources, Mathematics, Statistics, and Computer Science. These academic units span four colleges and one institute: Letters and Science; Natural Resources and Agricultural Life Sciences, Engineering, and WWAMI. These faculty members are available to serve on BCB graduate student committees.

A graduate degree in Bioinformatics and Computational Biology from UI prepares a student for a lifetime of discovery. It enables the graduate to advance the state of the art, not merely to keep up with it. The graduate program develops the student’s critical thinking, quantitative, and expository skills. By understanding the extent and limitations of current knowledge in computer science, the graduate will learn to understand what issues are important and why. He or she will acquire the methodological skills to resolve important open problems and tackle challenging new projects. The student will learn to present problems and solutions, both orally and in writing.

Graduate Committee and Theses

Both the M.S. and Ph.D. degrees require a thesis. Students will take research and thesis credits (BCB500) or research and dissertation credits (BCB600). The M.S. degree will require 18 credits, and the Ph.D. degree will require at least 30 credits. The Ph.D. degree will require a written thesis defense prior to the oral examination. As determined by the thesis committee, this requirement may be satisfied, for example, by a survey course, a comprehensive examination, or a thesis proposal.

Each student’s graduate committee will consist of at least four faculty members. This committee will represent the three BCB disciplines (biology, computer science, and mathematics) and will include at least three participating BCB faculty members. Co-advising by major professors in different disciplines will be particularly attractive for BCB degrees, and is possible at the discretion of the student and his or her committee. There is no explicit requirement for an “external” committee member, since each committee will already include faculty from at least three different disciplines.

There will be no qualifying examination. The Ph.D. will require a preliminary examination, which will be taken no later than the end of the fifth semester. The preliminary examination will have three components. First, it will include a written thesis proposal prepared in the format of a federal research grant, and submitted to the committee at least four weeks prior to the oral examination. Second, there will be a public, oral presentation of the preliminary examination. Third, the committee will conduct a non-public oral examination in which committee members will ask questions about the proposed research, and about background and core coursework.

Course and Credit Requirements

Incoming students admitted with background deficiencies will take background courses. For example, biology majors with little formal introduction to computation will take background courses in computer science. The specific required background courses will be determined by the students’ graduate committees with the approval of the program director. Some prerequisite courses numbered below 400 may or may not count toward the BCB degree requirements, though they may be required to fulfill deficiencies.

The core courses form a central, shared educational experience for all BCB students. These courses will enable them to share a common language, and to discuss problems from multiple disciplinary points of view. This shared experience will also give BCB students a sense of community, which will encourage them to help each other overcome cultural and terminological differences that usually make such interdisciplinary interactions challenging. When possible and appropriate, core courses will include group projects using team members with backgrounds in different disciplines.

The depth courses provide more detailed knowledge of bioinformatics and computational biology, and provide the springboard for graduate research. The list of courses will evolve with the research interests of the BCB faculty participants, and more will be added as new faculty members join the program. See the program webpage at http://www.ibest.uidaho.edu/bcb for the latest information. The M.S. will require at least 6 credits of depth courses in one disciplinary area (computer science, biology, or mathematics) and at least 3 credits in each of the other two. The Ph.D. will require at least 9 credits of depth courses in one discipline and at least 3 credits in each of the other two disciplines.

Other courses may be required as determined by the student’s committee.

To explicitly make it easier to bridge the traditional gap between disciplines, the BCB program includes four bridging activities:

- Seminars and workshops: The BCB program will provide an annual seminar series, and all BCB students will be required to participate at least twice. Seminars bring experts from around the world to speak to the students, who will give research presentations and interact with BCB students. Workshops will provide practical experience with tools and techniques.
- Lab rotations: In order to expose doctoral students to the research perspectives of another discipline, we will require them to spend at least one semester in a lab outside the discipline of their major professor. The lab will be the research lab of one of the participating BCB faculty outside the discipline of the student’s major professor. The student’s committee will determine, in conjunction with participating faculty members, what lab rotation the student will meet this requirement. There is no lab rotation requirement for M.S. students.
- One Credit Supplements: General courses in computer science, mathematics and statistics sometimes lack material specific to bioinformatics and computational biology. Participating faculty will offer one-credit supplements to current courses in order to provide this connection without duplicating course content in the current catalogue. These will be required of BCB students as determined by their graduate committees.
- Teaching experience: Each doctoral candidate will be required to have at least one semester of teaching experience relevant to the BCB program with the details of this requirement determined by his or her committee. This requirement may be satisfied, for example, by teaching a course, running a workshop, offering a supplement, or working as a teaching assistant.

The MS requires a minimum 32 credits and the Ph.D. requires a minimum 78 credits. The BCB program assumes the usual graduate full time load of at least 9 credits per semester. Note that the Ph.D. requires at least 18 credits of “other”, supplemental, or workshop courses at the 400 level or above, since there are a total of 60 minimum required core, depth, thesis, seminar, and laboratory credits, and the student must have at least 78 credits to graduate. No more than 3 credits of workshop may apply to the degree, and credits for courses numbered below 400 cannot apply toward the degree. (These are general UI requirements.)

Admissions Requirements and Procedures

Admission to this program is highly competitive. Students who wish to enter the master’s or doctoral degree program must demonstrate mathematical maturity, skill in the use of high-level and a basic knowledge of molecular biology. However, students lacking one of these may be admitted with the requirement that they make up the deficiency. At least one year of undergraduate GPA and student graduated within the last five years and a total Graduate Record Examination score of at least 1300+4 are the minimum admission requirements, though exceptions to GPA and GRE requirements may be made in exceptional circumstances. Students for whom English is a second language must have a TOEFL score of 600 or higher. Applicants must provide at least three letters of reference, speaking to the applicant’s aptitude for graduate research, and a statement of research interests that clearly identifies the research he or she would like to pursue and why they want to pursue it at the University of Idaho.

To apply: please go to the University of Idaho Graduate Admissions webpage at http://www.students.uidaho.edu/gradadmissions, or contact the graduate admissions office at: Graduate Admissions Office, University of Idaho; P.O. Box 443019; Moscow, ID 83844-3019.
Department of Biological and Agricultural Engineering

The departmental mission is teaching, research, and extension for solving engineering and technological management problems in agriculture, environment, biotechnology, and natural resources through an understanding of the biological and physical sciences. The department's teaching program includes degree programs in agricultural engineering and biological systems engineering, which are offered through the College of Engineering, and in agricultural systems management, offered through the College of Agriculture. Graduate programs in biological and agricultural engineering are offered through the College of Graduate Studies. The educational objectives for the B.S. degree from the Department of Biological and Agricultural Engineering are:

1. Graduates can apply their technical expertise to solve engineering problems.
2. Graduates have the demonstrated ability to apply their knowledge of math, science, and engineering to the technical problems they encounter, including the design of experiments and data analysis.
3. Graduates will know how to effectively use modern engineering tools to solve engineering problems.
4. Graduates will understand the design process and how it is used to develop solutions to engineering problems.
5. Graduates will have effective listening skills for gathering information to define and solve problems.
6. Graduates will have effective writing, speaking, and presentation skills for presenting technical information from engineering problem solving and design.
7. When confronted with a complex technical problem, students will organize into teams, follow the engineering design process, and produce an effective engineering solution.
8. When working in teams graduates will make effective use of all the diverse resources of the team members.
9. Graduates have sufficient knowledge of biological kinetics, biological materials, biological systems, bioprocessing, computer and automatic control systems, and natural resource systems to use this knowledge for engineering problem solving and design.
10. Graduates will understand the obligation and responsibility of professional registration and professional ethics, and will be committed to keeping their skills and expertise up-to-date.
11. Graduates will understand relevant non-technical contemporary issues and the importance of these issues impacting solutions to the technical problems they encounter.

The Biological and Agricultural Engineering curriculum is accredited by the Engineering Accreditation Commission of the Accrediting Board of Engineering and Technology (EAC/ABET). Students in this option receive extensive training in microbiology, biochemical engineering, heat and mass transfer, storage of biological products, materials handling, and unit processes.

Food and Bioprocess Engineering prepares students for careers within traditional food processing industries and for emerging careers in bioprocess industries including bioenergy and biofuels such as the ethanol and biodiesel industries. The program is designed to develop engineering expertise in the area of applied biotechnology in such areas as waste treatment, biomass to energy production, industrial biological processes and/or molecular biology as related to engineered applications of biotechnology. The goal is the application of the science to real-world problems through more engineering input.

Food and Bioprocess Engineering involves the development of equipment and methods for the design and environmentally sound manufacturing of food and biotechnological commodities. The Food and Bioprocess Engineering curriculum is designed to prepare students to solve technological problems related to soil and water, water use, water conservation, water quality, soil conservation, irrigation and drainage, water management, and soil-plant-water relationships of practical importance to the western regions of the United States.

The Department of Biological and Agricultural Engineering is a major player in the water issues facing the state of Idaho. Faculty are involved in the Snake River Plain aquifer issues including modeling efforts directed toward the Snake River Aquifer and water use issues. They are involved with research related to water management, irrigation, and crop water response. BAE has an internationally recognized program in remote sensing and water resource management. This research includes the use of aerial photography for estimating crop growth and water use.

Soil and Water Engineering is an undergraduate engineering program designed to prepare students to solve technological problems related to soil and water, water use, water conservation, water quality, soil conservation, irrigation and drainage, water management, and soil-plant-water relationships of practical importance to the western regions of the United States.

The Department of Biological and Agricultural Engineering is a major player in the water issues facing the state of Idaho. Faculty are involved in the Snake River Plain aquifer issues including modeling efforts directed toward the Snake River Aquifer and water use issues. They are involved with research related to water management, irrigation, and crop water response. BAE has an internationally recognized program in remote sensing and water resource management. This research includes the use of aerial photography for estimating crop growth and water use.

Agricultural Systems Management emphasizes the use and management of equipment and systems based on an understanding of their design and operation. Agricultural systems management courses are designed to provide students with experience in systems technology and analysis of agricultural equipment and machinery applications, feed and food processing, agricultural electrification, soil and water management, weather and climate prediction.

Agricultural Systems Management is a unique program that is designed to prepare students for careers in agricultural systems management. The program is designed to develop engineering expertise in the area of applied biotechnology in such areas as waste treatment, biomass to energy production, industrial biological processes and/or molecular biology as related to engineered applications of biotechnology. The goal is the application of the science to real-world problems through more engineering input.

Environmental Engineering focuses on the design and management of systems that use our natural resources. Students in this program prepare for careers in natural resource conservation and environmental quality enhancement. Environmental Engineers are uniquely prepared to address issues related to surface water hydrology, groundwater hydrology, remediation transport, water quality, chemical fate and transport determination, waste management, reclamation of disturbed lands, site remediation and drainage. Applications include water quality studies of lakes, rivers and groundwater, system design and management, waste treatment, management of air quality inside buildings and outside, remediation of land damaged by construction, mining, or other activity.

Graduates in environmental engineering work with state and federal agencies, consulting firms and private companies on projects related to environmental engineering design, permitting, waste management, pollution abatement, bioremediation, and hydrology. They may also be employed by processing industries in quality control, waste management, and in projects related to other environmental issues.

Food and Bioprocess Engineering prepares students for careers within traditional food processing industries and for emerging careers in bioprocess industries including bioenergy and biofuels such as the ethanol and biodiesel industries. The program is designed to develop engineering expertise in the area of applied biotechnology in such areas as waste treatment, biomass to energy production, industrial biological processes and/or molecular biology as related to engineered applications of biotechnology. The goal is the application of the science to real-world problems through more engineering input.

Food and Bioprocess Engineering involves the development of equipment and methods for the design and environmentally sound manufacturing of food and biotechnological commodities. The Food and Bioprocess Engineering curriculum is designed to prepare students to solve technological problems related to soil and water, water use, water conservation, water quality, soil conservation, irrigation and drainage, water management, and soil-plant-water relationships of practical importance to the western regions of the United States.

The Department of Biological and Agricultural Engineering is a major player in the water issues facing the state of Idaho. Faculty are involved in the Snake River Plain aquifer issues including modeling efforts directed toward the Snake River Aquifer and water use issues. They are involved with research related to water management, irrigation, and crop water response. BAE has an internationally recognized program in remote sensing and water resource management. This research includes the use of aerial photography for estimating crop growth and water use.

Agricultural Systems Management emphasizes the use and management of equipment and systems based on an understanding of their design and operation. Agricultural systems management courses are designed to provide students with experience in systems technology and analysis of agricultural equipment and machinery applications, feed and food processing, agricultural electrification, soil and water management, weather and climate prediction.

Agricultural Systems Management is a unique program that is designed to prepare students for careers in agricultural systems management. The program is designed to develop engineering expertise in the area of applied biotechnology in such areas as waste treatment, biomass to energy production, industrial biological processes and/or molecular biology as related to engineered applications of biotechnology. The goal is the application of the science to real-world problems through more engineering input.

Environmental Engineering focuses on the design and management of systems that use our natural resources. Students in this program prepare for careers in natural resource conservation and environmental quality enhancement. Environmental Engineers are uniquely prepared to address issues related to surface water hydrology, groundwater hydrology, remediation transport, water quality, chemical fate and transport determination, waste management, reclamation of disturbed lands, site remediation and drainage. Applications include water quality studies of lakes, rivers and groundwater, system design and management, waste treatment, management of air quality inside buildings and outside, remediation of land damaged by construction, mining, or other activity.

Graduates in environmental engineering work with state and federal agencies, consulting firms and private companies on projects related to environmental engineering design, permitting, waste management, pollution abatement, bioremediation, and hydrology. They may also be employed by processing industries in quality control, waste management, and in projects related to other environmental issues.

Food and Bioprocess Engineering prepares students for careers within traditional food processing industries and for emerging careers in bioprocess industries including bioenergy and biofuels such as the ethanol and biodiesel industries. The program is designed to develop engineering expertise in the area of applied biotechnology in such areas as waste treatment, biomass to energy production, industrial biological processes and/or molecular biology as related to engineered applications of biotechnology. The goal is the application of the science to real-world problems through more engineering input.

Food and Bioprocess Engineering involves the development of equipment and methods for the design and environmentally sound manufacturing of food and biotechnological commodities. The Food and Bioprocess Engineering curriculum is designed to prepare students to solve technological problems related to soil and water, water use, water conservation, water quality, soil conservation, irrigation and drainage, water management, and soil-plant-water relationships of practical importance to the western regions of the United States.

The Department of Biological and Agricultural Engineering is a major player in the water issues facing the state of Idaho. Faculty are involved in the Snake River Plain aquifer issues including modeling efforts directed toward the Snake River Aquifer and water use issues. They are involved with research related to water management, irrigation, and crop water response. BAE has an internationally recognized program in remote sensing and water resource management. This research includes the use of aerial photography for estimating crop growth and water use.

Agricultural Systems Management emphasizes the use and management of equipment and systems based on an understanding of their design and operation. Agricultural systems management courses are designed to provide students with experience in systems technology and analysis of agricultural equipment and machinery applications, feed and food processing, agricultural electrification, soil and water management, weather and climate prediction.
4. The graduate has computer skills that can be used in the analysis and development of agricultural systems.

5. The graduate has mathematical skills to quantify physical and biological processes in agriculture.

6. The graduate has a social science and humanities background to provide sensitivity for the concerns of society and appreciate different points of view.

The four specialty options in the Agricultural Systems Management curriculum provide each student the opportunity to select a course of study suited to a particular career goal.

The Agricultural Information Systems option is designed to prepare students to apply biological, chemical, and business knowledge to the design and management problems in agricultural production, service, marketing, and other rural activities. The curriculum stresses courses in computer applications, applied computing techniques, agricultural economics, business administration, and business. Students are prepared for a variety of important and rewarding careers. Examples include commercial agricultural firms, agricultural and natural resource-oriented businesses, banking firms, educational institutions, or government agencies. Some graduates of this option may return to farms and ranches as farm managers.

The Water and Waste Management Systems option is designed to prepare students with the necessary background in the biological, physical, and business knowledge required for work in the area of water and waste management. This would include water system management, irrigation management, water conveyance, management of agricultural and processing waste streams, odor control, and other agricultural environmental issues. The curriculum provides a strong background in agricultural systems management, business and economics, with additional work in water quality, water and waste operation management, and basic and applied sciences. Students are prepared for a variety of careers in agricultural service, marketing, and processing waste streams, odor control, and other agricultural environmental issues. Examples include commercial agricultural operations; agricultural and natural resource-oriented businesses; water master; manager for an irrigation district or canal companies; educational institutions; local, state and federal agencies. Some graduates of this option may return to private business or farm operation.

The Agricultural Production Management option is a traditional program in agricultural systems management providing students with a background in systems technology, agricultural equipment, engines and power units, agricultural electrification, agricultural processing, and soil and water principles based on understanding of basic and applied sciences such as chemistry, biology and physics. Students may choose from a variety of business, economics and agriculturally based courses for their technical electives to prepare them for work directly with agricultural industries or to work as farm managers or operators. Students from this option are prepared to operate an agriculturally related business or to work directly in production agriculture.

The Agricultural Machine Systems option allows students to build on the agricultural machinery and equipment portion of the general curriculum with more emphasis in technical courses related to equipment operation and testing. The curriculum provides a strong background in mathematics, basic sciences, agriculture and agricultural systems management courses but then allows a student to specialize in courses related to precision agriculture, agricultural safety and health, engineering materials, fundamental thermal and fluid principles which are necessary for a more complete understanding of machine systems. Students from this option are prepared to work directly in agricultural equipment related business such as to serve as a technical representative. They also might manage equipment systems or participate in sales or testing of agricultural or agriculturally related equipment.

The agricultural systems management courses are also available to nonmajors interested in obtaining an understanding of the technology used in modern agricultural production systems. A minor in agricultural systems management can be used to support degree programs in other departments.

Graduate study is offered in biological and agricultural engineering with specialization in irrigation, water and chemical management, hydrology, soil and water conservation, subsurface water and chemical transport modeling, and climate modeling; alternative fuels and lubricants; harvesting and handling food and bioproduct processing of agricultural crops; off-road vehicle development, instrumentation and control; equipment design and development; and bioremediation and organic waste management and treatment. The M.S. and Ph.D. degrees are primarily research degrees. Prospective students should have the equivalent of a B.S. degree in engineering and must have a working knowledge of computers including mainframe and microcomputers, structured programming, and electronic spreadsheets.

Assessment of departmental objectives is accomplished by monitoring performance of students on the Fundamentals of Engineering examination and by student interviews. All graduates are interviewed at the time of graduation by the department to evaluate concerns, opportunities, and effectiveness of its educational programs. The assessment statistics can be obtained from the departmental office.

Courses
See Part 6 for courses in Agricultural Systems Management (ASM) and Biological and Agricultural Engineering (BAE).

Undergraduate Curricular Requirements

AGRICULTURAL SYSTEMS MANAGEMENT (B.S.A.S.M.)

Designed to prepare students for careers in agriculture and agriculturally related businesses that require a knowledge of engineering methods. Emphasis is placed on the practical application of technology to agriculture. This curriculum is administered by the Department of Biological and Agricultural Engineering.

Required course work includes the university requirements (see regulation J-3) and:

Acct 201 Introduction to Financial Accounting (3 cr)
Acct 202 Introduction to Managerial Accounting (3 cr)
AgEc 279 Farm and Agribusiness Accounting (3 cr)
ASM 112 Introduction to Agricultural Systems Management (3 cr)
ASM 200 Seminar (1 cr)
ASM 202 Agricultural Shop Practices (2 cr)
ASM 240 Computer Applications in Biological Systems (3 cr)
ASM 305 Agricultural Machinery Systems (3 cr)
ASM 315 Irrigation Systems and Water Management (3 cr)
ASM 331 Electric Power Systems for Agriculture (3 cr)
ASM 409 Agricultural Tractors and Power Units (3 cr)
ASM 433 Agricultural Processing Systems (3 cr)
BAE 478 Biological and Agricultural Engineering Design I (2 cr)
BAE 479 Biological and Agricultural Engineering Design II (2 cr)
BAE 491 Seminar (1 cr)
Biol 102 Biology and Society or Biol 115 Cells and the Evolution of Life (4 cr)
Blaw 265 Legal Environment of Business (3 cr)
Chem 101 Introduction to Chemistry or Chem 111 Principles of Chemistry I (4 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
Econ 201 Principles of Economics (3 cr)
Econ 202 Principles of Economics (3 cr)
Eng 137 Technical Writing or Eng 131 Business Writing (3 cr)
Engl 102 College Writing and Rhetoric (3 cr)
Phys 100 Fundamentals of Physics, Phys 111 General Physics I, or Phys 211 Engineering Physics I (4 cr)
Pис 102 The Science of Plants in Agriculture (3 cr)
PTTE 367 Teaching and Learning Computer Aided Drafting/Design (3 cr)
Soil 205 The Soil Ecosystem (3 cr)
Soil 206 The Soil Ecosystem Lab (1 cr)
Stat 251 Statistical Methods (3 cr)

Select one of the following options

A. Agricultural Information Systems Option

BAE 143 Engineering Problem Solving (2 cr)
Bus 250 Introductory Systems Development (3 cr)
CS 112 Introduction to Problem Solving & Programming (3 cr)
Geog 385 GIS Primer (3 cr)
Math 160 Survey of Calculus or Math 170 Analytical Geometry and Calculus (4 cr)
PTTE 428 Teaching and Learning Computer Operating Systems for Technology (4 cr)
Accr Electives (See list in Dept. Office) (9 cr)

B. Water and Waste Management Systems Option

ASM 430 Water & Wastewater Operations Management (3 cr)
BAE 351 Hydrology (3 cr)
BAE 356 Hydrologic Measurement Techniques (1 cr)
EnvS 446 Drinking Water & Human Health (3 cr)
Math 160 Survey of Calculus or Math 170 Analytical Geometry and Calculus (4 cr)
Agriculture Electives (See list in Dept. Office) (9 cr)

C. Agricultural Production Management Option

ASM 304 Agricultural Fluid Power (2 cr)
ForP 230 Forest Harvesting Field Measurement or CE 218 Elementary Surveying (2 cr)
Math 143 Pre-calculus Algebra and Analytic Geometry or Math 160 Survey of Calculus (3-4 cr)
Agricultural Economics Elective (3 cr)
Structures Elective (See list in Dept. Office) (3 cr)
Agriculture and Technical Electives (See list in Dept. Office) (14 cr)
Life Science Electives (See list in Dept. Office) (3 cr)
Business Electives (See list in Dept. Office) (3 cr)

D. Agricultural Machine Systems Option

ASM 210 Small Engines (3 cr)
ASM 304 Fluid Power Systems (2 cr)
ASM 412 Agricultural Safety and Health (2 cr)
Geog 385 GIS Primer (3 cr)
Math 170 Analytical Geometry and Calculus (4 cr)
ME 123 Introduction to Mechanical Design (3 cr)
ME 261 Engineering Materials (3-4 cr)
Phys 111 General Physics I (4 cr)
PTTE 481 Computer Numerical Control Manufacturing (4 cr)
Agriculture Electives (See list in Dept. Office) (6 cr)

B. Agricultural and Environmental Engineering (B.S.B.A.E.)

Required course work includes the university requirements (see regulation J-3) and:

BAE 142 Engineering for Living Systems (2 cr)
BAE 143 Engineering Problem Solving or CS 112 Introduction to Problem Solving and Programming (3 cr)
BAE 355 Fundamentals of Hydrologic Engineering (3 cr)
BAE 441 Instrumentation and Measurement I (3 cr)
BAE 462 Electric Power and Controls (3 cr)
BAE 478 Engineering Design I (2 cr)
BAE 479 Engineering Design II (2 cr)

BIOLICAL AND AGRICULTURAL ENGINEERING
BAE 491 Senior Seminar (1 cr)
Chem 111 Principles of Chemistry I (4 cr)
Chem 112 Principles of Chemistry II (5 cr)
Engr 102 College Writing and Rhetoric (3 cr)
Engr 105 Engineering Graphics (3 cr)
Engr 210 Engineering Statics (3 cr)
Engr 240 Introduction to Electrical Circuits (3 cr)
Engr 320 Engineering Thermodynamics and Heat Transfer (3 cr)
Engr 335 Engineering Fluid Mechanics (3 cr)
Engr 350 Engineering Mechanics of Material (3 cr)
Engr 360 Engineering Economy (3 cr)
Math 170 Analytic Geometry and Calculus I (4 cr)
Math 175 Analytic Geometry and Calculus II (4 cr)
Math 275 Analytic Geometry and Calculus III (3 cr)
Math 310 Ordinary Differential Equations (3 cr)
Phys 211 Engineering Physics I (4 cr)
Phys 212 Engineering Physics II (4 cr)
Soil 205 The Soil Ecosystem (3 cr)
Stat 301 Probability and Statistics (3 cr)
Communications Elective (2 cr)

And one of the following options:

A. Agricultural Engineering Option

BAE 242 Agricultural Engineering Analysis and Design (2 cr)
BAE 352 Soil and Water Engineering or CE 322/323 Hydraulics and Lab (3-4 cr)
BAE 372 Agricultural Power and Machines (3 cr)
BAE 459 Irrigation System Design (3 cr)
BAE 461 Bioprocess Engineering (3 cr)
CE 211 Engineering Measurements (3 cr)
CE 342 Theory of Structures (3 cr)
Engr 220 Engineering Dynamics (3 cr)
Biological Science Electives (3 cr)
Technical Electives (8 cr)
Electives to total 128 cr for the degree

B. Biological Systems Engineering Option

BAE 242 Agricultural Engineering Analysis and Design (2 cr)
BAE 461 Bioprocess Engineering (3 cr)
Biol 115 Cells and the Evolution of Life (4 cr)
Chem 277 Organic Chemistry I (3 cr)
Chem 278 Organic Chemistry I Lab (1 cr)
MMBB 250, 255 General Microbiology and Lab (5 cr)
MMBB 380 Introductory Biochemistry (4 cr)
Biological Science Electives (3 cr)
Technical Electives (9 cr)
Electives to total 128 cr for the degree

C. Environmental Engineering Option

BAE 432 Bioreactor Theory and Design for Waste Treatment (3 cr)
BAE 433 Bioremediation (3 cr)
BAE 452 Environmental Water Quality (3 cr)
BAE 461 Bioprocess Engineering (3 cr)
Biol 115 Cells and the Evolution of Life (4 cr)
Chem 223 Material and Energy Balances (3 cr)
Chem 277 Organic Chemistry I (3 cr)
Chem 278 Organic Chemistry I Lab (1 cr)
CE 330 Fundamentals of Environmental Engineering (3 cr)
MMBB 250, 255 General Microbiology and Lab (5 cr)
MMBB 380 Introductory Biochemistry (4 cr)
Electives to total 128 cr for the degree

D. Food and Bioprocess Engineering Option

BAE 242 Agricultural Engineering Analysis and Design (2 cr)
BAE 461 Bioprocess Engineering (3 cr)
Biol 115 Cells and the Evolution of Life (4 cr)
Chem 277 Organic Chemistry I (3 cr)
Chem 278 Organic Chemistry I Lab (1 cr)
FST 303 Food Processing (3 cr)
MMBB 250, 255 General Microbiology and Lab (5 cr)
MMBB 380 Introductory Biochemistry (4 cr)
Technical Electives (3 cr)
Food Engineering Electives (3 cr)
Food Science Electives (3 cr)
Electives to total 128 cr for the degree

E. Soil and Water Engineering Option

BAE 242 Agricultural Engineering Analysis and Design (2 cr)
BAE 352 Soil and Water Engineering (3 cr)
BAE 451 Engineering Hydrology (3 cr)
BAE 452 Environmental Water Quality (3 cr)
BAE 458 Open Channel Hydraulics (3 cr)
BAE 459 Irrigation System Design (3 cr)
CE 211 Engineering Measurements (3 cr)
Technical Electives (8 cr)
Soil and/or Water Engineering Electives (3 cr)
Biological Science Electives (3 cr)
Electives to total 128 cr for the degree

A grade of C or better is required in each of the following courses before registration is permitted in upper-division engineering courses: BAE 143, BAE 242, Chem 111, Engr 210, Math 275, and Phys 211.

To graduate in this program, a grade of C or better is required in each of the following courses: BAE 143, BAE 242, Chem 111, Engr 210, Math 275, and Phys 211.

Students are required to submit a course plan and a statement of how the humanistic and social science course requirements complement the technical content of the curriculum and are consistent with the program and institution objectives.

Academic Minor Requirements

AGRICULTURAL SYSTEMS MANAGEMENT MINOR

ASM 202 Agricultural Shop Practices (2 cr)
At least fourteen credits from the following skill courses:

ASM 107 Beginning Welding (2 cr)
PTTE 367 Teaching and Learning Computer Aided Drafting/Design (2 cr)

At least twelve credits from the following application courses:

ASM 304 Agricultural Fluid Power Systems (2 cr)
ASM 305 Agricultural Machinery Systems (3 cr)
ASM 315 Irrigation Systems and Water Management (3 cr)
ASM 409 Agricultural Tractors and Power Units (3 cr)
ASM 412 Agricultural Safety and Health (2 cr)
ASM 430 Water and Wastewater Management (3 cr)

The minimum number of credits in agricultural systems management courses for the minor is 19.

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Biological and Agricultural Engineering. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Science. General M.S. requirements apply. Study and research programs are available in all of the areas listed above.

Master of Engineering. General M.Engr. requirements apply.

Doctor of Philosophy. Admission to this program is based on the student’s interest being compatible with faculty interest, funds, and facilities. Admission is given only after a thorough review of the student’s academic background, research interests, and potential. Individual programs normally consist of three years’ work beyond the bachelor’s degree. The department does not have a mandatory foreign language requirement. Students are required, however, to broaden their education in an area outside the normal engineering and science curricula. This can be done by taking courses in the humanities and social sciences, demonstrating an in-depth proficiency in a foreign language, or participating in an equivalent broadening educational experience.

Department of Biological Sciences

The biological sciences deal with the basic biological principles of all living things. Courses in the Department of Biological Sciences reflect the increased awareness that subspecialties within biology are merging into a broad principles-based discipline that recognizes the similarities among living organisms. Students will be presented with approaches that are based on unifying biological principles. This will provide them with information that can then be applied to a vast array of novel situations. The B.A. and B.S. degrees in biology offered by the department reflect this integrated view of biology. The Biology Core curriculum involves exposure to concepts fundamental to all living things at several levels of organization. Upper division electives allow students to emphasize natural history, anatomy/physiology, molecular/molecular/developmental biology, or quantitative integrative biology. Courses are available to students majoring in other disciplines, who wish to increase their knowledge of science, or who wish to obtain a minor in biology. The department offers both Ph.D. and M.S. degrees in biology. A non-thesis graduate degree, the M.Nat.Sc., which is designed to increase the breadth and depth of understanding of biology and is designed primarily for secondary teachers, is also offered.

Graduates from the department may enter a variety of fields and may continue their education. Recent graduates have entered allied and public health professions, primary and secondary teaching, agribusiness, medical school, veterinary school, graduate school, law school, state and national agencies that deal with biology (e.g., forestry and fish and game departments, EPA), as well as a variety of environmental consulting agencies and biotechnology companies.

Graduate and undergraduate research concentrations are available in ecology and evolution (animal behavior, genetics, microbial ecology, systematics), medical and veterinary sciences (aging, development, neurobiology, physiology) and reproductive biology (development, endocrinology, fertility). Possibilities for multidisciplinary research are further enhanced by interdepartmental graduate programs offered in the neurosciences and bioinformatics.

A wide variety of ongoing projects have produced a stimulating environment for graduate and undergraduate research. These projects include areas such as: the study of germ
cell development in salmonids and the establishment of a germplasm repository for threatened and endangered species; determination of the effects of estrogenic compounds and environmental contaminants on embryo development, reproduction and adult behavior; investigation of the reproductive physiology of vertebrates at the biochemical, cellular and organ system levels; examination of endocrine regulation within gametes of salmonids and sturgeon; hormonal actions at the molecular level; the development of behavior, play, and sexual selection in animals; the ecology and adaptive evolution of prokaryotic organisms; phylogeny, phylogeography, and their use in conservation biology; coevolution of plants and animals; experimental evolution of bacterial viruses; evolution of transposable elements; the biology of aging in mammals, and birds; the structure and function of neuronal networks during normal development, aging, and regeneration after nerve damage; photoreceptor differentiation during retinal development and regeneration; and the comparative physiology of cardiovascular systems.

For more complete information on research concentrations, please see faculty profiles on the departmental web site at http://www.sci.uidaho.edu/biosci/.

Admission to graduate programs in the department is based upon an estimate of probable success in work leading to a specific degree. The Graduate Record Examination (aptitude only) is required of all applicants.

Prospective students, or students desiring more information, may write, call (208-885-6328) or email the department (biosci@uidaho.edu).

Courses

See Part 6 for courses in Biology (Biol).

Undergraduate Curricular Requirements

BIOLOGY (B.A. or B.S.)

To graduate in this program, students must earn a minimum grade of C in Biol 115 and 116 and must have a minimum gpa of 2.40 in Biol 115, 116, 210, 212, and 213.

Required course work includes the university requirements (see regulation J-3), and the following major requirements (electives to be chosen in consultation with the departmental advisor).

Biol 115 Cells and the Evolution of Life (4 cr)
Biol 116 Organisms & Environment (4 cr)
Biol 210 Genetics (4 cr)
Biol 212 Molecular and Cellular Biology (4 cr)
Biol 213 Principles of Biological Structure and Function (4 cr)
Biol 314 Ecology and Population Biology (4 cr)
Biol 411 Senior Capstone (2 cr)
Chem 111 Principles of Chemistry I (4 cr)
Chem 112 Principles of Chemistry II (5 cr)
Chem 275/276 Carbon Compounds and Lab or Chem 277/278 Organic Chemistry and Lab (4 cr)
MMBB 380 Introductory Biochemistry or MMBB 300 Survey of Biochemistry (3-4 cr)
Math 143 Pre-calculus Algebra and Analytic Geometry or higher (3 cr)
Biol 411 Senior Capstone (2 cr)

Required course work includes the university requirements (see regulation J-3), and the following major requirements (electives to be chosen in consultation with the departmental advisor).

Biol 115 Cells and the Evolution of Life (4 cr)
Biol 116 Organisms & Environment (4 cr)
Biol 210 Genetics (4 cr)
Biol 212 Molecular and Cellular Biology (4 cr)
Biol 213 Principles of Biological Structure and Function (4 cr)
Biol 314 Ecology and Population Biology (4 cr)
Biol 411 Senior Capstone (2 cr)
Chem 111 Principles of Chemistry I (4 cr)
Chem 112 Principles of Chemistry II (5 cr)
Chem 275/276 Carbon Compounds and Lab or Chem 277/278 Organic Chemistry and Lab (4 cr)
MMBB 380 Introductory Biochemistry or MMBB 300 Survey of Biochemistry (3-4 cr)
Math 143 Pre-calculus Algebra and Analytic Geometry or higher (3 cr)
Biol 411 Senior Capstone (2 cr)

NOTE: Students considering graduate school in biology are strongly encouraged to take Math 270, Chem 277/278, and MMBB 380.

12 credits of approved electives from the following list are required (categories are intended only as a guide for student and advisor use):

Natural History
Biol 341 Systematic Botany (3 cr)
Biol 478 Animal Behavior (3 cr)
Biol 461 Ichthyology (4 cr)
Biol 483 Mammalogy (3 cr)
Biol 484 Invertebrate Zoology (4 cr)
Ent 440 Insect Identification (4 cr)
WLF 482 Ornithology (4 cr)

Anatomy/Physiology
Biol 311 Plant Physiology (4 cr)
Biol 324 Comparative Vertebrate Anatomy (4 cr)
Biol 423 Comparative Vertebrate Physiology (4 cr)
Biol 427 Vertebrate Histology and Organology (4 cr)
Biol 450 Comparative Vertebrate Reproduction (3 cr)
Ent 484 Insect Anatomy and Physiology (4 cr)
MMBB 460 Microbial Physiology (3 cr)
PicSc 415 Plant Pathology (3 cr)

Quantitative/Integrative Biology
Biol 421 Advanced Evolution/Population Dynamics (3 cr)
Biol 425 ST: Experimental Field Ecology (3 cr)
Biol 448 Plant-Animal Interactions (3 cr)
Biol 449 Insect Ecology (3 cr)
Math 437 Mathematical Biology (3 cr)
MMBB 425 Microbial Ecology (3 cr)
WLF 440 Conservation Biology (3 cr)
WLF 448 Fish and Wildlife Population Ecology (4 cr)

Molecular/Cellular/Developmental (MCD) Biology
Biol 421 Advanced Experimental Approaches in the Biological Sciences (2 cr)
Biol 444 Genomics (3 cr)
Biol 461 Neurobiology (3 cr)
Biol 474 Principles of Developmental Biology (3 cr)
MMBB 409 Immunology (3 cr)
MMBB 440 Advanced Lab Techniques (4 cr)
MMBB 475 Molecular Biology of the Cell (3 cr)
MMBB 488 Genetic Engineering (3 cr)

In addition to the above electives, Biology majors are encouraged to enroll in at least 3 credits of coursework that explore social, political or philosophical aspects of biology. A list of suggested courses will be provided by the student’s advisor and is available on the department’s website.

Biological B.A. students must also complete:

6 credits (two courses) in the humanities in addition to the minimum university-wide core requirement of 14 credits in the humanities/social sciences*

3 credits (one course) in the social sciences in addition to the minimum university-wide core requirement of 14 credits in the humanities/social sciences.

Biological B.S. students must also complete:

3 credits (one course) in the humanities in addition to the minimum university-wide core requirement of 14 credits in the humanities/social sciences*

6 credits (two courses) in the social sciences in addition to the minimum university-wide core requirement of 14 credits in the humanities/social sciences.

*Courses satisfying the requirements are those dealing with the arts, literature, and philosophy. Courses satisfying the social science requirement are those courses dealing with a person's social condition including social relations, institutions, history, and participation in an organized community. Refer to online degree audit system through Web registration system or your academic advisor for a listing of appropriate courses.

Biological B.S. students must also complete:

3 credits (one course) in the humanities in addition to the minimum university-wide core requirement of 14 credits in the humanities/social sciences*

3 credits (one course) in the social sciences in addition to the minimum university-wide core requirement of 14 credits in the humanities/social sciences.

PRE-MEDICAL AND PRE-DENTAL STUDIES

Admission to schools of medicine or dentistry involves successfully fulfilling prerequisite course work, obtaining a sufficiently high score on the Medical College Admission Test (MCAT) or Dental Admission Test (DAT), submitting completed applications, and having a successful interview. The allied health advisor in the Department of Biological Sciences advises students in all areas of the application process and maintains MCAT and DAT study sessions through the Reserve Desk in the University Library. A committee of three faculty members interviews pre-medical students (and pre-dental students on request), writes a letter of evaluation, and provides guidance to students in the interview process. A video recording of the interview is reviewed by the student with the allied health advisor to better prepare the student for formal interviews elsewhere.

Students with interests in either the M.D., D.D.S., or D.M.D. degree are urged to contact Professor Ingermann, Gibb 237, as early as possible.

NOTE: Pre-medical and pre-dental students are strongly encouraged to take Chem 277/278.

PRE-NURSING STUDIES

Admission to a school of nursing involves meeting satisfactorily its entrance requirements, acceptance of scholastic records or a satisfactory score on the nursing admission test, and possession of personal qualifications essential for effective nursing. Nursing schools differ in their prerequisites. Students should investigate the requirements of their school of choice.

The following two-year program is suggested for students who plan to transfer to a school of nursing.

Biol 120 Human Anatomy (4 cr)
Biol 121 Human Physiology (4 cr)
Chem 101 Introduction to Chemistry I or 111 Principles of Chemistry I (4 cr)
Chem 275, 276 Carbon Compounds and Lab (4 cr)
FCS 205 Concepts in Human Nutrition (3 cr)
MMBB 250 General Microbiology or MMBB 154 Intro Biology of Bacteria and Viruses (3 cr)
Psyc 101 Introduction to Psychology (3 cr)
Soc 101 Introduction to Sociology (3 cr)
Stat 251 Statistical Methods (3 cr)

NOTE: Pre-nursing students are strongly encouraged to take Math 143.

PRE-PHYSICAL THERAPY STUDIES

UH does not have a professional program in physical therapy and does not offer a degree program in pre-physical therapy. Students may pursue a B.S. degree in a related area (such as biology, psychology, or sport science) while completing the prerequisites for admission to a physical therapy degree program. UH students designating pre-physical therapy as a major will be temporarily placed in the biology major. The pre-physical therapy advisor in the Department of Biological Sciences advises students interested in preparing to enter into a professional program at another institution.
Referred Preparations
The doctoral program in physical therapy at Idaho State University, Idaho’s only physical therapy program, is required by law to fill most of its program with Idaho residents. Consequently, Idaho residents have a competitive advantage in applying to this program. In addition to completing the graduate degree, the successful applicant must have completed the following list of prerequisite courses for the Idaho State University program. Students interested in the prerequisite courses for other programs should contact Professor Rolf Ingemann.

Prerequisites Courses (with a GPA of 3.0 in each category):

- Biology (3 courses):
 - Course 1 & 2: Biol 120 Human Anatomy and Biol 121 Human Physiology
 - Course 3: Upper-division course, 3 cr minimum (Lab-only course will NOT be accepted. Courses in plant biology or evolution will NOT be accepted)

- Chemistry (2 courses):
 - Chem 111 and Chem 112 Introductory Chemistry with laboratory

- Physics (2 courses):
 - Phys 111 and Phys 112 Introductory Physics with laboratory

- Math/Statistics (1 course):
 - Stat 251 Statistical Methods

- Psychology and Sociology or Anthropology or Health Science (2 courses):
 - Course 1: Psych 101 Introductory Psychology
 - Course 2: Sociology or Anthropology or Health Science or Psychology. (This course must be relevant to health care, rural societies, cultural diversity, aging, health care administration, abnormal psychology or epidemiology. Marriage/family, religion or history courses will not meet this requirement.)

Academic Minor Requirements

BIOLOGY MINOR

- Biol 116 Cells and the Evolution of Life (4 cr)
- Biol 116 Organisms & Environments (4 cr)
- Biol 210 Genetics (4 cr)
- Biol 212 Molecular and Cellular Biology (4 cr)
- Biol 213 Principles of Biological Structure and Functions (4 cr)
- Biol 314 Ecology and Population Biology (4 cr)

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Biological Sciences. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Doctor of Philosophy

Major in biology. The Ph.D. program emphasizes research including, but not limited to the departmental and multidisciplinary area described above. In addition to the requirements listed above, admission is based upon the compatibility of the student’s research interests with the areas of concentration offered by the department and the availability of a faculty member to be the student’s mentor.

Master of Science

Major in biology. The M.S. program emphasizes research including, but not limited to the departmental and multidisciplinary area described above. In addition to the requirements listed above, admission is based upon the compatibility of the student’s research interests with the areas of concentration offered by the department and the availability of a faculty member to be the student’s mentor.

Master of Natural Science

Major in biological sciences. This program is intended primarily for students who are currently engaged in, or planning to enter, secondary-school or junior-college teaching. The major part of the course work will be in biological sciences. A program will be planned by the advisor and the candidate for coherence and will include coverage of the following areas (prior undergraduate preparation included): physiology or biochemistry, evolution, systematics, ecology, morphology, genetics, and microbiology.

The terminal project consists of a major paper and a comprehensive examination.

Department of Business

The six major fields (business economics, finance, information systems, management and human resources, marketing, and production/operations management) within the department lead to the B.S.Bus. degree. These programs provide a solid foundation in the liberal arts, a broad professional preparation in business, and in-depth course work in a major field. They are designed to prepare the student to excel in a competitive market environment. The department offers minors in business and in international business.

The business economics major prepares students for careers as economic forecasters, bankers, stockbrokers, labor or marketing analysts, lobbyists, or regional development specialists. The department offers three undergraduate economics degree programs, one in the College of Business and Economics and two in the College of Letters, Arts, and Social Sciences. The international business minor, open only to students with a major in the College of Business and Economics, complements each of the majors in the college, and prepares students to extend their disciplinary mastery to the global economy.

Courses

See Part 6 for courses in Business (Bus) and Business Law (BLaw), Economics (Econ), Finance (Fin), and Marketing (Market).

Undergraduate Curricular Requirements

BUSINESS ECONOMICS (B.S.Bus.)

This program is offered through the College of Business and Economics. Students preparing for professional careers as economists in private business, government service, or careers where a broad knowledge of economics is useful should elect this curriculum.

Required course work includes the university requirements (see regulation J-3), the college requirements, and:

- Econ 351 Intermediate Macroeconomic Analysis (3 cr)
- Econ 352 Intermediate Microeconomic Analysis (3 cr)
- Econ 353 Quantitative Economics and Forecasting or Econ 453 Econometrics (3 cr)
- Econ 490 Economic Theory and Policy (3 cr)

And one of the following options:

A. General Option

Additional upper-division credits in economics (9 cr)
Upper-division courses in related field areas, with approval of department (9 cr)

B. Financial Economics Option

Bus 302 Intermediate Financial Management (3 cr)
Bus 407 Financial Institutions (3 cr)
Bus 343 Money and Banking (3 cr)
At least one of the following (3 cr):
- Bus 405 Portfolio Management (3 cr)
- Bus 408 Security Analysis (3 cr)
- Bus 481 International Finance (3 cr)
Additional upper-division credits in economics (6 cr)

ECONOMICS (B.A.)

This program is offered through the College of Letters, Arts, and Social Sciences. Required course work includes the university requirements (see regulation J-3), the general College of LASS requirements for the B.A. degree, and:

- Econ 201, 202 Principles of Economics; or Econ 272 Foundations of Economics and either Econ 201 or Econ 202 or two more credits of an upper-division economics course* (6-7 cr)
- Econ 351 Intermediate Macroeconomic Analysis (3 cr)
- Econ 352 Intermediate Microeconomic Analysis (3 cr)
- Econ 353 Quantitative Economics and Forecasting or Econ 453 Econometrics (3 cr)
- Econ 490 Economic Theory and Policy (3 cr)
- Math 143 Pre-calculus Algebra and Analytic Geometry (3 cr) or higher
- Math 160 Survey of Calculus, Math 170 Analytic Geometry and Calculus I or Math 175 Analytic Geometry and Calculus II (4 cr)
- Stat 251 Statistical Methods (3 cr) and Stat 262 Decision Analysis (1 cr); or Stat 271 Statistical Inference and Decision Analysis (4 cr) or higher.
- Additional upper-division credits in economics (12-14 cr)
- Upper-division credits in related fields, selected with approval of economics faculty. (15 cr)

* A total of six credits in this area is required. Students who have completed Econ 272 with a final grade of B or better may either complete at least two additional upper-division credits in economics or take Econ 201 or Econ 202 for two credits. Students who have completed Econ 272 with a final grade lower than B must take either Econ 201 or Econ 202 for two credits.
ECONOMICS (B.S.)

This program is offered through the College of Letters, Arts, and Social Sciences.

Required course work includes the university requirements (see regulation J-3), the general College of LAS elective requirements for the B.S. degree, and:

Econ 201, 202 Principles of Economics; or Econ 272 Foundations of Economics and either Econ 201 or Econ 202 or two more credits of an upper-division economics course* (6-7 cr)

Econ 351 Intermediate Macroeconomic Analysis (3 cr)
Econ 352 Intermediate Microeconomic Analysis (3 cr)
Econ 353 Quantitative Economics and Forecasting or Econ 453 Econometrics (3 cr)
Econ 490 Economic Theory and Policy (3 cr)
Math 143 Pre-calculus Algebra and Analytic Geometry (3 cr) or higher
Math 180 Survey of Calculus, Math 170 Analytic Geometry and Calculus I or Math 175 Analytic Geometry and Calculus II (4 cr)
Stat 251 Statistical Methods (3 cr) and Stat 262 Decision Analysis (1 cr) or Stat 271 Statistical Inference and Decision Analysis (4 cr), or higher.

Upper-division courses in economics (11 cr)

A total of six credits in this area is required. Students who have completed Econ 272 with a final grade of B or better may either complete at least two additional upper-division credits in economics or take Econ 201 or Econ 202 for two credits. Students who have completed Econ 272 with a final grade lower than B must take either Econ 201 or Econ 202 for two credits.

FINANCE (B.S.Bus.)

Required course work includes the university requirements (see regulation J-3), the college requirements, and the following (note: students in the Finance Major with the Financial Planning Option should consult the requirements for that option):

Acct 315 Corporate Accounting and Reporting I (3 cr)
Bus 302 Intermediate Financial Management (3 cr)
Bus 407 Financial Institutions (3 cr)
Bus 409 Problems in Financial Management (3 cr)
Econ 343 Money and Banking (may be used to fulfill college core econ requirements) (3 cr)

Finance electives, select two of the following: (6 cr):
- Bus 405 Portfolio Management (3 cr)
- Bus 408 Security Analysis (3 cr)
- Bus 481 International Finance (3 cr)

Supporting electives, select two of the following: (6 cr):
- Acct 415 Advanced Financial Accounting and Reporting (3 cr)
- Acct 460 Accounting for Public Sector Entities (3 cr)
- Acct 486 Accounting for Decision Making and Control (3 cr)
- Bus 362 Real Property Appraisal or Bus 364 Insurance (3 cr)
- Bus 405, 408, or 481 (if not chosen above) (3 cr)
- Bus 421 Marketing Research and Analysis (3 cr)
- Bus 427 Services Marketing (3 cr)
- Bus 461 Retirement Planning and Employee Benefits or Bus 462 Principles of Financial Planning (3 cr)
- Econ 362 Intermediate Microeconomic Analysis (3 cr)
- Econ 353 Quantitative Economics and Forecasting (3 cr)
- Econ 407 Public Finance or Econ 408 State and Local Govt Finance (3 cr)
- Econ 453 Econometrics (3 cr)
- Stat 401 Statistical Analysis (3 cr)

Electives to total 128 cr for the degree

Financial Planning Option in Finance

Required course work includes the university requirements (see regulation J-3), the college requirements, and:

Acct 315 Corporate Accounting and Reporting I (3 cr)
Acct 483 Federal Income Taxation (3 cr)
Bus 302 Intermediate Financial Management (3 cr)
Bus 364 Insurance (3 cr)
Bus 405 Portfolio Management (3 cr)
Bus 407 Financial Institutions (3 cr)
Bus 408 Security Analysis (3 cr)
Bus 409 Problems in Financial Management (3 cr)
Bus 461 Retirement Planning and Employee Benefits (3 cr)
Bus 462 Principles of Financial Planning (3 cr)
Econ 343 Money and Banking (may be used to fulfill college core econ requirements) (3 cr)

Electives to total 128 cr for the degree

INFORMATION SYSTEMS (B.S.Bus.)

Required course work includes the university requirements (see regulation J-3), the college requirements, and:

Bus 250 Introductory Systems Development (3 cr)
Bus 352 Modern Information Technology (3 cr)
Bus 355 Systems Analysis and Design (3 cr)
Bus 452 Business Telecommunications Management (3 cr)
Bus 453 Database Design (3 cr)

IS electives: at least one course selected from the following (3 cr):
- Bus 378 Project Management (3 cr)
- Bus 439 Systems and Simulation (3 cr)
- Bus 454 Current Issues in Information Systems (3 cr, max arr)
- Bus 455 IS Project (3 cr)

Communications elective: one course (in addition to those taken to meet the CBE requirement) selected from the following (3 cr):
Comm 331 Conflict Management (3 cr)
Comm 433 Organizational Communication Theory and Research (3 cr)

Engl 313 Business Writing (3 cr)
Engl 317 Technical Writing (3 cr)
Phil 201 Critical Thinking (3 cr)

Restricted electives: one additional course from the IS electives or from the following (3 cr):
Acct 492 Auditing and Controls (3 cr)
Art 372 Interface Design IV (3 cr)
Bus 418 Organization Design and Changes (3 cr)
Bus 427 Services Marketing (3 cr)
Bus 472 Operations Planning and Scheduling (3 cr)
CS Any computer science course numbered 300 and above
Econ 453 Econometrics (3 cr)
Geog 385 GIS Primer (3 cr)
Geog 470 Geographic Visualization (3 cr)
ME 409 Human Factors in Engineering Design (3 cr)

In addition to all other requirements, students must take at least 9 credits from outside the CBE in addition to those specifically required. These may be chosen from the restricted electives or from other courses.

MANAGEMENT AND HUMAN RESOURCES (B.S.Bus.)

Required course work includes the university requirements (see regulation J-3), the college requirements, and:

Bus 412 Human Resource Management (3 cr)
Bus 413 Leadership and Organizational Behavior (3 cr)
Bus 418 Organization Design and Changes (3 cr)

And one of the following emphases:

Management Emphasis

Bus 414 Entrepreneurship (3 cr)
One of the following courses (3 cr):
- Bus 378 Project Management (3 cr)
- Bus 456 Quality Management (3 cr)
- Bus 470 Purchasing and Materials Management (3 cr)
- Bus 472 Operations Planning and Scheduling (3 cr)
One of the following courses (3 cr):
- Bus 324 Buyer Behavior (3 cr)
- Bus 420 Promotional Strategy (3 cr)
- Bus 422 Personal Selling and Sales Force Management (3 cr)
- Bus 425 Retail Distribution Management (3 cr)
- Bus 426 Marketing Channels Management (3 cr)
- Bus 427 Services Marketing (3 cr)
One of the following courses (3 cr):
- Bus 302 Intermediate Financial Management (3 cr)
- Bus 362 Real Property Appraisal (3 cr)
- Bus 364 Insurance (3 cr)
- Bus 407 Financial Institutions (3 cr)
- Bus 481 International Finance (3 cr)
One additional course selected from those not taken in the three groups above (3 cr)

Human Resources Management Emphasis

Bus 416 Staffing and Compensation (3 cr)
Bus 441 Labor Relations (3 cr)
One of the following courses (3 cr):
- Psych 416 Industrial/Organizational Psychology (3 cr)
- Psych 430 Tests and Measurements (3 cr)
- Psych 435 Personnel Psychology (3 cr)
- Psych 450 Training and Performance Support (3 cr)
- Bus 461 Retirement Planning and Employee Benefits (3 cr)

Select two of the following courses (at least one selection must be an upper-division course) (6 cr):
- Anth 462 Human Issues in International Development (3 cr)
- Comm 233 Interpersonal Communication (3 cr)
- Comm 235 Organizational Communication (3 cr)
- Comm 331 Conflict Management (3 cr)
- Comm 335 Intercultural Communication (3 cr)
- Comm 432 Gender and Communication (3 cr)
- Comm 433 Organizational Communication Theory and Research (3 cr)
- Comm 491 Communication and Aging (3 cr)
- Soc 301 Introduction to Diversity and Stratification (3 cr)
- Soc 427 Race and Ethnic Relations (3 cr)
Electives to total 128 cr for the degree
MARKETING (B.S.Bus.)

Required course work includes the university requirements (see regulation J-3), the college requirements, and:

- Bus 324 Buyer Behavior (3 cr)
- Bus 421 Marketing Research and Analysis (3 cr)
- Bus 428 Marketing Management (3 cr)

One of the following communication courses (3 cr):
- Comm 233 Interpersonal Communication (3 cr)
- Comm 235 Organizational Communication (3 cr)
- Comm 331 Conflict Management (3 cr)
- Comm 332 Communication and the Small Group (3 cr)

Tier 1 Marketing Electives: Three of the following courses:
- Bus 420 Promotional Strategy (3 cr)
- Bus 422 Personal Selling and Sales Force Management (3 cr)
- Bus 423 Internet Marketing (3 cr)
- Bus 424 Pricing Strategy and Tactics (3 cr)
- Bus 425 Retail Distribution Management (3 cr)
- Bus 426 Marketing Channels Management (3 cr)
- Bus 427 Services Marketing (3 cr)
- Bus 482 International Marketing (3 cr)

Tier 2 Business Electives: Two upper-division (300-400 level) CBE courses, excluding Bus 321 (6 cr)

Electives to total 128 cr for the degree

Professional Golf Management Option in Marketing

Required course work includes the university requirements (see regulation J-3), the college requirements, and:

- Bus 298 Internship (2 cr)
- Bus 324 Buyer Behavior (3 cr)
- Bus 398 Internship (6 cr)
- Bus 421 Marketing Research and Analysis (3 cr)
- Bus 424 Pricing Strategy and Tactics (3 cr)
- Bus 425 Retail Distribution Management (3 cr)
- Bus 428 Marketing Management (3 cr)
- Bus 301 Financial Management (3 cr)
- Bus 311 Introduction to Management (3 cr)
- Bus 321 Marketing (3 cr)
- Bus 350 Management Information Systems or Bus 369 Introduction to Electronic Commerce (3 cr)
- Bus 370 Production/Operations Management (3 cr)

ECONOMICS MINOR

This academic minor (with its five different areas) is offered through the College of Letters, Arts, and Social Sciences.

- Econ 201, 202: Prin of Econ or Econ 272 Foundations of Econ Analysis (4-6 cr)
- Econ 351 Intermediate Microeconomic Analysis (3 cr)
- Econ 352 International Microeconomic Analysis (3 cr)

And one of the following areas (with the permission of the student's advisor, the student may petition to have one substitute course for one of the following specific courses in the first four areas):

- Forecasting
 - Econ 345 Money and Banking (3 cr)
 - Econ 355 Quantitative Economics and Forecasting (3 cr)
 - Econ 453 Econometrics (3 cr)

- Public Policy
 - Econ 407 Public Finance (3 cr)
 - Econ 415 Market Structure and Governmental Policy (3 cr)

- Development
 - Econ 430 Regional/Urban Economics (3 cr)
 - Econ 446 International Economics (3 cr)
 - Econ 447 Economics of Developing Countries (3 cr)

- Economic Resources
 - Econ 385 Environmental Economics (3 cr)
 - Econ 441 Labor Economics (3 cr)
 - Course approved by student's advisor (3 cr)

- General Economics
 - Upper-division economics courses approved by student's advisor and dept chair (9 cr)

INTERNATIONAL BUSINESS MINOR

Note: This minor is limited to students majoring in the College of Business and Economics.

- Bus 345 Business Operating Decisions (3 cr)
- Bus 481 International Finance (3 cr)
- Bus 482 International Marketing (3 cr)
- Econ 446 International Economics (3 cr)
- PolS 237 International Politics (3 cr)
- One of the following courses or another approved elective (3 cr):
 - Econ 415 Marketing Structure and Governmental Policy (3 cr)
 - Econ 447 Economics of Developing Countries (3 cr)
 - FLEN 307 The European Union (3 cr)
 - PolS 440 International Organizations and International Law (3 cr)

Foreign language mastery is required equivalent to completion of the introductory and intermediate courses, and an upper-division course in a language. A semester of study and/or internship in another country is recommended. CBE students currently have direct access to academic programs at Växjö University (Sweden), Ecole Supérieure de Commerce de Chambéry (France), Pontifica Universidad Católica del Ecuador, Griffith University (Australia), Fachhochschule fur Technik und Wirtschaft Berlin (Germany), University of Zaragoza (Spain), Haags Hogeschool (The Netherlands), the Southern Denmark Business School, and the University of Newcastle upon Tyne (United Kingdom). CBE students also have access to programs in Australia, Chile, France, Italy, and Spain through the University Studies Abroad Consortium, and to numerous schools in various countries through the International Student Exchange Program. Internships are developed on an ad hoc basis.

INTERNATIONAL POLITICAL ECONOMY MINOR

This academic minor is offered through the College of Business and Economics and the College of Letters, Arts, and Social Sciences.

- Econ 446 International Economics (3 cr)
- Econ 447 Economics of Developing Countries (3 cr)
- PolS 237 International Politics (3 cr)
- PolS 440 International Organizations and International Law (3 cr)

Nine credits selected from the following list, provided that no more than six credits are selected from a particular discipline (9 cr):
- Bus 481 International Finance (3 cr)
- Econ 385 Environmental Economics (3 cr)
- Econ 407 Public Finance (3 cr)
- Econ 415 Market Structure and Governmental Policy (3 cr)
- Econ 430 Regional/Urban Economics (3 cr)
Graduate Degree Program

The Department of Business offers an M.S. Economics degree, an integrated course of study oriented toward policy analysis and applied studies. After building a theoretical base and mastering the analytical tools, the student is led to apply theory and use the tools in the analysis of practical policy issues, both public and private. Two types of M.S. degrees are offered: (a) a thesis degree, which provides specialized research experience for careers requiring such expertise, and (b) a non-thesis degree, which provides a broader background for careers where research competency may be desirable but not of primary importance. Both degrees require completion of at least 30 credits of work.

Applicants are considered based on evidence of prior performance and potential for success in the program. Students are encouraged to submit Graduate Record Examination scores and letters of recommendation. Non-native speakers of English must score at least 550 on the TOEFL exam. The undergraduate degree need not be in economics, although a minor in economics is desirable. Students with little background in economics, or other deficiencies, will be required to take certain undergraduate courses that may not be included in the graduate study plan.

Students admitted to the program must fulfill the requirements of the College of Graduate Studies and of the Department of Economics. Financial assistance is available on a competitive basis. See the College of Graduate Studies section of Part 4 for the general requirements applicable to all M.S. degrees.

Department of Chemical Engineering

Chemical engineering combines the science of chemistry with the discipline of engineering in order to solve problems and to increase process efficiency. One of the most attractive aspects of a chemical engineering future is the variety of work available. Chemical engineering is a blend of physics, chemistry, and mathematics; thus, a chemical engineer possesses a versatility that gives him or her many opportunities for employment in fields such as pulp and paper, environmental engineering, food products, nuclear power, petroleum and petrochemicals, semiconductors, synthetic fuels, radiotrace applications, plastics and polymers, pharmaceuticals, education, biomedical engineering, computer applications, alternate energy sources, steel, and textiles. A chemical engineer can choose work in any of the following areas: research and development, design and construction, operations, management, teaching, or technical sales.

The mission of the Department of Chemical Engineering is to provide quality educational programs firmly based in fundamental concepts and to prepare students with a broad-based education grounded in the fundamentals of chemical engineering.

The faculty of the Department of Chemical Engineering is dedicated to excellence in instruction. It is the faculty’s goal to provide the students with a strong, well-rounded background for immediate entry into the industrial workforce or for graduate study. This background includes the theoretical aspects of chemical engineering as well as practical work experiences. Thus, most of the equipment that is installed in the Chemical Engineering laboratory is on the scale of pilot plant equipment. Because much of the equipment is made of glass, students are able to see at a glance what processes occur and where the streams are flowing. The department has a two-story distillation column, a gas absorber, two types of evaporators, a two-stage chemical reactor, a catalytic reactor, liquid extraction equipment, membrane based gas separation, an Atomic Force Microscope (AFM) system, a multi-column gas chromatograph, process control lab, and supporting analytical equipment such as gas chromatographs. All of this equipment is used by undergraduate students. Proof that the departmental goals are being achieved is in the job-placement statistics for chemical engineers from UI. Most receive job offers before graduation and many graduates now hold high-level technical and management positions in industry, government, and academia.

The department has available a number of fellowships and assistantships for students. Support includes fellowships from industry and alumni; UI graduate assistantships; and research assistantships. Entering graduate students must normally hold a B.S. in chemical engineering.

Courses

See Part 6 for courses in Chemical Engineering (ChE).

Undergraduate Curricular Requirements

CHEMICAL ENGINEERING (B.S.Ch.E.)

Required course work includes the university requirements (see regulation J-3) and:

- CHE 110 Introduction to Chemical Engineering (1 cr)
- CHE 123 Computations in Chemical Engineering (2 cr)
- CHE 223 Material and Energy Balances (3 cr)
- CHE 326 Chemical Engineering Thermodynamics (3 cr)
- CHE 330 Separation Processes I (3 cr)
- CHE 340/351 Transport and Rate Processes I-II (8 cr)
- CHE 423 Reactor Kinetics and Design (3 cr)
- CHE 433, 434 Chemical Engineering Lab, I, II (2 cr)
- CHE 444 Process Analysis and Control (3 cr)
- CHE 445 Digital Process Control (3 cr)
- CHE 453-454 Chemical Process Analysis and Design (6 cr)
- CHE 491 Seminar (1 cr)
- Chem 111-112 Principles of Chemistry I-II (9 cr)
- Chem 277, 278 Organic Chemistry I and Lab (4 cr)
- Chem 305, 307 Physical Chemistry and Lab (4 cr)
- Chem 372, 374 Organic Chemistry II and Lab (4 cr)
- Engl 102 College Writing and Rhetoric (3 cr)
- Engr 210 Engineering Statics (3 cr)
- Engr 240 Introduction to Electrical Circuits (3 cr)
- Engr 320 Engineering Thermodynamics and Heat Transfer (3 cr)
- Engr 335 Engineering Fluid Mechanics (3 cr)
- Math 170, 175, 275 Analytic Geometry and Calculus (11 cr)
- Math 310 Ordinary Differential Equations (3 cr)
- Phys 211-212 Engineering Physics I-II (6 cr)
- Chemical engineering electives (3 cr)
- Chemical/bioscience electives (4 cr)
- Computer science elective in a programming language (2 cr)
- Economics elective (3 cr)
- Humanities and social sciences electives (12 cr)
- Communication electives (2 cr)
- Mathematics electives (3 cr)
- Technical electives (6 cr)

The minimum number of credits for the degree is 128, not counting Engl 101, Math 143, and other courses that might be required to remove deficiencies.

Students majoring in chemical engineering must earn a grade of C or better in each of the following courses before registration is permitted in upper-division chemical engineering courses: Chem 111 and 112, CHE 223, Engr 210, 320, and 335; and Math 275 and 310.

Students transferring CHE 223 or its equivalent from a university without an ABET accredited chemical engineering program must pass a test on the subject matter of this course before acceptance of the course for certification.

A passing grade (D or higher) is required in each of the following courses before registration is permitted in upper-division chemical engineering courses: CHE 123, computer science elective, Math 170 and 175, and Phys 211 and 212.

Any student majoring in chemical engineering may accumulate no more than four grades of D or F in UI mathematics, science, or engineering courses that are used to satisfy junior or senior requirements. Included in this number are multiple repeats in a single class or single repeats in multiple classes. A warning will be issued in writing to students who have accumulated two grades of D or F in UI mathematics, science, or engineering courses used to satisfy curricular requirements.

An average GPA of at least 2.0 is required for all chemical engineering courses used to satisfy the curricular requirements.

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Chemical Engineering. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Science. General M.S. requirements apply.

Master of Engineering. General M.Engr. requirements apply.

Doctor of Philosophy. While most students entering the graduate program possessing only the bachelor’s degree will first earn the M.S., it is possible to bypass the M.S.
work directly toward the Ph.D. Students electing this option will be expected to critically analyze a current research area as part of their degree requirements. This will constitute their Ph.D. qualifying examination. For others, the oral M.S. thesis examination serves as the Ph.D. qualifying examination. A written research proposal modeled after those submitted to such agencies as the National Science Foundation is required as part of the requirements for the Ph.D.

Department of Chemistry

Chemistry is the central science; the foundation on which a variety of applied and nonapplied disciplines build. Chemistry deals with the composition, structure, and properties of substances and the changes they undergo. It is the study of the materials of which the entire universe is composed. Chemistry graduates will find an impressive array of options and exciting opportunities in fields such as basic research, environmental protection, instrumentation, the search for and synthesis of new therapeutic drugs, new product and process development, technical marketing, market research, forensic chemistry, teaching at all levels, and information science. Moreover, an education in chemistry is valuable in health sciences such as medicine, pharmacology, clinical chemistry, and industrial hygiene. It can be useful as well in nontechnical areas such as advertising, journalism, patent law, banking, and investment counseling. The options are bounded only by the limits of one's imagination.

There are three distinct undergraduate curricula designed to meet a wide range of professional needs. The professional option is the curriculum of choice for students who are interested in practicing chemistry as a career, including graduate study for an advanced degree in chemistry or a related field. The degree is certifiable to the American Chemical Society. The general chemistry option provides a suitable foundation for those students needing a strong background in chemistry, but not necessarily aspiring to become professional chemists, such as those in Education or Chemical Engineering. The pre-medical option has been designed to serve the needs of those students interested in careers in medicine, pharmacy, dentistry, or other health related fields.

Students majoring in chemistry at UI have the very good fortune to interact with an award-winning, distinguished teaching faculty. They have a unique opportunity to participate in undergraduate research in a nurturing environment where they work side by side with graduate students, postdoctoral fellows, and faculty members. Very often the research carried on in the department results in publications in leading chemical journals. As a result of the strong research programs in the department, undergraduates have the opportunity in their courses to have hands-on experience with, or to acquire data from, modern sophisticated instrumentation such as FT nuclear magnetic resonance spectrometers, gas chromatographs interfaced with mass spectrometers, and laser Raman, infrared and ultraviolet spectrometers, in addition to the more classical techniques. Considerable use of computers is made in laboratory courses and as an aid to instruction. Because our students receive a first-class education, they are in demand by prospective employers and graduate schools.

M.S. and Ph.D. degrees are offered in chemistry with concentrations in analytical, inorganic, organic, and physical chemistry. The M.A.T. degree is also offered. Entering graduate students (master’s and doctoral candidates) are expected to demonstrate proficiency in chemistry by taking a series of four examinations in the areas of analytical (qualitative and quantitative, and instrumental), inorganic, organic (including qualitative organic analysis), and physical chemistry. These must be taken at the first offering after the student’s arrival. These examinations are offered immediately before registration week of the fall and spring semesters. Questions are at an advanced undergraduate level.

Students who score at greater than the 50th percentile (established nationally) on a qualifying examination may begin with a 500-level course in that area in their first semester and are given credit for the relevant 400-level course (Chem 455, 466, 467, and/or 468). Students who score below the 50th percentile on an examination will begin course work in the respective area: analytical, Chem 454 (the lab in this course may be bypassed by petition if the student can present evidence of adequate exposure; previous course at B level); physical, Chem 495; inorganic, Chem 463; organic, Chem 473.

All candidates for the M.S. or Ph.D. degree in chemistry are required to have teaching experience, here or elsewhere, as part of their training and will complete Chem 506 (Introduction to Teaching and Research Skills) at their first opportunity on entering the program.

Courses

See Part 6 for courses in Chemistry (Chem).

Undergraduate Curricular Requirements

CHEMISTRY (B.S.)

Required course work includes the university requirements (see regulation J-3) and completion of one of the following options.

A. General Option

This degree provides the basic elements needed for a career in chemistry. It is especially suited for students who wish to enter other professions that require a background in science, including high school teaching, patent law, and technology management.

- Chem 111, 112 Principles of Chemistry I, II (8 cr)
- Chem 253 Quantitative Analysis (5 cr)
- Chem 277, 372 Organic Chemistry I, II (6 cr)
- Chem 278, 376 Organic Chemistry Lab I, II (3 cr)
- Chem 305, 306 Physical Chemistry I, II (6 cr)
- Chem 307, 308 Physical Chemistry Lab I, II (2 cr)
- Chem 409 Proseminar (1 cr)
- CS 101 Introduction to Computer Science or higher CS course (3 cr)
- Math 170, 175, 275 Analytic Geometry and Calculus (11 cr)
- Phys 211 Engineering Physics I (4 cr)
- Phys 212 Engineering Physics II or Phys 213 Engineering Physics III (4 cr)

Electives to total 128 credits for the degree

B. Professional Option

Note: Students who complete this option will be certifiable to the American Chemical Society.

This curriculum provides a suitable background for students wishing to enter the profession of chemistry or to pursue graduate study for an advanced degree in chemistry or a related field.

- Chem 111, 112 Principles of Chemistry I, II (8 cr)
- Chem 253 Quantitative Analysis (5 cr)
- Chem 277, 372 Organic Chemistry I, II (6 cr)
- Chem 374 Organic Chemistry II: Lab or Chem 376 Organic Chemistry II: Lab for Chemistry Majors (3 cr)
- Chem 305, 306 Physical Chemistry I, II (6 cr)
- Chem 307, 308 Physical Chemistry Lab I, II (2 cr)
- Chem 409 Proseminar (1 cr)
- Chem 454 Instrumental Analysis (4 cr)
- Chem 463-464, 465 Inorganic Chemistry and Lab (7 cr)
- Chem 491 Research (1 cr)
- CS 101 Introduction to Computer Science or higher CS course (3 cr)
- Math 170, 175, 275 Analytic Geometry and Calculus (11 cr)
- MMBB 380 Intro Biochemistry (4 cr)
- Phys 211 Engineering Physics I (4 cr)
- Phys 212 Engineering Physics II or Phys 213 Engineering Physics III (4 cr)

Foreign language courses (8 cr)

Two additional chemistry courses having Chem 306 as a prerequisite, or two advanced chemistry courses approved by the Chemistry Department in accordance with American Chemical Society standards. Electives to total 128 credits for the degree

C. Pre-Medical Option

This curriculum provides a suitable foundation in chemistry for students who intend to enter careers in medicine, dentistry, pharmacy, etc.

- Chem 111, 112 Principles of Chemistry I, II (8 cr)
- Chem 253 Quantitative Analysis (5 cr)
- Chem 277, 372 Organic Chemistry I, II (6 cr)
- Chem 278 Organic Chemistry Lab I (3 cr)
- Chem 374 Organic Chemistry II: Lab or Chem 376 Organic Chemistry II: Lab for Chemistry Majors (1-2 cr)
- Chem 305, 306 Physical Chemistry I, II (6 cr)
- Chem 307, 308 Physical Chemistry Lab I, II (2 cr)
- Chem 409 Proseminar (1 cr)
- Chem 472 Rational Design of Pharmaceuticals (3 cr)
- Biol 115 Cells and the Evolution of Life (4 cr)
- CS 101 Introduction to Computer Science or higher CS course (3 cr)
- Math 170, 175, 275 Analytic Geometry and Calculus (11 cr)
- MMBB 380 Intro Biochemistry (4 cr)
- MMBB 382 Intro Biochemistry Lab (2 cr)
- Phys 211, 212 Engineering Physics I, II (8 cr)

In addition, two courses must be selected from the following list:

- Chem 454 Instrumental Analysis (4 cr)
- Chem 473 Intermediate Organic Chemistry (3 cr)
- MMBB 476 Biophysical Chemistry (3 cr)

Electives to total 128 credits for the degree

Academic Minor Requirements

CHEMISTRY MINOR

This program is designed to give a non-chemistry major a sufficient background in general chemistry and laboratory techniques to improve his or her employment prospects as a laboratory technician and to improve the technical background of the student interested in science education or communication.

- Chem 111, 112 Principles of Chemistry I, II (4 cr)
- Chem 253 Principles of Chemistry II (5 cr)
- Chem 253 Quantitative Analysis (5 cr)
- Chem 277, 278 Organic Chemistry I and Lab (4 cr)
- Chem 302, 303 Principles of Physical Chemistry and Lab (4 cr)
- Chem 372 Organic Chemistry I (3 cr)

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Chemistry. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.
PART FIVE
Departments of Instruction

Department of Civil Engineering

Suniti Sharma, Dept. Chair (104 Buchanan Engr. Lab. 83444-1022; phone 208/887-6789; e-mail: ssharma@boisestate.edu) and offices: Ahmed Abdel-Rahim, Richard G. Allen, Fouad M. Bayomy, Michael D. Fiedler, Peter Goodwin, Klaus Jorde, Michael D. Kyte, Chyr Pinyo Liou, Richard J. Nielsen, Howard S. Peavy, P. Steven Porter, Edwin R. Schmeckpeper, Sunil Sharma, Thomas J. Weaver.

Civil engineering consists of the application of scientific principles to the design, construction, and maintenance of public and private works that constitute the infrastructure for human populations. From a historical aspect, the pyramids of Egypt, the water resources systems that supported the agricultural society of ancient Babylonia and Assyria, the public buildings of Greece and Rome, the roads that linked the Roman Empire, and the railroads and barge canals of the early United States were all civil engineering projects that served the people of their times. Today’s civil engineers are still involved in building and maintaining the infrastructure necessary for modern society to function. A civil engineer may be involved in the design and construction of highways, bridges, buildings, water conveyance systems, water and wastewater treatment plants, dams, airports, and other constructed projects. Civil engineers may also be involved in planning for traffic controls, flood plain management, and water and air quality management. The graduates of civil engineering programs may work with consulting engineering firms, governmental agencies, construction contractors, or manufacturing industries.

In the foreseeable future, population growth and relocation should create a steady demand for infrastructure growth. The concept of environmentally sensitive and resource sustainable development is emerging as the tenet for future growth. Civil engineers will have to apply evolving technologies and develop innovative solutions to ensure wise stewardship of our limited natural resources. Students who enter civil engineering can anticipate a challenging and rewarding career.

Lower-division courses in civil engineering consist of a common core of basic courses in mathematics, and engineering required of most students within the college. Required course work in the junior and senior years provides the student with a broad background in civil engineering subjects while 15 credits of technical electives permit some specialization at the undergraduate level.

The Department of Civil Engineering occupies the first floor of the Buchanan Engineering Laboratory and includes some additional office and laboratory space in the basement and on the second floor of the building. Maintenance and replacement of existing equipment is provided by funds from research projects, from alumni donations, from lab fees, and from state educational funds. Instructional and research equipment include modern computing and data acquisition equipment.

The department offers three graduate degree programs in civil engineering: (1) Master of Science (33 credits, non-thesis), (2) Master of Engineering (33 credits, non-thesis), and (3) Doctor of Philosophy (in limited specialty areas). It also offers the Master of Engineering with a major in engineering management. Course work requirements in each of the degree programs is fairly flexible depending on student interest and course availability. Financial assistance is available on a competitive basis in the form of instructional and graduate research assistantships. Students interested in graduate study should select a special area in which they wish to study. Foreign students must have a TOEFL score of at least 550 for admission to any departmental graduate degree program. Graduate study is offered with specialization in structures and structural mechanics, highway and pavement materials, soil mechanics, transportation, hydraulics and water resources, and sanitary engineering. Interdisciplinary programs of study are encouraged for interested students. As examples, students specializing in sanitary engineering may do considerable work in chemical engineering or biochemistry, and specialization in soil mechanics may involve study in geology or mining engineering.

The mission of the Department of Civil Engineering is to provide a high quality education at both the undergraduate and graduate levels, emphasizing the needs of Idaho and the region. The goals and objectives of the program include graduating students that are (1) well grounded in the fundamentals of engineering and in the practice of civil engineering, (2) schooled in real-world scenarios that include the social and economic implications of engineered projects, (3) instilled with a sense of responsibility, ethics, and a commitment to life-long learning, (4) highly qualified, capable, ethical, and responsible, (5) able to choose careers that may be influenced by their professional practice, and (3) providing these services in the most cost effective manner for both the students and the taxpayers. Progress toward these goals and objectives is assessed by student performance on the nationally administered Fundamentals of Engineering Exam, exit interviews with graduating students, surveys of graduated students and their employers, and by an external advisory committee composed of practicing civil engineers from the state and the region.

Courses
See Part 6 for courses in Civil Engineering (CE), Engineering Management (EM) and Geologic Engineering (GeE).

Undergraduate Curricular Requirements

CIVIL ENGINEERING (B.S.C.E.)

To graduate in this program, a minimum grade of C must be earned in all engineering, mathematics, and science courses used to satisfy the curriculum.

Any student majoring in civil engineering may accumulate no more than 14 credits of D or F in mathematics, science, technical elective, or engineering courses that are used to satisfy graduation requirements. Included in this number are multiple repeats of a single course or simple repeats in multiple classes and courses transferred from other institutions. A warning will be issued in writing to students who have accumulated 7 credits of D or F in mathematics, science, technical elective, or engineering classes used to satisfy curricular requirements.

Required course work includes the university requirements (see regulation J-3) and:

Amst 301 or Phil 103 (3 cr)
CE 115 Introduction to Civil Engineering (2 cr)
CE 211 Engineering Measurements (3 cr)
CE 215 Civil Engineering Analysis and Design (2 cr)
CE 322 Hydraulics (3 cr)
CE 322A Hydraulics Laboratory (1 cr)
CE 325 Fundamentals of Hydrologic Engineering (3 cr)
CE 330 Fundamentals of Environmental Engineering (3 cr)
CE 342 Theory of Structures (3 cr)
CE 357 Properties of Construction Materials (3 cr)
CE 360 Fundamentals of Geotechnical Engineering (4 cr)
CE 372 Fundamentals of Transportation Engineering (4 cr) or (3) Fundamentals of Geotechnical Engineering (4 cr)
CE 431 Design of Water and Wastewater Systems (3 cr)
CE 441 Reinforced Concrete Design or CE 444 Steel Design (3 cr)
CE 491 Civil Engineering Professional Seminar (1 cr)
CE 493-494 Senior Design Project (4 cr)
Chem 111 Principles of Chemistry I (4 cr)
Eng 201 or 202, or 272 (3-4 cr)
Eng 317 Technical Writing (3 cr)
Engr 105 Engineering Graphics (2 cr)
Engr 210 Engineering Statics (3 cr)
Engr 220 Engineering Dynamics (3 cr)
Engr 240 Introduction to Electrical Circuits (3 cr)
Engr 320 Engineering Thermodynamics and Heat Transfer (3 cr)
Engr 335 Engineering Fluid Mechanics (3 cr)
Engr 350 Engineering Mechanics of Materials (3 cr)
Engr 360 Engineering Economy (2 cr)

Two of the following (8-10 cr):
Biol 115 Cells and the Evolution of Life (4 cr)
Chem 112 Principles of Chemistry II (5 cr)
Chem 302/303 Principles of Physical Chemistry & Lab (4 cr)
Geol 111 Physical Geology for Science Majors (4 cr)
Math 1B1B 154, 155 Introductory Biology of Bacteria and Viruses and Lab (4 cr)
Math 170, 175, 275 Analytic Geometry and Calculus (11 cr)
Math 310 Ordinary Differential Equations (3 cr)
Phys 211 Engineering Physics I (3 cr)
Graduate Degree Programs
Graduate study is offered with specialization in the following subdisciplines of civil engineering: hydraulic and water resources engineering, environmental and sanitary engineering, structural engineering and structural mechanics, geotechnical engineering, and transportation engineering.

Master's Degrees. In addition to meeting the general requirements of the College of Graduate Studies stated in Part 4 of this catalog, master's degree students are required to complete at least 12 credits of 500-level course levels having a CE prefix, not including CE 500, 502, 503, 597, 598, and 599. Master's degree students are required to complete at least 12 credits in each of the subdisciplines of civil engineering listed above. The candidate must obtain grades of A or B in all courses submitted for the degree.

An approved thesis is required for Master of Science degrees. A maximum of 6 credits of CE 500, Master's Research and Thesis, can be used to fulfill M.S. degree requirements.

A minimum of 33 credits is required for the Master of Engineering degree. A thesis is not required and credit is not given for CE 500. A maximum of 3 credits of CE 502, Directed Study, can be used to satisfy M.Engr. degree requirements. M.Engr. students are required to demonstrate the ability to write a technical paper or report.

A final comprehensive examination conducted by the student's committee is required for master's degrees.

Applicants for admission to the master's degree programs generally will have a B.S. degree in civil engineering. Applicants with baccalaureate degrees in other majors are also eligible for admission; in these cases, after consultation with the student, deficiency courses will be specified by the student's advisory committee. Master's degree candidates will have completed at least 16 credits of deficiency courses associated with one of the subdisciplines of civil engineering listed above. The candidate must obtain grades of A or B in all courses submitted for the degree.

Doctor of Philosophy. Persons interested in pursuing a doctoral degree must contact a corresponding in the department well in advance of admission to the Graduate College. Preliminary screening of candidates and program planning for those admitted are essential features of the Ph.D. program. Programs are offered with specialization in the following general areas: (1) water resources and hydraulics; (2) structures, structural mechanics, and construction materials; (3) geotechnical engineering with a major in soil mechanics; (4) transportation engineering; and (5) environmental engineering. The qualifying examination is written and/or oral, and the preliminary examination is written and oral. In addition, one of the following requirements must be satisfied: (1) satisfactory completion of a foreign language examination conducted by the Department of Foreign Languages and Literatures, or (2) completion of a humanistic-social study program approved by the Department of Civil Engineering.

Department of Computer Science

Robert E. Hiromoto, Dept. Chair (236 Janssen Engr. Bldg. 83844-1010; phone 208/885-6588; chair@cs.uidaho.edu; http://www.cs.uidaho.edu; Faculty: James Avles-Foss, Bruce M. Bolden, James A. Foster, Deborah A. Frincke, W. Scott Harrison, Robert B. Heckendorn, Robert E. Hiromoto, Gurdeep S. Hura, William S. Junk, Axel W. Krings, John C. Munson, Paul W. Oman, Robert Rinker, Terence Soule, Molly W. Stock. Computer science is the systematic study of algorithmic processes that describe and transform information: their theory, analysis, design, efficiency, implementation, and application. It is a broad discipline with an ever-growing array of opportunities. Graduates in this field can find employment in a wide spectrum of public and private enterprises.

The field of computer science encompasses many areas of specialization. One may find a personal niche in software development, systems development and hardware selection, studies of compatibility between hardware and software, language development and modification, or perhaps a combination of these and any number of other diverse computer-oriented applications and concepts. Because of this diversity in potential application areas, the computer scientist must be broadly educated and conversant with the many implications of the powerful tool that he or she is controlling and developing.

The Department of Computer Science was formed in 1981 and is in the College of Engineering. The Bachelor of Science in Computer Science has been offered at UI since 1977. This program consists of a carefully designed computer science core, surrounded by a diverse array of challenging technical elective courses. The core consists of courses in algorithms and data structures, programming languages, computer architecture, operating systems, files and database, software engineering, theory of computation, and a senior capstone design sequence. All of these courses have important components of theory, abstraction, and design.

The Bachelor of Science program in computer science is accredited by the Computer Science Accreditation Commission (CSAC) of the Computing Sciences Accreditation Board (CSAB).

Students in computer science have the unique opportunity to draw from the expertise of an outstanding faculty with extensive experience in industry, teaching, and research. Computers currently available to students include an extensive department network of UNIX, Linux, and NT workstations and several campus personal computer laboratories for research focus. All major campus and department computer systems are networked together with Internet connections, providing a state-of-the-art computing environment. The department has established the Center for Secure and Dependable Software (CSSDS) and the Initiative for Bioinformatics and Evolutionary Studies (IBEST). The importance of these laborations can be seen from the range of private and government funding which supports the department's research in computer security, computer reliability, bioinformatics, evolutionary computation and high performance computing.

A graduate degree in computer science from UI prepares a student for a lifetime of discovery. It enables the graduate to advance the state of the art in computing, not merely to keep up with it. The graduate program develops the student's critical thinking, investigatory, and expository skills. The student will learn the foundations of computer science theory and application, and the interaction between the two. By understanding the extent and limitations of current knowledge in computer science, the graduate will learn to understand what issues are important and why. He or she will acquire the methodological skills to resolve important open problems and tackle challenging new projects. The student will learn to present problems and solutions, both orally and in writing.

The study of computer science at the undergraduate level requires mathematical maturity, skill in the use of high-level and machine level programming languages, and basic knowledge of computer hardware. Admission to this program is highly competitive. Students who wish to enter the master's or doctoral degree program must demonstrate competence in specific areas equivalent to the material covered in several of the undergraduate computer science core courses. Normally a 3.0 undergraduate GPA and a Graduate Record Examination general (aptitude) score in the 60th percentile are the two minimum admission requirements. Actual admission is based on a combination of undergraduate GPA and Graduate Record Examination scores. International students for whom English is a second language must have a TOEFL score of 550 or higher.

The following courses are the minimum prerequisites necessary for admission to the master's or doctoral program: knowledge of a structured, high-level language; data structures; computer organization and architecture; a full year of calculus; and discrete mathematics. A student who does not have an adequate background in computer science structures; computer organization and architecture; a full year of calculus; and discrete mathematics. A student who does not have an adequate background in computer science will be required to complete those courses in which he or she is deficient. Deficiency areas for graduate work in computer science are: computer languages; computer operating systems; system software; software engineering; and theory of computation. Credit for deficiency courses cannot be counted toward the total credits required for the graduate degree.

Courses
See Part 6 for courses in Computer Science (CS).

Undergraduate Curricular Requirements

Required course work includes the university requirements (see regulation J-3) and:

Comm 101 Fundamentals of Public Speaking (2 cr)
CS 160 Computer Science I (4 cr)
CS 121 Computer Science II (4 cr)
CS 150 Computer Organization and Architecture (3 cr)
CS 210 Computing Languages (3 cr)
CS 240 Computer Operating Systems (3 cr)
CS 270 System Software (3 cr)
CS 381 Software Engineering (3 cr)
CS 382 Software Engineering II (3 cr)
CS 391 Theory of Computation (3 cr)
CS 395 Analysis of Algorithms (3 cr)
CS 461 Senior Capstone Design (4 cr)
Engl 317 Technical Writing (3 cr)
Math 170, 175 Analytic Geometry and Calculus I, II (8 cr)
Math 176 Discrete Mathematics (3 cr)
Math 330 Linear Algebra (3 cr)
Stat 301 Probability and Statistics (3 cr)

One of the following laboratory science sequences (8-9 cr):
Biol 115 Cells and the Evolution of Life and Biol 116 Organisms and Environments (9 cr)
Chem 111 Principles of Chemistry I and Chem 112 Principles of Chemistry II (8 cr)
Phys 211 Engineering Physics I and Phys 212 Engineering Physics II (8 cr)
PART FIVE
Departments of Instruction

Department of Conservation Social Sciences

Steven J. Holloren, Dept. Head (19 CNR Bldg. 83844-1139; phone 208/885-7911; e-mail sttvh@uidaho.edu; http://www.cnrrhome.uidaho.edu/css/).

Programs in the Department of Conservation Social Sciences involve the study of land and its natural resources and the private, non-profit and governmental institutions that determine how land will be allocated and managed. The educational goal of the Department is to prepare professionals and help build the capacity of organizations that manage and conserve the environment. The Department prepares conservation professionals for the 21st century who: 1) Possess core skills relating to organizational management and leadership; 2) Are aware of new conservation theories, approaches, and technical applications; 3) Can apply both social theory and practice to current conservation issues; 4) Can work across disciplinary and sector boundaries with diverse stakeholders; 5) Understand and apply key concepts related to protected area recreation and ecotourism; and 6) Develop and incorporate a personal land ethic into their daily actions and relationships. Students receive a solid educational foundation by studying natural resources and their management. This is coupled with courses in the human dimensions of resource use incorporating strong emphasis in sociology, psychology, political science, economics, and communication.

The B.S. degree prepares qualified students for graduate programs focusing on the social dimensions of natural resource and environmental management. Graduates find employment in private businesses; county, state, and national parks and protected areas; educational institutions; environmental non-profit organizations; and resource-management agencies such as the U.S. Forest Service, Bureau of Land Management, National Park Service, and others. Some students also pursue a second degree in ecology, environmental science, forestry, wildlife and fisheries, or range management to broaden their employability. Still others select foreign language coursework to prepare for careers in international conservation.

It is department philosophy that graduates should be prepared for a wide spectrum of career opportunities related to the human dimensions of conservation. Careers, however, usually require a B.S. degree in social science and the availability of departmental graduate faculty.

Undergraduate Curricular Requirements

RESOURE RECREATION & TOURISM (B.S.Res.Rc.)
A total of 126 credits is required for the degree. This includes the university requirements (see regulation J-3), and the course work listed below. Students must select any academic minor (including those in the Department of Conservation Social Sciences). Students are also required to do an advisor-approved internship and attend one, two-week long field studies course during summer session. Special fees are required for this and a few other courses.

Courses

See Part 6 for courses in Conservation Social Sciences (CSS).

Academic Minor Requirements

Graduate Degree Programs
Candidates must fulfill the requirements of the College of Graduate Studies and the Department. See the College of Graduate Studies Section of Part 4 for the general requirements applicable to each degree. No 300-level course that is required in the B.S.C.S. curriculum may be used to satisfy the requirements of the graduate degree.

A graduate degree represents mastery of the theory underlying one’s discipline, a graduate breadth requirement. This is the foundation on which further study should be based. The M.S. graduate candidate must successfully complete one class from at least three of the following categories: software architecture, hardware architecture, development processes, research foundations, and computer science theory. A Ph.D. student must complete one class from at least four of these listed categories. Check with the department or see our website at www.cs.uidaho.edu for further details.

The student must acquire depth in at least one major area by developing a focused plan of study in consultation with the major advisor. This should be a program that investigates some aspect of computer science in depth, consistent with the goals of the graduate program in computer science. Some examples of areas currently of interest to the faculty are: computer security, software engineering, evolutionary algorithms and artificial intelligence, and fault tolerant computing.

Master of Science. The following are requirements for receiving an M.S. degree in computer science from UI. There is one in four of the following requirements: 4 for the general requirements applicable to each degree. No 300-level course that is required in the B.S.C.S. curriculum may be used to satisfy the requirements of the graduate degree.

A graduate degree represents mastery of the theory underlying one’s discipline, a graduate breadth requirement. This is the foundation on which further study should be based. The M.S. graduate candidate must successfully complete one class from at least three of the following categories: software architecture, hardware architecture, development processes, research foundations, and computer science theory. A Ph.D. student must complete one class from at least four of these listed categories. Check with the department or see our website at www.cs.uidaho.edu for further details.

The student must acquire depth in at least one major area by developing a focused plan of study in consultation with the major advisor. This should be a program that investigates some aspect of computer science in depth, consistent with the goals of the graduate program in computer science. Some examples of areas currently of interest to the faculty are: computer security, software engineering, evolutionary algorithms and artificial intelligence, and fault tolerant computing.

The thesis option requires at least 30 credit hours of study. Specific requirements are: graduate breadth requirement (9 cr); at least one semester of CS Graduate Seminar, CS 501 (1 cr); and a focused plan of study (at least 26 cr), up to 6 credits of which can be CS 580. At the end of the program, non-thesis students must pass a comprehensive examination that covers their graduate studies.

Doctor of Philosophy. A doctoral student develops a graduate program of at least 78 semester hours in consultation with his or her major professor and supervisory committee. As part of the proposal process, the student is required to include at least two semesters of CS 501 (graduate seminar). The student must have at least one full semester of teaching experience, with the teaching assignment determined by the student's supervisory committee. There is no foreign language requirement. The student must satisfy the residency requirement by spending at least two terms at the Moscow campus or a UI Residential Center. The purpose of the residency requirement is to provide the student with access to facilities, faculty, and colleagues.
Required course work includes the university requirements (see regulation j-3) and:

Biol 115 Cells and the Evolution of Life (4 cr)
Chem 101 Introduction to Chem I or Chem 111 Principles of Chem I or Geol 101 Physical Geology (4 cr)
Comm 101 Fundamentals of Public Speaking or one semester of a foreign language (2-4 cr)
Econ 202 or 201 Principles of Economics (3 cr)
For/Rnge/WLF 221 Ecology (3 cr)
For 320 Dendrology or LARC 288 Plant Materials I or Ringe 353 Rangeland Plant Ident and Ecology or PRSC 205 General Botany (3 cr)
For 375 Airphoto Interpretation and Mapping or LARC 395 GIS in Land Planning or Geog 385 GIS Primer (3 cr)
Math 143 Pre-calculus Algebra and Analytic Geometry or 160 Survey of Calculus or 170 Survey of Calculus II (3-4 cr)
NR 101 Exploring Natural Resources (taken simultaneously with CSS 287) (1 cr)
PoIs 101 Intro to Political Science and American Government (3 cr)
PoIs 462 Natural Resource Policy or PoIs 364 Politics of the Environment or For 484 Forest Policy and Administration (2-3 cr)
CSS/For 235 Society and Natural Resources (3 cr)
CSS 287 Foundations of Conservation Leadership and Management (taken simultaneously with NR 101) (2 cr)
CSS 304 Conservation Social Sciences Field Studies (3 cr)
CSS 310 Social Research Methods in Conservation (4 cr)
CSS 383 Resource Economics for Environmental Policymaking (3 cr)
CSS 385 Conservation Management and Planning I (3 cr)
CSS 386 Conservation Management and Planning II (3 cr)
CSS 387 Environmental Communication Skills (3 cr)
CSS/For/Rnge/WLF/ForP 470 Interdisciplinary Natural Resource Planning (3 cr)
CSS 489 Personalities and Philosophies in Conservation (2 cr)
CSS 481 Conservation Leadership (3 cr)
CSS 498 Internship in Tutoring (1 cr)
Stat 251 Statistical Methods (3 cr)
Two of the following (6 cr):
Anth 100 Introduction to Anthropology (3 cr)
Psych 101 Introduction to Psychology (3 cr)
Soc 101 Introduction to Sociology (3 cr)
One writing course, such as Eng 207, 208, 209, 313, 316, 317 (3 cr)
Three of the following social science elective courses (if not chosen above), from a total of two disciplines (9 cr):
Anth 410 Research Methods in Anthropology (3 cr)
Anth 426 Social and Political Organization (3 cr)
Anth 462 Human Issues in International Development (3 cr)
Arch 483 Urban Theory and Issues (3 cr)
Arch 486 Architecture (2 cr)
Comm 433 Organizational Comm. Theory and Research (3 cr)
CSS 486 Public Involvement in Natural Resource Management (3 cr)
CSS 487 Environmental Education (3 cr)
CSS 490 Wilderness and Protected Area Management (3 cr)
CSS 493 International Land Preservation and Conservation Systems (3 cr)
CSS 494 Public Relations for Natural Resources Professionals (3 cr)
Econ 385 Environmental Economics (3 cr)
Econ 407 Public Finance (3 cr)
Econ 441 Labor Economics (3 cr)
Econ 447 Economics of Developing Countries (3 cr)
Envi 479 Introduction to Environmental Regulations (3 cr)
Envi 482 Natural Resource Policy and Law (3 cr)
For 408 Community/Urban Forestry (2 cr)
For 484 Forest Policy and Administration (2 cr)
Geog 330 Urban Geography (3-4 cr)
Geog 350 Geography of Development (3-4 cr)
Hist 222 The American Landscape (3 cr)
Hist 322 American Environmental History (3 cr)
Jamm 350 Public Relations Writing and Production (3 cr)
Jamm 444 Communication and Public Opinion (3 cr)
Jamm 452 Public Relations Campaign Design (3 cr)
Jamm 458 Public Relations Case Studies and Issues Mgmt (3 cr)
Phil 452 Environmental Philosophy (3 cr)
Phil 472 Social and Political Philosophy (3 cr)
PoIs 275 American State and Local Government (3 cr)
PoIs 333 American Political Culture (3 cr)
PoIs 364 Politics of the Environment (3 cr)
PoIs 426 American Political Thought (3 cr)
PoIs 439 Public Policy (3 cr)
PoIs 440 International Organizations and Law (3 cr)
PoIs 451 Public Administration (3 cr)
PoIs 454 Public Organization (3 cr)
PoIs 461 Western Environmental Legal History (3 cr)
PoIs 462 Natural Resource Policy (3 cr)
PoIs 480 Politics of Development (3 cr)
Psych 305 Developmental Psychology (3 cr)
Psych 320 Introduction to Social Psychology (3 cr)
Psych 325 Cognitive Psychology (3 cr)
Soc 313 Collective Behavior (3 cr)
Soc 414 Development of Social Theory (3 cr)
Soc 423 Social Stratification (3 cr)
Soc 424 Sociology of Gender (3 cr)
Electives to total 128 cr for the degree

Academic Minor Requirements

ENVIRONMENTAL COMMUNICATION MINOR
Jamm 121 Media Writing and Information Gathering (3 cr)
CSS 387 Environmental Communication Skills (3 cr)
CSS 486 Public Involvement in Natural Resource Management (3 cr)
CSS 487 Environmental Education (3 cr)
CSS 494 Public Relations for Natural Resources Professionals (3 cr)
At least one course from the following (3 cr):
Art 280 Understanding Photography (3 cr)
Comm 331 Conflict Management (3 cr)
Comm 347 Persuasion (3 cr)
Comm 431 Professional Presentation Techniques (3 cr)
Jamm 252 Principles of Public Relations (3 cr)
Jamm 265 Principles of Advertising (3 cr)
Jamm 275 Introduction to Video/Television & Digital Media Production (3 cr)
Jamm 361 Advertising Creativity (3 cr)
Jamm 425 Feature Article Writing (3 cr)

OUTDOOR RECREATION LEADERSHIP MINOR
Rec 320 Outdoor Recreation Leadership (2 cr)

Courses selected from the following (12 cr):
CSS 287 Foundations of Conservation Leadership and Management (taken simultaneously with NR 101) (2 cr)
CSS 387 Environmental Communication Skills (3 cr)
CSS 401 Practicum in Tutoring (1 cr)
CSS 487 Environmental Education (3 cr)
CSS 490 Wilderness and Protected Area Management (3 cr)
CSS 491 Wilderness Leadership for Personal Growth (3 cr)
H&S 288 First Aid: Emergency Response (2 cr)
NR 311 Exploring Natural Resources (taken simultaneously with CSS 287) (1 cr)
Rec 125 Outdoor Leisure Pursuits (2 cr)
Rec 215 River Reading and Whitewater Safety (1 cr)
Rec 254 Camp Leadership (3 cr)
Rec 321 Wilderness Medicine and Evacuation (1 cr)
Rec 420 Experiential Education (2 cr)
Rec 495 Practicum in Tutoring (1 cr)

Courses selected from the following (5 cr):
CSS 204 Special Topics course approved by advisor
PEB 105 Individual/Dual Sports: Fly Fishing (1 cr)
PEB 108 Swimming: Scuba (1 cr)
Rec 204 Special Topics course approved by advisor
Rec 220 Rock Climbing (1 cr)
Rec 221 Mountaineering (2 cr)
Rec 222 Cross Country Skiing (1 cr)
Rec 223 Winter Skills (2 cr)
Rec 224 Whitewater Rafting (1 cr)
Rec 225 Kayaking (1 cr)
Rec 226 Whitewater Canoeing (1 cr)
Rec 255 Backpacking and Camping Skills (2 cr)

Technical competency (contact department; practical exam administered by Rec and/or CSS faculty) (max 4 cr)

PARKS, PROTECTED AREAS, AND WILDERNESS CONSERVATION MINOR

Courses selected from the following (19 credits):
CSS 385 Conservation Management and Planning I (3 cr)
CSS 387 Environmental Communication Skills (3 cr)
CSS 489 Personalities and Philosophies in Conservation (2 cr)
CSS 490 Wilderness and Protected Area Management (3 cr)
CSS 491 Wilderness Leadership for Personal Growth (3 cr)
CSS 493 International Land Preservation and Conservation Systems (3 cr)
CSS 496 Monitoring Impacts in Protected Areas and Wilderness (3 cr)
For/Rnge 221 Ecology or a general ecology course or Biol 314 Ecology and Population Biology or CSS 306 Winter Field Ecology or CSS 304 Conservation Social Sciences Field Studies (2-4 cr)
WLF 440 Conservation Biology (3 cr)

SUSTAINABLE TOURISM AND LEISURE ENTERPRISES MINOR

Note: This academic minor is offered through both the College of Natural Resources and the College of Education.

Bus 321 Marketing (3 cr)
CSS/Rec 181 Introduction to Hospitality Services Industries (3 cr)
CSS 381/Rec 382 Hospitality Management and Organization (3 cr)
CSS 494 Public Relations for Natural Resources Professionals (3 cr)
Rec 340 Leisure and Tourism Enterprises (3 cr)

One course selected from the following (2-3 cr)
CSS 385 Conservation Management and Planning I (3 cr)
CSS 387 Environmental Communication Skills (3 cr)
CSS 490 Wilderness and Protected Area Management (3 cr)
CSS 491 Wilderness Leadership for Personal Growth (3 cr)
CSS 493 International Land Preservation and Conservation Systems (3 cr)
CSS 496 Monitoring Impacts in Protected Areas and Wilderness (3 cr)
For/Rnge 221 Ecology or a general ecology course or Biol 314 Ecology and Population Biology or CSS 306 Winter Field Ecology or CSS 304 Conservation Social Sciences Field Studies (2-4 cr)
WLF 440 Conservation Biology (3 cr)

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the College of Natural Resources. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Science. Thesis, non-thesis, and course-based options are offered. (A) Thesis programs are specifically research oriented and the student is required to conduct independent research and present the results as a thesis, which must be approved by the candidate’s supervisory committee. (B) Non-thesis programs are concentrated more on course work. Though research may be conducted, the candidate is not required to present the results in a formal thesis. A final report, professional paper(s), or other terminal project agreed on in advance by the advisory committee is a normal requirement under this plan.
PART FIVE
Department of Instruction

Department of Electrical and Computer Engineering

This program lends itself to projects such as recreation master plans, regional plans, area management plans, historical reviews, and the development of professional interpretive media. (C) The course-based program is designed for practitioners with a focus on coursework that will prepare professionals for leadership careers in conservation.

For both the thesis and non-thesis options, after a research or other scholarly project is selected, the student must prepare for his or her committee a formal work plan and make an oral public presentation of the proposed project. The purpose of this requirement is to: (a) help structure and sharpen the student’s thinking and approach to the project, (b) obtain the views of various knowledgeable persons that may lead to constructive modifications in the work plan, (c) gain experience in making professional presentations, and (d) increase communication within the academic community.

Doctor of Philosophy. The Ph.D. degree is available with a major in natural resources. General Ph.D. requirements apply; see the NR section for details.

Education

Jeanne S. Christiansen, Dean (301 Educ. Bldg. 83444-3080; 208/885-6772); Jerry L. Tuchscherer, Associate Dean.

The College of Education offers an M.Ed. degree with a major in educational technology as an interdisciplinary degree within the college. It is designed to prepare candidates to be leaders in educational technology. Graduates with this degree are eligible for careers as technology coordinators in educational settings or private industry.

Applicants admitted to this program will already demonstrate a level of technology literacy (hardware and operating systems) as well as hands-on experience with computers and educational systems. They will have demonstrated an interest in and a affinity for technology and a desire to move into leadership roles in this important area.

Courses

See Part 6 for courses in Education (ED).

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the College of Education. See the College of Graduate Studies section of Part 4 for the general requirements applicable to the degree.

Master of Education. General M.Ed. requirements apply. Determination of completion of prerequisites or equivalent (ETD 328, Computer Operating Systems for Technology, PTTE 482, Computer Hardware Technology, and ED 328, Introduction to Educational Technology) will be made by the major professor. Graduate-level electives in technology will be approved by the student’s committee based on the student’s career goals and program requirements. Courses will be selected from graduate programs at UI or other graduate-level institutions offering technology courses. Courses approved will be selected from, but not necessarily limited to, the following academic areas: industrial technology, business, computer science, architecture, and communication. Students will either complete a written comprehensive examination or a project approved by the major advisor.

Department of Electrical and Computer Engineering

The Department of Electrical and Computer Engineering offers degree programs in the closely related fields of electrical engineering and computer engineering. The electrical engineering program covers the major disciplines of electronics, computer power, electromagnetics, computers, and communication and control systems. The computer engineering program focuses on the architecture, programming, and application of digital computer systems. Bachelor of Science, Master of Science, and Master of Engineering degrees are offered in both electrical engineering and computer engineering. The Doctor of Philosophy degree is offered in electrical engineering and encompasses research in both electrical and computer engineering.

The mission of the department is to educate students for the professional practice of electrical and computer engineering by offering undergraduate and graduate programs that encourage lifelong learning, foster teamwork and leadership, and promote creative discovery. The department is committed to maintaining the highest possible standards in teaching, scholarship, advising, and service.

The department uses a continuous improvement process to meet the electrical and computer engineering program objectives set forth below. Each of the broad program objectives is associated with a number of specific program outcomes that are measured by a variety of assessment tools. Programs are assessed annually to identify problems and initiate changes to ensure that program objectives are being met.

The department is proud of its over 100-year history and its more than 2,500 alumni. Our graduates have become productive engineers and industrial and community leaders all over the nation and the world, and are actively recruited by major employers of electrical and computer engineers. The Bachelor of Science, Electrical Engineering undergraduate program has been continuously accredited by the Engineering Accreditation Commission of the Accrediting Board of Engineering and Technology (ABET) and its predecessor organization since the accreditation process was begun in 1936. The computer engineering undergraduate program was begun in 1988 and has been accredited since its first application for accreditation in 1996. Graduates of our program consistently score higher than national averages on the Fundamentals of Engineering examination administered by the National Society of Professional Engineers.

The department offices and laboratories are located in the Buchanan Engineering Laboratory and the Gauss-Johnson Laboratory on the Moscow campus. Courses are also offered through branch campuses located in Boise, Idaho Falls, and Coeur d’Alene, and through the Engineering Outreach program.

Electrical Engineering Undergraduate Program. Electrical engineering involves the application of electrical phenomena for the benefit of society. Electrical engineers design and use circuits and systems for computers, instruments, communications devices, and power conversion equipment.

The objectives of the electrical engineering program are to produce graduates who (a) have a sound foundation in the principles of science and mathematics and can apply these principles to the solution of technological problems; (b) understand, and are proficient in the use of, the modern theory, techniques, and tools used to solve problems in electrical engineering; (c) design new products and solve new problems in electrical engineering, and can enhance their technical skills through lifelong learning; (d) can work and communicate effectively, either independently or in a team, to solve technological problems using engineering principles; and (e) have a sound understanding of the human and social ramifications of technological solutions and apply their engineering skills for the overall benefit of society.

Students in the electrical engineering program are assigned a faculty advisor upon entry into the program. The advisor helps the student prepare appropriate class schedules each semester and provides guidance on other academic and professional issues. Students can take an electrical engineering course in their freshman year as a way to introduce them to the field and helps prepare them for further study. Required courses in the freshman year help develop a solid foundation in physics, chemistry, mathematics, and understanding design courses in electrical circuits and the development of professional interpretive media. The sophomore year, including the first two courses in electrical circuits. The junior year exposes the student to a wide variety of electrical engineering courses to develop breadth in electrical engineering knowledge and skills. In the senior year, students specialize in specific areas of electrical engineering through the choice of technical electives. Students also take a two-semester sequence of design courses where students learn to design, test, and build an electrical engineering circuit or system. Additional courses in the humanities, social sciences, and English help prepare the graduate to become a well-rounded and productive member of society.

Computer Engineering Undergraduate Program. Computer engineering involves the application of the principles of electrical engineering and computer science for the benefit of society. Computer engineers design and use digital computers for instrumentation, control, communication, and power conversion systems.

The objectives of the computer engineering program are to produce graduates who (a) have a sound foundation in the principles of science and mathematics and can apply these principles to the solution of technological problems; (b) understand, and are proficient in the use of, the modern theory, techniques, and tools used to solve problems in computer engineering; (c) design new products and solve new problems in computer engineering, and can enhance their technical skills through lifelong learning; (d) can work and communicate effectively, either independently or in a team, to solve technological problems using engineering principles; and (e) have a sound understanding of the human and social ramifications of technological solutions and apply their engineering skills for the overall benefit of society.

Students in the computer engineering program are assigned a faculty advisor upon entry into the program. The advisor helps the student prepare appropriate class schedules each semester and provides guidance on other academic and professional issues. In the freshman year, students take introductory courses in physics, mathematics, and computer science to help develop a solid foundation based on these fundamental areas. The sophomore year continues with more physics and mathematics, but also introduces the students to more advanced courses in computer science, computer engineering, and electrical circuits. The junior year provides breadth in several areas of electrical and computer engineering and computer science including electronics, signals and systems, computer architecture, software engineering, and operating systems. The senior year allows the student to develop some depth of knowledge in selected areas through a variety of technical elective courses. In addition, the student takes a two-semester sequence of design courses where students learn to design, test, and build a computer engineering system. Additional courses in the humanities, social sciences, English, and public speaking help prepare the graduate to become a well-rounded and productive member of society.

Note: In addition to college requirements for admission to classes (see “Admission to Classes” under College of Engineering, Part 4), students majoring in electrical engineering or computer engineering must pass a qualifying examination as prerequisite to any upper-division courses in electrical engineering or computer engineering. Advisor’s approval is required for admission to all ECE courses.

Courses

See Part 6 for courses in Electrical and Computer Engineering (ECCE).

Undergraduate Curricular Requirements

COMPUTER ENGINEERING (B.S.Comp.E.)

Required course work includes the university requirements (see regulation J-3) and:
upper-division electrical and computer engineering courses: Chem 111, CS 112, ECE Science courses. Of these eighteen credits a minimum of twelve credits must be selected

Math 170, 175 Analytic Geometry and Calculus I-II (8 cr)

Math 176 Discrete Mathematics (3 cr)

Math 310 Ordinary Differential Equations (3 cr)

Math 330 Linear Algebra (3 cr)

Phys 211, 212 Engineering Physics I-II (8 cr)

Stat 301 Probability and Statistics (3 cr)

Science elective selected from Chem 111, Ent 211, Geol 111, MMBB 154/155, or Phys 213 (4 cr)

Technical electives selected from upper-division computer engineering, electrical engineering, and computer science courses (15 cr)

The minimum number of credits for the degree is 128, not counting Engl 101, Math 143, and other courses that might be required to remove deficiencies.

Students majoring in computer engineering must earn a grade of C or better in each of the following courses for graduation, and before registration is permitted in upper-division engineering courses: ECE 210, 212, 240, 241, Math 170, 175, 310, Phys 211, 212. Students majoring in computer engineering must earn a grade of B or better in CS 120, 121, 150, and a C or better in Math 176 for graduation and before registration is permitted in 200-level CS courses. Students majoring in computer engineering must earn a grade of C or better in CS 210, 240, 270, and Math 170, 175, 176 for graduation and before registration is permitted in upper-division CS courses.

Any student majoring in computer engineering may accumulate no more than a total of 14 credits of D's and F's in mathematics, science, or engineering courses that are used to satisfy graduation requirements. Students should make at least 90 percent of each course grade to satisfy this requirement. Students who need to repeat a course must take a total of 18 credits of D's and F's in mathematics, science, or engineering. Students majoring in computer engineering must earn a grade of B or better in CS 120, 121, 150, and Math 176 for graduation and before registration is permitted in 200-level CS courses. Students majoring in computer engineering must earn a grade of C or better in CS 210, 240, 270, and Math 170, 175, 176 for graduation and before registration is permitted in upper-division CS courses.

Electrical Engineering (B.S.E.E.)

Required course work includes the university requirements (see regulation J-3) and:

AmSt 301 or Phil 103 (3 cr)

Chem 111 Principles of Chemistry I (4 cr)

CS 112 Introduction to Problem Solving and Programming (3 cr)

ECE 101 Foundations of Electrical and Computer Engineering (2 cr)

ECE 210, 212, 240, 241, Math 170, 175, 310, Phys 211, 212. Students majoring in computer engineering must earn a grade of B or better in CS 120, 121, 150, and a C or better in Math 176 for graduation and before registration is permitted in 200-level CS courses. Students majoring in computer engineering must earn a grade of C or better in CS 210, 240, 270, and Math 170, 175, 176 for graduation and before registration is permitted in upper-division CS courses.

Any student majoring in computer engineering may accumulate no more than a total of 14 credits of D's and F's in mathematics, science, or engineering courses that are used to satisfy graduation requirements. Students should make at least 90 percent of each course grade to satisfy this requirement. Students who need to repeat a course must take a total of 18 credits of D's and F's in mathematics, science, or engineering. Students majoring in computer engineering must earn a grade of B or better in CS 120, 121, 150, and Math 176 for graduation and before registration is permitted in 200-level CS courses. Students majoring in computer engineering must earn a grade of C or better in CS 210, 240, 270, and Math 170, 175, 176 for graduation and before registration is permitted in upper-division CS courses.

Electrical and Computer Engineering (M.S.)

The minimum number of credits for the degree is 128, not counting Engl 101, Math 143, and other courses that might be required to remove deficiencies.

Students majoring in electrical engineering must earn a grade of P in ECE 292 and a grade of C or better in each of the following courses before registration is permitted in upper-division electrical and computer engineering courses: Chem 111, CS 112, ECE 210, 211, 212, and 213, Engr 210, and 220, Math 170, 175, 275, and 310, and Phys 211, 212. Students majoring in electrical engineering or computer engineering must meet the college requirements for admission to classes (see "Admission to Classes" under College of Engineering, part four).

Any student majoring in electrical engineering may accumulate no more than a total of 14 credits of D's and F's in mathematics, science, or engineering courses that are used to satisfy graduation requirements. Students should make at least 90 percent of each course grade to satisfy this requirement. Students who need to repeat a course must take a total of 18 credits of D's and F's in mathematics, science, or engineering. Students majoring in electrical engineering or computer engineering must earn a grade of B or better in CS 120, 121, 150, and Math 176 for graduation and before registration is permitted in 200-level CS courses. Students majoring in electrical engineering or computer engineering must earn a grade of C or better in CS 210, 240, 270, and Math 170, 175, 176 for graduation and before registration is permitted in upper-division CS courses.

Any student majoring in electrical engineering may accumulate no more than a total of 14 credits of D's and F's in mathematics, science, or engineering courses that are used to satisfy graduation requirements. Students should make at least 90 percent of each course grade to satisfy this requirement. Students who need to repeat a course must take a total of 18 credits of D's and F's in mathematics, science, or engineering. Students majoring in electrical engineering or computer engineering must earn a grade of B or better in CS 120, 121, 150, and Math 176 for graduation and before registration is permitted in 200-level CS courses. Students majoring in electrical engineering or computer engineering must earn a grade of C or better in CS 210, 240, 270, and Math 170, 175, 176 for graduation and before registration is permitted in upper-division CS courses.

The Communications emphasis prepares students for a variety of careers in the communications industry. Students should take a total of 18 credits from the following:

(a) core courses: 9 credits from ECE 410, 430, 445, 452, 455.

(b) technical electives: 9 credits from ECE 413, 432, 445, 452, 455.

The Integrated Circuit Design emphasis prepares students for careers in the field of integrated circuit design. It includes courses in analog and digital integrated circuit at both the system and transistor level. Students should take a total of 18 credits from the following:

(a) core courses: 13 credits from ECE 410, 411, 415, 445, 486 and (b) technical electives: 3 credits from ECE 412/512, 413/513, 414/514, 416, 417, 440, 452, 470, 476.

The Power emphasis prepares students for a variety of careers with electric utilities, consulting firms, and with manufacturing and design firms. Students should take a total of 18 credits from the following:

(a) 12 credits: ECE 420, 423, 427 and 450, and (b) 3 core credits from: 410, 430, 440, and (c) 3 additional credits of technical electives.

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Electrical and Computer Engineering. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

COMPUTER ENGINEERING

The Computer Engineering Program offers both Master of Science and Master of Engineering degrees. Both degrees may be earned through the Engineering Outreach off-campus program. These advanced degrees offer engineering students an opportunity to strengthen their knowledge of computer engineering by taking graduate courses that focus on advanced subject matter and by participating in research.

Qualifications for Admittance. Candidates must have a bachelor's degree in computer engineering, with an undergraduate GPA of 2.80 or higher. International students who are required to take the TOEFL examination by the College of Graduate Studies must have a TOEFL score of at least 550. All candidates must submit scores from the general portion of the Graduate Record Examination.

Candidates who do not have a bachelor's degree in computer engineering may be admitted to the graduate program if, in addition to the requirements for candidates who have a B.S. Comp. E., they meet the following minimum requirements.

1. A bachelor's degree in electrical engineering, computer science, or another engineering discipline or in a supporting area of study such as mathematics or physics.

2. Demonstrated proficiency in the fundamentals of computer engineering emphasized in the undergraduate curriculum. Proficiency is demonstrated by successful completion of the following fundamental courses: Fundamentals of Electronics (ECE 310), Digital Logic (ECE 240), Computer Organization and Architecture (CS 150), Computer Science II (CS 121), Discrete Mathematics (Math 176), Differential Equations (Math 310), Linear Algebra (Math 330). Some deficiencies may be removed by taking background courses through Engineering Outreach. Students with undergraduate course deficiencies in the fundamentals of computer engineering must remove these deficiencies prior to admission for graduate work. Such deficiency courses cannot be used for graduate credit.

3. Two advanced undergraduate courses in electrical engineering, computer engineering, or computer science equivalent to Computer Operating Systems (CS 341), Digital Systems Engineering (ECE 440). Students with undergraduate course deficiencies in the advanced areas of computer engineering must remove these deficiencies either prior to admission or in the first three semesters of graduate work. Such deficiency courses cannot be used for graduate credit.

Master of Science. To be approved, programs must satisfy both the university requirements governing the M.S. degree and must be enrolled in ECE 591, Electrical Engineering Research Colloquium, during each semester of on-campus enrollment.

Master of Engineering. To be approved, programs must satisfy both the university requirements governing the M.S. degree and must be enrolled in ECE 591, Electrical Engineering Research Colloquium, during each semester of on-campus enrollment.

ELECTRICAL ENGINEERING

Master of Science. General M.S. requirements apply, except that the department requires at least 24 credits of course work in addition to a thesis. The master’s program may provide advanced preparation for professional practice, or it may serve as the first step in graduate study leading to the Ph.D. degree. Specific courses to be taken for the program are not prescribed by the faculty. Students, with the assistance of their major professor, prepare their own program as soon as possible during their first semester, and submit it to the faculty for approval.
1. At least 18 credits in electrical engineering courses numbered 500 or above.
2. Two or more electrical engineering courses numbered 500 in a given area for depth.
3. At least one course in each of two areas (outside the areas selected under item 2) to provide breadth.
4. Enrollment in ECE 591, Electrical Engineering Research Colloquium, during each semester of on-campus enrollment.

Master of Engineering. General M.Eng. requirements apply, except that the department requires at least 30 credits of course work. Students, with the assistance of their major professor, prepare their own program as soon as possible during their first semester and submit it to the faculty for approval. To be approved, programs must satisfy both the university requirements governing the M.Eng. degree and the following department requirements:
1. At least 18 credits in electrical engineering courses numbered 500 or above.
2. At least three electrical engineering courses in a given area for depth, two of which must be numbered 500 or above.
3. At least one course in each of two areas (outside the areas selected under item 2) to provide breadth.
4. Enrollment in ECE 591, Electrical Engineering Research Colloquium, during each semester of on-campus enrollment.

Doctor of Philosophy. General Ph.D. requirements apply. The preliminary examination consists of both a written and an oral examination. The program will require completion of the requirements of the M.Eng. degree as well as a minimum of 75 credits in research and dissertation work.

Courses
See Part 6 for courses in English.

Undergraduate Curricular Requirements

ENGLISH (B.A.)

Where specific courses are listed with the area requirements, the department may approve alternatives.

Required course work includes the university requirements (see regulation J-3), the general requirements for the B.A. degree, and one of the following emphases:

Literature Emphasis

Foundations (6 cr)
Engl 175 Introduction to Literary Genres (3 cr)
Engl 210 Introduction to Literary Theory (3 cr)

Literary History (15 cr)
Engl 257 or 258 Literature of Western Civilization (3 cr)
Engl 345 Shakespeare or another course in literature before 1800 (3 cr)
Three courses from the following (9 cr)
Engl 341 Survey of British Literature (3 cr)
Engl 342 Survey of British Literature (3 cr)
Engl 343 Survey of American Literature (3 cr)
Engl 344 Survey of American Literature (3 cr)

Linguistics (3 cr)
Engl 441 Introduction to the Study of Language or Engl 496 History of the English Language (3 cr)

Cultural Diversity (One course in non-canonical or underrepresented literatures) (3 cr)
Engl 380 Introduction to U.S. Ethnic Literatures (3 cr)
Engl 480 Ethnic and Minority Literature (3 cr)
Engl 481 Women’s Literature (3 cr)
Engl 483 African-American Literature (3 cr)
Engl 484 American Indian Literature (3 cr)
Or an adviser-approved special topics or extra-departmental course (3 cr)

Elections (9 cr)
Election courses numbered 300 and above, 6 credits of which must be 400-level courses (9 cr)
Capstone (3 cr)
Engl 490 Senior Seminar (3 cr)

Creative Writing Emphasis

Foundations (3 cr)
Engl 210 Introduction to Literary Theory (3 cr)

Literary History (12 cr)
Engl 257 or 258 Literature of Western Civilization (3 cr)
Engl 345 Shakespeare or another course in literature before 1800 (3 cr)
Two courses from the following (6 cr)
Engl 341 Survey of British Literature (3 cr)
Engl 342 Survey of British Literature (3 cr)
Engl 343 Survey of American Literature (3 cr)
Engl 344 Survey of American Literature (3 cr)

Genre Craft/Workshop Courses (Students must take a full numerical sequence in his/her major genre (ex. 291/293/391/491), plus two additional creative writing courses in other genres (at the 200 or 300 level):) (15 cr)
Engl 291 Creative Writing: Fiction (3 cr)
Engl 292 Creative Writing: Poetry (3 cr)
Engl 293 Creative Writing: Nonfiction (3 cr)
Engl 391 Intermediate Poetry Writing (3 cr)
Engl 392 Intermediate Fiction Writing (3 cr)
Engl 393 Intermediate Nonfiction Writing (3 cr)
Engl 491 Advanced Creative Writing: Poetry (3 cr)
Engl 492 Advanced Creative Writing: Fiction (3 cr)
Engl 493 Advanced Creative Writing: Nonfiction (3 cr)

Elections (6 cr)
Two courses at the 400-level, one of which must be in modern or contemporary literature and one of which must be in non-canonical or under-represented literatures (a single course may fulfill both these subject requirements with advisor’s approval) (6 cr)
Capstone (3 cr)
Engl 490 Senior Seminar (3 cr)

Professional Emphasis

The professional emphasis is an individualized program for students wishing to stress preparation for professions such as law, writing and editing, government service, and business.

Foundations (3 cr)
Engl 175 Introduction to Literary Genres or 210 Introduction to Literary Theory (3 cr)

Literary History (9 cr)
Engl 257 or 258 Literature of Western Civilization (3 cr)
Two courses from the following (6 cr)
Engl 341 Survey of British Literature (3 cr)
Engl 342 Survey of British Literature (3 cr)
Engl 343 Survey of American Literature (3 cr)
Engl 344 Survey of American Literature (3 cr)

Writing (6 cr)
One course from the following (3 cr)
Engl 207 Persuasive Writing (3 cr)
Engl 208 Personal and Exploratory Writing (3 cr)
Engl 209 Inquiry-Based Writing (3 cr)

Department of English

English majors develop skills in writing, textual interpretation, and critical thinking as they study the nature of language and learn how Anglo-American literary traditions develop and relate to world literature. Majors study a wide range of authors, male and female, upper class and working class, white and minority. They learn the formal qualities of texts as well as their historical and cultural contexts. Students write extensively in all courses and gain speaking experience through oral reports and class discussions. (For this reason, international students must have a TOEFL score of 560 or above.)

The early phases of the program emphasize literary traditions reading skills and textual analysis and the study of Shakespeare. Advanced courses allow students to pursue individual interests in literature, expository and creative writing, literary criticism and theory, and linguistics.

Through requirements, course offerings, and advising, the Department of English encourages students to plan their curricula according to personal and career goals. Aspiring poets and novelists emphasize creative writing courses; film scholars take courses in film; future teachers of English as a Second Language (ESL) study linguistics; pre-professionals of all kinds take advanced writing courses. Those heading for graduate school in literature, linguistics, or ESL choose courses that prepare them for graduate study in their area. English majors who wish to teach English in secondary schools must make plans to satisfy state certification requirements (see “Secondary School Teaching Certification for Majors Outside the College of Education” in the College of Education section in Part 4).

To enable students to focus on such interests within a coherent program of study, the English Department offers the choice of four emphases within the major: literature, creative writing, professional, and teaching.

The Department of English offers four graduate degrees at the master’s level: the M.F.A., the M.A., the M.A.T., the M.A. in Teaching English as a Second Language. Through course selection and choice of thesis topic, and with the approval of appropriate faculty members, students pursuing the M.A. may emphasize literary studies or studies in composition rhetoric. Through course selection and choice of thesis topic, and with the approval of appropriate faculty members, those pursuing the M.F.A. may emphasize fiction, poetry, or creative nonfiction. Students planning to work for the M.F.A., M.A., or M.A.T. should be well prepared through the curriculum outlined below. The M.F.A. also offers students the tools to provide depth.

The purposes of the graduate program in English are to enable students to acquire a broad background in English and American language and literature and to develop specialized skills in independent, scholarly research and in mature, original criticism of literary works, to hone their skills as creative writers, or to deal with the theoretical and practical issues pertaining to English as a second language. The graduate program in English serves those who plan to teach English at junior or community colleges, those who plan to teach English at the secondary level, those who plan to seek employment in business, commerce, industry, or government, and those who plan to pursue the Ph.D.

For admission to the graduate program in English, the student must have a bachelor’s degree with a major in English or equivalent preparation and should have an overall grade-point average of 3.00 (on a 4.00 scale) to be granted full admission. Non-native speakers of English must score at least 560 on the TOEFL exam.
One of the following courses (3 cr):
Engl 309 Advanced Prose Writing (3 cr)
Engl 313 Business Writing (3 cr)
Engl 316 Environmental Writing (3 cr)
Engl 317 Technical Writing (3 cr)

Cultural Diversity (One course in non-canonical or underrepresented literatures) (3 cr)
Engl 380 Introduction to U.S. Ethnic Literatures (3 cr)
Engl 480 Ethnic and Minority Literature (3 cr)
Engl 481 Women’s Literature (3 cr).
Engl 483 African American Literature (3 cr).
Engl 484 American Indian Literature (3 cr).
Or an adviser-approved special topics or extra-departmental course (3 cr)

English Electives (9 cr)
Three Engl courses, of which one must be at the 400-level (9 cr)
Non-English Electives (6 cr)
Two courses from outside the department, appropriate to the student's goals, chosen in consultation with an adviser (6 cr).

Capstone (3 cr)
Engl 490 Senior Seminar (3 cr)

Teaching Emphasis
Foundations (3 cr)
Engl 175 Introduction to Literary Genres or Engl 210 Introduction to Literary Theory (3 cr)

Literary History (15 cr)
Engl 257 or 258 Literature of Western Civilization (3 cr)
Engl 341 or 342 Survey of British Literature (3 cr)
Engl 343-344 Survey of American Literature (6 cr)
Engl 345 Shakespeare (3 cr)

Language (10 cr)
Engl 201 English Grammar, Key Concepts and Terms (1 cr)
Engl 441 Intro to the Study of Language (3 cr)
Two linguistics courses from the following (6 cr)
Engl 442 Introduction to English Syntax (3 cr)
Engl 443 Language Variation (3 cr)
Engl 496 History of the English Language (3 cr)

Writing (11 cr)
Engl 309 Advanced Prose Writing (3 cr)
Engl 401 Writing Workshop for Teachers (3 cr)
One course from the following (3 cr)
Engl 208 (s) Personal and Exploratory Writing (3 cr)
Engl 291 Creative Writing: Poetry (3 cr)
Engl 292 Creative Writing: Fiction (3 cr)
Engl 293 Creative Writing: Nonfiction (3 cr)

Upper-Level Literature (6 cr):
Engl 445 Literature for Adolescents (3 cr)
400-level literature elective (3 cr)

Cultural Diversity (One course in non-canonical or underrepresented literatures) (3 cr)
Engl 380 Introduction to U.S. Ethnic Literatures (3 cr)
Engl 480 Ethnic and Minority Literature (3 cr)
Engl 481 Women’s Literature (3 cr).
Engl 483 African American Literature (3 cr).
Engl 484 American Indian Literature (3 cr).
Or an adviser-approved special topics or extra-departmental course (3 cr)

400-level English elective (3 cr)

Capstone
This requirement is fulfilled for Teaching Emphasis majors by EDTE 485, Internship.

TEACHER CERTIFICATION
CLASS English majors wishing secondary teaching certification must complete the appropriate English and education courses listed in the "Teaching Majors and Minors" in the Division of Teaching Learning & Leadership section of this catalog. Students should plan their programs with their English advisor; they should also see a College of Education advisor regarding certification requirements.

Academic Minor Requirements

ENGLISH MINOR
Engl 210 Reading - Writing - Texts (3 cr)
Two of the following courses (6 cr)
Engl 341-342 Survey of British Literature (3 cr)
Engl 343-344 Survey of American Literature (3 cr)

Four English courses chosen from any courses at the 300 or 400 level, excluding non majors courses; at least two must be literature courses, and at least one must be at the 400 level (12 cr)

TEACHING ENGLISH AS A SECOND LANGUAGE MINOR
Engl 413 ESL Methods I: Basic Oral/Aural Skills or EDTE 437 Secondary Foreign Language Methods I (3 cr)
Engl 441 Introduction to the Study of Language (3 cr)
Engl 442 Introduction to English Syntax (3 cr)
Anth/Soc 427 Racial and Ethnic Relations or Anth 261 Language and Culture (3 cr)
ED 302 Curriculum, Instruction, and Assessment Strategies (3 cr)

Electives chosen from among other courses in English language and linguistics or from Anth 261 or 427 if not chosen above (6 cr)

WRITING MINOR
The Writing Minor is not open to English majors.

One of the following courses (3 cr):
Engl 207 Persuasive Writing (3 cr)
Engl 208 Personal and Exploratory Writing (3 cr)
Engl 209 Inquiry-Based Writing (3 cr)

Two of the following courses (if not taken above) (6 cr):
Engl 207 Persuasive Writing (3 cr)
Engl 208 Personal and Exploratory Writing (3 cr)
Engl 209 Inquiry-Based Writing (3 cr)
Engl 210 Reading - Writing - Texts (3 cr)
Engl 291 Creative Writing: Poetry (3 cr)
Engl 292 Creative Writing: Fiction (3 cr)
Engl 293 Creative Writing: Nonfiction (3 cr)
Jamm 121 Media Writing (3 cr)

Three of the following courses (9 cr)
Engl 309 Advanced Prose Writing (3 cr)
Engl 313 Business Writing (3 cr)
Engl 317 Technical Writing (3 cr)
Engl 391 Intermediate Poetry Writing (3 cr)
Engl 392 Intermediate Fiction Writing (3 cr)
Engl 393 Intermediate Nonfiction Writing (3 cr)
Engl 402 Internship in Tutoring Writing (3 cr)
Engl 491 Advanced Creative Writing: Poetry (3 cr, max arr)
Engl 492 Advanced Creative Writing: Fiction (3 cr, max arr)
Engl 493 Advanced Creative Writing: Nonfiction (3 cr, max arr)
Jamm 425 Feature Article Writing (3 cr)
Engl 440 Reading, Writing, and Rhetoric (3 cr)

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of English. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Arts. Of the minimum of 33 credits required for the degree, at least 24 credits must be earned in the Department of English at the University of Idaho, and of these no more than nine credits earned at the Grace Nixon Summer English Institute may be applied to the degree. At least 27 credits must be at the 500-level. Course work for the M.A. in English is normally at the 500-level; however, up to six credits of work at the 400-level may be included, but only with the approval of the student's major professor and the department's director of graduate studies. Students are allowed to take 3 credits maximum in practica applying toward the degree.

Students and their major professors and committees will design their programs.

Each candidate for the Master of Arts degree will complete a thesis. The student will complete 27 credits of course work and submit an acceptable thesis, for which a maximum of six credits may be obtained.

Theses may address topics in literature and literary criticism or composition and rhetorical theory.

Candidates for the master's degree in English are required to demonstrate reading proficiency in one of the following languages: French, German, Italian, Latin, Classical Greek, Spanish, or Russian.

Each student will take an M.A. examination following completion of the thesis in acceptable form, as confirmed by the thesis director. The oral examination will be designed to test the student's ability to defend his or her thesis articulately with respect to research methodology, critical perspective, and applicability to related work in the area.

Master of Arts in Teaching. The M.A.T. is a non-thesis degree designed for teachers who are certified in English and who wish to strengthen their English preparation and improve their teaching effectiveness.

Of the minimum of 33 credits required for the degree, at least 24 must be earned in the UI Department of English, and at least 24 credits must be at the 500-level (or equivalent, in the case of transfer credits). The remaining course work in English may be at either the 400 or 500-level (300-level courses are not acceptable toward the M.A.T. in English).

Six credits must be taken in professional courses in education taught by the UI College of Education or equivalent college of education; at least 3 credits must be earned in a standard university course, as opposed to district in-service workshops. The student earns 3 credits for the M.A.T. teaching project. The combined number of credits earned in English in another graduate school or through correspondence study may not exceed nine; the College of Education may accept such credits in the professional courses in education at its discretion.

Area requirements for the degree, which may have been satisfied prior to enrolling in the M.A.T. program, include an upper-division or graduate course in each of the following areas: medieval through 18th-century literature; romantic through modern British literature; early American literature (before Civil War); later American literature; linguistics; history of the English language (or a second linguistics course); literature of women, minorities, third-world cultures, or non-dominant discourses. In addition, students must complete, or have completed within five years prior to enrolling in the M.A.T. program, course work in these areas: literary criticism; theory/practice of teaching literature to adolescents; theory/practice of teaching writing (may be satisfied by a Northwest Inland Writing Project course taken during the summer in a 3-credit or larger block). There is no language requirement for the M.A.T.

Master of Arts in Teaching English as a Second Language. The M.A. in TESL is intended for students who are interested in learning to teach English as a second language. The curriculum provides both theoretical background and practical training in the field. Students take course work in theoretical and applied linguistics and in teaching methods.

Of the minimum of 33 credits required for the degree, at least 24 must be earned while enrolled in residence at UI. At least 12 credits are to be taken from approved courses in language and linguistics, 12 credits are to be taken from approved courses in pedagogy (at least 9 of these credits are to be from English department courses), and 9 credits are to be taken from approved electives in English and education. At least 21 credits must be earned in courses numbered 500 and above.

University of Idaho
TESL students will write either a thesis in addition to 27 credits of classes or take 33 credits of classes.

Native speakers of English in the TESL program must complete or have completed two years of college work (or its equivalent) in a modern foreign language. They must have studied a foreign language for at least one semester (or equivalent) within the preceding five years. Non-native speakers of English are excused from this requirement.

In the second year candidates will take a comprehensive examination on linguistics, pedagogy and TESL theory, and teaching methodology.

Master of Fine Arts. The M.F.A. is the terminal degree for those wishing to teach creative writing at the college or university level; it is also among the credentials expected of those seeking employment in arts administration, editing, and related fields. The curriculum provides theoretical and practical training in fiction, poetry, creative nonfiction, and editing and publishing.

The program’s principle aim is to teach aspiring writers their craft and at the highest possible level. We gladly speak to students about publishing their work, or about teaching or editing, but our prime responsibility is teaching the craft of writing. We encourage applicants to apply only in one genre, once they are admitted, we encourage them to “cross-pollinate”: we like to see poets working at narrative pacing in a fiction or nonfiction form, and we like to see the prose writers attentive to individual syllables in poetry. We encourage students to experiment and to push themselves in new directions. We also insist that they know where they fit in the continuum of writers, and that they understand and can speak with conviction of where they might place themselves in any of several literary traditions.

Of the minimum 54 credits required for the degree, at least 15 are to be taken in graduate-level literature (which may include ENGL 506); 15 in graduate-level creative writing courses; 3 in workshops taught by Distinguished Visiting Writers; 3 in a Techniques course (ENGL 581, 582, or 583); 9 elective credits; and 9 in thesis. A minimum of four semesters in residence is required.

The thesis will take the form of a collection of poetry, short stories, creative nonfiction, or novel, and will be prefaced by an introduction. Upon completion of the thesis in acceptable form, each student will take an oral examination designed to test the student’s ability to defend the implications or originality of their work, and to communicate critical insights, and to express articulate, aesthetic, and technical choices.

Students who enter the program with advanced work in creative writing at the undergraduate level will ordinarily take only 500-level courses in English. Those who have not completed an advanced undergraduate course in one of the three major genres (fiction, poetry, creative nonfiction) will in addition to the above ordinarily take advanced undergraduate courses, as advised by the director of creative writing.

Program in Environmental Science

Students without backgrounds in engineering may be admitted after certain undergraduate deficiencies are completed.

Financial assistance, in the form of research and teaching assignments with out-of-state tuition waivers, is available. The normal matriculation period is 18 to 21 months. A broad range of opportunities for research includes water quality engineering, hazardous waste management, water and wastewater treatment, bioremediation, ground and surface water resources, air pollution control, and energy conservation.

Courses

See Part 6 for courses in Environmental Engineering (Enve).

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the College of Engineering. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Science. General M.S. requirements apply in addition to courses listed below. A minimum of 33 credits is required for graduation, including 3 credits of research that is not directly related to a thesis.

A common set of core courses is required in both programs as follows:

- BAE 532 Bioreactor Theory and Design for Waste Treatment or CE IDW534 Environmental Engineering Unit Processes (3 cr)
- Chem 419 Environmental Chemistry (3 cr)
- CE IDW531 Environmental Engineering Unit Operations (3 cr)
- CH 570 Hazardous Waste Management (3 cr)
- CH 570 MWF 5:00 PM Principles of Hazardous Waste (3 cr)
- Enve 500 Master’s Research and Thesis (6 cr) or 599 Non-thesis Master’s Research (3 cr).

In addition to the core, the student will select supporting courses based on career objectives to add depth to his or her curriculum. A minimum of 9 to 15 credits (for the thesis or non-thesis option, respectively) must be selected by the student with the concurrence of her advisor and committee. The following is a partial list of typical supporting courses:

- BAE 533 Bioremediation
- BAE 551 Advanced Hydrology
- BAE IDW552 Environmental Water Quality
- BAE 558 Fluid Mechanics of Porous Materials
- CE 435 Hazardous Waste Engineering
- CE 522 Hydraulic Design
- CE Enve 532 Design of Water and Wastewater Systems II
- CE/Enve 533 Water Quality Management
- CH 560 Biochemical Engineering
- CE/Enve 578 Treatment of Hazardous Chemical Waste
- CE/Enve 579 Hazardous Waste Site Remediation Design
- Enve 560 Environmental Risk Assessment for Hazardous Waste Evaluations
- Geol 309 Groundwater
- Hyd 563 Hydrogeology

Fundamental knowledge contained in some lower-division courses is essential to the program. Students who have not taken these, or similar courses, will be required to take them. A common set of core courses is required in both programs as follows:

- CE 325 or BAE 355 Fundamentals of Hydrologic Engineering
- CE 330 Fundamentals of Environmental Engineering
- CH 419 Material and Energy Balances
- Chem 112 Principles of Chemistry II
- Engr 320 Engineering Thermodynamics and Heat Transfer
- Engr 335 Engineering Fluid Mechanics
- Engr 365 Engineering Economy or CH 435 Chemical Process Analysis and Design
- Math 310 Ordinary Differential Equations
- Stat 301 Probability and Statistics
- Stat 446 Advanced Probability

An Enve faculty committee evaluates deficiencies and makes recommendations for students entering the program without an undergraduate degree in engineering.
The Environmental Science Program offers B.S., M.S., and Ph.D. degrees that emphasize the importance of an interdisciplinary approach for students committed to studying and solving environmental issues. The multidisciplinary faculty represents all colleges at the university and includes soil scientists, engineers, geographers, biologists, ecologists, political scientists, sociologists, chemists, and hydrologists. Career opportunities in the environmental sciences are diverse and numerous. Graduates are employed in the private and public sectors in areas such as natural resource management, pollution prevention, and water quality monitoring, hazardous waste management, environmental and land use planning, and environmental regulation and compliance.

The curriculum leading to the B.S. degree in environmental science offers students the opportunity to combine studies in several disciplines and professional fields in order to gain an understanding of the complex nature of environmental problems. In addition to understanding relationships among traditional disciplines, the program creates an integrated and coherent approach to environmental problem solving.

The curriculum includes the university core (general education) requirements, a common set of required courses and breadth electives for all environmental science majors, and the student's choice of one of three options. The required courses and electives for all majors are designed to build a strong base of knowledge in physical, biological, and social sciences, supplemented by a set of electives, in consultation with an environmental science advisor, from four areas (ecology, natural resource economics and sociology, management, and social sciences). All students complete a senior project as part of their course of study.

Three option areas are offered: biological science, physical science, and social science. Graduate training in the Environmental Science Program provides students with the opportunity to specialize in one of eight emphasis areas: ecology/biological science, waste management, earth science/hydrology, natural resource management, physical science, policy and law, environmental health/toxicology, and water science. Admission to the graduate program is based on: ability to complete graduate-level work evidenced by undergraduate transcripts, the applicant's statement of research and career objectives; the compatibility of the student's objectives with faculty expertise and program objectives; and availability of graduate faculty to act as major advisor for the applicant. The GRE, applicant's statement of objectives, and three letters of recommendation and resume are required. Students without backgrounds in environmental science may be admitted after certain undergraduate deficiencies are completed.

Questions regarding the B.S., M.S., or Ph.D. programs should be directed to the program coordinator (208) 885-6133.

Courses
See Part 8 for courses in Environmental Science (EnvS).

Undergraduate Curricular Requirements

ENVIRONMENTAL SCIENCE (B.S.Env.S.)

Required course work includes the university requirements (see regulation J-3), the general requirements for the B.S. degree, and:

Biol 115 Cells and the Evolution of Life (4 cr)
Chem 111 Principles of Chemistry 1 (students in social science option may substitute Chem 101) (4 cr)
Comm 101 Fundamentals of Public Speaking or 3-4 cr in foreign language courses (2-4 cr)
EnvS 101 Introduction to Environmental Sciences 1 (3 cr)
EnvS 102 Field Activities in Environmental Sciences 1 (3 cr)
EnvS 225 International Environmental Issues Seminar 3 (cr)
EnvS 400 Seminar 1 (cr)
EnvS 497 Senior Thesis and Research 3 (cr)
Phil 452 Environmental Philosophy 3 (cr)
Stat 251 Statistical Methods 3 (cr)

Advisor-directed breadth electives, incl at least one course from the first four areas (24 cr):

Ecology
- Biol 314 Ecology and Population Biology 4 (cr)
- For/WLF 221 Ecology 3 (cr)
- MMBB 425 Microbial Ecology 3 (cr)

Natural Resources Economics and Sociology
- AgEc 451 Lands and Natural Resource Economics 3 (cr)
- Anth 220 Peoples of the World 3 (cr)
- CSS 383 Resource Economics for Environmental Policymaking 3 (cr)
- Econ 385 Environmental Economics 3 (cr)
- For 235 Society and Natural Resources 3 (cr)

Management
- CHE 470 or EnvS WS445 Hazardous Waste Management 3 (cr)
- CSS/Fish/For/ForP/Rnge/WLF 470 Interdisciplinary Natural Resource Planning 3 (cr)
- CSS 486 Public Involvement in Natural Resource Mgt 3 (cr)
- For 484 Forest Policy and Administration 2 (cr)
- For 420 Land, Resources, and Environment 3 (cr)
- Geog 427 Decision-Making in Resource Management 3 (cr)
- Geog WS444 Environmental Assessment 4 (cr)
- WLF 493 Environmental Law 2 (cr)

History, Philosophy, and Political Science
- CSS 489 Principles and Philosophies in Conservation 2 (cr)
- Hist 424 American Environmental History 3 (cr)
- Phil 250 Introduction to Philosophy of Science 3 (cr)
- Phil 350 Philosophy of Biology 3 (cr)
- Poli 364 Politics of the Environment 3 (cr)
- Poli 461 Western Environmental Legal History 3 (cr)

Technical
- Bio 213 Principles of Biological Structure and Function 4 (cr)
- Chem 251 Quantitative Analysis 5 (cr)
- Chem 275 Carbon Compounds or Chem 277 and 372 Organic Chemistry 3 (cr)
- Chem 302 Principles of Physical Chem or Chem 305-306 Physical Chem 3 (cr)
- Chem 303 Principles of Physical Chem Lab 1 (cr)
- Chem 418 Environmental Chemistry 3 (cr)
- EnvS 428 Pollution Prevention, Air, and Water Quality Monitoring 3 (cr)
- EnvS 429 Environmental Audit 3 (cr)
- EnvS 479 Introduction to Environmental Regulation 3 (cr)
- EnvS 488 Internship 1-3 (cr)
- For 472 Remote Sensing of Environment 3-4 (cr)
- Geog 301 Meteorology or Geog 401 Climatology 3 (cr)
- Geog 385 GIS Primer 3 (cr)
- Geol 309 Groundwater 3 (cr)
- Geol 361 Geology and the Environment 3 (cr)
- Math 175 Analytic Geometry and Calculus II 4 (cr)
- Math 275 Analytic Geometry and Calculus III 3 (cr)
- MMBB 380 Introductory Biochemistry 4 (cr)
- Phys 111 General Physics I or 211 Engr Physics I 4 (cr)
- Phys 112 General Physics II or 212 Engr Physics II 4 (cr)
- Soil 205 The Soil Ecosystem 3 (cr)

And one the following options:

A. Biological Science Option

This option is suitable for students wishing to pursue technically oriented careers in environmental professions such as natural resource management, bioremediation, and environmental impact analysis.

Chem 112 Principles of Chemistry II 5 (cr)
Eng 317 Technical Writing 3 (cr)
Geog 100 Physical Geography or Geol 101 Physical Geology 4 (cr)
Math 170 Analytic Geometry and Calculus 3 or 160 Survey of Calculus 4 (cr)
MMBB 250 General Microbiology 4 (cr)

Advice/improved depth electives – include all the courses from at least two of the following areas (20 cr):

- Plant Protection
 - Ent 322 Economic Entomology or 491 Principles of Insect Pest Mgt 3 (cr)
 - PlSc 338 Weed Control (cr)
 - PlSc 415 Plant Pathology (3 cr)
 - Soil 446 Soil Fertility 1-3 (cr), max 3 (cr)

- Animal Ecology
 - WLF 314 Wildlife Ecol 3 (cr)
 - WLF 315 Wildlife Ecology Laboratory 4 (cr)
 - WLF 316 Wildlife Ecology II 4 (cr)
 - WLF 448 Fish and Wildlife Population Ecology 4 (cr)

- Aquatic Ecology
 - Take 3 of the 4 courses listed below:
 - Ent 472 Aquatic Entomology 3 (cr)
 - Fish 314 Fish Ecology 3 (cr)
 - Fish 415 Limnology 4 (cr)
 - Fish 430 Riparian Ecology and Management 3 (cr)

- Forest and Range Systems
 - Take 4 of the 7 courses listed below:
 - For 330 Forest Ecosystem Processes 2 (cr)
 - For 423 Forest Community Ecology 2 (cr)
 - For 426 Wildlife Fire Management and Ecology 3 (cr)
 - For 429 Landscape Ecology 2 (cr)
 - Rnge 357 Rangeland and Riparian Habitat Assessment 3 (cr)
 - Rnge 440 Wildland Restoration Ecology 3 (cr)
 - Rnge 459 Rangeland Ecology 3 (cr)

- Soils
 - Soil 437 Soil Biology 3 (cr)
 - Soil 438 Pesticides in the Environment 3 (cr)
 - Soil 446 Soil Fertility 1-3 (cr), max 3 (cr)

- Water
 - Take at least 4 of the 6 courses listed below:
 - BAE 351 Hydrology 3 (cr)
 - EnvS 446 Drinking Water and Human Health 3 (cr)
 - For 462 Watershed Management 3 (cr)
 - Geol 309 Groundwater (3 cr)
 - Geol 410 Techniques of Groundwater Study 3 (cr)
 - Geol 464 The Geochemistry of Natural Waters 3 (cr)

- Environmental Regulation
 - Geog 420 Land, Resources, and Environment 3 (cr)
 - Geog WS444 Environmental Assessment or CSS/Fish/For/ForP/Rnge/WLF 470 Interdisciplinary Natural Resource Planning 3-4 (cr)

- Decision Making Tools
 - For 472 Remote Sensing of Environment 3-4 (cr)
 - Geog 385 GIS Primer 3 (cr)
 - Lar 495 Computer-Aided Regional Landscape Planning 3 (cr)

- Environmental Chemistry
 - Geom 418 Environmental Chemistry 3 (cr)
 - For 436 Pesticides in the Environment 3 (cr)
 - FST 409 Principles of Environmental Toxicology 3 (cr)

Electives to total 128 credits for the degree.
PART FIVE
Departments of Instruction

Program in Environmental Science

109

B. Physical Science Option

This option is suitable for students wishing to pursue technical careers in environmental professions such as air, soil, and water pollution abatement, hazardous waste management, waste minimization, and ecological restoration.

Chem 112 Principles of Chemistry II (5 cr)
Engl 317 Technical Composition (3 cr)
Geog 100 Physical Geography (4 cr)
Geol 101 Physical Geology (4 cr)
Math 170 Analytic Geometry and Calculus I or Calculus I Survey of Calculus (4 cr)

Advisor-approved depth electives – meet requirements of at least two of the following areas (20 cr):

Water

Take at least 4 of the 6 courses listed below:

BAE 351 or CE 321 Hydrology (3 cr)
EnvS 446 Drinking Water and Human Health (3 cr)
For 462 Watershed Management (3 cr)
Geol 309 Groundwater (3 cr)
Geol 410 Techniques of Groundwater Study (3 cr)
Geol 464 The Geochemistry of Natural Waters (3 cr)

Chemistry

Chem 418 Environmental Chemistry (3 cr)
Chem 454 Instrumental Analysis (4 cr)
FST 409 Principles of Environmental Toxicology (3 cr)
MMPB 380 Introduction to Biochemistry (4 cr)

Hazardous Waste

CHE 470 or EnvS 4455 Hazardous Waste Management or BAE 433 Bioremediation or Mel 406 Treatment Technology for Recycled Waste or EnvS 4747 Remediation Technologies and Project Implementation (3 cr)
CHE 480 Engineering Risk Assessment for Hazardous Waste Evaluations (3 cr)
FST 409 Principles of Environmental Toxicology (3 cr)

Geology

Take at least 4 of the 5 courses listed below:

GeoE 328 Geostatistics (3 cr)
Stat 401 Statistical Analysis (3 cr)
Stat 422 Sample Survey Methods (3 cr)

Mathematics

Math 175 Analytic Geometry and Calculus II (4 cr)
Math 275 Analytic Geometry and Calculus III (3 cr)
Math 310 Ordinary Differential Equations (3 cr)
Math 330 Linear Algebra (3 cr)

Soils

Soil 415 Soil Physics (3 cr)
Soil 422 Environmental Soil Chemistry (3 cr)
Soil 454 Soil Development and Classification (3 cr)

Statistics

GeoE 428 Geostatistics (3 cr)

Electives to total 128 credits for the degree

C. Social Science Option

This option is suitable for students wishing to pursue careers in environmental professions such as environmental regulation, land use planning, environmental administration, and as a pre-law program for environmental law.

Engl 309 Advanced Prose Writing or Jamm 428 Environmental Journalism (3 cr)
Engl 316 Environmental Writing or Engl 317 Technical Writing (3 cr)
Geog 100 Physical Geography (4 cr)
MATH 130 Algebra (4 cr)

Electives to total 128 credits

Part Five

B. Physical Science Option

Program in Environmental Science

109

C. Social Science Option

This option is suitable for students wishing to pursue careers in environmental professions such as environmental regulation, land use planning, environmental administration, and as a pre-law program for environmental law.

Engl 309 Advanced Prose Writing or Jamm 428 Environmental Journalism (3 cr)
Engl 316 Environmental Writing or Engl 317 Technical Writing (3 cr)
Geog 100 Physical Geography (4 cr)
MATH 130 Algebra (4 cr)

Electives to total 128 credits

Program in Environmental Science

Candidates must fulfill the requirements of the College of Graduate Studies and of the Program in Environmental Science. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Science. Each student will design a study plan in consultation with an advisor and a thesis committee. The study plan is subject to approval by the director and the Graduate College.

There are six requirements for the M.S. degree in environmental science: (1) Depth requirement: the graduate program is structured around three option areas, biological science, physical science, or social science. A student must complete a minimum of 12 credits (three courses) or 15 credits (non-thesis degree) in one of the following areas: Biological Science: (a) A student must complete a minimum of 3 credits of biology at the M.S. level in each of the other two option areas; (b) A student must complete one additional course (3 cr) in an appropriate research methodology or statistical course at the 500 level. (c) Envs 599, environmental science, 2 cr, (5 cr) option area graduate seminar, 1 cr, and, if Envs 599 (6 cr, thesis degree) or Envs 599 (3 cr, non-thesis degree). These requirements may be augmented to compensate for undergraduate deficiencies.

Doctor of Philosophy. Admission to the doctoral program is based on the compatibility of the student’s research interests with those of the major professor, the availability of research support, and the student’s academic record and potential. Applicants are expected to have the prerequisites as specified for the M.S. degree. The student develops a graduate program of at least 78 semester hours in consultation with his or her major professor and supervisory committee. The student is expected to actively participate in one or more seminar presentations during the course of his or her graduate career. Teaching experience is required and is obtained through participation in the program’s course offerings. Qualifying and preliminary examinations are required prior to admission to candidacy for the degree. All candidates prepare a formal dissertation reflecting original thought and independent investigation and defend it during an oral presentation as a final step toward their degree. Publication in the peer-reviewed, scientific literature is expected. Contact the program office for specific program requirements and procedures.

Distance Education. The M.S. with a water science emphasis is available in Idaho Falls, Coeur d’Alene, and Boise and nationwide as part of our distance education offerings. The M.S. degree in waste management, and policy and law are available in Idaho Falls. The Ph.D. degree is offered in Moscow and in Idaho Falls.

Professional Certificates: Twelve-credit professional certificates in water science and environmental contamination assessment are also available through the Environmental Science Program. The certificates can be completed on the Moscow campus or distance education. Professional details are available in the program office.

Concurrent J.D./M.S. Environmental Science Degrees. The concurrent J.D./M.S. degree program offers students an opportunity to combine the study of scientific, social, philosophical, and legal aspects of environmental issues. This program equips students for jobs in which the technical knowledge obtained through the Environmental Science Program and the professional expertise provided by the College of Law would be beneficial.

Students must apply separately to and be admitted by the College of Graduate Studies/Environmental Science Program, the College of Law, and the Concurrent J.D./M.S. Degree Program. Admission into the concurrent degree program is dependent on a demonstrated ability to excel in an intense, interdisciplinary educational environment.

Students must complete the requirements set out above for an M.S. degree in environmental science and the requirements for a J.D. (see the College of Law section), subject to the following conditions. The first year of study will be exclusively in the College of Law. Because the concurrent degree program requires an M.S. thesis, the fourth year of the program will be primarily in the Environmental Science Program. Up to 12 hours of M.S. graduate credit will be allowed toward the J.D. degree and up to 6 hours of law credit will be allowed toward the M.S. degree from preapproved lists of classes. This will permit a student to complete the concurrent degree program in as little as four years. If
a student fails to complete the master’s degree program, no more than 6 credits will be awarded toward the J.D. degree if a student fails to complete the law program. A student will be required to satisfy all requirements of the Environmental Science Program before receiving the M.S. degree. See the College of Graduate Studies and the College of Law sections on Part 4 for additional information on the graduate law concurrent degrees.

Questions regarding the concurrent degree program should be addressed to the Environmental Science Program coordinator (208/885-6113) or to the College of Law (208/885-6423).

Margaret Ritchie School of Family and Consumer Sciences

Nancy J. Wanamaker, Director (105 Mary Hall Niccolis Family and Consumer Sciences Bldg. 8344-3183; phone 208/885-6545; famcon@uidaho.edu). Faculty: Marilyn C. Bischoff, Laurel J. Branen, Jeffrey D. Colbertson, Sandra Evenson, Janice W. Fletcher, Kathie A. Gabel, Madeline Delwo Houghton, Virginia W. Junk, Laurel G. Lambert, Sandra M. McCurdy, Mary J. Pickard, Suzanne M. Planck, Martha A. Raidl, Cynthia J. Schmiege, Harriet L. Shaklee. Adjunct Faculty: A. Larry Branen, Arlinda K. Nauman.

Family and consumer sciences focuses on the relationships, resources, and services contributing to individual and family well being. The discipline analyzes the needs of individuals and families using social, psychological, physical, biological, economic, and aesthetic theories and concepts.

Three majors leading to the degree of Bachelor in Science in Family and Consumer Sciences (B.S.F.C.S.) are offered by the School of Family and Consumer Sciences and are designed to meet individual goals of students. These are: (1) child, family, and consumer studies, (2) food and nutrition, and (3) clothing, textiles and design.

Students may choose one of three program options in the child, family, and consumer studies major. Child development/family relations focuses on the normal, healthy development of children and families. Family Life offers a general preparation in Family and Consumer Sciences that provides a foundation for further specialization. Family and consumer sciences education prepares students for teaching in the public schools, in community settings, or business audiences. Graduates of the major include day care managers, family advocates, accredited financial counselors, extension educators, and teachers.

The food and nutrition major offers the dietetics and nutrition options. The Coordinated Program in Dietetics includes a senior year experience in Spokane where students complete a supervised practicum in community and medical center settings. This program is accredited by the American Dietetic Association and allows students to take the exam to become registered dietitians. The nutrition option prepares students for careers with government agencies, commodity groups, health and fitness agencies and businesses, and some components of the food industry. In addition, the course work would provide excellent background for those wishing to pursue advanced degrees in medicine or nutrition. The first two years of courses are very similar in these two options. Students apply for acceptance into the Coordinated Program in Dietetics at the end of the sophomore year.

The clothing, textiles, and design major offers both apparel design and fashion merchandising options. Combining courses from art or business with the clothing, textile, and design courses offered in the school prepares students for careers in retail and wholesale sectors of the apparel and textile industry. Designers, product development specialists, retail buyers and managers, and merchandise managers are some of the career titles held by UI graduates.

The Bachelor of Science in Early Childhood Development and Education is offered jointly between the College of Education and the School of Family and Consumer Sciences. Coursework will prepare students to be recommended for Idaho Early Childhood Education/Early Childhood Special Education (EC/ECSE) Blended Teacher Certification. Students will be certified to teach children birth through grade three.

The Margaret Ritchie School of Family and Consumer Sciences offers graduate course work and research opportunities concerning individuals and families across their life spans. An integrated approach prepares students for the complexities of our global society through the analysis and application of relevant theories, practices, and research. Issues important to individuals and families, such as human development, consumption, resource management, education, aesthetics, and public policy, are studied in the context of cultural and physical environments.

Graduate students apply communication, analytical, evaluation, and synthesis skills to the study of families and consumers through classroom, practica, and research experiences. The school’s Child Development Laboratory provides a special resource for both teaching and research activities. Internships in community agencies and business, practice in teaching and supervision, and graduate teaching and research assistantships also provide valuable graduate student experiences. Graduate student research is closely aligned with faculty interests that currently include work and family, quality child care, feeding young children, at-risk youth, financial management through the life span, sports nutrition, family and consumer sciences education, international textile trade patterns, and cultural aspects of dress. The program prepares students to be teachers in the public schools and community colleges; child or human development specialists in public and private organizations such as nonprofit and social services agencies, hospitals, child care centers, and early learning systems; and for the future pursuit of the Ph.D. degree in family and consumer sciences, social work, education, or related fields.

The Margaret Ritchie School of Family and Consumer Sciences has an outstanding scholarship program for entering first-year students, continuing undergraduate majors, and graduate students. Most scholarships are awarded on the basis of academic excellence regardless of financial need.

Courses

See Part 6 for courses in Family and Consumer Sciences (FCS).

Undergraduate Curricular Requirements

CHILD, FAMILY, AND CONSUMER STUDIES (B.S.F.C.S.)

This major has an interdisciplinary focus on the child, the family as an institution, and families as consumers.

The minimum credits required for graduation are 132, including at least 36 credits at the 300-level or above. Required course work includes the university requirements (see regulation J-3) and one of the following options:

A. Child Development/Family Relations Option

The CDFR option allows students to develop individualized programs to meet personal and career goals. Careers include opportunities to provide direct services to children and families through teaching or child care, to fill advocacy roles, or to be involved with parent education.

Comm 101 Fundamentals of Public Speaking (2 cr)
ED 201 Diverse Learners in Schools and Social/Cultural Contexts (3 cr)
FCS 105 Individual and Family Development (3 cr)
FCS 205 Concepts in Human Nutrition (3 cr)
FCS 234 Infancy and Early Childhood (3 cr)
FCS 235 Principles and Methods of Child Observation (3 cr)
FCS 240 Intimate Relationships (3 cr)
FCS 333 Developmental Curriculum for Young Children (3 cr)
FCS 334 Middle Childhood-Adolescence (3 cr)
FCS 340 Parent-Child Relationships in Family and Community (3 cr)
FCS 346 Personal and Family Finance and Management (4 cr)
FCS 436 Theories of Child and Family Development (3 cr)
FCS 440 Contemporary Family Relationships (3 cr)
FCS 497 Practicum (9 cr)
H& SS 288 First Aid: Emergency Response (2 cr)
Stat 150 Intro to Statistics or Stat 251 Statistical Methods (3 cr)
Computer applications elective (3 cr)

B. Family Life Option

The Family Life Option provides a general preparation in family science. Students may select to pursue course preparation for Accredited Financial Counselor or Certified Family Life Educator. Career options include jobs in business firms, government agencies, and nonprofit organizations. Students could also declare a minor in Aging. See Advisor for specific coursework to pursue these options.

FCS 105 Individual and Family Development (3 cr)
FCS 123 Textiles (3 cr)
FCS 205 Concepts in Human Nutrition (3 cr)
FCS 223 Evaluation of Apparel and Textiles (3 cr)
FCS 234 Infancy and Early Childhood (3 cr)
FCS 240 Intimate Relationships (3 cr)
FCS 251 Survey of FCS Professions (1 cr)
FCS 334 Middle Childhood-Adolescence (3 cr)
FCS 340 Parent-Child Relationships in Family & Community or FCS 440 Contemporary Family Relationships (3 cr)
FCS 346 Personal and Family Finance and Management (4 cr)
FCS 428 Housing America’s Families (3 cr)
FCS 434 Adulthood and Aging Within the Context of Family (3 cr)
FCS 445 Work and Family Issues (3 cr)
FCS 448 Consumer Economic Issues (3 cr)

C. Family and Consumer Sciences Education Option

Family and Consumer Sciences Education prepares students for teaching in the public schools, in community settings, for business audiences.

Students seeking certification as secondary teachers must meet College of Education requirements for entry into teacher education. These requirements are prerequisite to enrollment in upper-division courses in the College of Education (see "Admission to the Teacher Education Program"). Completion of this option will qualify students for the Idaho standard secondary teaching certification with a professional-technical Family and Consumer Sciences endorsement. With minimal additional course work, students can qualify for other teaching endorsements. A passing score is required on the Education Technology Competency Test for certification.

PTTE 445 Orientation to Teaching (3 cr)
PTTE 461 Using Internet-Based Career Information in the Classroom (2 cr)
Art 100 Visual Art (3 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
Econ 201 Principles of Economics (3 cr)
ED 201 Diverse Learners in Schools and Social/Cultural Contexts (3 cr)
ED 301 Principles of Learning and Development in Education (3 cr)
ED 302 Curriculum, Instruction, and Assessment Strategies (3 cr)
ED 328 Introduction to Educational Technology (2 cr)
EDTE 463 Literacy Methods for Content Learning (3 cr)
FCS 105 Individual and Family Development (3 cr)
FCS 170 Food: Science and Practice (3 cr)
FCS 205 Concepts in Human Nutrition (3 cr)
FCS 234 Infancy and Early Childhood or FCS 334 Middle Childhood-Adolescence (3 cr)
FCS 251 Survey of FCS Professions (1 cr)
FCS 270 Intermediate Foods (3 cr)
FCS 346 Personal and Family Finance and Management (4 cr)
FCS 350 Curriculum Development in Family and Consumer Sciences (3 cr)
FCS 428 Housing America’s Families (3 cr)
FCS 351 Administration of FCCLA Organizations (2 cr)
FCS 440 Contemporary Family Relationships (3 cr)
FCS 448 Consumer Economic Issues (3 cr)
FCS 461 Methods & Strategies in FCS Education (3 cr)
FCS 465 Introduction to FCS Internship (3 cr)
FCS 469 Individualized Assessment and Instruction in the FCS Classroom (2 cr)
FCS 470 Curriculum Portfolio in FCS Education (2 cr)
FCS 471 Internship in Family and Consumer Sciences Ed (12 cr)
Psych 101 Introduction to Psychology (3 cr)
PTTE 351 Principles and Philosophy of Professional-Technical Education (3 cr)
Soc 101 Introduction to Sociology (3 cr)
Stat 150 Introduction to Statistics (3 cr)

Two of the following courses (6 cr):
FCS 123 Textiles (3 cr)
FCS 223 Evaluation of Apparel and Textiles (3 cr)
FCS 224 Apparel Design I (3 cr)

Humanities elective (3 cr)
Natural Sciences elective (7-8 cr)

CLOTHING, TEXTILES AND DESIGN (B.S.F.C.S.)

This major considers clothing, textiles and design as basic human needs, consumer products, historical and cultural artifacts, and communication tools. Career emphasis areas include retail buying and selling, design, and international marketing.

Required course work includes the university requirements (see regulation J-3) and:

Art 100 Visual Art (3 cr)
Bus 324 Marketing (3 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
Econ 201 or 202 Principles of Economics or Econ 272 Foundations of Economic Analysis (3-4 cr)
FCS 105 Individual and Family Development (3 cr)
FCS 119 Fashion from Concept to Consumer (3 cr)
FCS 123 Textiles (3 cr)
FCS 205 Concepts in Human Nutrition or FCS 462 Eating Disorders (2-3 cr)
FCS 223 Evaluation of Apparel and Textiles (3 cr)
FCS 224 Apparel Design I (3 cr)
FCS 324 Apparel Design II (3 cr)
FCS 329 History of Western Dress (3 cr)
FCS 419 Dress and Culture (3 cr)
FCS 424 Aesthetics for the Apparel Professional (3 cr)
FCS 448 Consumer Economic Issues (3 cr)
Psych 101 Intro to Psychology or Soc 101 Intro to Sociology (3 cr)
Anthropology elective (3 cr)
Computer applications elective (2-3 cr)
Advisor-approved clothing, textiles, and design electives (9 cr)

Additional FCS credits outside of the CTD curriculum (6 cr)

An area of emphasis selected with the guidance of an advisor (18 cr)
Electives to total 132 cr for the degree

EARLY CHILDHOOD DEVELOPMENT AND EDUCATION (B.S.Erly.Childhd.Dev.Ed.)

Coursework will prepare students to be recommended for Idaho Early Childhood Education/Early Childhood Special Education (EC/ECSE) Blended Teacher Certification. Students will be certified to teach children birth through grade three.

The minimum credits required for graduation are 139, including at least 36 credits at the 300-level or above. Required course work includes the university requirements (see regulation J-3) and:

Art 100 Visual Art or Musi 101 Survey of Music (3 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
Dan 360 Children’s Dance (2 cr)
ED 201 Diverse Learners in Schools & Social/Cultural Contexts (3 cr)
ED 301 Principles of Learning & Development in Education (3 cr)
ED 302 Curriculum, Instruction & Assessment Strategies (3 cr)
ED 401 Professional Role Development (2 cr)
EDSP 350 Language, Communication Development, and Disorders (3 cr)
EDSP 351 Family & Community Involvement (2 cr)
EDSP 460 Early Childhood Assessment (3 cr)
EDSP 461 Early Childhood SPD Curriculum (3 cr)
EDSP 480 Infant Practicum (7-10 cr)
EDTE 300 Foundations of Literacy Development (4 cr)
EDTE 321 Literature for Children (2 cr)
EDTE 322 Integrated Language & Literacy (2 cr)
EDTE 327 Elementary Mathematics Education (2 cr)
EDTE 328 Elementary Social Studies Education (2 cr)
EDTE 329 Elementary Science Education (2 cr)
EDTE 484 Elementary Internship II (15 cr)
Engl 257 or 258 Literature of Western Civilization (3 cr)
FCS 205 Concepts in Human Nutrition (3 cr)
FCS 210 Intro to Early Childhood Educ (2 cr)
FCS 234 Infancy and Early Childhood Dev (3 cr)
FCS 235 Principles & Methods of Child Observation (3 cr)
FCS 333 Developmental Curriculum for Young Children (4 cr)
FCS 340 Parent-Child Relationships in Family & Community (3 cr)
FCS 435 Feeding Young Children in Group Settings (1 cr)
FCS 436 Theories of Child & Family Development (3 cr)
FCS 497 Practicum: Preschool (8 cr)
Math 301 Early Childhood Mathematics (4 cr)
Music 361 Elementary School Music Methods for Nonmajors (3 cr)
PEP 350 Elementary Physical Education (3 cr)
Stat 150 Introduction to Statistics (3 cr)

English electives (9 cr)
Natural Science electives (8 cr)
Social Science electives taken from the following disciplines: Hist, Poli, Soc, Anth, Econ, Geog. (9 cr)

FOOD AND NUTRITION (B.S.F.C.S.)

Required course work includes the university requirements (see regulation J-3) and one of the following options.

A. Coordinated Program in Dietetics

Upon acceptance to the professional phase of the CPD during the second semester of the sophomore year, students must maintain a cumulative grade-point average of at least 2.80 to remain in and graduate from the program. Students must also obtain at least a B (80%) in all CPD courses required by the American Dietetic Association.

Acct 201 Introduction to Accounting or Acct 202 Introduction to Managerial Accounting (3 cr)
Biol 120 Human Anatomy (4 cr)
Biol 121 Human Physiology (4 cr)
Chem 101 Intro to Chemistry I or Chem 111 Principles of Chemistry I (4 cr)
Chem 275, 276 Carbon Compounds and Lab (4 cr)
Econ 201 or 202 Principles of Economics (3 cr)
Engl 317 Technical Writing (3 cr)
FCS 105 Individual and Family Development (3 cr)
FCS 170 Food Science and Practice (3 cr)
FCS 205 Concepts in Human Nutrition (3 cr)
FCS 270 Intermediate Foods (3 cr)
FCS 305 Nutrition Related to Fitness and Sport (3 cr)
FCS 361 Advanced Nutrition (3 cr)
FCS 362 Introduction to Clinical Dietetics (4 cr)
FCS 363 Diet Therapy (4 cr)
FCS 364 Clinical Dietetics I (4 cr)
FCS 361 Advanced Nutrition Lab (1 cr)
FCS 384 Quantity Food Production and Equipment (3 cr)
FCS 385 Quantity Food Production Lab (2 cr)
FCS 387 Food Systems Management (3 cr)
FCS 388 Food Systems Management Lab (1 cr)
FCS 462 Eating Disorders (2 cr)
FCS 411 Global Nutrition (3 cr)
FCS 472 Clinical Dietetics II (6 cr)
FCS 473 Community Nutrition (4 cr)
FCS 474 Food Resource Development (3 cr)
FCS 485 Computer Applications in Food Administration (2 cr)
FCS 486 Nutrition in the Life Cycle (4 cr)
FCS 487 Management Supervised Practice I (2 cr)
FCS 488 Management Supervised Practice II (6 cr)
Math 143 Pre-calculus Algebra and Analytic Geometry (3 cr)
MMBB 154, 155 Introductory Biology of Bacteria and Viruses and Lab (4 cr)
MMBB 300 Survey of Biochemistry (3 cr)
Psych 101 Introduction to Psychology (3 cr)
Soc 101 Introduction to Sociology (3 cr)
Stat 251 Statistical Methods (3 cr)
Electives to total 132 cr for the degree

B. Nutrition Option

This option prepares students for careers with government agencies, commodity groups, health and fitness agencies and businesses, and some components of the food industry. In addition, the course work would provide excellent background for those wishing to pursue advanced degrees in medicine or nutrition.

Biol 120 Human Anatomy (4 cr)
Biol 121 Human Physiology (4 cr)
Chem 101 Intro to Chemistry I or Chem 111 Principles of Chemistry I (4 cr)
Chem 112** Principles of Chemistry II (5 cr)
Chem 275, 276 Carbon Compounds and Lab or Chem 277, 278** Organic Chem I and Lab (4 cr)
Engl 317 Technical Writing (3 cr)
FCS 105 Individual and Family Development (3 cr)
FCS 170 Food Science and Practice (3 cr)
FCS 205 Concepts in Human Nutrition (3 cr)
FCS 270 Intermediate Foods (3 cr)
FCS 305 Nutrition Related to Fitness and Sport (3 cr)
FCS 384 Quantity Food Production and Equipment (3 cr)
FCS 385 Quantity Food Production Lab (2 cr)
FCS 387 Food Systems Management (3 cr)
FCS 388 Food Systems Management Lab (1 cr)
FCS 462 Eating Disorders (2 cr)
FCS 472 Clinical Dietetics II (6 cr)
FCS 473 Community Nutrition (4 cr)
FCS 474 Food Resource Development (3 cr)
FCS 485 Computer Applications in Food Administration (2 cr)
FCS 486 Nutrition in the Life Cycle (4 cr)
FCS 487 Management Supervised Practice I (2 cr)
FCS 488 Management Supervised Practice II (6 cr)
FCS 489 Pre-calculus Algebra and Analytic Geometry (3 cr)
MMBB 154, 155 Introduction to Biology of Bacteria and Viruses and Lab (4 cr)
MMBB 300 Survey of Biochemistry (3 cr)
Psych 101 Introduction to Psychology (3 cr)
Soc 101 Introduction to Sociology (3 cr)
Stat 251 Statistical Methods (3 cr)
Electives to total 132 cr for the degree

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the School of Family and Consumer Sciences. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.
Master of Science. A letter of intent, which includes a statement of goals, objectives, and academic interests, and three letters of recommendation are required for admission. Information may be obtained at the school. (A) Thesis Option: Thirty credits of course work including a 13-credit emphasis area in family and consumer sciences and related areas, two graduate seminars, courses in theory and research methods and analysis, and at least 6 credits of thesis research. (B) Non-thesis Option: Thirty-four credits of course work including a 17-19 credit emphasis area in family and consumer sciences and related areas, two graduate seminars, courses in theory and research methods and analysis, and a master’s project.

Department of Fish and Wildlife Resources

Kerry Reece, Department Head (104 CNR Bldg. 83484-1136; phone 208/885-6434; fish_wildlife@uidaho.edu). Fishery Resources Faculty: Jeffrey H. Braatne, Kenneth D. Cain, James L. Congleton, Stephanie E. Hampton, Christine M. Moffitt, Madison S. Powell, Christopher A. Peery, Dennis L. Scarnecchia. Wildlife Resources Faculty: Brian C. Dennis, Edward O. Garton, Janet L. Rachlow, John T. Ratti, Kerry P. Reese, J. Michael Scott, Lisette P. Waits, R. Gerald Wright.

Fish and wildlife resources deals with the application of principles of biology and ecology to the understanding of how fish and wildlife populations interact with each other and with their environment, which includes humans. There are four areas of emphasis within the department: aquaculture, fisheries, wildlife, and conservation genetics. Persons interested in aquaculture or fisheries can design their major within the B.S. in Fishery Resources or the B.S. in Wildlife Resources, while those interested in wildlife, within the B.S. in Wildlife Resources. Conservation genetics courses may be incorporated into either degree.

Fishery biologists and scientists conduct research or apply management principles to aquatic ecosystems. They may become involved with biological monitoring, environmental impact assessment, maintenance of endangered fish, hatchery operation, commercial fish farming, control and prevention of fish diseases, and management of stream or lake ecosystems.

Wildlife biologists, or managers, attempt to maintain adequate populations of game and nongame wildlife species. This involves studying wildlife and its habitat so that management programs can be biologically based. The job often involves coordinating wildlife management programs with other natural resource activities such as forest management, range management, and land use planning.

Both professions offer opportunities in law enforcement, communications, and public relations. A common saying, and one with a great deal of truth, is that fish or wildlife management is largely people management.

Bachelor of Science degrees are offered in fishery resources and wildlife resources. In the fishery resources degree, students may design a program that emphasizes fisheries ecology, aquatic ecology, aquaculture, or fisheries management. In the wildlife resources degree, the program emphasizes the principles of wildlife ecology, population dynamics, and management. Elective courses in all programs provide an opportunity to gain additional knowledge in a special area of interest or to broaden into other fields. To ensure that the student gains practical experience, one season of approved work experience before graduation is required. For information on the NREC program, see the section on “Natural Resources.”

Fish and wildlife graduates find employment with numerous federal and state agencies, as well as private institutions. They include the U.S. Fish and Wildlife Service, the Bureau of Land Management, the U.S. Forest Service, the National Marine Fisheries Service, the Army Corps of Engineers, state fish and game or conservation departments, and tribal agencies, and large organizations such as power companies, commercial fish growers, consulting agencies, and non-profit organizations. Recent surveys have shown that fish and wildlife baccalaureate graduates of UI obtain employment at a rate considerably above the national average.

The graduate program is offered to meet the needs of students who are interested in either specialized or generalized advanced study. Because specific requirements for each degree are determined by the student’s supervisory committee, individual study plans allow for differences in preparation while providing all students with a comparable background by the time the graduate program is completed.

In addition to the admission requirements of the College of Graduate Studies, the prospective student must have a master’s degree (a bachelor’s degree for the wildlife resources degree) and must have received a grade of C or better in each of the following four indicator courses: 17-19 credit emphasis area in family and consumer sciences and related areas, two graduate seminars, courses in theory and research methods and analysis, and a master’s project.

In addition to the requirements listed above, graduate admission is based on the compatibility of the student’s research interests with the areas of concentration in the department and the availability of research faculty.

The research mission of the department is attainment of new knowledge and the understanding of natural resources, their interrelationships and uses. The objectives of the programs are to train students to become leaders in research, teaching, and management alternatives that will assist in the conservation of resources while meeting society’s needs. The dissemination of this knowledge through publications, continuing education, and other channels of communication is an essential departmental function.

For additional information, please call the department at (208) 885-6434 or visit the web at http://www.cnr.uidaho.edu/fishwild.

Courses
See Part 6 for courses in Fishery Resources (Fish) and Wildlife Resources (WLF).

Undergraduate Curricular Requirements

FISHERY RESOURCES (B.S.Fish.Res.)

Students pursuing a B.S. degree in fishery resources (management or aquaculture emphasis) have received a grade of C or better in each of the following four indicator courses to register for fish- and wildlife-preferred upper-division courses and to graduate with a B.S.Fish.Res.: Biol 116 and 213, Stat 251, and For/Rnge 221.

To graduate, students must achieve a grade of C or better in Biol 481, and each fish- and wildlife-preferred upper-division course listed in the requirements for the B.S. degree in fishery resources.

Required course work includes the university requirements (see regulation J-3) and:

First and Second Years
Biol 115 Cells and the Evolution of Life (4 cr)
Biol 116 Organisms & Environments (4 cr)
Biol 213 Principles of biological Structure and Function (4 cr)
Chem 101 Introduction to Chemistry I (4 cr)
Chem 275 Carbon Compounds or Chem 277 Organic Chemistry (3 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
Econ 202 Principles of Economics I (3 cr)
Fish 102 The Fishery Resources Profession (1 cr)
For/Rnge 221 Natural Resources Ecology (3 cr)
For/Rnge 235 Society and Natural Resources (3 cr)
For/Rnge 236 Principles of Natural Resources Law (3 cr)
For/Rnge 448 Ichthyology (4 cr)
For/Rnge 470 Interdisciplinary Natural Resource Planning (3 cr)
Math 170 Survey of Calculus (4 cr)
Stat 101 Exploring Natural Resources (1 cr)
Phys 100 Fundamentals of Physics or Phys 111 General Physics I (4 cr)
Stat 251 Statistical Methods (3 cr)

Third and Fourth Years
AVS 371 Anatomy and Physiology or Biol 423 Comparative Vertebrate Physiology (4 cr)
Biol 481 Ichthyology (4 cr)
CSS/Fish/For/Rnge/RLF 470 Interdisciplinary Natural Resource Planning (3 cr)
Engl 313 Business Writing or Engl 317 Technical Writing (3 cr)
Fish 314 Fish Ecology (3 cr)
Fish 316 Principles of Population Dynamics (2 cr)
Fish 411 Limnology (4 cr)
Fish 418 Fisheries Management (4 cr)
Fish 422 Concepts in Aquaculture (3 cr) or Fish 424 Fish Health Management (4 cr)
Fish 495 Seminar (1 cr)
Genet 314 General Genetics or Biol 210 Genetics (3-4 cr)
MMBB 250, 255 General Microbiology and Labs (5 cr)
WLF 448 Fish and Wildlife Population Ecology (4 cr)
Approved work experience in a major field required.

Electives to total 128 credits for the degree

ECOLOGY AND CONSERVATION BIOLOGY (B.S.Ecol.Cons.Biol.)

See the section on "Natural Resources" in Part 5.

WILDLIFE RESOURCES (B.S.Wildl.Res.)

Students pursuing a B.S. in wildlife resources must have received a grade of C or better in each of the following four indicator courses to register in fish- and wildlife-preferred upper-division courses and to graduate with a B.S. in wildlife resources: Biol 116 and 213, Stat 251, and For/Rnge 221.

To graduate, a student must receive a grade of C or better in each fish- and wildlife-preferred upper-division course listed in the requirements for the B.S. in wildlife resources.
PART FIVE
Departments of Instruction

Department of Food Science and Toxicology

Required course work includes the university requirements (see regulation J-3) and:

First and Second Years
Biol 115 Cells and the Evolution of Life (4 cr)
Biol 116 Organisms & Environments (4 cr)
Biol 213 Principles of Biological Structure and Function (4 cr)
Biol 341 Systematic Botany or For 320 Dendrology or Rnge 353 Rangeland Plant Identification and Ecology (3 cr)
Chem 101 Introduction to Chemistry I (4 cr)
Chem 275 Organic Compounds or Chem 277 Organic Chemistry I (3 cr)
Comp 101 Fundamentals of Public Speaking (2 cr)
Econ 205 Principles of Economics (3 cr)
For/Rnge 221 Natural Resources Ecology (3 cr)
For/CSS 235 Society and Natural Resources (3 cr)
Geol 101 Physical Geol or Soil 205, 206 The Soil Ecology System and Lab (4 cr)
Math 160 Survey of Calculus or Math 170 Analytic Geometry and Calculus I (4 cr)
NR 101 Exploring Natural Resources I (1 cr)
Stat 251 Statistical Methods (3 cr)
WLF 102 The Wildlife Profession (1 cr)

Third and Fourth Years
AVS 371 Anatomy and Physiology (4 cr)
Engl 208 Personal and Employ Writing, Engl 317 Technical Writing, or Comp 431 Professional Presentation Techniques (3 cr)
For 383 Economics for Natural Resource Managers, AgEc 451 Land and Natural Resource Economics (4 cr)
Gen 314 General Genetics or Biol 210 Genetics (3-4 cr)
Phys 100 Fundamentals of Physics or Phys 111 General Physics I (4 cr)
WLF 314, 315 Wildlife Ecology I and Lab (4 cr)
WLF 316 Wildlife Ecology II (4 cr)
WLF 440 Conservation Biology (3 cr)
WLF 448 Fish and Wildlife Population Ecology (4 cr)
WLF/For 470 Interdisciplinary Natural Resource Planning (3 cr)
WLF 492 Wildlife Management (4 cr)
WLF 495 Wildlife Seminar (1 cr)
Restricted electives, choose two courses from the following (must receive a grade of C or better):
Biol 481 Ichthyology (4 cr)
Biol 483 Mammalogy (3 cr)
Biol 484 Invertebrate Zoology (4 cr)
WLF 482 Ornithology (4 cr)
Approved work experience in major field required
Electives to total 128 credits for the degree

Academic Minor Requirements

FISHERY RESOURCES MINOR
Fish 314 Fish Ecology (3 cr)
Fish 495 Seminar (1 cr)
For/Rnge 221 Natural Resources Ecology or Biol 314 Ecology and Population Biology (3 cr)
Four of the following courses (12-15 cr): Biol 481 Ichthyology (4 cr)
Fish 415 Limnology (4 cr)
Fish 418 Fisheries Management (4 cr)
Fish 422 Concepts in Aquaculture (3 cr)
Fish 424 Fish Health Management (4 cr)
Fish 430 Riparian Ecology and Management (3 cr)
Fish 435 Wetland Ecology and Management (3 cr)

WILDLIFE RESOURCES MINOR
For/Rnge 221 Natural Resources Ecology or Biol 314 Ecology and Population Biology (3 cr)
WLF 314, 315 Wildlife Ecology I and Lab (4 cr)
WLF 316 Wildlife Ecology II (4 cr)
WLF 495 Wildlife Seminar (1 cr)
Three of the following courses (8-11 cr):
Biol 483 Mammalogy (3 cr)
WLF 440 Conservation Biology (3 cr)
WLF 448 Fish and Wildlife Population Ecology (4 cr)
WLF 482 Ornithology (4 cr)
WLF 492 Wildlife Management (4 cr)

Graduate Degree Programs
Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Fish and Wildlife Resources. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Science. Majors in Fishery Resources or Wildlife Resources. The M.S. degree with major study in either fishery resources or wildlife resources is awarded when a student has met the requirements listed below. A formal graduate program of at least 30 semester hours is chosen in consultation with the major professor and the student's supervisory committee. At least 18 credits must be courses numbered 500 and above. For the thesis option, no more than 10 of the 500-level credits of Research and Thesis may be applied toward the degree. (A) Thesis option: General M.S. requirements apply except that the thesis requirement may be fulfilled by one or more journal publications at the discretion of the candidate's supervisory committee. (B) Non-thesis option: General M.S. requirements apply. A professional paper is required.

The Ph.D. degree is available with a major in natural resources. General Ph.D. requirements apply; see the section on "Natural Resources" in Part 5 for details.

Department of Food Science and Toxicology

Denise M. Smith, Dept. Head (111 Agricultural Science Bldg., 83844-2312; phone 208/885-704; ftsalis@uidaho.edu; http://www.ag.uidaho.edu/fs/)
Faculty: A. L. Baranowski, Pawan P. Singh, Denise M. Smith, Patricia A. Talcott, Gülhan Ü. Yüksel. Adjunct Faculty: Laurel J. Branen, Kathe A. Gabel, Robert J. Haggerty, Bingjun He, Steven L. McGehee. Affiliate Faculty: John D. Baranowski, Miles Willard.

The multi-billion dollar food industry is the largest manufacturing industry in the United States. To remain competitive, the scientific discipline that supports the food and beverage manufacturing industry. Food science is a multidisciplinary science that applies biology, chemistry, nutrition, engineering, and other sciences to improve the safety and quality of food products, develop new food products, and design new, safer, and more energy efficient food processes. Food scientists are employed around the world by large and small food processing companies, food ingredient suppliers, food quality assurance and testing labs, federal and state governmental agencies, and academia. There are more job openings for food scientists in the food industry than graduates to fill them. Consequently, starting salaries for food scientists are highly competitive.

Career opportunities are excellent. Entry-level jobs in the food industry include food product development, food process development, food quality assurance, food safety compliance, and technical sales. Food scientists work to enhance the quality of foods through biotechnology, as well as improve the microbial and chemical safety of foods. Food scientists develop new food flavors, extend the shelf life of foods, and devise new processing technologies. All of the food products in a grocery store and many foods offered on restaurant menus have been developed and tested by food scientists.

The Department of Food Science and Toxicology offers the B.S.F.S., M.S. and Ph.D. degrees in food science. The undergraduate program is approved by the Institute of Food Technologists, the primary professional organization for food scientists. Undergraduates complete interdisciplinary requirements, supporting science and mathematics classes during their first two years of study. Most of these courses can be completed at community colleges prior to transferring to UI. Courses taken in the last two years of the program are discipline specific and include food microbiology, food chemistry, food processing, and food engineering. Faculty from both UI and Washington State University teach courses in the food science program. Some classes are taught on the UI campus and some on the WSU campus, allowing students access to facilities and faculty expertise from both institutions. Undergraduates are encouraged to work on research problems with faculty and participate in internships in the food industry.

Areas of research emphasis include food chemistry, biotechnology, food safety, food processing/engineering, and food and environmental toxicology. Departmental research programs include studies of the genetic/metabolic engineering of microorganisms, such as lactic acid bacteria, for bio-preservation of food products and conversion of biomasses (i.e. potato processing waste to valuable fuels and chemicals); development of new processes and technologies to improve the microbial safety of foods; investigations into mechanism(s) of action of food borne anti-toxins that may improve human health or reduce chronic human disease; investigation of soft wheat and potato quality, functionality, and end-use potential; assessment of starch behavior and function in food processing operations; investigation of the physicochemical and functional properties of dairy and meat protein ingredients; utilization of novel protein and starch ingredients in food systems; Fickian and non-Fickian transport in porous biopolymeric systems; stress-crack prediction in food materials and controlled release of drugs and flavors; and examination of natural and engineered processes in the characterization, fate, transport, and control of environmental and food system contaminants. This combination of basic and applied research provides a stimulating environment for graduate and undergraduate students. Faculty in the department supervise graduate students working toward M.S. and Ph.D. degrees in either food science or the multidisciplinary program in environmental science (refer to the Program in Environmental Science for more information on requirements for the M.S. and Ph.D. in environmental science). In addition to admission requirements determined by the College of Graduate Studies, admission to the graduate program in food science (requires (1) a minimum GPA of 2.80; (2) GRE scores (no specified minimum score); (3) a letter outlining research interests and career goals of the applicant; and (4) three letters of recommendation, with at least two from individuals in academia. Students for whom English is a foreign language should have a TOEFL score of at least 550. Prior training should include courses in calculus, organic chemistry, microbiology, biochemistry and food science. Acceptance of students deficient in some of these areas will be considered on an individual basis. Prospective graduate students are encouraged to contact the department or individual faculty members to learn more about specific research opportunities.

Courses
See Part 6 for courses in Food Science and Toxicology (FST).

Undergraduate Curricular Requirements

FOOD SCIENCE (B.S.F.S.)

Required course work includes the university requirements (see regulation J-3) and:

ASM 240 Computer Applications in Biological Systems (3 cr)
Biol 115 Cells and the Evolution of Life (4 cr)
Chem 111 Principles of Chemistry I (4 cr)
Chem 112 Principles of Chemistry II (5 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
Engl 317 Technical Writing (3 cr)
FCS 205 Concepts in Human Nutrition (3 cr)
FST 170 Food: Science and Practice (3 cr)
FST 220 Food Safety and Quality (3 cr)
FST 303 Food Processing (3 cr)
Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Food Science and Toxicology. See the College of Graduate Studies section of Part 4 for general requirements applicable to degree programs.

Master of Science. Thesis and non-thesis options are offered. (A) Thesis option: University M.S. degree requirements apply along with specific department requirements for the M.S. in food science as described on the department webpage (http://www.ag.uidaho.edu/fst). The degree will prepare students for a variety of careers in the food and related industries, as well as for further academic studies. Each student will design a study plan in consultation with an advisor and thesis committee and present a thesis proposal to their committee. The degree program emphasizes research and a thesis is required for graduation. An oral examination covering graduate course work and thesis research is required during the student’s final semester. (B) Non-thesis option: The non-thesis degree is designed to provide students with a broad perspective in food science. The student should have career goals that do not include a research emphasis. University M.S. degree requirement apply plus additional requirements described on the department webpage (http://www.ag.uidaho.edu/fst). The non-thesis option requires a minimum of 33 credits, the appointment of a graduate committee and a final oral examination. Along with specific course requirements, the student is required to complete a substantial project, paper or presentation to demonstrate ability for independent work and critical thinking. Students are not eligible for the non-thesis option if they have been supported on a graduate assistantship.

Doctor of Philosophy. University Ph.D requirements apply, along with specific departmental requirements described on the department webpage (http://www.ag.uidaho.edu/fst) for a Ph.D. in food science. Admission to the doctoral program is based on compatibility of the student’s research interests with those of the major professor, on availability of research support, and the student’s academic record and potential. An oral preliminary exam and written dissertation proposal are required prior to admission to final candidacy for the degree. All candidates prepare a dissertation based on original research and laboratory research and defend it as part of the final oral exam. Publication of data from the dissertation in a peer-reviewed scientific journal is expected. Participation in research seminars and in department teaching programs are designed to prepare students for professional opportunities.

Department of Foreign Languages and Literatures

James R. Reece, Dept. Chair (302 Admin. Bldg. 63844-3174; phone 208/885-6179; fax 208/885-5221; forlang@uidaho.edu). Faculty: Irina A. Kappler-Crookston (Spanish), Michael W. Moody (Spanish), Sarah M. Nelson (French), Louis A. Perraud (Classics), Anne Perriguy (French), James R. Reece (German), Marjana Tudor (Spanish), Salazar (Spanish), Gerd Steckel (German), Dennis D. West (Spanish), Joan M. West (French).

The study of a foreign language and literature is a way of expanding one’s horizons while developing specific linguistic skills that will enhance career, academic, and travel opportunities. One of the many benefits derived from foreign-language study is the ability to transcend linguistic and cultural parochialism. To understand the uniqueness of one’s own language and civilization, knowledge of another culture is essential. Language study is the key that unlocks the mysteries surrounding a foreign people. Through language, one is able to explore their literature, art, history, and philosophy--in short, their way of life. In preparing to meet the challenges of a rapidly changing and interdependent world, foreign language expertise plays an increasingly important role. In many areas (business, education, communications, social work, technical and engineering positions, science, law, medicine, etc.), knowledge of a second language is not only desirable but necessary.

The Department of Foreign Languages and Literatures offers a Bachelor of Arts degree in French Languages with major options in three modern languages (Spanish, French, and German) as well as in classical studies and Latin. The department also offers elementary and intermediate level course work in Japanese. In addition, a cooperative course agreement with Washington State University in nearby Pullman makes it possible for students to complete basic course work in Chinese and Russian.

The department's business and computer science options offer students the opportunity to combine the advanced study of a foreign language with pre-professional course work in these areas. Similarly, the international studies major allows students to combine advanced foreign language study with a specific issue and area study focus.

Language instruction at UI is proficiency-oriented in approach and encourages active student involvement from the outset. Language classes are small enough to allow for instructor-student interaction and to ensure that each student receives individual attention. Classroom instruction is supported by a fully equipped language learning laboratory with facilities for audiocassette, and videocassette instruction, as well as international television programming, and computer assisted learning software.

The department actively encourages its students to pursue opportunities to work and/or study in foreign countries as part of their study abroad. The department's faculty, advisors and the staff of the UI International Programs Office will gladly assist students in planning a semester's or year's study abroad.

If a student has already studied a foreign language in high school, he or she may be eligible to receive vertically-related course credits simply by completing a more advanced course at UI.

The department offers graduate work in French, German, and Spanish leading to the M.A. and to these degrees. The purpose of these graduate programs in language, literatures, and cultures is to offer advanced scholarly preparation for careers in teaching and other fields for which a high level of competence in these disciplines is required.
Applications holding or about to receive a B.A. in the language of proposed specialization, or equivalent linguistic proficiency and a B.A. in another field, or the equivalent, may be recommended for admission to the program with the majority concurrence of the language section of specialization.

The candidate will demonstrate proficiency in the second foreign language equivalent to that acquired in passing a fourth-semester level course with a grade of C or better. This requirement is to be completed as early as possible in the student’s program if it is not already fulfilled at the time of admission to the program.

For further information, please consult the department chair (208/885-6179).

Courses
See Part 6 for courses in English (FLEN), Chinese (Chin), French (Fren), German (Germ), Ancient Greek (Grek), Japanese (Japn), Latin (Latn), Nez Perce (NezP), Russian (Russ), Scandinavian (Scan), Spanish (Span), and General Courses (FL).

Undergraduate Curricular Requirements
A maximum of 15 transfer credits and/or credits earned through study abroad may be applied toward the upper-division requirements for the B.A. degree in Foreign Language French, German, Latin, and Classical Studies options. A maximum of 18 such credits may be applied toward the upper-division requirements for the B.A. degree in Foreign Language Spanish option.

Students who receive a C or D in their first upper-division language class are required to pass an oral and written proficiency exam to meet minimum departmental proficiency standards before being allowed to register in other upper-division language classes.

A student must receive a C or better in an upper-division course in the appropriate target language to count towards the major.

Before going on a study abroad program, students must have the approval of their major advisor to ensure that their proposed program meets with departmental approval. Upon returning to UI, the Department of Foreign Languages and Literatures will evaluate the students’ oral and written proficiency and determine which classes studied abroad may count towards the major.

FOREIGN LANGUAGE (B.A.)
Required course work includes the university requirements (see regulation J-3), the general requirements for the B.A. degree, and:
8-9 FLEN credits, of which a minimum of 5-6 FLEN credits is outside of one's language option (8-9 cr)

A. Business Option
Designed to provide the student majoring in foreign languages with a liberal arts background and a component of business courses that will form a good beginning for entering a program leading to the degree of Master of Business Administration.

Approved upper-division foreign language courses (including one FL business course or approved alternative) (21 cr)

ACCT 201-202 Intro to Financial Accounting & Intro to Managerial Accounting (6 cr)

BLaw 265 Legal Environment of Business (3 cr)

Either the College of Business and Economics Integrated Core (Bus 340-345)* or the following (15 or 18 cr)

Bus 301 Financial Management (3cr)
Bus 311 Introduction to Management (3cr)
Bus 321 Marketing (3cr)
Bus 350 Management Information Systems or Bus 351 Introduction to Electronic Commerce (3cr)

Bus 482 International Marketing or Econ 446 International Economics or Econ 447

Economics of Developing Countries (3 cr)

Econ 272 Foundations of Econ Analysis or 201.202 Prin of Economics (4-6 cr)

FLEN 307 The European Union (3 cr)

Stat 251 Statistical Methods or 271 Statistical Inference & Decision Analysis* (3-4 cr)

*Students completing Bus 340-345 must take Stat 271 and, therefore, either Math 160 or 170

B. Classical Studies Option
FLEN 211 Classical Mythology (Gods) (2 cr)
FLEN 212 Classical Mythology (Heroes) (2 cr)
FLEN 243 English Word Origins (2 cr)
FLEN 363-364 Literature of Ancient Greece & Rome (6 cr)
FLEN 441 Ancient Greek Civilization (3 cr)
FLEN 442 Civilization of Ancient Rome (3 cr)

Greek 341-342 Elementary Greek (or equivalent) (8 cr)

Latin 101-102 Elem Latin 1-2 (or equiv) (8 cr)

Additional Latin and/or Greek courses numbered above Latin 202 and Greek 342 (may include up to 3 or adv lab courses in each language--Latin 369;Greek 349 other than basic skills) (18 cr)

Related fields or minor as approved by major adviser

C. Computer Science Option
Designed to provide a student majoring in foreign languages with a liberal arts background and a component of computer science courses to prepare for admission to either the M.A.T. program in foreign languages or the M.S. program in computer science. This type of curriculum, involving competence in a foreign language as well as mathematical

curriculum, involving competence in a foreign language as well as mathematical maturity, skill in the use of at least one programming language, and a basic knowledge of computer hardware, should also prove to be a fine background for developing interesting careers and/or graduate study in various fields, i.e. library science, international business, communications media, instructional media, and education.

CS 112 Introduction to Problem Solving & Programming (3 cr)
CS 121 Computer Science II (3 cr)
FLEN 243 English Word Origins (2 cr)

Math 170, 175 Analytic Geometry & Calculus (8 cr)

Math 176 Discrete Mathematics (3 cr)

Math 330 Linear Algebra (3 cr)

Stat 301 Probability & Statistics (3 cr)

Upper-division Computer Science course (3 cr)

Approved upper-division foreign language courses in French, German, or Spanish (21 cr) or upper-division Latin and/or Greek courses (20 cr) (20-21 cr)

D. French Option
Fren 101-102 Elementary French I-II or equivalent (8 cr)
Fren 201-202 Intermediate French I-II or equivalent (8 cr)
Fren 407 Topics in French Literature or Fren 408 Topics in French Culture and Institutions (3 cr)

300-level French courses (20 cr)

FLEN 313 Modern French Language in Translation or FLEN 315 French Cinema

(minimum) (3 cr)

Additional electives in upper division French or related fields approved by the chair (9 cr)

A second foreign language (elem & interm or equivalent), waived for students with a double major (FL plus another major) (16 cr)

E. German Option
FLEN 323 or 324 German Literature in Translation (3 cr)

Germ 101-102 Elementary German I-II (or equivalent) (8 cr)

Germ 201-202 Intermediate German I-II (or equivalent) (8 cr)

Upper-division German courses (including at least one 400-level course and both Germ 301 and Germ 302) (21 cr)

A second foreign language (elem & interm or equivalent), waived for students with a double major (FL plus another major) (16 cr)

Related fields or minor as approved by major adviser (12 cr)

F. Latin Option
FLEN 243 English Word Origins (2 cr)
FLEN 364 Literature of Rome (3 cr)

FLEN 442 Civilization of Ancient Rome (3 cr)

Latin 101-102 Elementary Latin I-II (or equivalent) (8 cr)

Upper-division courses in Latin (20 cr)

Related fields (as approved by major adviser) (12 cr)

A second foreign language (elem & interm or equivalent), waived for students with a double major (FL plus another major) (16 cr)

G. Spanish Option

Span 101-102 Elementary Spanish I-II (or equivalent) (8 cr)

Span 201-202 Intermediate Spanish I-II (or equivalent) (8 cr)

Span 301 Advanced Grammar (3 cr)

Span 302 Advanced Composition (3 cr)

Span 305 Culture & Institutions of Spain (3 cr)

Span 306 Culture & Institutions of Latin America (3 cr)

Upper-division courses in Spanish language (9 credits must be 400 level) (12 cr)

Related fields (as approved by major adviser) (6 cr)

A second foreign language (elem & interm or equivalent), waived for students with a double major (FL plus another major) (16 cr)

A maximum of 3 credits in approved FLEN courses may be counted toward a major in Spanish

Academic Minor Requirements
A maximum of 6 credits earned through study abroad may be applied toward the upper-division course requirements for a minor in French, German, Spanish, Latin, and Greek.

A student must receive a C or better for an upper-division course in the appropriate target language to count towards the minor.

CLASSICAL STUDIES MINOR
FLEN 211 Classical Mythology (Gods) (2 cr)
FLEN 212 Classical Mythology (Heroes) (2 cr)
FLEN 243 English Word Origins (2 cr)

And one of the following emphasis areas:

Language Emphasis

Grek 341-342 Elementary Greek (8 cr)

Latin 101-102 Elementary Latin I-II (8 cr)

Courses chosen from the following (3 cr)

Upper-division Latin or Greek

FLEN 363 Literature of Ancient Greece (3 cr)

FLEN 364 Literature of Rome (3 cr)

Ancient World Emphasis

FLEN 363 Literature of Ancient Greece (3 cr)

FLEN 364 Literature of Rome (3 cr)

FLEN 441 Ancient Greek Civilization (3 cr)
FRENCH MINOR
Fren 101-102 Elementary French I-II (8 cr)
Fren 201-202 Intermediate French I-II (8 cr)
Fren 301 Adv French Grammar or Fren 302 Adv French Writing Skills (3 cr)
Upper-div courses in French (not including lab-based and lit in translation courses) (6 cr)

GERMAN MINOR
Germ 101-102 Elementary German I-II (8 cr)
Germ 201-202 Intermediate Germ I-II (8 cr)
Germ 301 Advanced German Grammar or Germ 302 Advanced German Speaking and Writing (3 cr)
Upper-div courses in German (not including lab-based and lit in translation courses) (6 cr)

GREEK MINOR
FLEN 211 and/or 212 Classical Mythology (2-4 cr)
FLEN 363 Literature of Ancient Greece (3 cr)
Grek 341-342 Elementary Greek (8 cr)
Grek 349 Advanced Greek lab (other than basic skills) (1-3 cr)
Advanced Greek readings (400-level) (6-8 cr)
Courses to total 25 credits for the minor chosen from the following:
Additional upper-division Greek courses
FLEN 243 English Word Origins (2 cr)
FLEN 364 Literature of Rome (3 cr)
FLEN 441 Ancient Greek Civilization (3 cr)
Phil 320 History of Ancient and Medieval Philosophy (3 cr)

LATIN MINOR
FLEN 243 English Word Origins (2 cr)
FLEN 364 Literature of Ancient Rome (3 cr)
Latin 101-102 Elementary Latin (8 cr)
Latin 369 Advanced Latin Language Lab (1-3 cr)
Advanced Latin readings (300- or 400-level) (6 cr)
Courses to total 25 credits for the minor chosen from the following:
Additional Latin reading courses at 300- or 400-level (especially recommended for prospective teachers of Latin)
FLEN 211 Classical Mythology (Gods) (2 cr)
FLEN 212 Classical Mythology (Heroes) (2 cr)
FLEN 363 Literature of Ancient Greece (3 cr)
FLEN 442 Civilization of Ancient Rome (3 cr)

SPANISH MINOR
Span 101-102 Elementary Spanish I-ll (8 cr)
Span 201-202 Intermediate Spanish I-II (8 cr)
Span 301 Advanced Grammar or 302 Advanced Composition (3 cr)
Upper-div courses in Spanish (not including lab-based and lit in translation courses) (6 cr)

Graduate Degree Programs
Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Foreign Languages and Literatures. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Arts in Teaching (Majors in French, German, or Spanish). General M.A.T. requirements apply.

Department of Forest Products
Thomas M. Gorman, Dept. Head (1024 CNR Bldg. 83444-1132; phone 208/885-9663; fprod@uidaho.edu). Faculty: Alton G. Campbell, Thomas M. Gorman, Han-Sup Han, Leonard R. Johnson, Harry W. Lee, Armando G. McDonald, Steven R. Shook, Francis G. Wagner. Adjunct Faculty: Louis L. Edwards, John S. Morris, Jay O’Laughlin. Affiliate Faculty: Donald A. Bender, Keith A. Blatner, Ben S. Bryant, Robert L. Geimer, Manuel R. Jelvez, Michael P. Wilcott.

Wood is a constant part of the lives of the people in this country and throughout the world. Nearly 80 percent of the material going into the construction of a home in the U.S. is wood-based. It is also in the paper we use as newspapers, money, books, and packaging. In the U.S., every man, woman, and child consumes over 2,000 pounds of wood per year in the form of various products. The forest products industries rely on a renewable resource for energy, forest road layout and construction, management and marketing in the forest products industry, value added manufacturing opportunities, and wood construction and design.

Graduate students’ research is closely integrated with that of the department’s faculty. Emphasis areas currently include physical and mechanical properties of wood, wood chemistry, wood drying and preservation, technology of adhesives and particleboard, modeling and analysis of timber harvesting systems and equipment, recovery and use of wood energy, forest road layout and construction, management and marketing in the forest products industry, value added manufacturing opportunities, and wood construction and design.

Breadth and diversity of opportunities for graduate students is enhanced by grants, contracts, and the department’s cooperative relationships with government agencies, large forest industries, and nearby Washington State University.

Preferred preparation for graduate study in forest products is an undergraduate degree in forest products, forestry, forest business management, or civil, mining, or forest engineering, or a related field. Students with other backgrounds may be admitted but will usually be required to complete a number of courses to remove the deficiencies in their preparation.

Courses
See Part 6 for courses in Forest Products (Fopro).

Undergraduate Curricular Requirements
FOREST PRODUCTS (B.S.Form Prod.)

Required course work includes the university requirements (see regulation J-3) and one of the following options.

A. Wood Construction and Design Option

This option is designed for students interested in residential and light commercial construction or design management positions that emphasize effective use of wood as a structural material. Students may focus in one of two emphasis areas. In the architectural/technology emphasis area, the student will develop design skills in addition to a background in business and wood technology for positions in non-licensed design, specification writing, design-build construction, and architectural and construction liaison. Students selecting the wood construction business emphasis area will be prepared for careers that include supervisory and managerial positions in residential and light commercial building and building materials, sales and marketing of wood products, estimating, banking, insurance, and government agencies that deal with housing. The wood construction and design option can also provide an educational foundation for those wishing to become entrepreneurs in the area of wood construction.

Act 202 Introduction to Managerial Accounting (3 cr)
Arch 154 Introduction to Architectural Graphics (2 cr)
Arch 253 Architectural Design I (3 cr)
Arch 254 Architectural Design II (3 cr)
Arch 266 Materials and Methods (3 cr)
Arch 366 Building Technology I (3 cr)
Arch 463-464 Environmental Control Systems (8 cr)
Arch 575 Professional Practice (3 cr)
Blaw 265 Legal Environment of Business (3 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
Econ 202 Principles of Economics (3 cr)
Part Five

Department of Forest Resources

This program provides background in development and design of efficient harvesting operation plans and timber sales, protection of environmental values from forest operations, supervision of loggers crews, design of forest layout and forest health restoration projects. Specific career areas include forest operations forester, woodland manager, wood appraisal and procurement, and forest engineer. Other positions can be found in the areas of equipment development and marketing and as technical representatives for equipment companies or as independent logging contractors. Beyond the courses required in the basics sciences and forest operations, students may choose course work that will also emphasize natural resource management or technology and engineering.

Chem 101 Introduction to Chemistry I (4 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
CSS/Phy/For/Phy/Rhe/For/WLF 302 Wildland Field Ecology (2 cr)
CSS/Phy/For/Phy/Rhe/WLF 470 Interdisciplinary Natural Resource Planning (3 cr)
Econ 202 Principles of Economics (3 cr)
Eng 102 College Writing and Rhetoric (3 cr)
Eng 313 Business Writing or Eng 317 Technical Writing (3 cr)
For/WLF 221 Ecology (3 cr)
For/CSS 235 Society and Natural Resources (3 cr)
For/274 Forest Measurement Techniques (1 cr)
For/394 Quantitative Resource Analysis (3 cr)
For/474 Forest Inventory (3 cr)
For/490 Forest Products Issues and Industries (1 cr)
For/WLF 230 Forest Harvesting Field Measurements (2 cr)
For/WLF 277 Wood Structure and Identification (3 cr)
For/WLF 336 Introduction to the Pulp and Paper Industry (1 cr)
For/WLF 337 Physical and Mechanical Properties of Wood (3 cr)
For/WLF 430 Forest Engineering and Harvesting (3 cr)
For/WLF 431 Production and Cost Control in Forest Industry (3 cr)
For/WLF 432 Low Volume Forest Roads (3 cr)
For/WLF 433 Forest Tractor System Analysis (3 cr)
For/WLF 434 Cable System Analysis (3 cr)
For/WLF 444 Lumber Manufacturing (3 cr)
For/WLF 450 Wood Deterioration and Preservation (2 cr)
NR 101 Exploring Natural Resources (1 cr)
Phys 211 Engineering Physics I (4 cr)
Soil 205 The Soil Ecosystem (3 cr)
Stat 251 Statistical Methods (3 cr)

And one of the following emphasis areas:

Technical Emphasis

- BAE 351 Hydrology (3 cr)
- For 375 Airphoto Interpretation and Mapping (3 cr)
- Engr 210 Engineering Statics (3 cr)
- Engr 220 Engineering Dynamics (3 cr)
- Engr 350 Engineering Mechanics of Materials (3 cr)
- Math 170 Analytic Geometry and Calculus I (4 cr)
- Math 175 Analytic Geometry and Calculus II (4 cr)
- Math 310 Ordinary Differential Equations (3 cr)

Resource Emphasis

- Biol 115 Cells and the Evolution of Life (4 cr)
- For 320 Hydrology (3 cr)
- For 375 Airphoto Interpretation and Mapping (3 cr)
- For 424 Forest Dynamics and Management (4 cr)
- For 462 Watershed Management (2 cr)
- For 466 Diseases and Insects of Woody Plants (3 cr)
- Math 160 Survey of Calculus or Math 170 Analytic Geom and Calculus I (4 cr)

Electives to total 128 cr for the degree

C. Forest Products Business Management Option

This program is designed for students who plan careers in the staff or line management of firms in the forest products industry. Graduates are prepared for positions in production management, marketing and distribution of wood products, and in the technical service and support areas of the forest products industry. Students focus on the production, distribution, and marketing of wood products from a combined technical and managerial perspective. The degree also provides a foundation for pursuing a graduate degree in business, for example, the M.B.A. or M.S.

Acct 201 Introduction to Financial Accounting and Acct 202 Introduction to Managerial Accounting, or Acct 205 Fundamentals of Accounting (4-6 cr)
Biol 102 Biology and Society (4 cr)
Bus 265 Legal Environment of Business (3 cr)
Bus 301 Financial Management (3 cr)
Bus 311 Introduction to Management (3 cr)
Bus 321 Marketing (3 cr)
Bus 370 Production/Operations Management (3 cr)
Bus 424 Pricing Strategy and Tactics (3 cr)
Bus/Stat 456 Quality Management (3 cr)
Chem 101 Introduction to Chemistry I (4 cr)
Chem 275 Carbon Compounds or Chem 277 Organic Chemistry I (3 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
Econ 202 Principles of Economics (3 cr)
Engl 102 College Writing and Rhetoric (3 cr)
Engl 313 Business Writing or Eng 317 Technical Writing (3 cr)
For/Phy/Rhe/WLF 221 Ecology (3 cr)
For/CSS 235 Society and Natural Resources (3 cr)
For/270 Principles of Forest Ecosystem Management (2 cr)
For/100 Forest Products Issues and Industries (1 cr)
For/P 277 Wood Structure and Identification (3 cr)
For/P 337 Physical and Mechanical Properties of Wood (3 cr)
For/P 425 Forest Products Marketing (3 cr)
For/P 430 Forest Engineering and Harvesting (3 cr)
For/P 431 Production and Cost Control in Forest Industry (3 cr)
For/P 436 Wood Composites (3 cr)
For/P 438 Wood Chemistry and Adhesives (3 cr)
For/P 444 Lumber Manufacturing (3 cr)
For/P 450 Wood Deterioration and Preservation (2 cr)
For/P 477 Forest Products Business Management (3 cr)
For/P 491 Biomaterial Product and Process Development Lab (1 cr)
For/P 498 Renewable Natural Resources Internship (1 cr)
Math 160 Survey of Calculus (4 cr)
NR 101 Exploring Natural Resources (1 cr)
Phys 111 General Physics I (3 cr)
Stat 251 Statistical Methods (3 cr)

Electives to total 128 cr for the degree

Academic Minor Requirements

FOREST PRODUCTS MINOR

For students in business, engineering, forestry, or vocational education who wish to gain specific background and knowledge related to the forest products industry.

For/P 230 Forest Harvesting Field Measurements (2 cr)
For/P 277 Wood Structure and Identification (3 cr)
For/P 430 Forest Engineering and Harvesting (3 cr)
For/P 431 Production and Cost Control in Forest Industry (3 cr)
For/P 432 Low Volume Forest Roads (3 cr)
For/P 433 Forest Tractor System Analysis (3 cr)
For/P 434 Cable System Analysis (3 cr)
For/P 444 Lumber Manufacturing (3 cr)
For/P 450 Wood Deterioration and Preservation (2 cr)
NR 101 Exploring Natural Resources (1 cr)
Phys 211 Engineering Physics I (4 cr)
Soil 205 The Soil Ecosystem (3 cr)
Stat 251 Statistical Methods (3 cr)

Electives to total 128 cr for the degree

TIMBER HARVESTING MINOR

For/P 230 Forest Harvesting Field Measurements (2 cr)
For/P 277 Wood Structure and Identification (3 cr)
For/P 430 Forest Engineering and Harvesting (3 cr)
For/P 431 Production and Cost Control in Forest Industry (3 cr)
For/P 432 Low Volume Forest Roads (3 cr)
For/P 433 Forest Tractor System Analysis (3 cr)
For/P 434 Cable System Analysis (3 cr)
For/P 439 Operational Analysis in Timber Harvesting (3 cr)
For/P 444 Lumber Manufacturing (3 cr)

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Forest Products. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Science. Programs are offered with specialization in the areas mentioned above.

Doctor of Philosophy. Through the Department of Forest Products, students seeking the Ph.D. degree in natural resources may specialize in the areas mentioned above. See the NR section in Part 3 for details.

Department of Forest Resources

The Department of Forest Resources offers programs leading to the degrees of: Bachelor of Science in Forest Resources; Master of Science (thesis and non-thesis options); and Doctor of Philosophy with a major in natural resources (administered at the college level for all departments).

Bachelor of Science in Forest Resources. Forestry is ‘managing and using for human benefit the forest lands and natural resources that occur on and in association with forest lands’ (U.S. Department of Agriculture, Forest Service). The Bachelor of Science is designed for students who plan careers in the staff or line management of firms in the forest products industry. Graduates are prepared for positions in production management, marketing and distribution of wood products, and in the technical service and support areas of the forest products industry. Students focus on the production, distribution, and marketing of wood products from a combined technical and managerial perspective. The degree also provides a foundation for pursuing a graduate degree in business, for example, the M.B.A. or M.S.
lands.” These benefits may include values, services, or products such as stable human communities, aesthetic, recreation opportunities, clean water and air, soil protection, forage, fish and wildlife, medicinal and ornamental items, wood products, and many others.

One-third of the nation’s land area and 40 percent of Idaho’s land area are forested. It is imperative that the managers of these lands and of the valuable resources thereon be properly prepared to provide this sustainable basis for the many values, services, and goods desired and demanded by the people. With an increasingly restricted forest land base and an increasing demand for forest benefits, the practice of forestry is rapidly becoming more complex. Present-day forest management requires professionals highly trained in an interdisciplinary approach that adapts to scientific developments and sociological and economic constraints while sustaining healthy forest ecosystems.

The instructional goal of the Department of Forest Resources is to provide both undergraduate and graduate students of all nationalities with a high-quality general education and the professional knowledge of significant concepts, multiple use principles, social factors, and technical details of forest resources biology, measurements, management, and social science to effectively manage forest resources.

To attain this goal, the departmental faculty and administration will: emphasize the dynamic nature of the sciences and technologies by teaching new concepts and methods and revising the curriculum as necessary; stress understanding rather than rote learning of facts and principles; provide challenging programs to develop individual talents and interests; maintain class sizes in laboratory and field-oriented courses at a level commensurate with instructional effectiveness; maintain student-faculty ratios that allow for more personalized instruction and advising; expand and improve instructional facilities; develop more efficient and effective instructional techniques; expand field-oriented programs, especially at the Experimental Forest and the Forest Nursery, at Moscow and other field stations; encourage and assist students in finding seasonal professional employment and opportunities for involvement in student clubs and professional organizations; and encourage development and research programs for faculty to increase their abilities to pass their knowledge on to others.

The forest resources curriculum not only provides students with an interdisciplinary education, but also the opportunity to emphasize areas of individual interest, such as ecology, forest ecosystem processes, forest social sciences, computer applications in forestry, aerial photo interpretation (remote sensing), geographic information systems, silviculture, forest genetics and tree improvement, protection against insects, disease, and fire, fire nursery management, and other specialties by selective use of elective credits.

The educational program, leading to the Bachelor of Science in Forest Resources, is accredited by the Society of American Foresters (SAF). SAF is the specialized accrediting body approved by the Commission on Recognition of Post-secondary Accreditation as the accrediting agency for forestry in the United States.

Graduate Programs. There are over 20 million acres of forested land in Idaho with varied ownership and practices. This resource provides excellent study opportunities for graduate students in forest resources. Graduate programs are offered in most areas of specialization of forest resources, including administration/political science, community/social science, computer applications in forest resources, silviculture, forest genetics and tree improvement, protection against insects, disease, and fire, fire. Further information can be obtained from the department head (208/885-7952).

Courses
See Part 6 for courses in Forest Resources (For).

Undergraduate Curricular Requirements

FOREST RESOURCES (B.S.For.Res.)

Students pursuing a B.S. degree in forest resources must receive a grade of C or better in the following indicator courses to register for upper-division courses in forest resources and to graduate with a B.S.For.Res.: Math 143, Stat 251, For 221, and For 274. Students must also have a minimum cumulative grade-point average of 2.00 in forest resource (For) courses to qualify for the B.S. degree in forest resources.

Required course work includes the university requirements (see regulation J-3) and:

Biol 115 Cells and the Evolution of Life (4 cr)
Biol 116 Organisms and Environments (4 cr)
Chem 101 Introduction to Chem I or Chem 111 Principles of Chem I (4 cr)
CSS/Stat/For/PlSc/Agr 470 Interdisciplinary Natural Resource Planning (3 cr)
Econ 202 Principles of Economics (3 cr)
Engl 317 Technical Writing or Engl 313 Business Writing (3 cr)
For 102 Introduction to Forest Management (1 cr)
For/PlSc/WLF 221 Ecology (3 cr)
For/CSS 235 Society and Natural Resources (3 cr)
For 274 Forest Measurement and Inventory (3 cr)
For 320 Dendrology (3 cr)
For 330 Forest Ecosystem Processes (3 cr)
For 375 Airphoto Interpretation and Mapping (3 cr)
For 383 Economics for Natural Resource Managers (3 cr)
For 424 Forest Dynamics and Management (4 cr)
For 427 Prescribed Burning Lab (2 cr)
For 429 Landscape Ecology (2 cr)
For 472 Remote Sensing of the Environment (3-4 cr)
For 497 Senior Thesis (2-4 cr)
ForP 430 Forest Engineering and Harvesting (3 cr)
ForP 431 Production and Cost Control in Forest Industry (3 cr)
Geo 301 Meteorology (3 cr)
Geo 385 GIS Primer (3 cr)
Geo 111 Physical Geology for Science Majors (4 cr)
Math 170 Survey of Calculus or Math 171 Analytic Geometry and Calculus I (4 cr)
NR 402 GIS Application in Natural Resources (1 cr)
PolS 364 Politics of the Environment (3 cr)
Rnge 440 Wildland Restoration Ecology (3 cr)
Soil 446 Soil Fertility (1-3 cr)
Soil 454 Soil Development and Classification (3 cr)
Stat 401 Statistical Analysis (3 cr)
WLF 314 Wildlife Ecology I (3 cr)
WLF 316 Wildlife Ecology II (3 cr)
WLF 440 Conservation Biology (3 cr)
WLF 441 Wildlife Management (3 cr)

At least 2 of the 16 cr from the following:

Biol 477 Law Ethics, and the Environment (3 cr)
Biol 213 Principles of Biological Structure and Function (4 cr)
Biol 421 Advanced Evolution/Population Dynamics (3 cr)
CSS 486 Public Involvement in Natural Resource Management (3 cr)
CSS 490 Wilderness and Protected Area Management (3 cr)
CSS 494 Public Relations for Natural Resources Professionals (3 cr)
Fish 314 Fish Ecology (3 cr)
Fish 415 Limnology (4 cr)
For 426 Wildland Fire Management and Ecology (3 cr)
For 427 Prescribed Burning Lab (2 cr)
For 429 Landscape Ecology (2 cr)
For 472 Remote Sensing of the Environment (3-4 cr)
For 497 Senior Thesis (2-4 cr)
ForP 430 Forest Engineering and Harvesting (3 cr)
ForP 431 Production and Cost Control in Forest Industry (3 cr)
Geo 301 Meteorology (3 cr)
Geo 385 GIS Primer (3 cr)
Geo 111 Physical Geology for Science Majors (4 cr)
Math 170 Survey of Calculus or Math 171 Analytic Geometry and Calculus I (4 cr)
NR 402 GIS Application in Natural Resources (1 cr)
PolS 364 Politics of the Environment (3 cr)
Rnge 440 Wildland Restoration Ecology (3 cr)
Soil 446 Soil Fertility (1-3 cr)
Soil 454 Soil Development and Classification (3 cr)
Stat 401 Statistical Analysis (3 cr)
WLF 314 Wildlife Ecology I (3 cr)
WLF 316 Wildlife Ecology II (3 cr)
WLF 440 Conservation Biology (3 cr)

Academic Minor Requirements

ARBORICULTURE & URBAN FORESTRY MINOR

CSS 494 Natural Resources Communications (3 cr)
For 408 Urban Forestry (2 cr)
For 423 Forest Community Ecology (1 cr)
For 463 Hydrologic Measurement Techniques (1 cr)
Rnge 357 Rangeland and Riparian Habitat Assessment (3 cr)
Rnge 459 Rangeland Ecology (3 cr)

Electives to total 128 credits for the degree.

ECOLOGY AND CONSERVATION BIOLOGY (B.S.Ecol.Cons.Biol.)

See the section on “Natural Resources” in Part 5.

FIRE ECOLOGY AND MANAGEMENT MINOR

For/PlSc/WLF 221 Ecology (3 cr)
For 274 Forest Measurement and Inventory or Rnge 357 Rangeland and Riparian Habitat Assessment (3 cr)
For 426 Wildland Fire Management and Ecology (3 cr)
For 427 Prescribed Burning Laboratory (2 cr)
One or more of the following (2-3 cr):
CSS 490 Wilderness and Protected Area Management (3 cr)
For 330 Forest Ecosystem Processes (3 cr)
For 424 Forest Dynamics and Management (4 cr)
For 429 Landscape Ecology (2 cr)
For 476 Forestry Project Evaluation (3 cr)
For 484 Forest Policy and Administration (2 cr)
ForP 430 Forest Engineering and Harvesting (3 cr)
Rnge 354 Wildland Restoration Ecology (3 cr)
Rnge 357 Rangeland and Riparian Habitat Assessment (3 cr)
Rnge 459 Rangeland Ecology (3 cr)

One of the following courses (3 cr):
Geo 301 Meteorology (3 cr)
Geo 401 Climatology (3 cr)
Geog 475 Geographic Information Systems (3 cr)
NR 402 GIS Applications in Natural Resources (1 cr)
PART FIVE
Departments of Instruction

To complete this minor, students must complete a minimum of 18 credits from the list above.

FOREST RESOURCES MINOR
For/Roge/WLF 221 Ecology (3 cr)
For 235 Society and Natural Resources (3 cr)
For 270 Principles of Forest Ecosystem Management (2 cr)
For 320 Dendrology (3 cr)
For 484 Forest Policy and Administration (2 cr)
One of the following courses (3 cr):
For 375 Airphoto Interpretation and Mapping (3 cr)
For 383 Economics for Natural Resource Managers (3 cr)
For 474 Quantitative Resource Analysis (3 cr)
One of the following courses (2-3 cr):
For 330 Forest Ecosystem Processes (3 cr)
For 426 Wildland Fire Management and Ecology (3 cr)
For 462 Watershed Management (3 cr)
For 430 Forest Engineering and Harvesting (3 cr)
For 539 Remote Sensing in Agriculture (2 cr)
WLF 314 Wildlife Ecology I (3 cr)

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the College of Natural Resources.

Master of Science. Thesis and non-thesis options are offered. (A) Thesis option: General M.S. requirements apply. However, the thesis may be comprised of a manuscript(s) in a format acceptable for publication in a refereed journal, while otherwise fulfilling format requirements of the Graduate College. (B) Non-thesis option: General M.S. requirements apply. A written and/or oral examination that covers graduate course work must be taken during the final semester in residence. At least one professional paper is required and will be evaluated by the candidate’s supervisory committee.

Doctor of Philosophy. The Ph.D. degree is available with a major in natural resources. General Ph.D. requirements apply; see the NR section for details.

Graduate Studies Program

Joe Zeller, Director (112 Admin. Bldg.: 208/885-6426); Benjamin Evans, Academic Advising Services Coordinator (208/885-4662, bennie@uidaho.edu); Cyndi Faircloth, Academic Advising & Publications Coordinator (208/885-9832, cyndi@uidaho.edu). Graduate Coordinator: Richard A. Roby, Junior/Senior Advisor (208/885-6426); Reta Pikowicz, Registrar (208/885-2020, retpi@uidaho.edu).

The Graduate Studies program serves students in two ways: it is elected by many entering students who wish to examine a number of possible academic options before selecting a major in a traditional discipline, and elected by students who wish to graduate with the BGS degree, having developed a coherent program of study with the aid of their advisor. Students who have declared a major in General Studies, whether to explore academic options or graduate in this curriculum, are strongly encouraged to utilize programs and services offered by the Office of Career Services and the Counseling and Testing Center to assist them in identifying possible career paths and in understanding how their interests may impact on their choice of a departmental degree program at the UI. Students in the General Studies program may transfer to any departmental degree at any time if they satisfy the grade-point average and curricular requirements of those programs.

Admission to the Program

New students wishing to enroll in the General Studies program may indicate their choice on the application form for admission to the university. Students currently enrolled in one of the colleges of the university may transfer to the program by completing a change of curriculum form.

General Regulations

Students participating in General Studies while exploring their choice of majors are strongly advised to complete courses that meet requirements as described in Regulation J of the General Catalog. At the same time, these students are strongly advised to select elective courses that will give them exposure to various academic programs at the UI. Through satisfaction of requirements as described in Regulation J of the General Catalog, selection of elective courses offering a wide exposure to various UI programs, and utilization of career workshops, career exploration courses, and testing through the Counseling and Testing Center, these students can move efficiently toward a reasoned academic major and career decision. Within their first year of enrollment at the UI as a General Studies major, students are advised to take a career exploration course. Particular attention is paid to identifying critical prerequisite courses so that students are able to enter a major on track for graduation. Students may transfer from General Studies to a new major at any time, if they satisfy the prerequisite and grade-point requirements of that major. Students must have at least a 2.00 grade-point average to transfer into many of the university’s colleges. A student transferred from General Studies may take no more than 6 credits of lower-division course work in that college (except for Bus 362, Real Property Appraisal, and Bus 364, Insurance). Students graduating in General Studies may exceed the credit limit as long as they maintain a grade-point average of 2.0 or above.

Bachelor of General Studies Curriculum

The curriculum leading to the degree of Bachelor of General Studies is designed to provide maximum flexibility for undergraduates while planning their program of studies. Since the only specific subject requirements are the general university requirements, students can plan their programs to the best advantage of their particular educational objectives.

This means that students must bear the major responsibility for their choice of courses. Those who plan wisely have a good chance to obtain an excellent education. The key admonition is: plan your program carefully.

The major thrust of the B.G.S. degree program is nonspecialized education. Although a student could take his or her work in a limited number of departments, the intent of this program is to permit great latitude in the choice of subjects so that students may satisfy their particular objectives. No student may become a candidate for the B.G.S. degree who has already earned a baccalaureate degree or who is a candidate for another degree offered by the university.

Major. No major other than “general studies” will be certified on the student’s diploma or official transcript. Students who wish to have a designated major and who has been a student in the General Studies program, whether to explore academic options or graduate in this curriculum, must transfer to the major and graduate with a designated degree.

Minor. Students graduating with a Bachelor of General Studies may satisfy requirements for one or more minors. In these cases their transcript will reflect these minors.

Degree Requirements. In addition to the general university requirements for the baccalaureate degree (see regulation J-3), sufficient electives must be taken to total 128 credits. A minimum of 48 credits must be earned in courses numbered 300 and above. Not more than 40 credits in any one subject field may be counted in the 128 credits.

Suggestions to Students. Students are advised not to make a firm decision with respect to major selection in the freshman year. During the freshman year, students must consider whether to graduate with the B.G.S. degree before the freshman year is complete. In the sophomore year, students should consider following one of the curricula leading to a departmental baccalaureate degree, deviating from the departmental requirements only where it appears educationally advisable to do so.

It is very important that the student working toward the B.G.S. “look ahead” to see in which department or departments he or she wishes to accumulate the required 48 credits in upper-division courses (those numbered 300 and above). Many upper-division courses have prerequisites that must be completed during the early semesters of the student’s undergraduate career. If planning is delayed, it may be that some courses will be “unavailable” because the student has not taken the prerequisites.

Harley E. Johansen, Dept. Head (203 McClure Bldg. 83844-3021; phone 208/885-6426; harnie@uidaho.edu), Adjunct Faculty: Elena Aizen, Adjunct Instructor: William J. Elliot, Andrew T. Hudak, Piotr Jankowski, Michael D. Jennings, Scott E. Morris, Albert Rango, Dar A. Roberts, Hengchun Ye. Lecturer: David R. Carroll.

Geography explores the distribution and interaction of natural and human systems on global, regional, and local scales. Environmental issues involving natural resources, population, political, and economic systems are the subjects of geography, along with practical issues in planning and resource management. Selecting locations, or designing optimal development or delivery systems are geographic problems common to business and government around the world. Geographic training in geographic information systems (GIS), remote sensing, spatial analysis, and cartography, along with knowledge of patterns and processes inherent in natural and human social systems provides the background necessary to work in the expanding fields of GIS applications and scientific or applied geography.

To prepare students for many rewarding and important career opportunities, the Department of Geography, in the College of Science, offers the B.S. Geography with options in physical science and environment, regional analysis and development, cartographic, and geographic information systems (GIS).

Recent shifts in personnel have strengthened the department’s programs in GIS, climatology, remote sensing and economic geography.

The department has over 50 undergraduate and 30 graduate majors. Students benefit from close contact with their instructors and hands-on experience within their course work and through internships with industries and agencies involved in geographic and cartographic applications.

Graduate Programs. M.S., M.A.T., and Ph.D. degrees in geography are offered. Graduate geography programs provide training in research methods and applications of theory and spatial modeling to problems in regional development, cartography, and the physical environment. Students learn problem definition, research design, and data analysis using a variety of techniques including GIS, remote sensing, spatial analysis, and computer assisted cartography. Students without an undergraduate degree in geography or official transcript. Students who wish to have a designated major should pursue a Bachelor of General Studies.

No major other than “general studies” will be certified on the student’s diploma or official transcript. Students who wish to have a designated major should pursue a Bachelor of General Studies.

Certificate Program in GIS. A certificate program in geographic information systems is available in addition to our degree programs. Requirements for this program are listed in the website http://www.sci.uidaho.edu/gis-crt/.

Career Opportunities. Geography and GIS applications continue to be one of the fast-growing job markets world-wide. Most jobs today involve the use and adaptation of information systems in both the public and private sectors. Geographers also work in industry using their skills in research, locational analysis, site selection, mapping, and management of geographical information, with the aid of computers. Industrial jobs for geographers range from research, planning, and data management in primary resources to deciding where to locate a new supermarket or shopping mall.
Many jobs for geographers involve computer mapping or GIS. Cartographers from our program are employed in a variety of positions working with map design, graphics, and production cartography, international employment with government agencies and NGOs, are increasing opportunities for geographers with the area studies and global systems option. Geographers are also employed in the public and private sector for jobs, which involve monitoring of air and water quality, management of natural resources and other environmental, and land management issues. We have recently designed a program leading to GIS analyst positions, available under the B.S. Cartography. The department arranges student internships with industries and agencies to provide on-the-job training and maintains a close relationship with the UI Career Services Center to aid students in their search for employment.

Faculty members in the department will answer questions about specific programs and courses. Prospective majors in geography or cartography should contact the department office (phone 208/885-6216), or visit the department’s website, http://www.uidaho.edu/geography.

Courses
See Part 6 for courses in Geography (Geog).

Undergraduate Curricular Requirements

GEOGRAPHY (B.S.)

This program is offered through the College of Science. Required course work includes the university requirements (see regulation J-3) and:

- Geog 100 Physical Geography (4 cr)
- Geog 180 Geospatial Graphics (3 cr)
- Geog 200 World Regional Geography (3 cr)
- Geog 240 Economic Geography or Geog 165 Human Geography (3 cr)
- Geog 385 GIS Primer (3 cr)
- Geog 491 Field Techniques (3 cr)
- Stat 251 Statistical Methods (3 cr)

And completion of one of the following options:

A. Physical Science and Environment Option

This option emphasizes the study of processes that impact the physical environment of the earth, as well as the interactions between the physical and human environment. Students acquire a good foundation in earth and atmospheric sciences, as well as the use of contemporary geospatial techniques for mapping and monitoring the earth and atmosphere.

- BAE 351, Geog 320, or For 482 Hydrology or Watershed Management (3 cr)
- Chem 101 Intro to Chem or Chem 111 Principles of Chem I (4 cr)
- Engl 313 Business Writing or Engl 317 Technical Writing (3 cr)
- Geog 301 Meteorology (3 cr)
- Geog 380 Cartography and Graphic Communication (3 cr)
- Geog 401 Climatology (3 cr)
- Geog 444 Environmental Assessment (4 cr)
- Phys 100 Fundamentals of Physics or Phys 111 General Physics I (4 cr)
- Math 100 Survey of Calculus or Math 170 Analytic Geometry and Calculus I (4 cr)

12 credits from the following courses:
- CE 211 Engineering Measurements, or CE 218 Elementary Surveying (2-4 cr)
- For 357 Airphoto Interpretation and Mapping (3 cr)
- For 472 Remote Sensing and the Environment (3-4 cr)
- Geog 427 Spatial Decision Support Techniques (3 cr)
- Geog 470 Geographic Visualization (3 cr)
- Geog 475 Geographic Information Systems (3 cr)
- Geog 483 Remote Sensing/GIS Integration (3 cr)

6 credits from the following courses:
- Geog 315 Geomorphology (3 cr)
- Geol 101 Physical Geology (4 cr)
- Geol 309 Groundwater (3 cr)
- Geol 360 Geologic Hazards (3 cr)
- Geol 361 Geology and the Environment (3 cr)
- Soil 205 General Soils (3 cr)

Electives to total 128 cr for the degree

B. Regional Analysis and Development Option

This option is designed to prepare students for employment opportunities in business and industry and also in the field of planning at the regional or community scale. It emphasizes the locational aspects of economic activity and economic decision making. Students will gain an understanding of geographical patterns of markets, transactions and trade, transportation, production and consumption, industrial processing, and other aspects of the spatial economy. With this option, most students can go on to complete master’s degrees in business administration or geography or move directly into a growing area of employment for the business oriented geographer.

- Bus 321 Marketing (3 cr)
- Econ 201, 202 Principles of Economics (6 cr)
- Econ 430 Regional/Urban Economics (3 cr)
- Engl 313 Business Writing or Engl 317 Technical Writing (3 cr)
- Geog 330 Urban Geography (3-4 cr)
- Geog 340 Business Location Decisions (3 cr)
- Geog 427 Spatial Decision Support Techniques (3 cr)

9 credits chosen from the following:
- Bus 421 Marketing Research and Analysis (3 cr)
- Econ 352 Intermediate Microeconomic Analysis (3 cr)
- Geog 470 Geographic Visualization (3 cr)
- Geog 497 Practicum with a company or agency (1-6 cr, max 6)
- Math 160 Survey of Calculus or Math 170 Analytic Geometry and Calculus I (4 cr)
- Math 326 Linear Programming (3 cr)

12 credits from the following courses:
- AgEc 451 Land and Natural Resource Economics (3 cr)
- Bus 425 Retail Distribution Management (3 cr)
- Econ 385 Environmental Economics (3 cr)
- Econ 415 Market Structure and Governmental Policy (3 cr)
- Econ 446 International Economics (3 cr)
- Geog 350 Geography of Development (3-4 cr)
- Geog 360 Population Dynamics and Distribution (3-4 cr)
- Geog 409 Rural Development (3 cr)

C. Cartography Option

This option emphasizes graphic design and communication and both computerized and conventional techniques of production cartography. It provides extensive applied professional cartographic training and exposure to theoretical-research oriented aspects of the field. Students who complete this option should be capable of eventually occupying supervisory positions in graphic sections or organizations producing maps and allied graphic products.

- Bus 250 Introductory Systems Development or Geog 378 Interactive Cartography (3-4 cr)
- CE 211 Engineering Measurements or CE 218 Elementary Surveying (2-4 cr)
- CS 112 Intro to Problem Solving and Programming (3 cr)
- Engr 105 Engineering Graphics (2 cr)
- Engr 313 Business Writing or Engl 317 Technical Writing (3 cr)
- For 357 Airphoto Interpretation and Mapping (3 cr)
- For 472 Remote Sensing and the Environment (3-4 cr)
- Geog 380 Cartography and Graphic Communication (3 cr)
- Geog 470 Geographic Visualization (3 cr)
- Geog 475 Geographic Information Systems (3 cr)
- Geog 483 Remote Sensing/GIS Integration (3 cr)
- Geog 497 Practicum (3-6 cr)
- Math 143 Pre-calculus Algebra and Analytic Geometry (3 cr)
- Math 160 Survey of Calculus or Math 170 Analytic Geometry and Calculus I (4 cr)
- Math 330 Linear Algebra or Stat 401 Statistical Analysis (3 cr)

D. Geographic Information Systems (GIS) Option

This option focuses on teaching theoretical fundamentals, techniques, and practical applications of modern geoprocessing using spatial analysis and information systems technology. It is intended to educate specialists in GIS and Spatial Analysis who have a solid grasp of cartographic principles, computational technology, and geographic information problem solving.

Requirements are the same as the Cartography option with the addition of the following courses:
- CS 121 Computer Science II (3 cr)
- CS 360 Database Systems (3 cr)
- Engl 313 Business Writing or Engl 317 Technical Writing (3 cr)
- Geog 427 Spatial Decision Support Techniques (3 cr)
- Math 176 Discrete Mathematics (3 cr)

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Geography. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Science (Non-thesis Option). Scores on the Graduate Record Examination (aptitude section) are required for admission. This program is designed for individuals who wish to place less emphasis upon research in their plan of study with additional courses substituted for thesis credit, the submittal of two reviewed papers and a practical exercise, and an oral examination before the student’s committee required for the degree.

Master of Science (Non-thesis Option). Scores on the Graduate Record Examination (aptitude section) are required for admission. This program is designed for individuals who wish to place less emphasis upon research in their plan of study with additional courses substituted for thesis credit, the submittal of two reviewed papers and a practical exercise, and an oral examination before the student’s committee required for the degree.

Master of Science in Teaching--Major in Geography. General M.A.T. requirements apply. A plan of study will be arranged in conference with the student’s advisor upon admission to the program. Examination procedures are the same as in the non-thesis option, including submittal of two review papers and a practical exercise, and an oral examination before the student’s committee.

Doctor of Philosophy. General Ph.D. requirements apply. An M.S. degree is required. Scores on the Graduate Record Examination (aptitude section) are required for admission. Admission is by faculty approval based on evaluation of the applicant’s research potential. Each student’s study plan is approved by the departmental faculty. If a student wishes to pass over a course based on prior training or experience, he or she will have to pass the equivalent of a final examination in the course. It is expected that the study plan will be compatible with the goals and direction of the department.
PART FIVE
Departments of Instruction

Department of Geological Sciences

Dennis J. Geist, Dept. Head (322 Mines Bldg. 83844-3022; phone 208/885-6192).

Geology is the study of the origin and evolution of the earth, emphasizing the concepts of geologic time and plate tectonics. The applied aspects of geology include the search for ores, industrial minerals, petroleum, coal, and water; the assessment of geologic hazards associated with earthquakes, volcanoes, and landslides; and the study of the global environment. Also included in these studies are geologic aspects of waste disposal and pollution abatement.

The bachelor’s degrees offered in geology is one that emphasizes practical and field science along with theory. It is the goal of the department that our graduates not only be ready for immediate employment, but also that they have the broad education that will help them to grow professionally, be successful in graduate school, and advance through positions of greater responsibility during their careers.

The geology program provides the student with the necessary background courses in basic sciences and mathematics plus a spectrum of courses in the subdisciplines of geology. Specialized elective courses can be chosen to prepare for various careers such as exploration for minerals or petroleum, the search for and management of ground water, environmental geology, and earth science education.

A minor in geology is offered for students in allied fields who have an interest in geology. The minor curriculum can be tailored to meet the needs of individual students.

Research laboratories are equipped for work in applied geochemistry, geophysics, petrology, economic geology, paleontology, archaeology, structural analysis, tectonics, and geomatics. Laboratories are maintained for work in all of the basic courses, with large study collections of fossils, rocks, minerals, crystal models, oil suites, thin sections, polished sections, and topographic and geologic maps. Equipment used in advanced courses includes several sets of microscopes, photomicrographic apparatus, X-ray diffraction equipment, and a variety of instruments for geochemical analysis. Also available are computers, resistivity survey equipment, gravity meters, GPS receivers, seismographs, magnetometer, soil drilling and sampling kits, and water-level recorders.

The department offers Master of Science degrees in geology, geophysics, and hydrology. Theses are required in the first two programs (i.e., geology and geophysics), whereas a non-thesis option is available in hydrology. A non-thesis program is also available in the Master of Arts in Teaching (major in earth science). The Doctor of Philosophy is offered in geology.

The undergraduate preparation expected of the entering graduate candidates depends upon the degree sought. Some of our most promising graduate students have come to us with bachelor’s degrees in other subjects. Deficiencies for master’s candidates are determined by the major professor. No special requirements exist as to deficiencies of candidates for the Master of Arts in Teaching.

BSU-IDSU Cooperative Programs. The department participates in cooperative programs with the Earth Science Departments at Boise State University and at Idaho State University. Students interested in pursuing bachelor’s degrees in geology or geophysics at those institutions may take transferable preparatory courses at UI. The master’s degree in geophysics at UI is fully cooperative and students may take courses or perform research at those institutions.

Courses

See Part 6 for courses in Geology (Geol), Geophysics (Geop), and Hydrology (Hydr).

Undergraduate Curricular Requirements

GEOLICAL SCIENCES (B.S.)

Required course work includes the university requirements (see regulation J-3) and:

Chem 111 Principles of Chemistry I (4 cr)
Chem 112 Principles of Chemistry II (5 cr)
Engl 317 Technical Writing (3 cr)
Geog 385 GIS Primer (3 cr)
Geol 101 or 111 Physical Geology (4 cr)
Geol 102 Historical Geology (4 cr)
Geol 249 Mineralogy and Optical Mineralogy (4 cr)
Geol 290 Field Geology I (3 cr)
Geol 324 Principles of Stratigraphy and Sedimentation (4 cr)
Geol 408 Igneous and Metamorphic Petrology (4 cr)
Geol 435 Structural Geology (3-4 cr)
Geol 422 Principles of Geophysics (3 cr)
Geol 423 Principles of Geochemistry (3 cr)
Geol 490 Field Geology II (3 cr)

And the completion of one of the following options and electives approved by the advisor to total 128 credits for the degree.

A. General Geology Option

Geol 212 Principles of Paleontology (4 cr)
Geol 335 Geomorphology (3 cr)

Math 160 Survey of Calculus or 170 Analytic Geometry and Calculus I (4 cr)
Math 170 Analytic Geometry and Calculus II, Math 330 Linear Algebra, or Stat 251
Statistical Methods (3-4 cr)
Phys 111-112 General Physics I-II or Phys 211-212 Engr Physics I-II (8 cr)
Advisor-approved electives in geology (8 cr)

B. Hydrogeology Option

Geol 309 Groundwater or Hydr 409 Quantitative Hydrogeology (3 cr)
Geol 410 Techniques of Groundwater Study (3 cr)
Math 170, 175 Analytic Geometry and Calculus I-II or Math 330 Linear Algebra (3-4 cr)
Stat 251 Statistical Methods or Stat 301 Probability and Statistics (3 cr)
Phys 211-212 Engineering Physics I-II (8 cr)
Hydrogeology electives chosen from the following, including at least 6 credits in Hydr courses (18 cr):

BAE 351 Hydrology (3 cr)
CE 421 Engineering Hydrology (3 cr)
CE 470 Hazardous Waste Management (3 cr)
Engr 210 Engineering Statics and Engr 335 Engr Fluid Mechanics (6 cr)
Geog 385 GIS Primer (3 cr)
Geol 578 Advanced Geochemistry of Natural Waters (3 cr)
Hydr 409/509 Quantitative Hydrogeology (3 cr)
Hydr 412 Environmental Hydrogeology (3 cr)
Hydr 464/564 The Geochimistry of Natural Waters (3 cr)
Hydr 468 Aquifer Test Design and Analysis (3 cr)
Hydr 486 Hydrogeology Senior Thesis (3 cr)
Hydr 576 Fundamentals of Modeling Hydrogeologic Systems (3 cr)
Hydr 577 Computer Applications in Geohydrology (3 cr)
Math 275 Analytic Geometry and Calculus III (3 cr)
Math 310 Ordinary Differential Equations (3 cr)
Soil 205, 206 The Soil Ecosystem and Lab and Soil 415 Soil Physics (7 cr)
Stat 428 Geostatistics (3 cr)

C. Resource Exploration Option

Econ 272 Foundations of Economic Analysis (4 cr)
Geol 212 Principles of Paleontology (4 cr)
Geog 448 Tectonics (3 cr)
Geol 476 Exploration Methods (3 cr)
Math 160 Survey of Calculus or Math 170 Analytic Geom and Calculus I (4 cr)
Math 175 Analytic Geometry and Calculus II or Math 330 Linear Algebra (3-4 cr)
Phys 111-112 General Physics I-II or Phys 211-212 Engr Physics I-II (8 cr)
Stat 251 Statistical Methods or Stat 301 Probability and Statistics (3 cr)

D. Environmental Geology Option

Geol 212 Principles of Paleontology (4 cr)
Geol 309 Groundwater or Hydr 409 Quantitative Hydrogeology (3 cr)
Geol 335 Geomorphology (3 cr)
Geol 360 Geologic Hazards (3 cr)
Geol 361 Geology and the Environment (3 cr)
Math 160 Survey of Calculus or Math 170 Analytic Geom and Calculus I (4 cr)
Math 175 Analytic Geometry and Calculus II, Math 330 Linear Algebra (3-4 cr)
Phys 111-112 General Physics I-II or Phys 211-212 Engr Physics I-II (8 cr)
Environmental geology electives chosen from the following (9 cr):

BAE 351 Hydrology (3 cr)
BAE 433 Bioremediation (3 cr)
BAE 452 Environmental Water Quality (3 cr)
Biol 115 Cells and the Evolution of Life (4 cr)
Chem 275, 276 Carbon Compounds and Lab or Chem 277, 278 Organic Chem I and Lab (4 cr)
Chem 418 Environmental Chemistry (3 cr)
Geog 385 GIS Primer (3 cr)
Geog 401 Climatology (3 cr)
Geog 410 Techniques of Groundwater Study (3 cr)
Geol/ Hydr 464 The Geochemistry of Natural Waters (3 cr)
MMBB 250, 255 General Microbiology and Lab (5 cr)
Soil 205, 206 The Soil Ecosystem and Lab (4 cr)

E. Geological Education Option

Biol 115 Cells and the Evolution of Life (4 cr)
Geog 100 Physical Geography (4 cr)
Geog 401 Climatology (3 cr)
Geol 212 Principles of Paleontology (4 cr)
Geol 335 Geomorphology (3 cr)
Geol 360 Geologic Hazards (3 cr)
Math 160 Survey of Calculus or Math 170 Analytic Geom and Calculus I (4 cr)
Math 175 Analytic Geometry and Calculus II, Math 330 Linear Algebra, or Stat 251
Statistical Methods (3-4 cr)
Phys 103, 104 General Astronomy and Lab (4 cr)
Phys 111-112 General Physics I-II or Phys 211-212 Engr Physics I-II (8 cr)
PSSC 205 General Botany (4 cr)

F. Structural Geology and Tectonics Options

Students must complete 4 credits in Geol 345, Structural Geology.
Geol 335 Geomorphology (3 cr)
Geol 344 Earthquakes and Seismic Hazards (3 cr)
Geog 432 Geologic Development of North America (3 cr)
Geog 448 Tectonics or Geol 449 Geodynamics (3 cr)
Geog 489 Senior Thesis (4 cr)
Math 170 Analytic Geometry and Calculus I (4 cr)
Math 175 Analytic Geometry and Calculus II or Math 330 Linear Algebra (3-4 cr)
Phys 111-112 General Physics I-II or Phys 211-212 Engineering Physics I-II (8 cr)

Department of Geological Sciences

121
Academic Minor Requirements

GEOLGY MINOR
Geol 101 Physical Geology (4 cr)
Geol 102 Historical Geology (4 cr)
Electives in geology or geophysics (13 cr)

Graduate Degree Programs
Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Geological Sciences. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree. All graduate students in this department are expected to attend the appropriate departmental seminar each semester.

Master of Science. General M.S. requirements apply. Majors offered under the M.S. degree are geology, and hydrology. Prerequisites are the equivalent of an undergraduate major in the area of specialization. A written thesis is required for which ten credits (of the minimum of 30 credits for the degree) are permitted. A non-thesis option is available under special conditions in hydrology.

Master of Arts in Teaching—Major in Earth Science. General M.A.T. requirements apply. A plan of study in consultation with the student’s major professor and co-advisor upon admission to the program.

Doctor of Philosophy. General Ph.D. requirements apply. Admission to the doctoral program is based on the compatibility of the student’s research interests with those of the major professor, upon the availability of research support, and the student’s academic record. Applicants are expected to have the prerequisites as specified for the M.S. degree with a major in geology. Each research program is developed by the student and the major professor with the advisory committee’s approval. Up to 45 credits are permitted in research and dissertation.

Division of Health, Physical Education, Recreation, and Dance

Dennis Dolny, Interim Division Director and Coordinator of Sport Science (101 Phys Ed Bldg, phone 208/885-7921). Faculty: Kathy D. Browder, Damon D. Burton, Jess D. Cauldillo, Carol Conkell, Gregory J. Halloran (Dance Coordinator), Kevin Johnston, Grace Goc Karp (Physical Education Coordinator), Glenn Kaztenios, Michael L. Kineer (Recreation Coordinator), Patricia L. Richards (Health and Safety Coordinator), Sharon K. Stoll (Graduate Program Coordinator), Jackie M. Williams (Athletic Training Coordinator), Marianne Woods (Basic Instruction Program Coordinator).

The Division of Health, Physical Education, Recreation and Dance is one of three divisions in the College of Education. The College offers a Ph.D. in education with tracks in sport psychology, physical education, or other program areas in the division; the division offers master’s degrees in recreation and physical education; baccalaureate degrees in dance, physical education, school and community health, recreation, athletic training, and sport science; several minors and options; and basic instruction in numerous recreational and sport activity areas.

The activity portion of the program is supported by outstanding facilities, which include three gymnasias, two dance studios, two pools, eight indoor tennis courts, nine racquetball courts, indoor and outdoor tracks, weight rooms, climbing wall and rope course, and expansive field and play areas. In addition, activity classes are taught in the Student Recreation Center.

The baccalaureate degree in dance is designed to give the student professional training in teaching, performing, choreography, and concert production. The Festival Dance and Performing Arts Association maintains a residency program with the division.

The baccalaureate degree in physical education leads to K-12 teaching certification and provides a foundation for athletic coaching. Physical education is concerned primarily with the art and science of human movement, principles and concepts relating to skill acquisition and analysis, the effects of exercise on the body, concepts relating to total fitness, and the teaching and learning process.

The baccalaureate degree in recreation prepares the student for recreation leadership roles in municipalities, agencies, institutions, and private industry. Students enrolled in this program complete a recreation internship. Recreation students may specialize by completing a university-approved academic minor or an approved cognate specialization.

The baccalaureate degree in school and community health education provides a foundation for health education and community health employment. Health education is concerned with providing individuals with learning experiences designed to predispose, enable, and reinforce voluntary adaptations of behavior conducive to well-being. In addition to school health education, this degree emphasizes community health and may lead to employment possibilities within hospitals, health departments, governmental agencies, volunteer agencies, and business/industry.

The baccalaureate degree in sport science prepares students to work in the general areas of sport, and corporate, clinical, or private wellness programming. It is for students interested in professional opportunities that do not require teacher certification. An internship at a corporate, clinical, or sport facility is included.

The baccalaureate degree in athletic training prepares students for the athletic training profession. To become a certified athletic trainer, at the completion of the degree program the student must pass the National Athletic Trainers’ Association Board of Certification exam. Students in this degree program obtain clinical experience in the UI athletic training room and various clinical sites.

Academic and teaching minors offered by the division include: health education, dance, recreation, recreational therapy, outdoor recreation leadership, sustainable tourism and leisure enterprises, physical education, sport science, coaching, athletic training, and sport ethics.

Graduate work includes master’s degrees in physical education and recreation and a doctorate in education with specialization tracks in the HPERD areas. Majors seeking a master’s degree in physical education program concentrate in one of five areas of specialization: sport pedagogy, dance pedagogy, sport science, health and wellness, or sport psychology. The master’s degree in recreation is limited to sport and recreation management. Ph.D. study is available in selected HPERD program areas.

A 2.8 undergraduate grade-point average is required for admission. Doctoral admission requirements include the GRE and can be obtained from the College of Education.

Courses
See Part 6 for courses in Dance (Dan), Health and Safety (H&S), Physical Education (PE), and Recreation (Rec).

Undergraduate Curricular Requirements

ATHLETIC TRAINING (B.S.P.E.)
This curriculum is for students who desire to become Certified Athletic Trainers. Certified Athletic Trainers work with professional, college/university, high school athletic teams, sports medicine clinics, hospitals, with nonprofit organizations such as YMCAS, private clubs, rehabilitation facilities, and with sport organizations and agencies. After the completion of this degree program, students must pass the National Athletic Trainers’ Association Board of Certification examination to become a certified athletic trainer.

The Athletic Training major has two portions to the education program, didactic and clinical. Prior to application to the clinical portion of the program, a pre-professional phase is required which includes prerequisite courses and an observation period in the athletic training room. See the Athletic Training Coordinator for the specific information regarding admission into the clinical portion of the program. This information includes admission requirements, pre-professional phase course work and observation period requirements, technical standards for admission, and an application form.

Required course work includes the university requirements (see regulation J-3), 20 credits of other requirements in the Division of Health, Physical Education, Recreation and Dance that support the athletic training major (see the division director for necessary courses in the university requirements and other division requirements), and the following course work:

<table>
<thead>
<tr>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS 305 Nutrition Related to Fitness and Sport (3 cr)</td>
</tr>
<tr>
<td>H&S 150 Wellness Lifestyles (3 cr)</td>
</tr>
<tr>
<td>H&S 245 Introduction to Athletic Injuries (3 cr)</td>
</tr>
<tr>
<td>H&S 288 First Aid: Emergency Response (2 cr)</td>
</tr>
<tr>
<td>H&S 289 Drugs in Society (2 cr)</td>
</tr>
<tr>
<td>H&S 350 Stress Management and Mental Health (2 cr)</td>
</tr>
<tr>
<td>H&S 390 Athletic Training High School Clinical Experience (1 cr)</td>
</tr>
<tr>
<td>H&S 391 Athletic Training Sports Medicine Clinical Experience (1 cr)</td>
</tr>
<tr>
<td>H&S 392 Athletic Training General Medical & Orthopedic Clinical Experience (1 cr)</td>
</tr>
<tr>
<td>H&S 412 Emergency Response Instructorship (1 cr)</td>
</tr>
<tr>
<td>H&S 466 Athletic Training Evaluation (3 cr)</td>
</tr>
<tr>
<td>H&S 467 Athletic Training Rehabilitation (3 cr)</td>
</tr>
<tr>
<td>H&S 468 Athletic Training Modalities (3 cr)</td>
</tr>
<tr>
<td>H&S 469 Athletic Training Organization and Administration (3 cr)</td>
</tr>
<tr>
<td>H&S 470 Seminar in Athletic Training (2 cr)</td>
</tr>
<tr>
<td>PEB 105 Dance: Step Aerobics or Aerobics/Body Toning (1 cr)</td>
</tr>
<tr>
<td>PEB 106 Individual and Dual Sports: Weight Training (1 cr)</td>
</tr>
<tr>
<td>PEP activity/skill classes (see division director for selection) (2 cr)</td>
</tr>
<tr>
<td>PEP 101 Introduction to Athletic Training (1 cr)</td>
</tr>
<tr>
<td>PEP 171 Athletic Training Clinical Experience I – Observation (1 cr)</td>
</tr>
<tr>
<td>PEP 201 Fitness Activities and Concepts (2 cr)</td>
</tr>
<tr>
<td>PEP 272 Athletic Training Clinical Experience II (1 cr)</td>
</tr>
<tr>
<td>PEP 273 Athletic Training Clinical Experience III (1 cr)</td>
</tr>
<tr>
<td>PEP 274 Athletic Training Clinical Experience IV (1 cr)</td>
</tr>
<tr>
<td>PEP 275 Athletic Training Clinical Experience V (1 cr)</td>
</tr>
<tr>
<td>PEP 380 Measurement and Evaluation (2 cr)</td>
</tr>
<tr>
<td>PEP 418 Physiology of Exercise (3 cr)</td>
</tr>
<tr>
<td>PEP 455 Design & Analysis of Research in HPERD (3 cr)</td>
</tr>
<tr>
<td>PEP 471 Athletic Training Clinical Experience VI (2 cr)</td>
</tr>
<tr>
<td>PEP 472 Athletic Training Clinical Experience VII (2 cr)</td>
</tr>
<tr>
<td>PEP 475 Moral Reasoning in Sport (2 cr)</td>
</tr>
<tr>
<td>PEP 493 Fitness Assessment and Prescription (3 cr)</td>
</tr>
<tr>
<td>REC 110 Recreation for People with Disabilities or Rec 330 Recreational Therapy Programming for People with Disabilities or PEP 424 Physical Education for Special Populations (2-3 cr)</td>
</tr>
<tr>
<td>REC 431 Medical Terminology (2 cr)</td>
</tr>
</tbody>
</table>

Electives to total 128 cr for the degree

DANCE (B.S.Dan.)

The curriculum leading to the degree of Bachelor of Science in Dance is designed to give the student professional training in teaching, performing, choreography, and concert production.

Required course work includes the university requirements (see regulation J-3) and the following course work:

<table>
<thead>
<tr>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Note: For registration in upper-division courses in education, students must have been admitted to the teacher education program and maintain a cumulative GPA of 2.75. For admission criteria, refer to "Admission to the Teacher Education Program" in the College of Education section in Part 4.

RECREATION (B.S.Rec.)

This curriculum is primarily for students interested in careers in leadership, supervision, or management of recreation agencies. Students graduating from this program are immediately eligible to sit for the national-level examination to become a Certified Leisure Professional and thereby acquire this valuable credential for professional advancement.

A minimum cumulative university GPA of 2.25 is required of all recreation majors who seek to take upper-division courses (numbered 300 or above) offered by the Recreation Program Unit. Recreation majors must also achieve a minimum cumulative university GPA of 2.25 to graduate with a B.S.Rec. degree.

Required course work includes the recreation major, the university requirements (see regulation J-3), division requirements (listed below), and completion of an academic minor of 20-24 credits in an approved cognate area of study. Note: Students should contact advisor before registering for courses to satisfy regulation J-3.

Division Requirements:
- Blaw 265 Legal Environment of Business (3 cr)
- Engl 207 Persuasive Writing or Engl 208 Personal and Exploratory Writing or Engl 209 Inquiry-Based Writing or Engl 313 Business Writing or 317 Technical Writing (3 cr)
- H&S 288 First Aid: Emergency Response (2 cr)
- Psys 305 Developmental Psychology (3 cr)

Four courses (only two may be B.I.P. courses, PEB 105, 106, 107) selected from PEB 105, 106, 107, PEP 132, 133, 134, 135, 136, 201, or 202 (4-5 cr)

Aquatic course (Lifeguarding/WSI recommended) (1 cr)

Recreation Major Requirements:
- Rec 102 Introduction to Recreation Professions (1 cr)
- Rec 110 Recreation for People with Disabilities or 230 Prin of Recreational Therapy (3 cr)
- Rec 125 Outdoor Leisure Pursuits (2 cr)
- Rec 260 Leisure and Society (3 cr)
- Rec 275 Computer Applications in Leisure Services (3 cr)
- Rec 280 Recreation Practicum (1 cr)
- Rec 329 Leadership in Recreation (3 cr)
- Rec 349 Facility Planning and Management (2 cr)
- Rec 365 Leisure and the Aging Process (3 cr)
- Rec 410 Trends and Issues in Leisure Services (3 cr)
- Rec 425 Leisure Education (2 cr)
- Rec 445 Professional Seminar (1 cr)
- Rec 455 Design and Analysis of Research in HPERD (3 cr)
- Rec 460 History and Philosophy of Recreation and Leisure (2 cr)
- Rec 486-487 Recreation Program Planning and Marketing I-II (4 cr)
- Rec 493 Management of Leisure Services (3 cr)
- Rec 495 Practicum in Tutoring (1 cr)
- Rec 498 Internship in Recreation (9 cr)

Additional courses selected from the following (4 cr):
- Rec 204 ST: Recreation Issues
- Rec 254 Camp Leadership (2-3 cr, max 3)
- Rec 299 Directed Study
- Rec 340 Leisure and Tourism Enterprises (3 cr)
- Rec 400 Seminar
- Rec 403 Workshop
- Rec 404 Special Topics
- Rec 420 Experiential Education (2 cr)
- Rec 499 Directed Study

Electives to total 128 cr for the degree

SCHOOL AND COMMUNITY HEALTH EDUCATION (B.S.Ed.)

The major in school and community health education leads to certification in grades 6-12.

Note: For registration in upper-division courses in education, students must have been admitted to the teacher education program and maintain a cumulative GPA of 2.75. For admission criteria, refer to "Admission to the Teacher Education Program" in the College of Education section in Part 4.

Requirements include the university requirements (see regulation J-3—contact the division for specific courses required in the core), Idaho Technology Competency Certification, an approved teaching minor, and the following courses:

Biol 120 Human Anatomy (4 cr)
Biol 121 Human Physiology (4 cr)
ED 201 Diverse Learners in Schools and Social/Cultural Contexts (3 cr)
ED 301 Principles of Learning and Development in Education (3 cr)
ED 302 Curriculum, Instruction, and Assessment Strategies (3 cr)
ED 401 Professional Role Development (3 cr)
EDTE 463 Literacy Methods for Content Learning (3 cr)
ECS 205 Concepts in Human Nutrition (3 cr)
H&S 150 Wellness Lifestyles (3 cr)
H&S 288 First Aid: Emergency Response (2 cr)
H&S 289 Drugs in Society (2 cr)
H&S 316 Community and Global Health Services (2 cr)
H&S 350 Stress Management and Mental Health (2 cr)
H&S 423 Health Education Role Development and Administration (3 cr)
H&S 431 Practicum: Student Teaching (14 cr)
H&S 436 Health Promotion Program Planning (3 cr)
H&S 450 Consumer Health and Health Care Issues (2 cr)
PEP 418 Physiology of Exercise (3 cr)
Psys 305 Developmental Psychology (3 cr)
OUTDOOR RECREATION LEADERSHIP MINOR

Required course:
Rec 320 Outdoor Recreation Leadership (2 cr)

Courses selected from the following (12 cr):
- CSS 287 Foundations of Conservation Leadership and Management (2 cr)
- CSS 387 Environmental Communication Skills (3 cr)
- CSS 401 Practicum in Tutoring (1 cr)
- CSS 487 Environmental Education (3 cr)
- CSS 490 Wilderness and Protected Area Management (3 cr)
- CSS 491 Wilderness Leadership for Personal Growth (3 cr)
- H&S 288 First Aid: Emergency Response (2 cr)
- Rec 125 Outdoor Leisure Pursuits (2 cr)
- Rec 215 River Reading and Whitewater Safety (1 cr)
- Rec 254 Camp Leadership (3 cr)
- Rec 321 Wilderness Medicine and Evacuation (1 cr)
- Rec 420 Experiential Education (2 cr)
- Rec 495 Practicum in Tutoring (1 cr)

Courses selected from the following (5 cr):
- CSS 204 Special Topics course approved by advisor
- PEB 106 Individual/Dual Sports: Fly Fishing (1 cr)
- PEB 108 Swimming: Scuba (1 cr)
- Rec 204 Special Topics course approved by advisor
- Rec 220 Rock Climbing (1 cr)
- Rec 221 Mountaincycling (2 cr)
- Rec 222 Cross Country Skiing (1 cr)
- Rec 223 Winter Skills (2 cr)
- Rec 224 Whitewater Rafting (1 cr)
- Rec 225 Kayaking (1 cr)
- Rec 226 Whitewater Canoeing (1 cr)
- Rec 255 Backpacking and Camping Skills (2 cr)
- Technical competency (contact department; practical exam administered by Rec and/or CSS faculty)

RECREATIONAL THERAPY MINOR

Note: Biol 120 and 121 are required for Recreational Therapy certification.

Academic Minor Requirements

COACHING MINOR

Note: PEP 300, and PEP 418 have prerequisite requirements.

FCS 305 Nutrition Related to Fitness and Sport (3 cr)
H&S 245 Introduction to Athletic Injuries (2 cr)
H&S 288 Drugs in Society (2 cr)
H&S 349 Advanced Athletic Injuries (3 cr)
PEP 204 Special Topics: Coaching (2 cr)
PEP 220 Coaching Youth Sports (1 cr)
PEP 300 Applied Human Anatomy and Biomechanics (3 cr)
Pep 305 Applied Sports Psych or PEP 310 Cultural and Phil Aspects of Sport (2-3 cr)
Pep 360 Motor Behavior (3 cr)
Pep 380 Measurement and Evaluation (2 cr)
Pep 418 Physiology of Exercise (3 cr)
Pep 455 Design & Analysis of Research in HPERD (3 cr)
Pep 493 Fitness Assessment and Prescription or PEP 305/310 (whatever course was not taken above) (2-3 cr)
Pep 495 Practicum in Tutoring (2 cr)
Pep 496 Internship in Physical Education (summer preferred) (9 cr)
Rec 445 Professional Seminar (1 cr)
PE activity/skill classes (see division director for selection) (5 cr)
Electives to total 128 cr for the degree

DANCE MINOR

Dan 330 Labanotation (3 cr)
Dan 325 Dance Production (3 cr)
Dan 384 Dance Composition I (3 cr)
Dan 421 Dance History (3 cr)
Dan 422 Labanotation (3 cr)
Electives in theatrical dance tech (selected from ballet, jazz, modern) (7 cr)

DANCE PERFORMANCE MINOR

Dance 100 Dance in Society (3 cr)
Dance 210 Dance Theatre (2 times) (4 cr)
Dan 384 Dance Composition I (3 cr)
Electives chosen from the following (11 cr):
- Dance 105 Dance: Musical Theater (1 cr)
- Dance 105 Dance: Tap (1 cr)

DANCE PERFORMANCE MINOR

Dance 105 Dance: Repertory (1 cr)
Dance 112 Recreational Dance Forms (2 cr)
Dance 216 Techniques: Ballet III (1 cr)
Dance 216 Techniques: Ballet III/IV (1 cr)
Dance 216 Techniques: Ballet IV (1 cr)
Dance 216 Techniques: Jazz III (1 cr)
Dance 216 Techniques: Jazz III/IV (1 cr)
Dance 216 Techniques: Modern III (1 cr)
Dance 216 Techniques: Modern III/IV (1 cr)
Dance 416 Adv Tech: Pre-Professional Ballet (1 cr)
Dance 416 Adv Tech: Pre-Professional Jazz (1 cr)
Dance 416 Adv Tech: Pre-Professional Modern (1 cr)

SOCIAL DANCE MINOR

Dan 100 Dance in Society (3 cr)
Dan 112 Recreational Dance Forms (2 cr)
Dan 321 Dance Pedagogy (3 cr)
Dan 410 Dance Theatre (2 cr)
Dan 495 Practicum: Teaching (2 cr)
Dance 495 Dance Technique - to include (ballroom, country, swing and jazz dance) (5 cr)
PEP 495 Practicum: Teaching (1 cr)

SPORT ETHICS MINOR

PEP 226/J475 Moral Reasoning in Sport (2 cr)
PEP 310 Cultural and Philosophical Aspects of Sport (2 cr)
PEP 480 Competition and Social Values (3 cr)
PEP 480 Seminar in Sportmanship: Moral Development (3 cr)
PEP 499 Directed Study (1 cr)
Phil 103 Ethics (3 cr)
Phil 460 Ethical Theory (3 cr)

SPORT SCIENCE MINOR

Note: H&S 245 and PEP 418 have prerequisite requirements.
History faculty members also advise and participate in courses for majors in American studies, environmental science, international studies, interdisciplinary studies, and Latin American studies and for minors in religious studies, women’s studies and American Indian studies.

Graduate study is offered in American, English, European (medieval through modern), and Latin American history. The degree programs include Master of Arts, Master of Arts in Teaching, and Doctor of Philosophy, for which dissertation topics are limited to the fields of the North American West, U.S. since 1877, and Europe since 1750.

Students applying for admission to graduate study in history must be approved by the majority of the history faculty. Students seeking graduate degrees in history must present recent GRE scores, an undergraduate transcript with at least a 3.00 average in all history courses and a 2.80 overall average that shows at least 12 credits earned in a foreign language. The language requirement is waived for those seeking the M.A.T.

Courses

See Part 6 for courses in History (Hist).

Undergraduate Curricular Requirements

HISTORY (B.A.)

Required course work includes the university requirements (see regulation J–3), the general requirements for the B.A. degree, and:

- Lower-division courses selected from the following (9 cr):
 - Hist 101-102 History of Civilization (6 cr)
 - Hist 111-112 Introduction to U.S. History (6 cr)
 - Hist 180 Introduction to East Asian History (3 cr)
 - Hist 210 Introduction to Modern Latin American History (3 cr)
- Hist 280 The Historian’s Craft (3 cr)
- Upper-division history courses, including a seminar in senior year (27 cr)
- Related fields (20 cr)

HISTORY (B.S.)

Note: Students expecting to study for an M.A. or Ph.D. degree in history should take the B.A. rather than the B.S. degree.

Required course work includes the university requirements (see regulation J–3), the general requirements for the B.S. degree, and:

- Lower-division courses selected from the following (9 cr):
 - Hist 101-102 History of Civilization (6 cr)
 - Hist 111-112 Introduction to U.S. History (6 cr)
 - Hist 180 Introduction to East Asian History (3 cr)
 - Hist 210 Introduction to Modern Latin American History (3 cr)
- Hist 280 The Historian’s Craft (3 cr)
- Upper-division history courses, including a seminar in senior year (27 cr)
- Related fields (20 cr)

* Any combination of the following (12 cr):
 - Any foreign language (high-school foreign language may be substituted at the rate of 4 cr per year)
- Engl 277–278 Literature of Western Civilization (6 cr)
 - FLEN 313 Modern French Literature in Translation (3 cr)
 - FLEN 315 French Cinema (3 cr)
 - FLEN 329–330 German Literature in Translation (6 cr)
 - FLEN 336–334 Literature of Ancient Greece and Rome (6 cr)
 - FLEN 391 Hispanic Film (3 cr)
 - FLEN 392 Contemporary European Fiction Film (3 cr)
 - FREN 393 Spanish Literature in Translation (3 cr)
 - FREN 394 Latin American Literature in Translation (3 cr)
 - FREN 395 Culture and Institutions of Latin America (3 cr)

Academic Minor Requirements

HISTORY MINOR

History courses chosen from the following* (9 cr):
- Hist 101-102 History of Civilization (6 cr)
- Hist 111-112 Introduction to U.S. History (6 cr)
- Hist 180 Introduction to East Asian History (3 cr)
- Hist 210 Introduction to Modern Latin American History (3 cr)
- History courses at the 300- or 400-level (at least 3 cr in U.S., Latin American, or African history and at least 3 cr in Ancient, European, or Asian history) (9 cr)
- History elective (3 cr)

*For demonstrable cause, department chair or minor advisor may allow substitution of courses numbered above 100-level.

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of History. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree. Detailed information about requirements and procedures related to these programs is available in printed form from the head of the department.

Master of Arts. General M.A. requirements apply. This thesis and non-thesis degree is offered in all fields of history for which faculty is currently available. The work toward an M.A. degree stresses preparation for research as well as a balanced course program.

Department of History

History is not the memorization of names and dates; it is the study of human experience in all aspects. An understanding of the past is essential to interpreting the present and envisioning the future. History is by nature interdisciplinary and multi-cultural. Each course trains the student to think, to evaluate problems, and to reach logical conclusions. Special attention is given to the development of analytical and writing skills through essay examinations and research projects.

A degree in history provides excellent preparation for careers in international business, government/military service, law, education, library science, communications/media, and tourism/recreation.

The Department of History offers courses of study leading to the B.A. or the B.S. degree and has a staff of eight full-time professors who hold the Ph.D. degree. Currently there are 150 undergraduate history majors. Double majors can be arranged easily.

Sustainable Tourism and Leisure Enterprises Minor

Note: This academic minor is offered through both the College of Education and the College of Natural Resources.

- Bus 321 Marketing (3 cr)
- CSS 494 Public Relations for Natural Resources Professionals (3 cr)
- Rec/CSS 181 Introduction to Hospitality Services Industries (3 cr)
- Rec 340 Leisure and Tourism Enterprises (3 cr)
- Rec 382/CSS 381 Hospitality Management and Organization (3 cr)
- One course selected from the following (2–3 cr):
 - CSS 236 Tourism, Society and Business (3 cr)
 - CSS 386 Conservation Management and Planning II (3 cr)
 - CSS 394 Internship (1–3 cr)
 - Rec 204/Rec 280 Special Topics/Practicum
 - Rec 486 Recreation Program Planning and Marketing I (2 cr)

Graduate Degree Programs

The Graduate Record Examination is not required for admission to the master’s program. However, candidates must fulfill the requirements of the College of Graduate Studies and of the Division of Health, Physical Education, Recreation and Dance. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Science. The general M.S. requirements apply. Candidates are expected to have the equivalent of a major or minor in the area of concentration. The M.S. program emphasizes research, and the student presents either a written thesis, a bound professional paper, and/or a comprehensive examination or approved project. The thesis is approved and supervised by a major professor and supervisory committee.

Master of Education. Candidates for this degree are expected to have the equivalent of a major or minor and/or to have completed the professional requirements for standard teacher certification. Any credits required for certification or to complete deficiencies will not be counted toward the degree. Of the minimum of thirty credits required, nine credits must be in approved education courses. The terminal project for the M.Ed. degree is a comprehensive examination or equivalent project.

Doctor of Philosophy. The Ph.D. program is offered in education with a concentration in physical education-sport pedagogy or HPERD. Persons interested in doctoral study should apply to the College of Education. Admission requirements include: (a) a minimum grade-point average of 3.00 during the last two years of undergraduate preparation, (b) minimum grade-point average of 3.50 at the master’s degree level and its equivalent, and (c) a composite Graduate Record Examination score of 1050. Exceptions to the criteria may be made when documented by the Graduate Review Committee.

Sport pedagogy is designed for persons interested in the analysis of the theoretical and applied dimensions of the teaching and learning process in physical education. HPERD is designed for persons interested in the broad area of programs offered by the Division of Health, Physical Education, Recreation and Dance. The terminal project for the M.Ed. degree is a professional paper, and/or a comprehensive examination or approved project. The thesis and non-thesis degree is offered in all fields of history for which faculty is currently available. The work toward an M.S. degree.

Catalog page: 125

Academic Minor Requirements

HISTORY MINOR

History courses chosen from the following* (9 cr):

<table>
<thead>
<tr>
<th>History Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist 101-102 History of Civilization (6 cr)</td>
<td>6</td>
</tr>
<tr>
<td>Hist 111-112 Introduction to U.S. History (6 cr)</td>
<td>6</td>
</tr>
<tr>
<td>Hist 180 Introduction to East Asian History (3 cr)</td>
<td>3</td>
</tr>
<tr>
<td>Hist 210 Introduction to Modern Latin American History (3 cr)</td>
<td>3</td>
</tr>
<tr>
<td>Hist 280 The Historian’s Craft (3 cr)</td>
<td>3</td>
</tr>
<tr>
<td>Upper-division history courses, including a seminar in senior year (27 cr)</td>
<td>27</td>
</tr>
<tr>
<td>Related fields (20 cr)</td>
<td>20</td>
</tr>
</tbody>
</table>

* Any combination of the following (12 cr):
 - Any foreign language (high-school foreign language may be substituted at the rate of 4 cr per year)
 - Engl 277–278 Literature of Western Civilization (6 cr)
 - FLEN 313 Modern French Literature in Translation (3 cr)
 - FLEN 315 French Cinema (3 cr)
 - FLEN 329–330 German Literature in Translation (6 cr)
 - FLEN 336–346 Literature of Ancient Greece and Rome (6 cr)
 - FREN 391 Hispanic Film (3 cr)
 - FREN 392 Contemporary European Fiction Film (3 cr)
 - FREN 393 Spanish Literature in Translation (3 cr)
 - FREN 394 Latin American Literature in Translation (3 cr)
 - FREN 395 Culture and Institutions of Latin America (3 cr)

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of History. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree. Detailed information about requirements and procedures related to these programs is available in printed form from the head of the department.

Master of Arts. General M.A. requirements apply. This thesis and non-thesis degree is offered in all fields of history for which faculty is currently available. The work toward an M.A. degree stresses preparation for research as well as a balanced course program.
Program in Interdisciplinary Studies

Joseph R. Zeller, Coordinator, Undergraduate Courses (112 Admin. Bldg. 83844-3154; phone 208/885-6426); Margrit von Braun, Coordinator, Graduate Courses (112 Morrill Hall 83844-3017; phone 208/885-6243).

Courses

See Part 6 for courses in Interdisciplinary Studies (Intr).

Undergraduate Curricular Requirements

INTERDISCIPLINARY STUDIES (B.A. or B.S.)

A student may present a curriculum not included among the ones listed elsewhere in this catalog provided the program is focused toward meeting the student's particular educational goal by combining the offerings of two or more major departments. The program normally is developed and presented during the sophomore year. It must be presented before the end of the second semester of the junior year or at the time when at least 30 credits of the proposed program remain to be taken. It must be approved by: (a) at least one faculty member from each of the participating departments of the university, one of which must be in CLASS, (b) the chair of one of the CLASS departments involved, and (c) the CLASS Committee on Interdisciplinary Studies. University requirements (see regulation J-3) and CLASS requirements for either the B.A. or B.S. degree apply. This program requires a minimum of 128 credits, of which at least 50 credits must be in courses numbered 200 or above, including a minimum of 36 credits in courses numbered 300 or above. It is recommended, however, that majors in interdisciplinary studies complete at least 50 credits in upper-division courses.

Interested students should consult the CLASS dean's office for referral to the Interdisciplinary Studies Committee for further information about this program.

Interdisciplinary Academic Minors

A student may present a minor curriculum not included among the ones listed elsewhere in this catalog. The program must include at least 24 credits and be approved by: (a) at least one faculty member from each of the participating departments of the university, (b) the chair of one of the departments involved, and (c) in the case of minors that involve a department in the College of Letters, Arts, and Social Sciences, the CLASS Committee on Interdisciplinary Studies.

Graduate Degree Program

An undergraduate cumulative grade-point average of 3.00 is required. Prospective students should refer to the general admission requirements under the section "Graduate Admission to the University" for other admission requirements.

The objective of the interdisciplinary studies degree is to provide students with the opportunity to design specific programs of study of an interdisciplinary nature when the student's needs or desires do not fall within a currently prescribed graduate program. Individual study plans draw from courses offered in two or more graduate programs.

The interdisciplinary program has both a thesis option and a non-thesis option. A student choosing the thesis option may use up to six credits of Intro 500 toward the degree.

In addition, international experience in the student's region of emphasis is required for all students in this major. The experience must extend consecutively for at least 10-12 weeks, be qualified for at least 12 credits, and include an academic project or assignment and immersion in the culture of the country. All costs associated with the international experience are the responsibility of the student.

The requirement of international experience will normally be fulfilled by completing a registered credit program such as study abroad, student exchange, student teaching, or internship. In general, credits are registered on the UI campus; course work and field experience are taken abroad.

In some cases, permission may be granted to complete noncredit work experience that places the student abroad for a contracted length of time. Normally this work assignment will be completed during the degree program. In some instances, prior work experience may be accepted based on the following criteria: verification, length, nature, recentness, and relevancy of experience.

ISSUE EMPHASIS IN INTERNATIONAL STUDIES

Recommended courses for completion of requirement (special topic courses may be used when approved by the director).

A. International Relations

Hist 429-430 U.S. Diplomatic History (3 cr each)
Hist 455 Military History (3 cr)
IS 320 Model United Nations – Fall or Hist 290 The Historian’s Craft or PolS 235
PolS 382 Post-Communist Politics (3 cr)
PolS 438 Conduct of American Foreign Policy (3 cr)
PolS 440 International Organizations and International Law (3 cr)
PolS 449 World Politics and War (3 cr)
PolS 487 Political Violence and Revolution (3 cr)

B. International Economics and Business

AgEc 481 Agricultural Markets in a Global Economy (3 cr)
Bus 481 International Finance (3 cr)
Bus 482 International Marketing (3 cr)
Econ 446 International Economics (3 cr)
Econ 447 Economics of Developing Countries (3 cr)

C. Global Resources and Development

AgEc 481 Agricultural Markets in a Global Economy (3 cr)
Anth 402 Human Issues in International Development (3 cr)
CSS 493 International Land Preservation and Conservation Systems (3 cr)
ForCSS 235 Society and Natural Resources (3 cr)
For 420 Tropical Dendrology/Ecology (3 cr)
For 495 International Wildland Management (1-3 cr, max 3)
Geog 350 Geography of Development (3 cr)
Geog 360 Population Dynamics and Distribution (3 cr)
Geog 409 Rural Development (3 cr)
PolS 480 Politics of Development (3 cr)
Rnge 358 Natural Resources of the World (3 cr)
PART FIVE
Departments of Instruction

REGIONAL EMPHASES IN INTERNATIONAL STUDIES

A. Latin America
 FLEN 391 Span 307 Hispanic Film (3 cr)
 FLEN 394 Latin American Literature in Translation (3 cr)
 Hist 435 Latin America: The Colonial Era (3 cr)
 Hist 438 Modern Mexico (3 cr)
 Hist 439 Modern Latin America (3 cr)
 Hist 440 Social Revolution in Latin America (3 cr)
 LAS 410 Human Rights in Latin America (3 cr)
 Span 306 Culture and Institutions of Latin America (3 cr)
 Span 402 Readings: Spanish American Literature (3 cr)
 Span 413 Spanish American Short Fiction (3 cr)

B. Europe
 Engl 342 Survey of British Literature (3 cr)
 FLEN 307 The European Union (3 cr)
 FLEN 313 Modern French Literature in Translation (3 cr)
 FLEN 315 French Cinema (3 cr)
 FLEN 323-324 German Literature in Translation (3 cr each)
 FLEN 393 Spanish Literature in Translation (3 cr)
 Fren 304 Connecting French Language and Culture (4 cr)
 Fren 305 Reading French Texts (3 cr)
 Fren 407 Topics in French Literature (3 cr)
 Fren 408 Topics in French Culture and Institutions (3 cr)
 Germ 304 20th Century German Culture and Society (3 cr)
 Germ 305 Germany in the New Europe (3 cr)
 Germ 306 Introduction to German Literature (3 cr)
 Germ 420 Topics in German Culture and Literature (3 cr)
 Hist 350 European Cultural History, 1600-1800 (3 cr)
 Hist 366 Intellectual and Cultural History of Modern Europe (3 cr)
 Hist 447 The Age of the Renaissance and the Reformation (3 cr)
 Hist 451 Age of the French Revolution (3 cr)
 Hist 452 19th Century Europe (3 cr)
 Hist 455 20th Century Europe (3 cr)
 Hist 466 Eastern Europe Since 1774 (3 cr)
 Hist 467 Russia to 1894 (3 cr)
 Hist 468 Russia and Soviet Union Since 1894 (3 cr)
 Hist 469 Modern France (3 cr)
 Hist 470 Modern Germany, 1815-present (3 cr)
 Poli 381 Western European Politics (3 cr)
 Span 305 Culture and Institutions of Spain or Span 306 Culture and Institutions of Latin America (3 cr)
 Span 401 Readings; Spanish Literature (3 cr)

C. Asia/Africa
 Hist 331 The Age of African Empires (3 cr)
 Hist 457 History of the Middle East (3 cr)
 Hist 462 Japan, 1600 to Present (3 cr)
 Hist 484 Modern China, 1840s to Present (3 cr)
 Hist 485 Chinese Social and Cultural History (3 cr)
 Phil 306 Hindu Thought (3 cr)
 Phil 307 Buddhism (3 cr)
 Phil 308 Confucianism and Taoism (3 cr)
 Poli 383 Middle Eastern Politics (3 cr)

Other courses with an international component may be used as electives with permission of the school director.

Academic Minor Requirements

INTERNATIONAL STUDIES MINOR

In consultation with the school director, students electing this academic minor submit an individual study plan emphasizing (a) international relations, (b) international economics and business, or (c) global resources and development.

1. Basic Credit Requirements. At least 21 credits selected from the list of courses approved by the Martin School of International Affairs, consisting of the following:
 • a minimum of 6 credits chosen from Anth 220, Econ 446, Econ 447, Geog 200, IS 496 (credit study senior seminar), Poli 237
 • a minimum of 6 credits from one of the following issue emphases: international relations, international economics and business, global resources and development (see courses above)
 • a minimum of 6 credits from one of the following regional emphases: Latin America, Europe, Asia (see courses above)

2. Limitations. Of the minimum of 21 credits required, (a) not more than six may be at the lower-division level, (b) no more than nine may be in any single discipline, and (c) no more than six may be in the student’s major field. No course to be counted toward the minor may be taken by directed study without prior approval by the ISC.

3. Language Proficiency. Demonstrated proficiency (equivalent to that required for the B.A. degree) in a modern foreign language. Students who cannot demonstrate proficiency must complete at least four credits in a modern foreign language, but these credits do not count toward the basic 18-credit requirement.

School of Journalism and Mass Media

The University of Idaho School of Journalism and Mass Media combines hands-on professional programs with a liberal arts approach to the study of the mass media. It offers bachelor’s degrees in four areas: journalism, radio-TV-digital media, advertising and public relations. The curriculum is based on a premise that journalists, broadcasters, public relations professionals and advertising executives should be broadly educated. Accordingly, students must take at least 86 of the 128 credits needed for graduation outside the School. Students with degrees from the School of Journalism and Mass Media pursue careers with advertising agencies, radio and television stations and networks, film and video production companies, cable and satellite operations, newspapers and other print and online media, public relations firms, and as media specialists in non-profit agencies, private corporations and within the government. Graduates also pursue advanced degrees.

The School of Journalism and Mass Media provides theoretical and professional preparation in mass media fields and functions as an academic unit of the College of Letters, Arts, and Social Sciences to provide media courses to students in other fields of study and university general education core courses.

The school offers B.A. and B.S. degrees in Advertising, Journalism, Public Relations, and Radio/TV/Digital Media Production. All of the programs provide students with preparation for careers and graduate study.

Students seeking the B.A. degree are required to have a demonstrable proficiency in a foreign language and those seeking the B.S. degree must complete an 18-credit minor or area of emphasis in a subject area outside those taught by the School of Journalism and Mass Media.

Students in the School of Journalism and Mass Media are strongly encouraged to enhance their academic experience by working at the independent student media groups on campus, including The Argonaut newspaper, The Blot magazine, and KUOI-FM. Students are also strongly encouraged to pursue internships at professional media organizations throughout the region.

The School of Journalism and Mass Media also helps to provide information and culture to Idaho and the region through its affiliations with Northwest Public Radio and Idaho Public Television, which have operations located at the Radio-TV Center.

Courses

See part 6 for courses in Journalism and Mass Media (Jamm).

Undergraduate Curricular Requirements

Courses required in all majors in the School of Journalism and Mass Media:

Comm 101 Fundamentals of Public Speaking (2 cr)
Jamm 100 Media and Society (3 cr)
Jamm 121 Media Writing (3 cr)
Jamm 442 Media Law and Ethics (3 cr)
Jamm 445 History of Mass Media (3 cr)

Two of the following courses:

Jamm 340 Cultural Diversity and the Media (3 cr)
Jamm 377 Documentary (3 cr)
Jamm 378 American Television Genres (3 cr)
Jamm 440 Culture and Mass Media (3 cr)
Jamm 443 Media Management and Economics (3 cr)
Jamm 444 Mass Media and Public Opinion (3 cr)
Jamm 449 Media Criticism (3 cr)
Jamm 490 Global Media (3 cr)

Nine credits of electives in Journalism and Mass Media (three of which must be upper division credits)

Note: Jamm 100 and 121 must be completed with a grade of C or better before a major may enroll in any other Journalism and Mass Media courses.

Students in the School are required to complete 15 credit hours within one of the four majors: Advertising, Journalism, Public Relations or Radio/TV/Digital Media Production.

ADVERTISING (B.A. OR B.S. *)

Required course work includes the university requirements (see regulation J-3), the School of Journalism and Mass Media core, and the following:

Jamm 265 Principles of Advertising (3 cr)
Jamm 361 Advertising Creativity (3 cr)
Jamm 364 Advertising Media Planning (3 cr)
Jamm 466 Advertising Campaign Strategy (3 cr)
Jamm 468 The Advertising Agency (3 cr)

(Advertising majors are encouraged to apply for the Advertising Competition Team, Jamm 469.)
JOURNALISM (B.A. OR B.S. *)
Required course work includes the university requirements (see regulation J-3), the School of Journalism and Mass Media core, and the following:
Jamm 225 Reporting (3 cr)
Twelve credits from this list:
Jamm 322 Broadcast News (3 cr)
Jamm 324 News Editing and Production (3 cr)
Jamm 325 Publications Editing (3 cr)
Jamm 420 Public Radio Journalism (3 cr)
Jamm 422 Advanced Broadcast News (3 cr)
Jamm 425 Feature Article Writing (3 cr)
Jamm 427 Public Affairs Reporting (3 cr)
Jamm 428 Environmental Journalism (3 cr)
(Journalism majors are encouraged to pursue their studies across media, including print, broadcast and online journalism.)

PUBLIC RELATIONS (B.A. OR B.S. *)
Required course work includes the university requirements (see regulation J-3), the School of Journalism and Mass Media core, and the following:
Jamm 225 Reporting (3 cr)
Jamm 252 Principles of Public Relations (3 cr)
Jamm 350 Public Relations Writing and Production (3 cr)
Jamm 452 Public Relations Campaign Design (3 cr)
Jamm 458 Public Relations Case Studies and Issues Management (3 cr)

RADIO/TV/DIGITAL MEDIA PRODUCTION (B.A. OR B.S. *)
Required course work includes the university requirements (see regulation J-3), the School of Journalism and Mass Media core, and the following:
Jamm 270 Principles of Radio and Television (3 cr)
Jamm 275 Introduction to Video/Television & Digital Media Production (3 cr)
Jamm 370 Digital Audio Production (3 cr)
Jamm 375 Broadcast Television and Studio Program Production (3 cr)
Jamm 478 Broadcast/Cable/Web Programming (3 cr)

*Candidates for the B.S. degree are required to complete an academic minor or area of emphasis of at least 18 credits outside the School of Journalism and Mass Media. The emphasis area must be approved by the student's academic advisor.

A minimum cumulative university grade-point average of 2.50 is required of students in order to graduate with a degree from the School of Journalism and Mass Media. All students must have completed a minimum of 58 credits to enroll in any upper-division course (numbered 300 or above) offered by the school. Registration preference in all courses is given to School of Journalism and Mass Media majors.

A student who graduates with a major in the School of Journalism and Mass Media must complete a minimum of 128 credits of which a maximum of 12 credits can come from experiential courses (Practicum – Jamm 401, Internship – Jamm 498, Directed Study – Jamm 499). Students can receive no more than 6 credit hours for internship (Jamm 498) experience; students can repeat Jamm 498 one time, but the second internship must be directly supervised by a member of the School of Journalism and Mass Media faculty. Students must obtain approval from the School of Journalism and Mass Media to apply internship credit toward a degree from the school.

Majors cannot apply more than 42 credits in courses in Journalism and Mass Media toward the 128-credit degree requirement and are required to take no fewer than 65 hours in the liberal arts and sciences.

A student may not double major in the School of Journalism and Mass Media.

Academic Minor Requirements

ADVERTISING MINOR
Jamm 100 Media and Society (3 cr)
Jamm 121 Media Writing (3 cr)
Jamm 265 Principles of Advertising (3 cr)
Jamm 361 Advertising Creativity (3 cr)
At least two of the following (6 cr):
Jamm 364 Advertising Media Planning (3 cr)
Jamm 442 Media Law and Ethics (3 cr)
Jamm 444 Mass Media and Public Opinion (3 cr)
Jamm 468 The Advertising Agency (3 cr)

JOURNALISM MINOR
Jamm 100 Media and Society (3 cr)
Jamm 121 Media Writing (3 cr)
Jamm 225 Reporting (3 cr)
Jamm 442 Media Law and Ethics (3 cr)
Two journalism-related courses to meet specific career goals (6 cr)

PUBLIC RELATIONS MINOR
Jamm 100 Media and Society (3 cr)
Jamm 121 Media Writing (3 cr)
Jamm 252 Principles of Public Relations (3 cr)
Jamm 350 Public Relations Writing and Production (3 cr)
Jamm 452 Public Relations Campaign Design (3 cr)
Jamm 444 Mass Media and Public Opinion (3 cr)

RADIO/TV/DIGITAL MEDIA PRODUCTION MINOR
Jamm 100 Media and Society (3 cr)
Jamm 121 Media Writing (3 cr)
Jamm 270 Principles of Radio and Television (3 cr)
Jamm 275 Introduction to Video/Television & Digital Media Production (3 cr)
Jamm 370 Digital Audio Production (3 cr)
Jamm 478 Broadcast/Cable/Web Programming (3 cr)

Department of Landscape Architecture

Stephen R. Drown, Dept. Chair (207 Art and Architecture 988-2481; phone 208/885-7448; larc@uidaho.edu; http://www.uidaho.edu/larch); Faculty: Barbara J. Andersen, Gary Austin, Stephen R. Drown, Toru Otawa. Affiliate Faculty: Donald H. Brigham II, Dave McCarroll.

Landscape architecture is a design profession dedicated to the stewardship of the natural and cultural environment. Professional practice is diverse with career opportunities in the traditional landscape architecture firm, the design/build industry, interdisciplinary planning, engineering or architecture firms, urban, regional and national public agencies as well as non-governmental organizations such as land and watershed trusts.

Landscape architects practice design at many levels, from residential gardens to large botanic gardens and arboreta, from small commercial sites to large mixed-use community complexes and from neighborhood park design to regional scale, open space planning. Landscape architects restore and heal, working to regenerate a fostor positive landscape change, restoring older established communities, urban riparian corridors and historic landscapes. Some also work with caregivers in the design of therapeutic landscapes for health and education facilities. Many specializations are possible: golf course design, stormwater design and management, landscape preservation, community design, eco-resort design, national and international land planning, habitat preservation and restoration, urban design, landscape interpretation and cultural preservation, campus design, garden design, zoo design, landscape art and computer assisted landscape modeling and visualization. The landscape architect’s unique expertise lies in the development of a systematic and analytical approach to solving land-use problems. Wherever people and landscape interface, landscape architects practice and wherever landscape architects practice they are engaged in interdisciplinary, cross-cultural efforts to create “place” and preserve the integrity of the landscape

Landscape architectural education at the University of Idaho is enhanced by the ecology of the Inland Northwest landscape and the academic diversity of a land grant institution. Set within the scenic Palouse Hills ecoregion of the Columbia Plateau and the Palouse watershed, the University of Idaho provides a rich context for studying landscape architecture from a bioregional and watershed perspective. The College of Letters Arts and Social Sciences, the home of the Landscape Architecture Department, provides many opportunities for collaboration with students and faculty in architecture, arts and humanities and the social sciences. Landscape architecture students also take courses in the College of Natural Resources and the College of Engineering. Students in the program learn that any design intervention must consider the influence and the critical characteristics of the larger landscape and that traditional design education is a necessary component of successful practice.

The department offers the professional Bachelor of Landscape Architecture (BLA) degree as well as the Master of Science, Landscape Architecture (MSLA). The four-year BLA professional program is the only landscape architecture program in the State of Idaho and is fully accredited by the American Society of Landscape Architects – an important factor to consider when applying for the Landscape Architecture Registration Exam (LARE). Students begin the program in their first year with introductory lecture courses and planting design studios. Studios in the following three years expose the student to several aspects of professional practice including: site suitability analysis, design process and critical thinking, design narrative and metaphor, sustainable design best practices, interdisciplinary coordination, design and planning, applied landscape ecology, environmental psychology, riparian and wetlands design, open space planning, as well as master planning, design development and construction documents process. Students in their final fourth year studio select a topic related to landscape architecture and complete an undergraduate thesis. Other program courses in landscape graphic, landscape construction, stormwater design, irrigation and water conservation, geographic information science (GIS), computer aided design (CAD), and landscape architecture history and theory are integrated into the design studio experience, providing tools and substance for different design projects. Additional required electives in architecture, art, engineering, natural resources, biology, soils and geology further enhance the student’s professional undergraduate education.

The landscape architecture program provides several unique opportunities:

- Qualified transfer students who enter the undergraduate program with a four-year baccalaureate degree in another discipline may apply for the three-year BLA/MSLA option. All other qualified students may apply for an additional one-year, 30 credit hour MLA degree.
- Students have the opportunity to participate in the department’s Summer Study Abroad Program at Casa Wallace in Crescologno, Italy. This six week, 11-credit hour program may be used as a substitute for one of the third year studio and the required urban theory course.
- All landscape architecture majors are required to take part in two field trips in the third and fourth year of the program. These weekend long trips are usually to Northwest cities such as Portland, Seattle and San Francisco. Often one of these trips is substituted by a visit to the American Society of Landscape Architects’ (ASLA) national conference when the meeting is held in the western region of the country.
- The majority of studio projects serve as the core of the department’s outreach mission with students collaborating with professionals or University of Idaho architecture students on design and planning projects for communities in the state and region.
Academic Minor Requirements

LANDSCAPE ARCHITECTURE MINOR

LArc 155 Introduction to Landscape Architecture I (1 cr)
LArc 389 History of Landscape Architecture (3 cr)
LArc 480 Issues for the Emerging Landscape (3 cr)

Courses chosen from the following (11 cr):
LArc 156 Intro to Landscape Architecture II (1 cr)
LArc 210 Computer Applications in Landscape Architecture (2 cr)
LArc 245 Landscape Graphics I (3 cr)
LArc 259 Landscape Architecture I (6 cr) (with instructor’s perm)
LArc 268 Landscape Construction I (2 cr)
LArc 288 Plant Materials I (3 cr)
LArc 289 Plant Materials II (4 cr)
LArc 368 Landscape Architecture Construction III (2 cr)
LArc 395 GIS in Land Planning (3 cr)
LArc 495 Computer-Aided Regional Landscape Planning (3 cr)

Graduate Degree Program

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Landscape Architecture. See the College of Graduate Studies section of Part 4 for the general requirements applicable to the degree.

Master of Science. The Department of Landscape Architecture offers the M.S. degree with a major in landscape architecture in collaboration with the Department of Horticulture and Landscape Architecture at Washington State University at Pullman and the Interdisciplinary Design Institute (IDI) at Washington State University at Spokane. The program focuses on the bioregional and cultural landscape with opportunities to explore other areas of landscape architecture scholarship and theory. Students may enroll at any of the three locations and take advantage of the faculty, facilities, and other resources offered at the other two. Graduate-level courses are cross listed and, where appropriate, offered electrically.

A minimum one year, 30 credit hour course of study that includes a thesis is required. Information on specialization tracks and the opportunity to undertake the program as an additional year beyond the 4-year accredited B.L.Arch. degree can be obtained from the department.

Program in Latin American Studies

The program in Latin American studies is a multidisciplinary major leading to the B.A. degree. The appeal of this field of study has greatly increased over the last decade, due to the region’s growing economic and political importance. A degree in the major is appropriate for employment in many fields, among which are the diplomatic service and overseas business as well as graduate study in various disciplines. Students electing the major will also broaden their awareness of non-Western cultures and history.

Courses

See Part 6 for courses in Latin-American Studies (LAS).

Undergraduate Curricular Requirements

LATIN-AMERICAN STUDIES (B.A.)

Required course work includes the university requirements (see regulation J-3) and:

Hist 435 Latin America: The Colonial Era (3 cr)
Hist 438 Modern Mexico or 439 Modern Latin America (3 cr)
Span 306 Culture and Institutions of Latin America (3 cr)
Span 401-402 Readings: Spanish Literature and Spanish American Literature (6 cr)
Soil 205 The Soil Ecosystem (3 cr)
Electives to total 133 cr for the degree, of which at least 6 cr must be from psychology and sociology for transfer students from other universities.

Recommended electives:
Art 121 Design Process I (2 cr)
Art 380 Digital Imaging (3 cr)
CSS 470 Interdisciplinary Natural Resource Planning (3 cr)
CSS 486 Public Involvement in Natural Resource Management (3 cr)
Fish 430 Riparian Ecology and Management (3 cr)
For 235 Society and Natural Resources (3 cr)
For 429 Landscape Ecology (2 cr)
GeoG 180 Geospatial Graphics (3 cr)
Geol 335 Geomorphology (3 cr)
LArc 364 Summer Study Abroad Design Studio (6 cr)
LArc 382 Landscape, Language and Culture (2 cr)
LArc 390 Italian Hill Towns and Urban Centers (3 cr)
LArc 495 Computer-Aided Regional Landscape Planning (3 cr)
Phil 452 Environmental Philosophy (3 cr)
Vtd 245 Advanced Modeling (3 cr)
Vtd 366 Animation (3 cr)
Vtd 371 Interactive Technologies (3 cr)

*Students are strongly urged to elect those courses marked with an asterisk and to take Hist 101-102 (History of Civilization) in their freshman year.
Department of Materials Science and Engineering

Materials Science and Engineering Objectives and Mission Statement:
The educational objectives of our Materials Science and Metallurgical Engineering Programs are to graduate students with a B.S. degree and beyond (M.S. and Ph.D.) who will:

1. Have a solid foundation in the principles of mathematics and science and can apply these principles to formulating and solving materials science and engineering and metallurgical engineering problems.
2. Be current in modern technology and in the tools of materials science and metallurgical engineering.
3. Have a broad education to understand current economic and societal issues associated with materials science and metallurgical engineering projects and their impacts, and appreciate the engineer’s responsibility to uphold public and occupational health and safety.
4. Have the ability to communicate effectively with engineers and non-engineers while working independently or on teams to develop engineering solutions.
5. Have an understanding of their professional and ethical responsibilities as metallurgical engineers and realize the importance of life-long learning and continued professional growth.

Our Materials Science and Engineering Program’s educational mission is to produce graduates who are equipped to begin competitive and productive careers in their engineering profession; who can define and solve materials science and metallurgical engineering problems to meet desired needs and produce societal benefits; and who understand the importance of working responsibly, acting ethically and pursuing professional growth.

Although the department emphasizes economics and technology, engineering training also includes environmental concerns, ethical behavior, and safety concerns. As technological and engineering fields, these professional disciplines offer tremendous opportunities for the person who wishes to become involved in the application of materials science and engineering, often in sophisticated designs, to the preservation and enhancement of our society.

The department provides the technical training to prepare our graduates for productive and rewarding engineering careers.

The department continuously strives to improve our programs. For example, at the B.S. level surveying constituency groups such as current students, graduating seniors, alumni and their employees, and the department advisory board does this. The information gathered is then used in a feedback fashion to improve the quality of individual courses and the programs in general.

The laboratory facilities for materials science and engineering along with metallurgical engineering include: state of the art magnetic and thin film materials characterization, thin film sputtering and deposition, indium coated plasma processing, electron cyclotron resonance plasma dry etching, chemical mechanical planarization, mechanical alloying, vacuum furnace furnace, clean room, electron beam lithography, electrochemistry, computer chip and biochip design, micro-electromechanical systems (MEMS), and other state of the art technologies including optical and transmission electron microscopy, scanning electron microscopy, x-ray diffraction, differential and thermogravimetric analysis, computational materials science, etc. These laboratories provide an understanding of nano scale technology, magnetic, electronic, bioactive, ceramic, polymeric, metallic and intermetallic materials.

Our faculty has proven their qualifications by their credentials in national and international professional societies. They are well known by their publications, research, and contract work. Most students find employment in the summer or on a cooperative basis, so that they can become more intimately involved in the disciplines that they are studying. Exposure to the department faculty members provides students with a one-to-one interaction and an expertise that enables them to be truly competitive when they enter the real world.

The program is designed to take advantage of the other excellent facilities of the university and other engineering disciplines. The program of study also includes involvement with practical aspects of professional practice by exposure to the regional industries and research groups through field trips, guest speakers, study problems, and work time during the summer. Materials/metallurgical operations in the Northwest are plentiful and modern.

The department offers the Master of Science (M.S.) degree in materials science and engineering, and metallurgical engineering, metallurgy, and the Doctor of Philosophy (Ph.D.) degree in materials science engineering. These programs include a mix of theoretical and practical study most appropriate to each student. Many studies include mathematical, statistical, and computer applications to specific processes or investigations; and excellent computer facilities are readily available. Some students prefer to work on applied problems that are presented by industry or research establishments in the area, generally with funding from outside sources. Studies can be tailored to interest individuals.

These advanced studies are financed by research grants, an industry sponsor, or occasionally by departmental funding. They are designed to train the individual in research methods and investigative procedures that will later enhance his or her ability in industrial or research environments or in teaching. The master’s program involves both class work and research; the latter being designed to familiarize the student with research methods. In the doctoral program, the student is expected to break new ground and advance the field both scientifically and to maintain the competitive technological lead enjoyed in the U.S. for so many years. The master’s program generally requires 12 to 18 months beyond the baccalaureate degree and the doctoral program usually entails at least three years beyond the baccalaureate degree.

Most students find employment in the summer or on a cooperative basis, so that they can become more intimately involved in the processes that they are studying. The total program enables the person to leave the university with confidence, either as a baccalaureate student or at the master’s or doctoral level, with the capability of a truly competent professional. Metallurgical and materials engineers have a wide variety of career options. This ranges all the way from primary metals/ceramics/polymer production through advanced materials industries. There are opportunities in technological areas with names and processes not even dreamed of just a few decades ago: plasma extractive processing, ceramic powder synthesis, bio-corrosion, magnetic recording media, and electron microscopy. The materials produced are formed into all of the products we use in our daily lives, such as our cars, home appliances, farm equipment, and electrical and electronic equipment. Some of our graduates are employed as engineering consultants or by government agencies. In fact, everything we touch, with the exception of agricultural or forestry products, has had its origin as a mineral in the earth. Metallurgical engineers and materials scientists also develop new products to fit specific demands, such as materials to withstand high stress, high temperature environments, or the extreme cold of outer space.

Courses
See Part 6 for courses in Materials Science & Engineering (MSE), and Metallurgical Engineering (Met), and Mining Engineering-Metallurgy (MnMt).

Undergraduate Curricular Requirements

MATERIALS SCIENCE AND ENGINEERING (B.S.M.S.E.)

Required course work includes the university requirements (see regulation J-3) and the following:

Astr 301. Studies in American Culture or Phil 103 (3 cr)
Chem 111. Principles of Chemistry I (4 cr)
Chem 112. Principles of Chemistry II (5 cr)
Chem 305. Physical Chemistry (3 cr)
CS 112. Introduction to Problem Solving and Programming (3 cr)
Econ 201 or 202 Principles of Economics or Econ 272 Foundations of Economic Analysis (3-4 cr)
Engl 102. Essay Writing (3 cr)
Engl 317. Technical Writing (3 cr)
Engr 105. Engineering Graphics (2 cr)
Engr 210. Engineering Statics (3 cr)
Engr 240. Introduction to Electrical Circuits (3 cr)
Math 170, 175. Analytic Geometry and Calculus (11 cr)
Math 310. Ordinary Differential Equations (3 cr)
MSE 101. Intro to Metallurgy and Materials Science (2 cr)
MSE 201. Elements of Materials Science (3 cr)
MSE 308. Thermodynamics of Materials (3 cr)
MSE 309. Transport Phenomena for Design (4 cr)
MSE 313. Physical Metallurgy (4 cr)
MSE 341. Particulate Materials Processing (4 cr)
MSE 412. Mechanical Behavior of Materials (3 cr)
MSE 413. Phase Equilibria in Materials (3 cr)
MSE 414. Process Design (3 cr)
MSE 415. Materials Selection and Design (3 cr)
MSE 417. Instrumental Analysis (3 cr)
MSE 423. Corrosion (3 cr)
MSE 427. Ceramic Materials (3 cr)
MSE 430. Electronic, Optical, and Magnetic Properties of Materials (3 cr)
MSE 432. Fundamentals of Thin Film Fabrication (3 cr)
MSE 434. Fundamentals of Polymeric Materials (5 cr)
Phys 211, 212. Engineering Physics I, II (8 cr)
Stat 301. Probability and Stat or CE 402 Applied Numerical Methods for Engineers (3 cr)
Technical electives (9 cr)

The minimum number of credits for the degree is 131, exclusive of Engl 101 and mathematics courses numbered lower than Math 170.

METALLURGICAL ENGINEERING (B.S.Met.E.)

As part of a cooperative program with Oregon State University, Oregon resident students may enroll in this program and will NOT be charged out-of-state tuition by UI.

Note: All students are encouraged to take the eight-hour FE examination the last semester of their senior year, leading to a Professional Engineering license.

Required course work includes the university requirements (see regulation J-3) and the following:

Astr 301. Studies in American Culture or Phil 103 (3 cr)
Chem 111. Principles of Chemistry I (4 cr)
Chem 112. Principles of Chemistry II (5 cr)
Chem 305. Physical Chemistry (3 cr)
CS 112. Introduction to Problem Solving and Programming (3 cr)
Econ 201 or 202 Principles of Economics of Econ 272 Foundations of Economic Analysis (3-4 cr)
Engl 102. College Writing and Rhetoric (3 cr)
Engl 317. Technical Writing (3 cr)
Engr 105. Engineering Graphics (2 cr)
Engr 210. Engineering Statics (3 cr)
Engr 240. Introduction to Electrical Circuits (3 cr)
Academic Minor Requirements

MATERIALS SCIENCE AND ENGINEERING MINOR

MSE 201 Elements of Materials Science or ME 281 Engineering Materials (3 cr)
And 15 or from the following courses (Note: If completing both the Metallurgical Engineering and the Materials Sciences and Engineering minors, must have 12 unique credits towards each minor):
Met 344 Hydroprocessing of Materials (4 cr)
MSE 313 Physical Metallurgy I (4 cr)
MSE 341 Particulate Materials Processing (4 cr)
MSE 407 Materials Fabrication (3 cr)
MSE 412 Mechanical Behavior of Materials (3 cr)
MSE 430 Electrical, Optical, and Magnetic Properties of Materials (3 cr)
MSE 432 Fundamentals of Thin Film Fabrication (3 cr)
Phy 212 Engineering Physics I (3 cr)

MATERIALS SCIENCE AND ENGINEERING MINOR

MSE 201 Elements of Materials Science (3 cr)
MSE 281 Mechanical Behavior of Materials (4 cr)
And 15 or from the following courses (Note: If completing both the Metallurgical Engineering and the Materials Sciences and Engineering minors, must have 12 unique credits towards each minor):
Met 313 Physical Metallurgy I (4 cr)
Met 341 Particulate Materials Processing (4 cr)
Met 344 Hydroprocessing of Materials (4 cr)
Met 407 Materials Fabrication (3 cr)
Met 412 Mechanical Behavior of Materials (3 cr)
Met 421 Corrosion (4 cr)
Met 442 Pyroprocessing of Materials (4 cr)
Phys 211, 212 Engineering Physics I, II (8 cr)

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Materials Science and Engineering. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Science. General M.S. requirements apply. Majors are available in materials science and engineering, and metallurgical engineering. As a preparation for admission to a degree program the candidate should have the equivalent undergraduate degree or a B.S. degree in engineering. Special programs can be developed from almost any basic degree in which deficiencies in the engineering studies are removed by undergraduate or special studies. Both thesis and non-thesis options are available, the latter involving an examination, project or presentation. A thesis of 6 to 10 credits is required for the thesis option.

Master of Science degrees in metallurgical engineering, and materials science and engineering are offered through the Engineering Outreach program. Degrees through Engineering Outreach have both thesis and non-thesis options, but otherwise have the same requirements (i.e., 30 credits) as degree programs offered on the Moscow campus.

Doctor of Philosophy. General Ph.D. requirements apply. A major is available in materials science and engineering. Ph.D. candidates are expected to have the same prerequisites as specified for the Master of Science degree.

Department of Mathematics

Monte Boisen, Dept. Chair (300 Carol Ryrrie Brink Hall 83844-1103; phone 208/885-6742; math@uidaho.edu/Math); Faculty: Arie Bialostocki, Dora Bialostocki, Monte Boisen, Willy Brandal, Jr., John I. Cobb, Frank Gao, Paul Joyce, Stephen M. Krone, Mark J. Nielsen, Ralph J. Neuhaus, Cynthia M. Piez, Tanush Shasha, Hunter S. Svenly, David A. Thomas, Kirk C. Trigsted, Hong Wang.

The Department of Mathematics offers a wide variety of majors and minors. In addition to the degree programs described below, many students pursue joint majors in mathematics and other disciplines that utilize mathematics. The most popular of these are mathematics/computer science and mathematics/physics. A joint major is obtained by completing the degree requirements for both majors. Minor programs are described below under “Curricular Requirements.”

At the graduate level, the department offers the M.S., M.A.T., and Ph.D. degrees in mathematics. Graduate training in mathematics prepares students for careers in teaching or research and development. Employment opportunities include universities, colleges, industries, and government agencies. The Ph.D. is generally required for teaching and research at the university level. The M.S. qualifies students to teach at junior colleges, some four-year colleges, and for many positions in industry. The M.A.T. prepares students for secondary teaching and for some junior college positions. A baccalaureate degree in mathematics is generally required for admission to the graduate program. However, many students of science and technology can be admitted to the program with few undergraduate deficiencies.

The need for persons with quantitative skills is increasing dramatically as the world grows more complex. Mathematicians and statisticians have employment opportunities in business, industry, government, and teaching. Training in mathematics, with an emphasis on problem solving, analysis, and critical thinking, is excellent preparation for graduate programs in engineering, science, business, or law. In fact, persons planning careers in any profession will find that their opportunities enhanced by the study of mathematics and statistics. The programs are intended to provide students just such enhancement. It is generally the case that the person who develops his or her quantitative skills in higher education will have the ability to attack many of the most difficult problems of technology, science, the social sciences, business, industry, and government become more and more dependent on precise analysis and the extraction of information from large quantities of data. Environmental problems, for example, require careful analysis by persons (or teams of persons) with skills in mathematics, statistics, and computer science as well as in biology, geology, physics, and many other fields.

The demand for teachers of mathematics is greater now than ever before. Nearly every school district in the nation has a shortage of teachers trained in mathematics. UI offers a broadly based program leading to teacher certification, through enrollment either in the Department of Mathematics or in the College of Education and completion of a major or minor in mathematics.

Mathematics. The body of mathematical knowledge that has grown over the past 2,000 years is a magnificent human achievement, and it is growing more rapidly than ever before. The unifying systematic and creative thought developed in the study of mathematics is recognized as invaluable in most areas of human endeavor. University of Idaho's B.S. program in mathematics is designed to introduce the student to the excitement of mathematical ideas; they allow the maximum possible freedom to explore those areas of mathematics that the student finds most interesting.

The department has a sound program in mathematics with a proven record of preparing students for successful graduate study at the very best universities in the nation. There are sequences of courses in calculus, advanced calculus, linear algebra, differential equations, number theory, abstract algebra, topology, geometry, statistics, complex analysis, computer algorithms and mathematical analysis. Students of mathematics who do not go to graduate school are well prepared for industrial, governmental, or teaching jobs if they have some additional exposure to computer science, education, or one of the natural, social, or applied sciences.

Applied Mathematics. Many of the greatest achievements in mathematics were inspired by problems in the natural sciences; today mathematics has wide application in both the natural and social sciences. Applied mathematics provides a broad arena for intellectual and creative impulses of people. The applied options in the mathematics B.S. degree allows a choice of the actuarial science, computation, operations research, modeling, or statistics options. Each of these is discussed briefly below. Many students interested in applications of mathematics pursue a joint major in some other department.

Applied--Actuarial Science Option. An actuary applies mathematics and statistics to forecasting problems. Actuaries are employed by financial institutions, government, insurance companies, and international corporations. The subject matter is diverse as economic fluctuations, population demographics, resource consumption, medical insurance rates, and retirement needs. Actuaries are in great demand and have many interesting career opportunities leading to high median salaries. Promotion to the actuarial profession is governed by a series of examinations administered by the actuarial societies. The first two examinations can be taken by undergraduates, and the rest are usually taken while working in industry. The first two examinations are given locally. Our actuarial science option, review seminars, and summer internship program with actuarial companies prepare students for these tests.

Applied--Computation Science Option. The advent of computers has changed nearly every aspect of society. As computation has become both more important and more feasible, it has inspired the development of several fields of study within mathematics. The computation option of the applied mathematics degree provides training in the mathematics applicable to computer science and technology. Many students pursue this option jointly with a computer science major.

Applied--Operations Research Option. This option is designed to prepare students for careers in business planning and management. The emphasis of study is on the mathematics used in modeling and analysis of real-world problems. This program is an excellent preparation for students planning to pursue an MBA degree.

Applied--Modeling Option. The role of modeling is essential in modern interdisciplinary research involving mathematics and the sciences. This option gives students an opportunity to learn about mathematical. It provides an opportunity for students to create a very strong double major program and provides ideal preparation for future graduate training in the sciences.

Applied--Statistics Option. Statistics encompasses course work in designing and analyzing experiments, planning and interpreting surveys, and exploring relationships among variables observed on social, physical, and biological phenomena. The applied nature of the program allows the student to develop data analysis tools for such diverse areas as business and economics, crop and animal production, biological sciences, human behavior, education, engineering, and natural resource management.

Faculty members in the Department of Mathematics will be happy to answer questions about specific programs and courses. Such questions can also be addressed to the department chair (Brink 300; phone 208/885-6742).
Courses
See Part 6 for courses in Mathematics (Math).

Undergraduate Curricular Requirements

MATHEMATICS (B.S.)

Required course work includes the university requirements (see regulation J-3) and:

Basic courses:
Math 170, 175 and 275 Analytic Geometry and Calculus (11cr)
Math 330 Linear Algebra (3cr)

And one of the following options:

A. General Option
This is the traditional curriculum in Mathematics. It is more mathematically rigorous than the other options. It is especially good for secondary education majors and students intending to go to graduate school in Mathematics or other sciences.

Math Courses:
Math 215 Seminar in the Topology of the Plane (3 cr)
Math 461 Abstract Algebra (3 cr)
Math 471 Advanced Calculus (3 cr)
Math 472 Abstract Algebra or Math 472 Advanced Calculus (3 cr)
Math electives in courses numbered 303-499 or Stat 301 at least 6cr of which are in courses numbered 401 and above (12 cr)

Supporting Courses:
Physics 211, 212 Engr Physics I, II and either Physics 213 or an upper division physics course (except Phys 371) with a Math 170 prerequisite (to acquaint the students with an area in which math is systematically applied; upon approval of the department, substitution of other courses to meet this requirement may be allowed (8 cr)

B. Applied—Statistics Option
The emphasis is on the design and analysis of experiments. With a major or minor in another department this is an excellent preparation for work in industry or for graduate school in Statistics.

Math Courses:
Math 451 Probability Theory (3 cr)
Math 452 Mathematical Statistics (3 cr)
Math 453 Stochastic Models (3 cr)
At least two courses from the following (6 cr):
Math 395 Analysis of Algorithms (3 cr)
Math 426 Discrete Optimization (3 cr)
Math 432 Numerical Linear Algebra (3 cr)
Math 433 Numerical Analysis (3 cr)
Math 471-472 Advanced Calculus (6 cr)

Supporting Courses:
CS 112 Introduction to Problem Solving and Programming or CS 120 Computer Science I (3-4 cr)
Stat 401 Statistical Analysis (3 cr)
Stat 423 Beginning SAS Programming (1 cr)
One course selected from the following (3-4 cr):
Stat 251 Statistical Methods (3 cr)
Stat 271 Statistical Inference and Decision Analysis (4 cr)
Stat 301 Probability and Statistics (recommended) (3 cr)
At least one course from the following (3 cr):
Stat 422 Sample Survey Methods (3 cr)
Stat 507 Experimental Design (3 cr)
Stat 550 Regression (3 cr)
Stat 514 Nonparametric Statistics (3 cr)
Stat 519 Multivariate Analysis (3 cr)
Econ 353 Quantitative Economics and Forecasting (3 cr)
Approved electives in fields where statistics is applied (not to be in stat courses) (6 cr)

C. Applied—Computation Option
The emphasis is on the mathematics related to computer science and technology. With a major or minor in computer sciences this is a good preparation for work in the computer industry.

Math courses:
Math 176 Discrete Mathematics (3 cr)
Math 395 Analysis of Algorithms (3 cr)
Math 426 Discrete Optimization (3 cr)
Math 433 Numerical Analysis (3 cr)
At least one course from the following (3 cr):
Math 310 Ordinary Differential Equations (3 cr)
Math 326 Linear Programming (3 cr)
Math 346 Applied Combinatorics (3 cr)
Math 376 Discrete Mathematics II (3 cr)
Math 385 Theory of Computation (3 cr)
Stat 301 Probability and Statistics (3 cr)

Supporting courses:
CS 112 Introduction to Problem Solving and Programming or CS 120 Computer Science I (3-4 cr)
CS 121 Computer Science II (3 cr)

D. Applied—Modeling Option
The emphasis is on the mathematics used to model phenomena in the sciences. With a second major in a science this provides ideal preparation for graduate school.

Math courses:
Math 310 Ordinary Differential Equations (3 cr)
Math 451 Probability Theory (3 cr)
Math 437 Mathematical Biology or WLF 504 Ecological Modeling
Five Additional courses from the following:
Math 326 Linear Programming (3 cr)
Math 346 Applied Combinatorics (3 cr)
Math 371 Mathematical Physics (3 cr)
Math 426 Discrete Optimization (3 cr)
Math 433 Numerical Analysis (3 cr)
Math 452 Mathematical Statistics (3 cr)
Math 452 Mathematical Statistics (3 cr)
Math 480 Partial Differential Equations (3 cr)
Math 471 Advanced Calculus (3 cr)
Math 472 Advanced Calculus (3 cr)
Stat 301 Probability and Statistics (3 cr)

Supporting courses:
CS 112 Introduction to Problem Solving and Programming or CS 120 Computer Science I (3-4 cr)
Stat 301 Probability and Statistics or Math 452 Mathematical Statistics (3 cr)
Two courses at the 300 level or above in one area of science, engineering, or other quantitative area.

E. Applied—Actuarial Science Option
This curriculum provides the necessary background to become an actuary and work in the insurance industry.

Math courses:
Math 310 Ordinary Differential Equations (3 cr)
Math 451 Probability Theory (3 cr)
Math 452 Mathematical Statistics (3 cr)
Math 455 Applied Actuarial Science II (0 cr)
Three math courses numbered above 400, excluding Math 513-519 (9 cr)

Supporting courses:
Acct 201-202 Introduction to Accounting (6 cr)
Bus 301 Financial Management (3 cr)
Bus 364 Insurance (3 cr)
CS 112 Introduction to Problem Solving and Programming or CS 120 Computer Science I (3-4 cr)
Econ 201, 202 Principles of Economics (6 cr)
Stat 401 Statistical Analysis (3 cr)
Stat 423 Beginning SAS Programming (1 cr)
One course selected from the following (3 cr):
Bus 332 Quantitative Methods in Business (3 cr)
Bus 405 Portfolio Management (3 cr)
Econ 351 Intermediate Macroeconomic Analysis (3 cr)
Econ 352 Intermediate Microeconomic Analysis (3 cr)
One course selected from the following (3-4 cr):
Stat 301 Probability and Statistics (recommended) (3 cr)
Stat 251 Statistical Methods (3 cr)
Stat 271 Statistical Inference and Decision Analysis (4 cr)
One course selected from the following (3 cr):
Econ 353 Quantitative Economics and Forecasting (3 cr)
Stat 433 Econometrics (3 cr)
Stat 550 Regression (3 cr)
Stat 525 Econometrics (3 cr)

F. Applied—Operations Research Option
The emphasis is on the mathematics used in the modeling and analysis of problems from business and industry.

Math courses:
Math 326 Linear Programming (3 cr)
Math 346 Applied Combinatorics (3 cr)
Math 426 Discrete Optimization (3 cr)
Math 451 Probability Theory (3 cr)
Math 453 Stochastic Models (3 cr)
At least one course from the following (3 cr):
Math 310 Ordinary Differential Equations (3 cr)
Math 376 Discrete Mathematics II (3 cr)
Math 452 Mathematical Statistics (3 cr)
Stat 401 Statistical Analysis (3 cr)
Any other 400-level math course

Supporting courses:
Acct 202 Introduction to Managerial Accounting (3 cr)
Bus 370 Production/Operations Management (3 cr)
CS 112 Introduction to Problem Solving and Programming or CS 120 Computer Science I (3-4 cr)
Stat 271 Statistical Inference and Decision Analysis or Stat 301 Probability and Statistics (3-4 cr)
Four of the following courses (two must be above 400) (12 cr):
Bus 332 Quantitative Methods in Business (3 cr)
Bus 350 Management Information Systems (3 cr)
Bus 355 Systems Analysis and Design (3 cr)
Bus 378 Project Management (3 cr)
Bus 439 Systems and Simulation (3 cr)
Bus 456 Quality Management (3 cr)
Bus 472 Operations Planning and Scheduling (3 cr)
Econ 453/Stat 433 Econometrics (3 cr)
Academic Minor Requirements

MATHMATICS MINOR
Math 170, 175 Analytic Geometry and Calculus (8 cr)
Six math courses chosen from Math 275, Stat 301, and math courses numbered 303-499 (18 cr)

Graduate Degree Programs
Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Mathematics. See the College of Graduate Studies section of Part 4 for the general university requirements applicable to each degree.

Master of Science in Mathematics. General M.S. requirements apply. Under advisement of the major professor and committee, a broadly based study plan is designed taking into consideration the candidate’s interests and teaching needs. The plan should include mathematics courses from several pure mathematics areas, for example, algebra, topology, analysis, geometry, and number theory. A three-hour written examination is given over the courses in the study plan. Students entering the M.A.T. program will be considered deficient if they have not completed a standard sequence in calculus (equivalent to Math 170-175-275).

The M.A.T. degree in mathematics may also be obtained via distance learning. This distance learning program is designed to meet the needs of in-service teachers. The requirements outlined above apply, but here the study plan is designed using courses that are available by video or in summer programs on-campus or off-campus sites.

Doctor of Philosophy. In addition to the general university requirements for the Ph.D., the department requires that 36 credits of graduate-level mathematics be completed or transferred. The department requires the ability to translate into English from mathematical work in one of the languages: Chinese, French, German, and Russian; a substitute language is sometimes allowed.

The preliminary examination must be taken after the language requirement and most of the study plan have been completed and before the dissertation is started. The preliminary examination is composed of three parts, each of which covers one of the areas: algebra, analysis, topology, geometry, combinatorics, and probability/mathematical statistics. At least two of these parts must be in the first three areas listed. There are given all in a one-week period and are graded by a departmental committee that may recommend additional testing in one or more of the specific areas if satisfactory results are not obtained. The committee may also recommend a final examination in certain areas by the supervisory committee.

The dissertation must be of original research nature and be in an area spanned by the research interests of the major professor. A final examination that amounts to a defense of the dissertation is required.

Department of Mechanical Engineering

Mechanical engineering is concerned with the application of the principles of science and technology in the creation of products and systems to benefit mankind in several areas including: (1) the conversion of energy from natural sources to provide power, light, heating and cooling, and transportation; (2) the design and production of machines to extend and to lighten the burden of human work; (3) the creative planning, design, development, and operation of systems for utilizing energy, machines, and other resources; (4) the production of manufactured goods; and (5) the interface between technology and society.

Mechanical engineering is broad in scope and provides a wide range of careers for trained professionals in industry, business, government, and universities. Positions are available in design, testing, manufacturing, research, development, operations, system analysis, marketing, and administration. Mechanical engineers are often involved as professional team members in economic and social-humanistic matters and are responsible for the interaction of technical advances with social and environmental concerns.

Mechanical Engineering Objective Statement
(Changes subsequent to this publishing may be viewed at www.uidaho.edu/eng/ME)

Undergraduate Program: Our objectives are based on the needs of our constituencies. We focus on the professional and personal development of our students. We continuously assess and improve our ABET accredited undergraduate curriculum. Our department is a college and university leader in the use of innovative teaching methods, in horizontal and vertical curriculum integration, and in the use of applied design projects. Students interact frequently and personally with the faculty and are mentored and advised by the faculty. The strengths of our program are a strong engineering science foundation as demonstrated by outstanding Fundamentals of Engineering Exam performance; a strong design experience featuring design and construction of several projects; a strong laboratory experience featuring hands-on skills, state-of-the-art instrumentation, broad exposure to instrumentation and principles, and a senior project; multiple teamwork experiences, including the opportunity to lead and to serve in team roles; substantial use of appropriate engineering software and tools; and multiple communication experiences including written and oral presentations.

Students in our program develop:
• The ability to use modern engineering techniques, skills, and tools to identify, formulate, model, and solve problems by applying mathematics, science, and engineering while considering how contemporary global and societal issues impact the solutions.
• The ability to design and conduct experiments and to analyze and interpret data.
• The ability to model and design a thermal system, a mechanical system, a component, or a process to meet specified requirements.
• The ability to work on a team and to communicate effectively with others including those outside their discipline.
• The ability to use the knowledge and skills acquired in earlier coursework and incorporate engineering standards and realistic constraints (economic, environmental, sustainability, manufacturability, ethical, health and safety, social, and political) in their industrially or internally sponsored year-long senior capstone design projects.
• An awareness of professional and ethical responsibility and a recognition of the importance of lifelong learning.

Graduate Program: We maintain and continuously improve a graduate curriculum focused in five sub-areas: mechanics and materials science, dynamics systems, thermodynamics and energy, design and manufacturing, and fluids and heat transfer. We continue research in relevant areas of engineering. Graduate students receive quality mentoring and advising.

Service: We provide engineering services (teaching, consulting, outreach, testing and research) to support industry and national laboratories.

We support education throughout Idaho and beyond by:
• Providing quality distance education through the Engineering Outreach Program.
• Supporting and including our faculty at distance sites.
• Collaborating with faculty at other educational centers.

We provide service to Professional Societies, the college and university, and the region. We encourage our graduates to support the improvement of our program in formal and informal ways. These include student referrals, donations of time, equipment and money, and periodic evaluation.

General questions regarding the undergraduate program should be addressed to the Academic and Advising Coordinator at (telephone 208/885-5024; moflym@uidaho.edu). Faculty members are available to discuss details of the program in their specialty areas with interested students.

An academic minor in mechanical engineering is available. Contact the department for more information.

Mechanical Engineering Graduate Program. The following graduate degrees are available in mechanical engineering: Ph.D., M.S., and M.Eng. (non-thesis degree). The department also offers the Master of Engineering with a major in systems engineering. It may offer the future M.S. and M.Eng. degrees in manufacturing engineering. In addition, the Ph.D., M.S., and M.Eng. in nuclear engineering are offered at the Idaho Falls Center for Higher Education. Minimum preparation for graduate study in mechanical engineering is a B.S. degree in a curriculum in mechanical engineering that is accredited by the Accreditation Board for Engineering and Technology (ABET). Students entering the program with an engineering or physical science baccalaureate degree in a major other than mechanical engineering must demonstrate proficiency in the subjects required in the B.S.M.E. program. Individual student qualifications are assessed by the departmental graduate committee, which also determines undergraduate deficiencies.

The programs of study are designed to extend the student’s understanding of the fundamental engineering sciences and their application to engineering systems design and analysis. Research programs are offered with specialization in the following general areas: (1) thermodynamics, fluid dynamics, and heat transfer, (2) materials and applied mechanics, and (3) product and process design including control systems, automation, robotics, and materials.

Graduate students will develop a plan of study in consultation with their academic advisor that will provide for reasonable concentration in a particular field of interest and a selection of related courses, some of which may be taught outside of the department. The thesis topic will generally be selected from research topics being pursued by members of the departmental faculty.

Courses
See Part 6 for courses in Mechanical Engineering (ME) and Systems Engineering (SysE).

Undergraduate Curricular Requirements

MECHANICAL ENGINEERING (B.S.M.E.)

This program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

Note: Pre-advising is required to register in any ME course. To graduate in this program, a student may accumulate no more than five grades of D or F in the mathematics, science, or engineering courses used to satisfy graduation requirements. Included in this number are multiple repeats of a single course or single repeats in multiple courses and courses transferred from other institutions.
Required course work includes the university requirements (see regulation J-3) and:

- Phi 103 Ethics or Phi 252 Biomedical Ethics (3 cr)
- CE 411 Engineering Fundamentals (1 cr)
- Chem 111 Principles of Chemistry I (4 cr)
- Com 101 Fundamentals of Public Speaking (2 cr)
- Econ 201 or 202, or 272 (3-4 cr)
- Engl 102 College Composition and Rhetoric (3 cr)
- Engl 317 Technical Writing (3 cr)
- Engr 210 Engineering Statics (3 cr)
- Engr 220 Engineering Dynamics (3 cr)
- Engr 240 Introduction to Electrical Circuits (3 cr)
- Engr 320 Engineering Thermodynamics and Heat Transfer (3 cr)
- Engr 335 Engineering Fluid Mechanics (3 cr)
- Engr 350 Engineering Mechanics of Materials (3 cr)
- MSE 201 Elements of Materials Science (3 cr)
- Math 170, 175, 275, Analytic Geometry and Calculus (11 cr)
- Math 310 Ordinary Differential Equations (3 cr)
- ME 123 Introduction to Mechanical Design (3 cr)
- ME 223 Mechanics of Fluids (3 cr)
- ME 225 Introduction to Machine Design (2 cr)
- ME 301 Advanced Engineering Graphics (3 cr)
- ME 313 Dynamic Modeling of Engineering Systems (3 cr)
- ME 323 Mechanical Engineering Design Seminar (3 cr)
- ME 324 Dynamic Analysis in Machine Design (3 cr)
- ME 325 Machine Component Design I (3 cr)
- ME 330 Experimental Methods for Engineers (3 cr)
- ME 341 Intermediate Mechanics of Materials (3 cr)
- ME 345 Heat Transfer (3 cr)
- ME 424 Mechanical Systems Design I (3 cr)
- ME 426 Mechanical Systems Design II (3 cr)
- ME 430 Senior Project (3 cr)
- ME 435 Thermal Energy Systems Design (3 cr)
- Phys 211, 212, 213 Engineering Physics I-II-III (12 cr)

Technical electives selected from any of:

Students must satisfy the General Core Studies requirements in J-3.

The minimum number of credits for the degree is 128, not counting Engl 101, Math 143, and other courses that might be required to remove deficiencies.

Students majoring in mechanical engineering may accumulate no more than three grades of D or F in the mathematics, science or engineering courses used to satisfy lower division requirements. Included in this number are multiple repeats of a single course or single repeats in multiple courses and courses transferred from other institutions. In addition, students must also earn at least five grades better than a C in mathematics, science or engineering courses used to satisfy lower division requirements before registration is permitted in upper-division mechanical engineering courses. The specific lower-division courses are:
- Chem 111; Engr 210, 220, and 240; Math 170, 175, 275; ME 123, 223, 225; MSE 201; and Phys 211, 212, and 213. In addition, a grade higher than C must be earned in at least five of these courses. A grade of P (pass) in any of these courses is considered as a C grade in satisfying this certification requirement.

** With departmental approval, a graduate-level or special topics (ME 404) course may be used as a Technical Elective.

Academic Minor Requirements

MANUFACTURING ENGINEERING MINOR

This minor is not accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

Bus 370 Production/Operations Management (3 cr)
Bus 439 Systems and Simulation or Bus 456 Quality Management (3 cr)
Econ 202 Principles of Economics (3 cr)
PTTE 352 Manufacturing Technology Systems (4 cr)
ME 409 Human Factors in Engineering Design or ME 481 Control Systems (3 cr)
ME 410 Principles of Lean Manufacturing (3 cr)
ME 415 Materials Selection and Design (3 cr)

Only two ME classes listed above may be used to fulfill requirements for a manufacturing engineering minor AND mechanical engineering technical electives.

MECHANICAL ENGINEERING MINOR

Engr 105 Engineering Graphics or ME 262 Sophomore Laboratory (2-3 cr)
Engr 210 Engineering Statics (3 cr)
Engr 220 Engineering Dynamics (3 cr)
ME 123 Introduction to Mechanical Design (3 cr)
ME 223 Mechanical Design Analysis (3 cr)
Courses selected from the following (including at least 6 cr from ME courses) (9 cr)
- Engr 320 Engineering Thermodynamics and Heat Transfer (3 cr)
- Engr 335 Engineering Fluid Mechanics (3 cr)
- Engr 350 Engineering Mechanics of Materials (3 cr)
- ME 313 Dynamic Modeling of Engineering Systems (3 cr)
- ME 324 Dynamic Analysis in Machine Design (3 cr)
- ME 325 Machine Component Design I (3 cr)
- ME 345 Heat Transfer (3 cr)

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Mechanical Engineering. Applicants for admission generally will have a B.S. degree in mechanical engineering. Those students admitted with degrees in other engineering fields will be expected to complete any undergraduate deficiencies. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Science. General M.S. requirements apply, along with departmental requirements as listed in the departmental graduate handbook.

Master of Engineering. Majors in mechanical engineering and systems engineering. General M.Eng. requirements apply, along with departmental requirements as listed in the departmental graduate handbook.

Doctor of Philosophy. General Ph.D. requirements apply, along with departmental requirements as listed in the departmental graduate handbook. Preliminary screening of candidates and program planning for those admitted are essential features of the Ph.D. programs. Early in the program, the student must complete a preliminary examination that will be oral and possibly written. The preliminary examination is taken after most of the course work is completed. This examination also includes a presentation of the dissertation proposal or research proposal. No foreign language is required; however, the department does require a satisfactory level of achievement in mathematics and numerical analyses and in computer programming.

Certificate of Completion. In addition to the above degree programs, the department now offers a certificate of completion in advanced materials design and in heating, ventilation, and air conditioning (HVAC) systems. A total of 13 credits are required to obtain each certificate. Students are not required to be actively pursuing a graduate degree in order to participate in a certification program. General graduate admission requirements apply, along with departmental requirements as listed in the departmental graduate handbook.

Department of Microbiology, Molecular Biology, and Biochemistry

Pat Hartzell, Department Chair (142 Life Sc. Bldg. 83844-3052; phone 208/885-7986; fax 208/885-7957; dhartzell@uidaho.edu; http://www.mbio.uib.edu/dir/ME/affil.html)

Faculty:

Microbiology is concerned with the study of microscopic forms of life, their distribution, interaction, role and role in such diverse areas as control and diagnosis of diseases, agricultural biotechnology, environmental and pollution control, and genetic engineering.

Molecular biology and biochemistry is the study of the molecular basis of life, the chemical, physical, and genetic properties of living things, their metabolic processes, and the new technologies for the genetic engineering of organisms.

The Department of Microbiology, Molecular Biology and Biochemistry offers the degrees of Bachelor of Science in Microbiology and Bachelor of Science in Molecular Biology and Biochemistry. Students may choose to emphasize general microbiology or molecular biology and biochemistry by appropriate course choices. In addition, the department offers the degree of Bachelor of Science in Medical Technology for students who have earned the degree of Bachelor of Science in Microbiology at UI and completed medical technology training in an accredited hospital school. In each case, the curriculum emphasizes the need for a broad cultural base and specific training in biology, chemistry, mathematics, and physics, in addition to courses in the specialty area. Well-equipped laboratories are available and advanced students are encouraged to undertake research problems with the faculty. The department also provides courses for students who are majoring in other areas of the university and wish to obtain increased understanding of microbiology. This degree is a perfect entry into professional schools (medical, dental, pharmacy, medical technology) and allied health fields (nursing, veterinary medicine, dental hygiene). Students are invited to inquire about academic minors in the department.

The Department of Microbiology, Molecular Biology and Biochemistry is a research and teaching unit within the College of Agriculture with extensive research expertise and instructional responsibilities in molecular biology, microbiology, and biochemistry. Scientists in the department are in the forefront of research with bacteria, fungi, and plants. The department has particular strengths in microbiological and ecological research, developmental biology, membrane biochemistry, microbial pathogenesis and immunology, and plant molecular biology with a strong emphasis on the use of contemporary genetic engineering techniques.

Current research efforts designed to add to our scientific knowledge base include studies on the biochemistry and molecular biology of bacterial toxins including their effects on bioremediation, alteration of their immunological characteristics, and identification of active sites by site-directed mutagenesis; the isolation, characterization, and molecular cloning of unique enzymes capable of lignocellulose degradation and fungi; the control of gene expression in a range of procaryotes and eucaryotes including molecular and biochemical basis of cell motility; the developmental control of sporulation genes in fungi, and pathogenesis determinants in bacteria; and microbial ecology with special emphasis on bacterial, compost, and meat analogs in soil and carbon cycling in soil.

In addition to these basic research interests, faculty are involved in applying new knowledge to applied problems in biotechnology. Much of this work is in association with the University of Idaho’s Environmental Biotechnology Institute (EBI), which coordinates joint endeavors between diverse disciplines. Specific projects include the development of improved vaccines, the survival of genetically engineering organisms in the environment,
the detection and control of bacteria and fungi that are pathogenic for humans, animals, and plants. A biological control of weeds and phytopathogens, bacterial bioremediation of hazardous waste sites, the bioprocessing of chemicals and minerals to increase their economic value, e.g., coal to render it a liquid and ores to remove precious metals, and the improvement of bacterial detection systems for increased food safety.

This combination of basic and applied research, funded at the multi-million dollar level, provides a stimulating environment where graduate students can gain extensive research experience in all aspects of modern microbiology, biochemistry, and molecular biology. Students can select from a broad range of courses presenting the latest information in all areas of chemical and microbial sciences. All members of the departmental faculty are actively involved in research and teaching programs that provide students with a broad perspective of important problems in modern biology.

Prospective students may call or write to the department (or e-mail mmbb@uidaho.edu) or individual faculty members for additional information concerning ongoing research activities and the availability of research assistantships.

In addition to the admission requirements of the Graduate College, prospective graduate students should have maintained an overall B average for all coursework taken and have majored in an area of biological or chemical sciences. Results of the Graduate Record Examination (GRE) and three letters of recommendation are required. Students for whom English is a foreign language must have a TOEFL score of at least 580. Prior training should have included courses in general biology and chemistry, organic chemistry, biochemistry, calculus, physics, and introductory microbiology. Acceptance of students deficient in these areas will be expected that the deficiencies will be removed early during the graduate program.

Required course work includes the university requirements (see regulation J-3), the general requirements for the B.S. degree if applicable, and:

Biol 210 Genetics or Gene 314 General Genetics (3-4 cr)

Chem 111 Principles of Chemistry I (4 cr)

Chem 112 Principles of Chemistry II (5 cr)

Chem 253 Quantitative Analysis (5 cr)

Chem 277 Organic Chemistry I (3 cr)

Chem 372 Organic Chemistry II (3 cr)

Eng 317 Technical Writing or Eng 207 Persuasive Writing or Eng 208 Personal and Professional Writing or Eng 209 Inquiry-Based Writing (3 cr)

Math 160 Survey of Calculus or Math 170 Analytic Geometry and Calculus I (4 cr)

MMBB 154 Introductory Microbiology (3 cr)

MMBB 250 General Microbiology (3 cr)

MMBB 255 General Microbiology Laboratory (2 cr)

MMBB 380 Introductory Biochemistry (4 cr)

MMBB 400 Seminar (1 cr)

MMBB 440 Advanced Laboratory Techniques or MMBB 401 Undergraduate Research (4 cr)

Phys 111 General Physics I or Phys 211 Engineering Physics I (4 cr)

Phys 112 General Physics II or Phys 212 Engineering Physics II (4 cr)

Stat 251 Statistical Methods (3 cr)

At least two of the following microbiology electives (5-6 cr):

- **MMBB 409 Immunology (3 cr)**
- **MMBB 412 Pathogenic Microbiology (3 cr)**
- **MMBB 416 Food Microbiology (2 cr)**
- **MMBB 425 Microbial Ecology (3 cr)**
- **MMBB 432 Virology (3 cr)**
- **MMBB 446 Microbial Physiology (3 cr)**
- **MMBB 468 Microbial Transformations (3 cr)**

At least one of the following molecular biology electives (2-3 cr):

- **MMBB 422 Cellular and Molecular Basis of Disease (3 cr)**
- **MMBB 450 Molecular Mechanisms in Microbiology (2 cr)**
- **MMBB 471 Advanced Pathogenesis: Host-Pathogen Interactions (3 cr)**
- **MMBB 475 Molecular Biology of Cells (3 cr)**
- **MMBB 482 Protein Structure and Function (3 cr)**
- **MMBB 486 Prokaryotic Molecular Biology (3 cr)**
- **MMBB 487 Eukaryotic Molecular Genetics (3 cr)**
- **MMBB 488 Genetic Engineering (3 cr)**

Total 128 cr for the degree

Note for double majors in Molecular Biology and Microbiology: Elective courses used as required courses for one degree cannot be used as a science elective in the second degree.

MEDICAL TECHNOLOGY

The medical technologist performs critical laboratory tests and analytical procedures that aid physicians in the diagnosis and treatment of disease. The curriculum is of interest to students desiring professional careers in hospital and clinical laboratories, public health and research laboratories, and pharmaceutical laboratories.

Upon completion of the B.S. degree in microbiology (medical technology option), those desiring advanced degrees in hospital and clinical laboratories, public health and research laboratories, and pharmaceutical laboratories.

MOLLECULAR BIOLOGY AND BIOCHEMISTRY (B.S.M.B.B.)

The major in molecular biology and biochemistry is offered through the College of Agricultural and Life Sciences. Molecular biology and biochemistry are two of the fastest growing research areas in modern biological sciences. Students training in this area will be prepared for a number of technical professions in various aspects of biotechnology including laboratory positions in health, medicine, agriculture, and food processing industries. In addition, a B.S. degree in molecular biology and biochemistry is excellent preparation for further graduate and professional training in the biological and medical sciences.

Required course work includes the university requirements (see regulation J-3) and:

- **Biol 115 Cells and the Evolution of Life (4 cr)**
- **Biol 210 Genetics (4 cr) or Biol 314 General Genetics (3 cr)**
- **Chem 111 Principles of Chemistry I (4 cr)**
- **Chem 112 Principles of Chemistry II (5 cr)**
- **Chem 253 Quantitative Analysis (5 cr)**
- **Chem 277 Organic Chemistry I (3 cr)**
- **Chem 278 Organic Chemistry II: Lab (1 cr)**
- **Chem 372 Organic Chemistry II (3 cr)**
- **Chem 376 Organic Chemistry II: Lab for Chemistry Majors (2 cr)**
- **Eng 317 Technical Writing or Eng 207 Persuasive Writing or Eng 208 Personal and Professional Writing or Eng 209 Inquiry-Based Writing (3 cr)**
- **Math 160 Survey of Calculus or Math 170 Analytic Geometry and Calculus I (4 cr)**
- **MMBB 250 General Microbiology (3 cr)**
- **MMBB 255 General Microbiology Laboratory (2 cr)**
- **MMBB 380 Introductory Biochemistry Laboratory (2 cr)**
- **MMBB 400 Seminar (1 cr)**
- **MMBB 440 Advanced Laboratory Techniques or MMBB 401 Undergraduate Research (4 cr)**
- **MMBB 442 Advanced Biochemistry II (3 cr)**
- **MMBB 476 Biophysical Chemistry (3 cr)**
- **MMBB 488 Genetic Engineering (3 cr)**
- **Phys 111 General Physics I or Phys 211 Engineering Physics I (4 cr)**
- **Phys 112 General Physics II or Phys 212 Engineering Physics II (4 cr)**
- **Stat 251 Statistical Methods (3 cr)**
- **Two of the following physiology electives (5-6 cr):**
 - **Biol 311 Plant Physiology (4 cr)**
 - **MMBB 460 Microbial Physiology (3 cr)**
 - **MMBB 475 Molecular Biology of Cells (3 cr)**
- **One of the following molecular biology and biochemistry electives (2-3 cr):**
 - **MMBB 409 Immunology (3 cr)**
 - **MMBB 412 Pathogenic Microbiology (3 cr)**
 - **MMBB 422 Cellular and Molecular Basis of Disease (3 cr)**
 - **MMBB 432 Virology (3 cr)**
 - **MMBB 450 Molecular Mechanisms in Microbiology (2 cr)**
 - **MMBB 470 Advanced Pathogenesis: Host-Pathogen Interactions (3 cr)**
 - **MMBB 482 Protein Structure and Function (3 cr)**
 - **MMBB 485 Prokaryotic Molecular Biology (3 cr)**
 - **MMBB 486 Plant Biochemistry (3 cr)**
 - **MMBB 487 Eukaryotic Molecular Genetics (3 cr)**
- **Science electives (12 cr)**
- **Total 128 cr for the degree**

Academic Minor Requirements

BIOCHEMISTRY MINOR

- **MMBB 380 Introductory Biochemistry (4 cr)**
- **MMBB 442 Advanced Biochemistry II (3 cr)**
- **Courses selected from the following (12 cr):**
 - **Chem 302, 303 Principles of Physical Chemistry and Lab (or equiv) (4 cr)**
 - **MMBB 382 Intro Biochem Lab or 484 Biochem Lab (2 cr)**
 - **MMBB 400 Seminar (2 cr)**
 - **MMBB 491 Undergraduate Research (1-4 cr)**
 - **MMBB 486 Plant Biochemistry (3 cr)**

MICROBIOLOGY MINOR

- **MMBB 250, 255 General Microbiology and Lab (5 cr)**
- **MMBB 380 Introductory Microbiology (4 cr)**
- **Courses selected from the following (10 cr):**
 - **MMBB 409 Immunology (3 cr)**
 - **MMBB 412 Pathogenic Microbiology (3 cr)**
 - **MMBB 416 Food Microbiology (2 cr)**
 - **MMBB 425 Microbial Ecology (3 cr)**
 - **MMBB 440 Advanced Laboratory Techniques (4 cr)**
 - **MMBB 450 Molecular Mechanisms in Microbiology (2 cr)**
 - **MMBB 460 Microbial Physiology (3 cr)**
 - **MMBB 485 Prokaryotic Molecular Biology (3 cr)**
 - **MMBB 487 Eukaryotic Molecular Genetics (3 cr)**
 - **MMBB 488 Genetic Engineering (3 cr)**

MOLLECULAR BIOLOGY AND BIOCHEMISTRY MINOR

- **MMBB 380 Introductory Biochemistry (4 cr)**
- **MMBB 480 Biochemistry and Molecular Biology (3 cr)**
Courses selected from the following (12 cr):
- Chem 302 Principles of Physical Chemistry or Chem 305, 306 Physical Chemistry (3 cr) - MMBB 362 Introductory Biochemistry Lab (2 cr) - MMBB 486 Plant Biochemistry (3 cr) - MMBB 488 Environmental Biotechnology (3 cr)

Up to two of the following physiology courses (3-6 cr):
- Biol 311 Plant Physiology (4 cr) - MMBB 490 Microbiology (3 cr) - MMBB 475 Molecular Biology of Cells (3 cr)

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and the Department of Microbiology, Molecular Biology and Biochemistry. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Seamless Bachelor of Science/Master of Science. Thesis and non-thesis options are offered. The seamless B.S./M.S. degree program in microbiology, molecular biology and biochemistry enables qualified students to pursue the M.S. degree before completion of a B.S. degree or immediately after graduation. The degree from MMBB is typically completed by the fourth year of undergraduate training and will continue to be the route selected by most students. However, students accepted into the program may work toward completion of both the B.S. and M.S. requirements during their fourth and fifth years or additional years if necessary. Successful students will receive both degrees upon completion of their studies. Provided that adequate academic and research progress is achieved, some students could complete the requirements for both the B.S. and M.S. in five years. Requirements for completion of the B.S. and M.S. degrees through the seamless program, and qualifications of graduates, are expected to be identical to those earning the degrees through the conventional programs in which the two degrees are earned sequentially. Students interested in this program should discuss their options with their academic advisors. Identification of a graduate advisor plus formal application and acceptance to the MMBB graduate program and the College of Graduate Studies must be completed before the beginning of the fourth year. Once accepted, students must work toward completing the requirements for both degrees under the supervision of their graduate advisors and graduate committees in accordance with departmental and university guidelines. In regard to official standing within the university, students in the seamless program are classified as graduate students during their fourth and fifth years.

Master of Science. Thesis and non-thesis options are offered. The M.S. degree may be earned in microbiology, molecular biology and biochemistry. An incoming student arranges a formal graduate program of at least 30 semester hours in consultation with his or her major professor and graduate committee. Students must take MMBB 589 during the fall and spring of the first year and MMBB 511 for 1 credit every year. The student is also expected to include MMBB 501 (seminar) each semester. One semester of teaching is required and is obtained through participation in the department's teaching programs. Students are required to pass the core courses MMBB 472, 475, 544, and 549. The final exam for MMBB 589 serves as the qualifying exam and is given in May of the first year. Defense of a formal research proposal is required during the second year as part of the preliminary exam A master's candidate prepares a written thesis documenting completion of a laboratory research program. The thesis must be approved by the student's major professor and supervisory committee and be defended during an oral examination. Publication of data from the thesis in the peer-reviewed literature is expected.

Doctor of Philosophy. The Ph.D. degree may be earned in microbiology, molecular biology and biochemistry. A doctoral student develops a graduate program of at least 78 semester hours in consultation with his or her major professor and graduate committee. Students must take MMBB 589 during the fall and spring of the first year. The final exam for MMBB 589 is served as the qualifying exam and is given in May of the first year. Defense of a formal research proposal is required during the second year as part of the preliminary exam. The student is also expected to take MMBB 511 every year and enroll in 501 (seminar) each semester, with active participation in the form of one or more seminar presentations during the course of his or her graduate career. Students are required to pass the core courses MMBB 541, 542, and either 585 or 587. Two semesters of teaching experience is required and is obtained through participation in the department’s teaching programs. A preliminary examination, usually oral, is required prior to admission to final candidacy for the degree. All candidates prepare a formal dissertation reflecting original thought and independent laboratory investigation and defend it during an oral presentation as a final step toward their degree. Publication of data from the dissertation in the peer-reviewed, scientific literature is expected.

Department of Military Science

Kenneth A. Hunt, Department Head (West End, Mem. Gym. 8344-2424; phone 208/885-6528; armyrotc@uidaho.edu). Faculty: Eddie Commender, Gerald K. Cornell, Dean Eisberg, Daniel Frawley, Lars B. Ostervold Jr.

Army ROTC, as represented at UI by the Department of Military Science, is the major source of commissioned officers for the U.S. Army. After successfully completing the program and baccalaureate degree requirements in almost any field, the student receives a commission as a second lieutenant. At this time active duty is not a requirement but is something for which students compete. Graduates also choose from among 28 different branches of service, not choosing active duty serve with the Army Reserve or Army National Guard on a part-time basis. Two- and three-year scholarships are available.

All levels of course work combine classroom instruction with practical exercises. The basic course, consisting of a one-credit course each freshman semester and a two-credit course each sophomore semester, is designed to provide junior and senior military science students opportunities as an officer in the Army on active duty or in the National Guard or Army Reserve. The two-year basic curriculum covers Army career opportunities, confidence building exercise, map reading, leadership, management principles, first aid, and other life skills with broad applications beyond the military. Students may voluntarily participate in one of several adventure activities (rappelling, rifle marksmanship, white water rafting, backpacking, etc.). Basic-course students, other than scholarship students, do not make a military commitment during this period. These students survey Army opportunities and decide whether to continue in the program as advanced-course students.

The advanced course consists of a three-credit course normally taken each semester during the last two years of university study and includes a five-week advanced camp at Fort Lewis, Washington (normally after the junior year). Students in the advanced course receive monthly stipends during the school year. Study centers on leadership styles and techniques with special emphasis placed on small-unit leadership.

The primary objective of the Army ROTC program is to develop leadership and management skills in students. Supplementary objectives include enhancement of the student's abilities in speaking and writing, goal seeking, and problem solving. Key to the program is the development of personal attributes essential to military service. Those attributes include sound situational assessment, decision making, and the ability to know, understand, and lead people. Additionally, the department hopes to cultivate within its students a strong sense of personal integrity, self-discipline, and responsibility.

Prior to commissioning, all cadets must demonstrate proficiency in communications, military history, and computer literacy. This may be achieved through taking UI course offerings in those subject areas. See your Army ROTC club advisor for a list of approved courses.

Departmental members will answer questions about specific programs and courses. Contact the department by going to the west end of Memorial Gymnasium or by calling 208/885-6528 or 1-888-UIDAHO, or by e-mail at armyrotc@uidaho.edu. Further information is available on the web, http://www.uidaho.edu/armyrotc.

Courses

See Part 6 for courses in Military Science (MS).

Academic Minor Requirements

MILITARY SCIENCE MINOR

- MS 301-302 Advanced Leadership and Management (6 cr)
- MS 311-312 Leadership Lab (2 cr)
- MS 401-402 Seminar in Leadership and Management (6 cr)
- MS 411-412 Leadership Lab (2 cr)

Four to six courses from the following (10 cr):
- MS 101, MS 111 Introduction to Military Science and Leadership Lab (2 cr)
- MS 102, MS 112 Fundamentals of Leadership and Management and Leadership Lab (2 cr)
- MS 201, MS 211 Applied Leadership and Management and Leadership Lab (3 cr)
- MS 202, MS 212 Applied Leadership and Management and Leadership Lab (3 cr)
- MS 299 Directed Study (cr arr, max 4 cr)
- MS 471-472 Command and Staff Functions (4 cr)
- MS 489 National Advanced Leadership Course (1-6 cr)

Armed Forces Credits received for prior military service as determined by the University

Lionel Hampton School of Music

James L. Murphy, Director (205 Music Bldg. 8344-4015; phone 208/885-6331; music@uidaho.edu; http://music.uidaho.edu/); Susan M. Hess, Assistant Director. Faculty: Carol Padgham Albrecht, Pamela Bathurst, Daniel J. Bukvich, J. Roger Cole, Ferenc Czeczo, Mary H. Duffree, Alan J. Gembling, Susan M. Hess, Natalie J. Kreutzer, Torrey E. Lawrence, G. Jay Mauchley, Robert T. McCurdy, James L. Murphy, James E. Reid, Catherine M. Schulhauser, Merrie R Siegel, Lynn J. Skinner, Steven Spooner, Chris Thompson, William C. Wharton. Adjunct Faculty: Lewis C. Ricci

The Lionel Hampton School of Music, so designated in 1987 in honor of the eminent American jazz musician, is an accredited institutional member of the National Association of Schools of Music. Established as a department in 1893, it was elevated to school status in 1969. The courses and curricula in music seek to prepare elementary, secondary, and college teachers of music; to train professional musicians; to enrich the cultural environment for students and provide liberal-arts instruction; and to engage in research in music performance and teaching for the general benefit of the public and the discipline of music.

Students in this school learn by performing, listening, analyzing, and creating music. Emphasis is on the understanding of musical styles and techniques of all eras, including contemporary music. Musical studies balance the aesthetic and the practical, with ample opportunity for exploration and self-reliance.

The formal undergraduate curricula of the School of Music consist of degree programs in the following areas:

- Bachelor of Music in Performance
 - Specialization in voice, piano, guitar, or any orchestral instrument.
- Bachelor of Music in Composition
- Bachelor of Music in Music Education
 - Specialization in vocal music education, instrumental music education, or a combined program in vocal and instrumental music education.
- Bachelor of Music in Business
 - Specialization in performance or composition combined with studies in accounting, economics, statistics, management, and marketing.
PART FIVE
Departments of Instruction

Bachelor of Arts in Music

Emphasis in music theory, music history, or applied music. Applied music study can be in any of the areas of specialty listed under the Bachelor of Music in Performance.

Bachelor of Science in Music

Emphasis in music theory, music history, or applied music. Applied music study can be in any of the areas of specialty listed under the Bachelor of Music in Performance.

Bachelor of Fine Arts in Musical Theatre

Specialization in voice, theatre and dance.

The B.Mus. degree is professionally oriented, and is the normal preparation for graduate study in music or for teacher education. The B.A. and B.S. degrees emphasize a broad liberal-arts education. The B.F.A. degree prepares rigorous musical theatre training. Acceptance to the B.Mus., B.A., B.S., and B.F.A. degree programs requires an audition.

The School of Music also offers a minor in music and participates in the university core curriculum by offering the course "Survey of Music." The ensembles and performing groups sponsored by the School of Music are open to all students, regardless of major.

The Music Building houses the Agnes Crawford Schudt Music Library, faculty studios, ensemble rehearsal areas, classrooms, an electronic music lab, a music education materials center, a listening center, and a recital hall. Individual practice rooms are available in nearby Ridenbaugh Hall. Recording, radio-television, language listening lab, and computer facilities of the campus are also used by music students. In addition to organ, harpsichord, harp, and piano practice instruments, the school maintains two performance pipe organs, three concert grand pianos, and a concert harpsichord.

The Hampton School offers degrees at the master's level; Master of Music degrees are in music education, performance (vocal and instrumental), composition and accompanying, and piano pedagogy and performance studies. The Master of Arts option is in music history. Acceptance into the M.Mus. degree programs require an audition.

The school offers prospective graduate students a wide range of individual and group instruction opportunities as preparation for professional careers in music either as performers, composers, scholars, or music educators. Study is enriched through participation in recitals in addition to participation in both small and large vocal and instrumental ensembles.

Admission to the M.A. or M.Mus. program in this school normally requires a baccalaureate degree in music from an accredited institution. Each student must take diagnostic placement examinations in music history and theory at the time of first registration as a graduate student. Those interested in pursuing the degree pattern in music education must also take an exam in music education. During the first semester of enrollment, a supervisory committee and a chair of that committee will be appointed.

While the primary emphasis of graduate work is concerned with subject matter areas, the importance of performance is not neglected. Students are encouraged, and in some cases, required to participate in one organized ensemble each academic session in residence.

Courses

See Part 6 for courses in Applied Performance Studies (MusA), Theory and Composition (MusC), History and Literature (MusH), Music Teaching (MusT), General (MusX).

Undergraduate Curricular Requirements

General Requirements for all B.A., B.S., and B.Mus. Degrees

Minimum Grade Requirement. A music student, either major or minor, must achieve a minimum grade of C in each music course, either resident or transfer, which is applicable to a degree program in music before the student will be eligible for graduation.

MusA 101 and 111. Music majors may NOT use MusH 111 to satisfy UI core curriculum requirements. MusH 111 is part of the professional course work--12 credits in music history--required for the major.

If a music major takes MusH 101, he or she must have 14 credits of courses other than MusH 101 in order to satisfy the humanities/social sciences core requirement.

If a transfer student has taken a 100-level survey of music course prior to enrollment as a music major in the School of Music, the student may use this course in lieu of MusH 111. If world music was not addressed in the transfer course, students will have to meet a level of competency in world music.

Ensemble Participation. An undergraduate music major must: (1) earn a minimum of eight credits in ensemble participation to be eligible for graduation and (2) enroll in an ensemble during each semester of full-time study. Various requirements are contained in the specific curricula. For curricular purposes, "major ensemble" is defined to mean MusA 116/316 Concert Choir - Van Iddekinge, 117/317 Wind Ensemble - Chorus, 119/319 Marching Band, 121/321 Concert Band, 122/322 Orchestra, or 320 Wind Ensemble. Other ensembles (listed in some curricula under "Chamber Music") consist of MusA 118/318 Jazz Choir, 315 Concert Band, 322 Orchestra, or 320 Wind Ensemble. MusA ensembles (in eight different semesters) (see "Ensemble Participation" above for performance requirements of the degree and major emphasis (the jury examination requirement must be met, regardless of double majors, before a student can enroll in MusA 324, 334, or MusH 325). Students who fail to pass the UDS requirements within three tries will be asked to leave the program.

For a B.F.A. music theatre major to enroll in MusA 324, the student must have been granted upper-division standing (UDS). B.F.A. music theatre students applying for UDS must: (1) have completed two semesters of music theory, two semesters of aural skills, one semester of music history (MusH 111), and three semesters of Piano Class (MusA 145/146/245), all with a grade of "C" or better; (2) have passed a grade of "C" or better or be currently enrolled in Theory IV (MusC 242), Aural Skills IV (MusC 240), and Piano Class IV (MusA 240); and (3) have passed a special jury examination demonstrating the mastery of the fundamentals of the student's major area of performance/composition and the potential to continue improving in a manner that will lead to the successful completion of all requirements/composition requirements of the major and emphasis (the jury examination requirement must be met, regardless of double majors, before a student can enroll in MusA 324, 334, or MusH 325). Students who fail to pass the UDS requirements within three tries will be asked to leave the program.

In order to register for upper-division music education courses (not including instrumental techniques courses), an undergraduate music education major must: (1) make application to upper-division music education courses by completing and submitting an application form (available in the music office) to the chair of the Music Education Committee--this should be done in the semester in which the student is enrolled in ED 201; (2) successfully complete ED 201 and the necessary core courses to meet the requirements of the application to Teacher Education in the College of Education; (3) obtain a "C" or better in music courses and at least a 2.5 overall GPA; and (4) pass the individual instruction upper-division standing jury.

Dissertation in Theory and Aural Skills. The goal of this exam is to advise students regarding deficiencies in their prior theory training; this exam is not available to freshmen. A study guide is available in the music office and on the web. The exam is given during the third week of classes each semester and is required for all music majors except music education majors. In order to register for upper-division music education courses (not including instrumental techniques courses), an undergraduate music education major must: (1) make application to upper-division music education courses by completing and submitting an application form (available in the music office) to the chair of the Music Education Committee--this should be done in the semester in which the student is enrolled in ED 201; (2) successfully complete ED 201 and the necessary core courses to meet the requirements of the application to Teacher Education in the College of Education; (3) obtain a "C" or better in music courses and at least a 2.5 overall GPA; and (4) pass the individual instruction upper-division standing jury.

Transfer Credits. Transfer credits will be accepted at the upper-division level only if taken at the upper-division level from the original institution (i.e., a 100- or 200-level course will not transfer as a 300- or 400-level course requirement). The applicability of these credits to the student's program of study is determined by the Lionel Hampton School of Music.

MUSIC: APPLIED MUSIC (B.A. or B.S.)

Required course work includes the university requirements (see regulation J-3), the CLASS requirements for the B.A. or B.S. degree, and:

MusA 124 Individual Instruction (major instrument or voice) (8 cr)
MusA 145-146, 245-246 Piano Class (5 cr)
MusA 324 Individual Instruction (major instrument or voice) (8 cr)
MusA 490 Half Recital (0 cr)
MusA 135-136, 335-336 Aural Skills (6 cr)
MusC 141-142, 241-242 Theory of Music (10 cr)
MusH 111 Introduction to Music Literature (3 cr)
MusH 321, 322, 323 Music in America - Musically Speaking (9 cr)
MusH 101 Orientation for Music Majors (0 cr)
MusH 140 Convocation (seven semesters) (0 cr)
MusH ensembles (in eight different semesters) (see "Ensemble Participation" above for requirements) (6 cr)

Electives to total 12 cr for the degree (including at least 72 cr in non-music courses)

Students may also complete an optional Emphasis in Jazz Performance by completing the following course work (12 cr): MusA 210 Jazz Improvisation (2 cr) MusA 329 Theoretical Basis of Jazz (2 cr) MusH 410 Studies in Jazz History (3 cr)

Electives in ensembles, combos, or applied study (5 cr)
MUSIC: HISTORY AND LITERATURE (B.A. or B.S.)
Required course work includes the university requirements (see regulation J-3), the CLASS requirements for the B.A or B.S. degree, and:

- MusA 114 Individual Instruction (4 cr)
- MusA 145-146, 245-246 Piano Class (4 cr)
- MusA 314 Individual Instruction (one instrument/voice) (4 cr)
- MusC 139-140, 239-240 Aural Skills (8 cr)
- MusC 141-142, 241-242 Theory of Music (10 cr)
- MusH 111 Introduction to Music Literature (3 cr)
- MusH 321, 322, 323 Music in Western Civilization (9 cr)
- MusH 481 Senior Thesis in Music History II (1 cr)
- MusH 101 Orientation for Music Majors (0 cr)
- MusX 140 Convocation (seven semesters) (0 cr)
- Upper-division MusH electives (6 cr)
- Upper-division MusC electives (2 cr)

Music electives in eight different semesters (8 cr)
Electives to total 128 cr for the degree (including a least 70 cr in non-music courses)

Students may also complete an optional Emphasis in Jazz History by completing the following course work (12 cr):
- MusA 210 Jazz Improvisation (2 cr)
- MusC 329 Theoretical Basis of Jazz (2 cr)
- MusH 410 Studies in Jazz History (3 cr)
- MusH J440/J540 Studies in American Music (3 cr)

Electives in history, ensembles, combos, or applied study (2 cr)

MUSIC: THEORY (B.A. or B.S.)
Required course work includes the university requirements (see regulation J-3), the CLASS requirements for the B.A or B.S. degree, and:

- MusA 114 Individual Instruction (4 cr)
- MusA 145-146, 245-246 Piano Class (4 cr)
- MusA 314 Individual Instruction (one instrument/voice) (4 cr)
- MusC 139-140, 239-240 Aural Skills (8 cr)
- MusC 141-142, 241-242 Theory of Music (10 cr)
- MusC 426 Electronic Music (2 cr)
- MusC 442 Musical Analysis (2 cr)

Music elective at the 200-level (3 cr)
MusH elective at the 400-level (3 cr)
Major ensemble (two different semesters chosen from MusA 121/321 Concert Band, 122/322 Orchestra, 125/325 Symphonic Band or 320 Wind Ensemble.) (4 cr)

Chamber music (two different semesters chosen from MusA 323 Jazz Ensemble, 365 Chamber Ensemble) (4 cr or in four different semesters of MusA 365: Guitar Ensemble, reqd for guitar majors) (2 cr)
Music electives to complete 84 cr in music (4-6 cr)
Electives to total 128 cr for the degree

Students may also complete an optional Emphasis in Jazz Performance by completing the following course work (15 cr):
- MusA 210 Jazz Improvisation (2 cr)
- MusH 410 Studies in Jazz History (3 cr)
- Electives in ensembles, combos, or applied study (8 cr)

MUSIC: VOCAL PERFORMANCE (B.Mus.)
Required course work includes the university requirements (see regulation J-3) and:

- MusA 114 Individual Instruction (12 cr)
- MusA 246 Piano Class (1 cr)
- MusA 315 Accompanying (4 cr)
- MusA 334 Individual Instruction (12 cr)
- MusC 141-142, 241-242 Theory of Music (10 cr)
- MusC 139-140, 239-240 Aural Skills (6 cr)
- MusC 329 Theoretical Basis of Jazz (2 cr)
- MusH 410 Studies in Jazz History (3 cr)
- MusA 114 Individual Instruction (if major applied medium is other than piano, piano is reqd of students whose major applied medium is keyboard) (2 cr)
- MusA 116/316 Concert Choir - Vandales, 117/317 University Chorus (7 or 8 cr)
- MusA 124 Individual Instruction (2 cr)
- MusA 125/325 Symphonic Band or 320 Wind Ensemble.) (4 cr)
- MusC 329 Theoretical Basis of Jazz (2 cr)
- MusC 442 Musical Analysis (2 cr)
- MusH 101 Orientation for Music Majors (0 cr)
- MusX 140 Convocation (seven semesters) (0 cr)
- MusX 283-294 Diction for Singers (4 cr)
- MusX 453 Opera Elective (2 cr)

Major ensemble (eight different semesters chosen from MusA 116/316 Concert Choir - Vandales, 117/317 University Chorus) (8 cr)
Music electives to complete 84 cr in music (1 cr)
Electives to total 128 cr for the degree

MUSIC: COMPOSITION (B.Mus.)
Required course work includes the university requirements (see regulation J-3) and:

- MusA 114 Individual Instruction (12 cr)
- MusA 246 Piano Class (1 cr)
- MusA 315 Accompanying (4 cr)
- MusA 334 Individual Instruction (12 cr)
- MusC 141-142, 241-242 Theory of Music (10 cr)
- MusC 442 Musical Analysis (2 cr)
- MusH 111 Introduction to Music Literature (3 cr)
- MusH 321, 322, 323 Music in Western Civilization (9 cr)

Major ensemble (eight different semesters chosen from MusA 116/316 Concert Choir - Vandales, 117/317 University Chorus) (8 cr)
Music electives to complete 84 cr in music (4 cr)
Electives to total 128 cr for the degree

Students may also complete an optional Emphasis in Jazz Composition/Arranging by completing the following course work (15 cr):
- MusA 220 Jazz Improvisation (2 cr)
- MusC 329 Theoretical Basis of Jazz (2 cr)
- MusH 410 Studies in Jazz History (3 cr)
- Electives in composition, arranging, ensembles, or combos (6 cr)
PART FIVE
Departments of Instruction

MUSIC: BUSINESS (B.Mus.)

Required course work includes the university requirements (see regulation J-3) and:

Acct 201 Introduction to Financial Accounting and Acct 202 Introduction to Managerial Accounting, or Acct 205 Fundamentals of Accounting (4-6 cr)
Bus 301 Financial Management (3 cr)
Bus 311 Introduction to Management (3 cr)
Bus 321 Marketing (3 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
Econ 201-202 Principles of Economics (6 cr)
MusA 124 Individual Instruction (8 cr)
MusA 145-146, 245-246 Piano Class (4 cr)
MusA 324 Individual Instruction (8 cr)
MusA 387 Conducting I (2 cr)
MusA 490 Half Recital (0 cr)
MusA ensemble (in eight different semesters) (see “Ensemble Participation” above for requirements) (8 cr)
MusC 139-140, 239-240 Aural Skills (6 cr)
MusC 141-142, 241-242 Theory of Music (10 cr)
MusC elective at the 300 or 400 level (2-3 cr)
MusH 111 Introduction to Literature (3 cr)
MusH 321, 322, 323 Music in Western Civilization (9 cr)
MusH elective at the 400 level (2-3 cr)
MusX 101 Orientation for Music Majors (0 cr)
MusX 140 Convocation (seven semesters) (0 cr)
Music electives (to total 64 credits in music) (0-2 cr)
Stat 201 Statistical Methods (3 cr)

Two of the following courses (6 cr):
BLaw 265 Legal Environment of Business (3 cr)
Bus 324 Buyer Behavior (3 cr)
Bus 412 Human Resource Management (3 cr)
Bus 413 Leadership and Organizational Behavior (3cr)
Bus 425 Retail Distribution Management (3 cr)
Bus 427 Services Marketing (3 cr)

Note: Students who wish to emphasize composition must: (1) substitute four credits of MusC 325, Composition, for four credits of MusA 324; (2) take four credits of MusC 425, Advanced Composition, as their upper-division theory elective, and (3) substitute MusC 490, Recital, for MusA 490, Half Recital.

MUSIC EDUCATION: VOCAL (B.Mus.)

NOTE: For registration in upper-division courses in education, students must have been admitted to the teacher education program and maintain a GPA of 2.75. For admission criteria, refer to “Admission to the Teacher Education Program” in the College of Education section of Part 4.

Required course work includes the university requirements (see regulation J-3) and the specific requirements in one of the two sections below:

A. VOICE

Comm 101 Fundamentals of Public Speaking (2 cr)
ED 201 Diverse Learners in Schools and Social/Cultural Contexts (3 cr)
ED 301 Principles of Learning and Development in Education (3 cr)
ED 302 Curriculum, Instruction, and Assessment Strategies (3 cr)
EDTE 463 Literacy Methods for Content Learning (3 cr)
MusA 124 Individual Instruction (8 cr)
MusA 145-146, 245-246 Piano Class (4 cr)
MusA 151 or 152 Guitar Class for Music Majors (1 cr)
MusA 324 Individual Instruction: Voice (6 cr)
MusA 387, 487 Conducting I, II (4 cr)
MusA 490 Half Recital (0 cr)
MusC 139-140, 239-240 Aural Skills (6 cr)
MusC 141-142, 241-242 Theory of Music (10 cr)
MusH 321, 322, 323 Music in Western Civilization (9 cr)
MusH 111 Introduction to Music Literature (3 cr)
MusT 383 Principles of Music Teaching (3 cr)
MusT 386 Instrumental Music in the Secondary School (2 cr)
MusT 432 Practicum: Music Teaching (14 cr)
MusT 445 Proseminar in Music Teaching (2 cr)
MusT 465 Jazz Band Rehearsal Techniques (1 cr)
MusT 466 Marching Band Techniques (1 cr)
MusT 476 Band Literature and Rehearsal Techniques (1 cr)
MusT 486 Orchestral Literature and Rehearsal Techniques (1 cr)
MusX 101 Orientation for Music Majors (0 cr)
MusX 140 Convocation (seven semesters) (0 cr)
Psyc 101 Introduction to Psychology (3 cr)

Electives to total 128 cr for the degree

Students may also complete an optional Emphasis in Jazz Education by completing the following course work (15 cr):
MusaA 210 Jazz Improvisation (2 cr)
MusaC 204 Special Topics: Jazz Arranging (2 cr)
MusaC 329 Theoretical Basis of Jazz (2 cr)
MusH 410 Studies in Jazz History (3 cr)
MusT 465 Jazz Band Rehearsal Techniques (1 cr)
Electives in ensembles, combos, or applied study (5 cr)

* Keyboard majors must register for voice class before enrolling in applied voice instruction.

MUSIC EDUCATION: INSTRUMENTAL (B.Mus.)

NOTE: For registration in upper-division courses in education, students must have been admitted to the teacher education program and maintain a GPA of 2.75. For admission criteria, refer to “Admission to the Teacher Education Program” in the College of Education section of Part 4.

Required course work includes the university requirements (see regulation J-3) and:

Comm 101 Fundamentals of Public Speaking (2 cr)
ED 201 Diverse Learners in Schools and Social/Cultural Contexts (3 cr)
ED 301 Principles of Learning and Development in Education (3 cr)
ED 302 Curriculum, Instruction, and Assessment Strategies (3 cr)
EDTE 463 Literacy Methods for Content Learning (3 cr)
MusA 124 Individual Instruction (8 cr)
MusA 145-146, 245-246 Piano Class (4 cr)
MusA 387, 487 Conducting I, II (4 cr)
MusA 324 Individual Instruction (6 cr)
MusA 490 Half Recital (0 cr)
MusC 139-140, 239-240 Aural Skills (6 cr)
MusC 141-142, 241-242 Theory of Music (10 cr)
MusC 328 Instrumental and Choral Arranging (3 cr)
MusH 111 Introduction to Music Literature (3 cr)
MusH 321, 322, 323 Music in Western Civilization (9 cr)
MusT 251, 253, 254, 355, 352 Instrumental Techniques (5 cr)
MusT 382 Elementary School Music Methods for Music Majors (3 cr)
MusT 383 Principles of Music Teaching (3 cr)
MusT 386 Instrumental Music in the Secondary School (2 cr)
MusT 432 Practicum: Music Teaching (14 cr)
MusT 445 Proseminar in Music Teaching (2 cr)
MusT 465 Jazz Band Rehearsal Techniques (1 cr)
MusT 466 Marching Band Techniques (1 cr)
MusT 476 Band Literature and Rehearsal Techniques (1 cr)
MusT 486 Orchestral Literature and Rehearsal Techniques (1 cr)
MusX 101 Orientation for Music Majors (0 cr)
MusX 140 Convocation (seven semesters) (0 cr)
Psyc 101 Introduction to Psychology (3 cr)

Major ensembles (six different semesters) (6 cr)

Other electives (two different semesters chosen from MusA 119/319 Marching Band, 121/321 Concert Band, 122/322 Orchestra, 125/325 Symphonic Band or 320 Wind Ensemble, 323 Jazz Ensemble, 365 Chamber Ensemble, 380 Opera Workshop) (1 cr)

* The major ensemble requirement must be completed in six different semesters:
wind and percussion majors must register for three different semesters of MusA 119/319 Marching Band and three different semesters of MusA 121/321 Concert Band, 125/325 Symphonic Band, or 320 Wind Ensemble. Wind and percussion majors may, by audition, substitute two semesters of MusA 122/322 Orchestra for MusA 121/321 Concert Band, 125/325 Symphonic Band or 320 Wind Ensemble. String majors must register for six different semesters of MusA 122/322 Orchestra and one semester of MusA 119/319 Marching Band. Keyboard majors must enroll in one semester of MusA 119/319 Marching Band. They may enroll in large vocal ensembles to satisfy the remaining major ensemble requirements. Wind, percussion, keyboard, and string majors must have a total of four semesters of major ensemble participation (as defined above) at UI.
MUSIC EDUCATION: VOCAL-INSTRUMENTAL (B.Mus.)

NOTE: For registration in upper-division courses in education, students must have been admitted to the teacher education program and maintain a GPA of 2.75. For admission criteria, refer to "Admission to the Teacher Education Program" in the College of Education section of part four of this catalog.

Required course work includes the university requirements (see regulation J-3) and:

Comm 101 Fundamentals of Public Speaking (2 cr)
ED 201 Diverse Learners in Schools and Social/Cultural Contexts (3 cr)
ED 301 Principles of Learning and Development in Education (3 cr)
ED 302 Curriculum, Instruction, and Assessment Strategies (3 cr)
EDTE 463 Literacy Methods for Content Learning (3 cr)
MusA 114 Individual Instruction (voice) (2 cr)
MusA 124 Individual Instruction (instrumental) (8 cr)
MusA 145-146 Piano Class (4 cr)
MusA 147-148 Voice Class (2 cr)
MusA 324 Individual Instruction (6 cr)
MusC 387, 487 Conducting I, II (4 cr)
MusA 490 Half Recital (0 cr)
MusC 139-140, 239-240 Aural Skills (8 cr)
MusC 140-141, 241-242 Theory of Music (10 cr)
MusC 328 Instrumental and Choral Arranging (3 cr)
MusH 111 Introduction to Music Literature (3 cr)
MusH 321, 322, 323 Music in Western Civilization (9 cr)
MusT 251, 253, 255, 256, 352 Instrumental Techniques (5 cr)
MusT 382 Elementary School Music Methods for Majors (3 cr)
MusT 383 Principles of Music Teaching (3 cr)
MusT 385 Choral Music in the Secondary School (2 cr)
MusT 388 Instrumental Music in the Secondary School (2 cr)
MusT 432 Practicum: Music Teaching (14 cr)
MusT 445 Proseminar in Music Teaching (2 cr)
MusT 465 Jazz Band Rehearsal Techniques (1 cr)
MusT 466 Marching Band Techniques (1 cr)
MusT 467 Band Literature and Rehearsal Techniques (1 cr)
MusT 485 Choral Ensemble Rehearsal Techniques (1 cr)
MusT 486 Orchestral Literature and Rehearsal Techniques (1 cr)
MusX 101 Orientation for Music Majors (0 cr)
MusX 140 Convocation (seven semesters) (0 cr)
Psyc 101 Introduction to Psychology (3 cr)

Major ensembles (six different semesters)* (6 cr)
Major ensembles (two different semesters chosen from MusA 116/316 Concert Choir - Vandaleers, 117/317 University Chorus) (2 cr)
MusA 111 Introduction to Music Literature or MusH 101 Survey of Music (3 cr)
MusH 330 History of Music Theatre (3 cr)
MusX 283 Diction for Singers (1 cr)
TheF 103 Theatre Technology I (4 cr)
TheF 105 Basics of Performance (3 cr)
TheF 106 Basics of Performance (3 cr)
TheF 207 Theatrical Make-up (3 cr)
TheF 305 Intermediate Acting (3 cr)
TheF 306 Intermediate Acting (3 cr)
TheF 418 Voice for the Stage (1 cr)
TheF 425 BFA Acting Studio (12 cr)
TheF 444 The Business of Acting (2 cr)
TheF 468 Theatre History I (3 cr)

Electives to total 128 cr for the degree

* The major ensemble requirement must be completed in six different semesters; wind and percussion majors must register for three different semesters of MusA 119/319 Marching Band and three different semesters of MusA 121/321 Concert Band, or 320 Wind Ensemble. Wind and percussion majors may, by audition, substitute two semesters of MusA 122/322 Orchestra, MusA 121/321 Concert Band, 125/325 Symphonic Band, or 320 Wind Ensemble. String majors must register for six different semesters of MusA 122/322 Orchestra and one semester of MusA 119/319 Marching Band. Keyboard majors must enroll in one semester of MusA 119/319 Marching Band. They may enroll in large vocal ensembles to satisfy the remaining major ensemble requirements. Wind, percussion, and string majors must have a total of four semesters of major ensemble participation (as defined above) at UI.

MUSICAL THEATRE (B.F.A.)

Required course work includes the university requirements (see regulation J-3) and:

MusA 124 Individual Instruction (8 cr)
MusA 145 Piano Class (1 cr)
MusA 146 Piano Class (1 cr)
MusA 324 Individual Instruction (8 cr)
MusC 380 Workshop (in six different semesters) (6 cr)
MusA 491 Recital (0 cr)
MusA 139 Aural Skills I (2 cr)
MusA 140 Aural Skills II (2 cr)
MusA 141 Theory of Music I (2 cr)
MusA 142 Theory of Music II (2 cr)
MusH 111 Introduction to Music Literature or MusH 101 Survey of Music (3 cr)
MusH 330 History of Music Theatre (3 cr)
MusX 283 Diction for Singers (1 cr)
TheF 103 Theatre Technology I (4 cr)
TheF 105 Basics of Performance (3 cr)
TheF 106 Basics of Performance (3 cr)
TheF 207 Theatrical Make-up (3 cr)
TheF 305 Intermediate Acting (3 cr)
TheF 306 Intermediate Acting (3 cr)
TheF 418 Voice for the Stage (1 cr)
TheF 425 BFA Acting Studio (12 cr)
TheF 444 The Business of Acting (2 cr)
TheF 468 Theatre History I (3 cr)

Electives to total 128 cr for the degree

Major ensemble (four different semesters chosen from MusA 116/316 Concert Choir - Vandaleers, 117/317 University Chorus, 119/319 Marching Band, 121/321 Concert Band, 122/322 Orchestra, 125/325 Symphonic Band, or 320 Wind Ensemble) (4 cr)

Academic Minor Requirements

MUSIC MINOR

Note: Ensemble participation is recommended to meet the music electives requirement.

MusA 114 Individual Instruction (4 cr)
MusA 145-146 Piano Class (4 cr)
MusC 139-140 Aural Skills I-II (4 cr)
MusC 141-142 Theory of Music I-II (4 cr)
MusH 101 Survey of Music or MusH 111 Introduction to Music Literature (3 cr)
Select two courses from MusH 321, 322, 323 Music in Western Civilization (6 cr)
MusA 140 Convocation (2 semesters) (0 cr)
Music electives (4 cr)

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the School of Music. See the College of Graduate Studies section of part 4 for the general requirements applicable to each degree.

Master of Arts. General M.A. requirements apply. Applicants for the M.A. degree may concentrate in music history. A reading competency in one foreign language is required. Admission to the program is by permission of the music history faculty.

Master of Music. Applicants for the M.Mus. degree may concentrate in music education; performance (with degree patterns in keyboard, woodwinds, brass, percussion, strings, and voice); composition; piano pedagogy and performance studies; or accompanying. Related to the M.Mus. program is by audition, interview, and/or submission of scores and tapes depending on the concentration selected. At least 18 semester hours of credit applicable toward the M.Mus. degree must be earned in residence on the Moscow campus.

Natural Resources

Steven B. Daley Laursen, Dean, College of Natural Resources (202C CNR Bldg. 83844-1138; phone 208/885-6442); Alan G. Campbell, Associate Dean.

With approximately 90 percent of its area in forest and range lands, together with its wealth of water resources, Idaho offers excellent opportunities for undergraduate and graduate study in all the disciplines related to management of renewable resources of wildlands. The college has its own research organization, the Forest, Wildlife and Range Experiment Station, including the Idaho Cooperative Fish and Wildlife Research Unit and the Cooperative Park Studies Unit. All faculty members have teaching responsibilities in the college as well as research responsibilities in the experiment station. Additional facilities include the Wilderness Research Center with a field station in the River of No Return Wilderness Area, the Experimental Forest near Moscow, the Lee A. Sharp Experimental Area near Burley, Idaho, the McCall Field Campus in central Idaho, and the USDA Rocky Mountain Research Station, Forestry Sciences Laboratory, in Moscow.

Admission for graduate study normally requires completion of course work equivalent to that required in one of the undergraduate curricula offered by the college. Students with differing backgrounds but substantial preparation in the sciences may also be admitted. The college has developed a program to allow for differences in preparation while providing all students with comparable backgrounds by the time the graduate program is completed.

Courses

See Part 6 for courses in Natural Resources (NR).

Undergraduate Curricular Requirements

ECOLOGY AND CONSERVATION BIOLOGY (B.S.Ecol.-Cons.Biol.)

Improving global environmental conditions requires researchers and other citizens who can understand ecological principles, who can analyze and interpret ecological conditions, and who predict the consequences of alternative natural resource management decisions. Understanding the importance of social values and policy for ecology and management of rare, threatened, and endangered species and their habitat is necessary to reverse the order of their decline. In the ecology and conservation biology program, students learn to apply biological, ecological, social, and political understanding to solve problems related to long-term conservation of biological diversity and to sustainable management of ecosystems.

This degree combines the biological, ecological, and social sciences to provide (1) an interdisciplinary understanding of the composition, structure, and processes of ecosystems, and (2) the skills necessary to provide long-term planning for the conservation and sustainable management of populations, species, and ecosystems.

Students will examine topics from molecular to landscape scales, and integrate the scientific and philosophical worlds. Graduates will be equipped to address the issues and problems of sustainable resource use, conservation of rare, threatened, or endangered biota; management of ecosystems, and long-term conservation of biological diversity. This course is flexible enough to adapt to the interests of individual students, while remaining firmly grounded in ecological principles applicable to species, populations, communities, landscapes, and ecosystems. It is distinctly different from the emphasis on management in the other forestry, wildlife, fisheries, range, and conservation social sciences programs, or the more general environmental science programs. Graduates of the program often continue advanced studies at national and international universities. This natural resources "liberal science" degree can also serve as pre-professional training for law school, or for professional positions in federal, state, and private environmental organizations including local and regional planning groups and consulting firms.
PART FIVE
Departments of Instruction
Natural Resources

The program requires 128 credits, and students must choose either the natural resources ecology or conservation biology option. Students pursuing a B.S. in Ecology & Conservation Biology must receive a grade of 'C' or better in each of the following four indicator courses to register in upper division courses in CSS/Fish/For/Rnge/WLF and to graduate with a B.S. in either option: Biol 116, Biol 213, Stat 251, For/Rnge 221.

Required course work includes the university requirements (see regulation J-3) and:

Biol 115 Cells and the Evolution of Life (4 cr)
Biol 116 Organisms and Environments (4 cr)
Biol 213 Principles of Biological Structure and Function (4 cr)
Biol 341 Systematic Botany or For 320 Distrology (3 cr)

Chem 101 Introduction to Chemistry I or 111 Principles of Chemistry I (4 cr)
Con 101 Fundamentals of Public Speaking (2 cr)
CSS/Fish/For/Rnge/WLF 483 Senior Project Presentation (1 cr)
CSS/Fish/For/Rnge/WLF 497 Senior Thesis or Fish/For/Rnge/WLF 485 Natural Resources Ecology and Conservation Biology Internship (2 cr)

Econ 202 Principles of Economics (3 cr)
Engl 317 Technical Writing (3 cr)

For/Rnge 221 Natural Resource Ecology (3 cr)
ForCSS 235 Society and Natural Resources (3 cr)

For 383 Economics for Natural Resource Managers or CSS 383 Resource Economics for Environmental Policymaking or AgEc 451 Land and Natural Resource Economics or Econ 385 Environmental Economics (3 cr)

For 470 Interdisciplinary Natural Resource Planning (3 cr)
Math 160 Survey of Calculus or 170 Analytic Geometry and Calculus I (4 cr)

NR 101 Exploring Natural Resources (1 cr)
Stat 251 Statistical Methods (3 cr)

And one of the following options:

A. Natural Resources Ecology Option

The natural resources ecology option combines ecological theory, field experience, and quantitative tools to gain an interdisciplinary understanding of the structure and function of ecosystems. This field covers ecological topics from local, regional, and landscape scales while integrating the social and biophysical worlds.

To graduate in this option, students must achieve a "C" or better in the following six core courses: CSS/Fish/For/Rnge/WLF 200, For 330, For 429, Soil 205/206, and WLF 316 or Fish 316.

CSS/Fish/For/Rnge/WLF 200 Seminar (1 cr)

For 330 Forest Ecosystem Services (3 cr)
For 429 Landscape Ecology of Forests and Rangelands (2 cr)
Phys 100 Fundamentals of Physics or Phys 111 General Physics I (4 cr)
Soil 205/206 The Soil Ecosystem and Lab (4 cr)

WLF 316 Wildlife Ecology II (4 cr) or Fish 316 Principles of Population Dynamics (2 cr)

Quantitative Resource Analysis Restricted Electives (two courses from the following)

CSS 310 Social Research Methods in Conservation (4 cr)
For 375 Airphoto Interpretation and Mapping (3 cr)
For 472 Remote Sensing of Environment (3 cr)
For 474 Quantitative Resource Analysis (3 cr)

Geog 385 GIS Primer (3 cr)
Math 437 Mathematical Biology (3 cr)
Rnge 357 Rangeland and Riparian Habitat Assessment (3 cr)

Stat 401 Statistical Analysis (3 cr)
Stat 422 Sample Survey Methods (2 cr)
Stat/GeoE 428 Geostatistics (3 cr)

WLF 448 Fish & Wildlife Population Ecology (4 cr)

Resource Management Restricted Electives (one course from the following):

CSS 385 Conservation Management and Planning (1 cr)
CSS 490 Wilderness and Protected Area Management (3 cr)
CSS 498 Monitoring Impacts in Protected Areas and Wilderness (3 cr)
Fish 418 Fisheries Management (4 cr)
For 424 Forest Dynamics and Management (4 cr)
For 426 Watershed Science and Management (2 cr)
Rnge 354 Wildland Vegetation Management and Restoration (3 cr)
Rnge 454 Rangeland Weed Management (3 cr)
Rnge 456 Integrated Rangeland Management (3 cr)

WLF 445 Nongame Management (2 cr)

WLF 492 Wildlife Management (4 cr)

Ecology Restricted Electives (at least 2 credits from Fish 314, Fish 430, Fish 435, For 423, Rnge 459, and/or WLF 315) (10 cr)

Bio 421 Advanced Evolution/Population Dynamics (3 cr)
Bio 428 Public Involvement in Natural Resource Management (3 cr)
CSS 486 Public Involvement in Natural Resource Management (3 cr)
CSS 489 Personalities and Philosophies in Conservation (2 cr)
CSS 493 International Land Preservation and Conservation Systems (3 cr)
For 484 Forest Policy and Administration (2 cr)
Geog 420 Land, Resources, and Environment (3 cr)

Geo 444 Environmental Assessment (3 cr)
Hist 424 American Environmental History (3 cr)
Phil 452 Environmental Philosophy (3 cr)
PolS 364 Politics of the Environment (3 cr)

Eletives to total 128 credits for the degree

B. Conservation Biology Option

The conservation biology option is centered around a multidisciplinary curriculum that provides students with training to work in jobs aimed at conserving the earth’s biodiversity. This option provides a broad-based education that covers biological diversity from the gene to the landscape level, and provides additional training in social sciences and management. In the words of Hunter (1996), “Conservation biology is cross-disciplinary, reaching far beyond biology into subjects such as philosophy, economics, and sociology; disciplines that are concerned with the social environment in which we practice conservation— as well as into subjects such as law and education that determine the ways we implement conservation.”

To graduate in this option, students must achieve a “C” or better in the following seven core courses: Biol 421, CSS/Fish/For/Rnge/WLF 200, For 429, Phil 452, CSS 493, Fish or WLF 316, and WLF 440.

Biol 421 Advanced Evolution/Population Dynamics (3 cr)

CSS/Fish/For/Rnge/WLF 200 Seminar (1 cr)

CSS 493 International Land Preservation and Conservation Systems (3 cr)

For 429 Landscape Ecology of Forests and Rangelands (2 cr)

Phil 452 Environmental Philosophy (3 cr)

WLF 316 Wildlife Ecology II or Fish 316 Principles of Population Dynamics (2-4 cr)

WLF 440 Conservation Biology (3 cr)

Quantitative Resource Analysis Restricted Electives (two courses from the following):

CSS 310 Social Research Methods in Conservation (4 cr)
For 375 Airphoto Interpretation and Mapping (3 cr)
For 472 Remote Sensing of Environment (3 cr)
For 474 Quantitative Resource Analysis (3 cr)

Geog 385 GIS Primer (3 cr)
Math 437 Mathematical Biology (3 cr)
Rnge 357 Rangeland and Riparian Habitat Assessment (3 cr)

Stat 401 Statistical Analysis (3 cr)
Stat 422 Sample Survey Methods (2 cr)
Stat/GeoE 428 Geostatistics (3 cr)

WLF 448 Fish & Wildlife Population Ecology (4 cr)

Resource Management Restricted Electives (one course from the following):

CSS 385 Conservation Management and Planning (1 cr)
CSS 490 Wilderness and Protected Area Management (3 cr)
CSS 498 Monitoring Impacts in Protected Areas and Wilderness (3 cr)
Fish 418 Fisheries Management (4 cr)
For 424 Forest Dynamics and Management (4 cr)
For 426 Watershed Science and Management (2 cr)
Rnge 354 Wildland Vegetation Management and Restoration (3 cr)
Rnge 454 Rangeland Weed Management (3 cr)
Rnge 456 Integrated Rangeland Management (3 cr)

WLF 445 Nongame Management (2 cr)

WLF 492 Wildlife Management (4 cr)

Ecology Restricted Electives (at least 2 credits from Fish 314, Fish/Rnge 430, Fish/Rnge 435, For 423, Rnge 459, and/or WLF 315) (6 cr)

Bio 478 Animal Behavior (3 cr)
Ent 472 Aquatic Entomology (3 cr)
Fish 415 Limnology (4 cr)
Fish/Rnge 430 Riparian Ecology and Management (3 cr)
Fish/Rnge 435 Wetland Ecology and Management (3 cr)
For 330 Forest Ecosystem Processes (3 cr)
For 423 Forest Community Ecology (1 cr)
For 426 Wildland Fire Management and Ecology (3 cr)
For 466 Diseases and Insects of Woody Plants (3 cr)

MIMB 425 Microbial Ecology (3 cr)

PlSc 410 Biology of Weeds (3 cr)

Rnge 440 Wildland Restoration Ecology (3 cr)

Rnge 459 Rangeland Ecology (3 cr)

WLF 314 Wildlife Ecology I (3 cr)

WLF 315 Wildlife Ecology I (3 cr)

Organismal Biology Restricted Elective (one course from the following):

Bio 481 Ichthyology (4 cr)

Bio 483 Mammalogy (3 cr)

Ent 211 Insect Biology (4 cr)

Rnge 353 Rangeland Plant Identification and Ecology (3 cr)

WLF 482 Ornithology (3 cr)

Social/Political Restricted Electives (one course from the following):

Comm 331 Conflict Management (3 cr)
CSS 481 Conservation Leadership (3 cr)

[Note: The table continues with more courses and options, but it is not fully transcribed in this summary.]
Academic Minor Requirements

NATURAL RESOURCES MINOR

Note: Not open to students pursuing a major in the College of Natural Resources.

For 235 Society and Natural Resources (3 cr)
Roge 221 Natural Resources Ecology (3 cr)
Courses chosen from at least three of the following subjects, including at least 3 credits at the 300 level or above (12 cr):
- Conservation Social Sciences (CSS)
- Fishery Resources (Fish)
- Forest Products (ForP)
- Forest Resources (For)
- Range Resources (Ringe)
- Wildlife Resources (WLF)

Graduate Degree Programs

Candidate must fulfill the requirements of the College of Graduate Studies and of the College of Natural Resources. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Science. Thesis and non-thesis options are offered with majors in fishery resources, forest products, forest resources, rangeland ecology and management, resource recreation and tourism, and wildlife resources. See the respective departmental sections for details.

Master of Natural Resources. General M.N.R. requirements apply. To provide the breadth of knowledge required in this 30-credit degree, students must complete a minimum of two courses in each of the four major emphasis areas (policy, planning, and law; human dimensions; ecology and resources; and tools and technology). Students will select courses based on their academic background and career goals. Students must also complete two 3-credit colloquia to be offered on the UI campus. An additional 6 credits of advisor-approved electives is to be selected from nonlisted courses. The M.N.R. Committee may approve course substitutions.

Doctor of Philosophy. General Ph.D. requirements apply. Doctoral candidates are required to have an understanding of the principles of resource management in areas other than that chosen as a specialization. There is no general college requirement of proficiency in a foreign language for the doctorate, but one may be required by an individual student’s committee where this seems desirable.

There is only one major for the Ph.D. degree, “natural resources”. However, dissertation topics are selected from disciplinary areas within each department. The single designation for the major is in keeping with the college’s philosophy of integrated resource management.

Department of Natural Resources

Bruce Barnes, Dept. Head (101 Navy Bldg. 83844-1122; phone 208/885-6333; http://www.uidaho.edu/navyrotc). Faculty: Bruce Barnes, Mark J. Brownell, James G. Cox, Christopher D. Delinski, Joel W. Feldmeier, Craig O. Petersen.

The Navy-Marine Corps Officer Education Program (NOEP) provides instruction and training for young men and women in preparation for being commissioned as officers in the United States Navy or Marine Corps. Students receive their uniforms and naval science textbooks at no cost and begin receiving a monthly $300 stipend at the beginning of their junior year. This program requires one training cruise during the summer following the junior year aboard a ship of the Pacific or Atlantic Fleet. During the cruise, students receive one-half the pay of newly commissioned officers, room, and board. College Program graduates are commissioned as active duty reserve officers. Also, College Program students may be nominated by the professor of naval science to receive a scholarship, beginning in the sophomore year. College Program students complete six credits of algebra and trigonometry, six credits of physical science, six credits of English composition, and three credits of introductory computer science in addition to naval science courses.

Marine Corps Option. Both male and female Scholarship and College Program students who desire a Marine Corps commission may apply for the Marine Corps Option during their first two years in college. Students taking this option enroll in specialized courses on Marine Corps subjects during their junior and senior years and participate in summer training at the Marine Corps Development and Education Center, Quantico, Virginia, during the summer following their junior year.

Nursing Option. A selected number of scholarships are available for the Navy Nursing Program. Nursing students spend one to two years studying naval science and other entry-level courses at the University of Idaho, then transfer to an accredited nursing school to complete their RN training. Lewis-Clark State College in Lewiston, Idaho, and the Intercollegiate College of Nursing in Spokane, Washington are available for nursing education in conjunction with UI Naval ROTC. Navy nurse students participate in battalion activities, and also attend two summer training cruises during their college career. Graduates are commissioned as active duty reserve officers in the Navy Nurse Corps.

Naval Science Institute. Navy-Marine Corps Scholarship and College Program applicants entering the program after completion of their sophomore year will be required to attend the Naval Science Institute (NSI) during the summer between their sophomore and junior years. Of the NSI, candidates return to the university and complete their junior and senior years of the naval science curriculum with their peers. Candidates in the two-year program will participate in one all-officer cruise between their junior and senior years. Applications must be submitted no later than March of the sophomore year. The top 50 candidates are awarded scholarships for their last two years of college. The remaining graduates enter the College Program and receive those benefits.

Field Trips. Field trips to Navy and Marine Corps facilities are arranged periodically in order to allow the Navy-Marine Corps Officer Education Program members the opportunity to learn more about the naval service.

Courses

See Part 6 for courses in Naval Science (NS).

Undergraduate Curricular Requirements

NAVAL SCIENCE (B.N.S.)

Required course work includes the university requirements (see regulation J-3) and:

CS 112 Intro to Problem Solving and Programming or PTTE 111 Computer Skills (3 cr)
Math 170, 175 Analytic Geometry and Calculus I, II (8 cr)
NS 101 Introduction to Naval Science (2 cr)
NS 102, 201 Ships Systems I-II (6 cr)
NS 202 Seapower and Maritime Affairs (2 cr)
NS 301 Navigation (3 cr)
NS 302 Naval Operations (3 cr)
NS 401 Naval Organization and Management (2 cr)
NS 402 Naval Leadership (2 cr)
Phys 211, 212 Engineering Physics I-II (8 cr)
One of the following courses (3 cr):
- Hist 450 U.S. Diplomatic History (3 cr)
- Hist 455 20th Century Europe (3 cr)
- Hist 458 Military History (3 cr)
PolS 237 International Politics (3 cr)
PolS 438 Conduct of American Foreign Policy (3 cr)
PolS 449 World Politics and War (3 cr)

A student applying for the bachelor’s degree in naval science must have completed at least 80 percent of the requirements toward another university degree, as approved by the dean of the college concerned.

A student in naval science who concurrently qualifies for both the B.N.S. degree and another university degree will be awarded only the other university degree.

The awarding of the B.N.S. degree is administered through the College of Letters, Arts, and Social Sciences; however, the academic records of the student concerned remain with the college in which he or she is registered for the other baccalaureate degree.

Academic Minor Requirements

NAVAL SCIENCE MINOR

NS 101 Introduction to Naval Science (2 cr)
NS 102, 201 Ships Systems I, II (6 cr)
NS 202 Seapower and Maritime Affairs (2 cr)
Program in Neuroscience

Deborah L. Stenkamp, Program Director (Morrill Hall Room 104; phone 208/885-6242; neuro@uidaho.edu ; http://www.grad.uidaho.edu/neuro). Faculty: Terry Armstrong, John Byers, Steven Chandler, Mark DeSantis, Brian Dyre, James Frenzel, Marc Klowden, Michael Laskowski, Stephen Lee, Kathy Magnusson, Thomas McKeen, Steve Meier, Nicholas Natale, Michael O’Rourke, Terence Soule, Deborah Stenkamp, Rick Wells, Steffen Werner, Mark Yama.

Neuroscience is the study of the nervous system; this study is broad and includes investigations of the development, anatomy and physiology of the nervous system, research of cognitive and behavioral processes, and the application of mathematics and computer science to understand and model neurological function. One major goal of Neuroscience research is to understand how the nervous system forms and functions so treatments and cures can be developed for neurological disorders such as Alzheimer’s disease, depression, drug addiction and spinal cord injury. Neuroscience research also strives to understand cognitive processes and apply this understanding to the industrial and policy arenas. The Neuroscience Graduate Program integrates across many traditional disciplines to provide training in neurobiology, cognitive neuroscience, and computational neuroscience. Graduates of the program may enter careers in academics, biomedical or technical industry, or scientific communications.

Admission to graduate programs in the department is based upon an estimate of probable success in graduate work leading to a specific degree. The Graduate Record Examination (aptitude only) is required of all applicants. Prospective students, or students desiring more information, may write or email (neuro@uidaho.edu) the Program Director or the College of Graduate Studies.

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Program in Neuroscience. See the College of Graduate Studies section of part 4 for the general requirements applicable to each degree.

The University of Idaho offers M.S. and Ph.D. degrees in Neuroscience. The Neuroscience Program is offered on campuses in Moscow at the University of Idaho, and is administered by the College of Graduate Studies. A degree in Neuroscience requires coursework in neurobiology, cognitive neuroscience, and computational neuroscience, and original research experience in one of these areas. One goal of the program is to foster a broad, yet quantitative approach to neuroscience.

The Neuroscience Program is highly interdisciplinary. It requires students and faculty to bridge biological, computational and behavioral disciplines. Neuroscience faculty is drawn from nine departments and programs in primarily three colleges (College of Science; College of Agriculture, Arts, Social Science; and College of Engineering). Members are available to serve as major professors for Neuroscience graduate students, and on Neuroscience graduate student committees.

A Neuroscience degree from the University of Idaho is distinct in that the graduate can approach and describe the study of neuroscience from a variety of perspectives, and apply this broad understanding to address the important problems in neuroscience research that require an interdisciplinary approach.

Course and Credit Requirements

Incoming students admitted with background deficiencies will take background courses. For example, biology majors will likely need to take at least one background course in computer science. The specific required background courses will be determined by each student’s graduate committee with the approval of the program director. Note that credits from courses numbered 300 and below do not count toward the Neuroscience degree requirements, though they may be required to fulfill deficiencies.

The core courses form a central, shared educational experience for all Neuroscience students. These courses will enable them to share a common language, and to discuss problems from multiple disciplinary points of view. This shared experience will also give Neuroscience students a sense of identity and community, which will encourage them to help each other overcome cultural and terminological differences that may make such interdisciplinary interactions challenging. Core courses include those in neurobiology, cognitive neuroscience, computational neuroscience, methods and statistics, and scientific ethics. The neurobiology course is a core course shared by the Neuroscience graduate program at Washington State University (WSU). This practice fosters interactions between our two programs and promotes collaborative activities. M.S. students will also enroll in at least one credit of the Ph.D. Topics in Neuroscience. Topics in Neuroscience is a seminar course that includes presentation of the literature by graduate students, as well as informal seminars and discussions led by invited speakers. These seminars bring experts from around the world to campus, where they can interact with Neuroscience students and faculty.

Ph.D. students also have the option of pursuing 1-3 research rotations. Research rotations in neurobiology, computational neuroscience or cognitive and behavioral neuroscience provide practical experience in research questions and methods outside the major emphasis area of the student.

The elective courses provide more detailed knowledge of Neuroscience, and provide the depth needed to support graduate research. The list of elective courses will evolve with the research interests of the Neuroscience faculty participants. The M.S. will require at least four elective credits and the Ph.D. will require at least 25. Other courses may be required as determined by the student’s committee and with approval of the program director. Please see the listing of current core and elective courses on our web page http://www.grad.uidaho.edu/neuro/.

The M.S. requires a minimum 32 credits and the Ph.D. requires a minimum 78 credits. The Neuroscience program assumes the usual graduate full time load of at least nine credits per semester.

Admissions Requirements and Procedures

Admission to this program is highly competitive and recruitment is international in scope. Even exceptional applicants are admitted only when there is an opening with one of the participating faculty. The Graduate Record Examination (GRE) is required of all applicants, successful applicants must have a total score of at least 1700 (in the old system: quant+verbal+analytical) or 1200+4 (in the new system). All applicants must provide three letters of reference that speak to the applicant’s aptitude for graduate research. For applicants for whom English is a second language, a TOEFL score of at least 600 (CBT 250) is required. Successful applicants must also have at least 3.0 undergraduate GPA. In exceptional circumstances, these requirements may be adjusted. Applicant must provide a statement of research interests that clearly identifies the research area at which he or she would like to work.

To apply: Please go to the University of Idaho Graduate Admissions webpage at http://www.students.uidaho.edu/gradadmissions or contact the Graduate Admissions Office, University of Idaho, P.O. Box 44426, Moscow, ID 83844-4266.

Program in Nuclear Engineering

Robert R. Stiger, Program Director (UI at Idaho Falls, P.O. Box 50778, Idaho Falls, ID 83401; phone 208/282-7937; e-mail bobs@uidaho.edu). Faculty: Nathan Chipman, John Crepeau, Fred Gunnerson, Roger Korus, Clark Lemmon, Jim Liou, Keith Prisbyre, Vivek Utkigkar.

Courses

See Part 6 for courses in Nuclear Engineering (NE).

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Program in Nuclear Engineering. See the College of Graduate Studies section of part 4 for the general requirements applicable to each degree. These degrees are offered only through the graduate program at the University of Idaho Center, Idaho Falls. Consult the center’s bulletin for specific details.

Master of Science. General M.S. requirements apply.

Master of Engineering. General M.Eng. requirements apply.

Doctor of Philosophy. General Ph.D. requirements apply. Preliminary screening of candidates and program planning for those admitted are essential features of the Ph.D. program. Early in the program, the student must complete a qualifying examination, which will be oral and possibly written. The preliminary examination is taken after most of the course work is completed. This examination is generally limited to the areas of emphasis indicated by the student’s dissertation topic and includes a presentation of the dissertation proposal; it will be written and oral. For foreign language is required; however, the program does require a satisfactory level of achievement in mathematics and numerical analyses and in computer programming.

Department of Philosophy

Ph.D. programs in philosophy bring students into contact with the main strains of Western and Eastern philosophy. Alumni of the Ph.D. program have been successful in a wide range of careers. Alumni have entered academia, government, law, business, and the nonprofit sector. Alumni of the M.A. program have been successful in a wide range of careers. Alumni of the M.A. program have been successful in a wide range of careers.

Program in Nuclear Engineering

Robert R. Stiger, Program Director (UI at Idaho Falls, P.O. Box 50778, Idaho Falls, ID 83401; phone 208/282-7937; e-mail bobs@uidaho.edu). Faculty: Nathan Chipman, John Crepeau, Fred Gunnerson, Roger Korus, Clark Lemmon, Jim Liou, Keith Prisbyre, Vivek Utkigkar.

Courses

See Part 6 for courses in Nuclear Engineering (NE).

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Program in Nuclear Engineering. See the College of Graduate Studies section of part 4 for the general requirements applicable to each degree. These degrees are offered only through the graduate program at the University of Idaho Center, Idaho Falls. Consult the center’s bulletin for specific details.

Master of Science. General M.S. requirements apply.

Master of Engineering. General M.Eng. requirements apply.

Doctor of Philosophy. General Ph.D. requirements apply. Preliminary screening of candidates and program planning for those admitted are essential features of the Ph.D. program. Early in the program, the student must complete a qualifying examination, which will be oral and possibly written. The preliminary examination is taken after most of the course work is completed. This examination is generally limited to the areas of emphasis indicated by the student’s dissertation topic and includes a presentation of the dissertation proposal; it will be written and oral. For foreign language is required; however, the program does require a satisfactory level of achievement in mathematics and numerical analyses and in computer programming.

Department of Philosophy

Ph.D. programs in philosophy bring students into contact with the main strains of Western and Eastern philosophy. Alumni of the Ph.D. program have been successful in a wide range of careers. Alumni have entered academia, government, law, business, and the nonprofit sector. Alumni of the M.A. program have been successful in a wide range of careers.
Courses
See Part 6 for courses in Philosophy (Phil).

Undergraduate Curricular Requirements

PHILOSOPHY (B.A. or B.S.)

Note: Students who intend to do graduate work are advised to take the Bachelor of Arts degree.

Required course work includes the university requirements (see regulation J-3), the general requirements for either the B.A. or B.S. degree, and:

Phil 103 Ethics (3 cr)
Phil 201 Critical Thinking or Phil 202 Intro to Symbolic Logic (3 cr)
Phil 240 Belief and Reality (3 cr)
Phil 320 History of Ancient and Medieval Philosophy (3 cr)
Phil 321 History of Modern Philosophy (3 cr)
Phil 490 Senior Seminar (3 cr)

Philosophy electives (upper-division must include at least one course in non-Western thought) (12 cr)

Related fields (humanities, social sc, and sc)* (20 cr)

* The electives in philosophy and related fields are to be selected with the approval of the chair of philosophy.

Academic Minor Requirements

PHILOSOPHY MINOR

Phil 103 Ethics or Phil 201 Critical Thinking or Phil 202 Intro to Symbolic Logic or Phil 240 Belief and Reality (3 cr)
Phil 320 History of Ancient and Medieval Philosophy (3 cr)
Phil 321 History of Modern Philosophy (3 cr)
Three upper-division philosophy courses (9 cr)

RELIGIOUS STUDIES MINOR

See the Religious Studies section for details on this minor.

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Philosophy. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

The M.A. program in Philosophy is a cooperative one, offered jointly by the University of Idaho and Washington State University, so that University of Idaho students may have the benefit of additional faculty and classes available at Washington State.

Master of Arts. All students earning the M.A. degree in Philosophy will be required to complete 30 credit hours, including twelve hours of core courses, twelve hours of elective courses, and six hours of Master’s Thesis research. Up to six hours of coursework may be completed at the 400-level. Students may pursue a traditional Philosophy M.A. or choose one of two options for emphasis: Environmental Philosophy or Ethics.

Environmental Philosophy Option. For students choosing the Environmental Philosophy Option, administered by the Department of Philosophy at the University of Idaho: the thesis must be in Environmental Philosophy and at least 15 of the letter-grade credit hours must be in environmental courses, some of which may be offered through other departments. Relevant courses approved by the student’s thesis advisor.

Ethics Option. For students choosing the Ethics Option, administered by the Department of Philosophy at Washington State University: the thesis must be in Ethics and at least 15 of the letter-grade credit hours must be in ethics or other normative theory courses approved by the student’s thesis advisor.

Department of Physics

Ruprecht Machleidt, Interim Dept. Chair (311A Engineering/Physics Bldg. 83844-0903); 208/885-4380; http://www.uidaho.edu/physics/. Faculty: Leah Bergman, Christopher A. Berven, Ruprecht Machleidt, David N. McIroy, George Patsakos, You Qiang, Francesca Sammarcua-Machleidt, Bernhard J. Stumpf, Wei Yang Jieh.

Physics is the scientific study of the nature and behavior of matter and energy. On the basis of experimental observations, physicists develop theories to describe the observed behavior. Further experiments and observations are used to verify or refine the theories. The scientific method demands logical and mathematical rigor. The wealth of applications of physics to technology appeals to pragmatic persons, yet physics has much greater similarity to the arts and humanities than is commonly realized, because of the intellectual curiosity and creativity on which it is built.

The physics program at UI introduces students in technical and non-technical curricula alike to the scientific method and to physical laws. The B.A. and B.S. curricula in physics emphasize either a broad liberal-arts education and the core subjects in physics. Many B.A. and B.S. recipients go on to graduate study in physics or related disciplines.

Training in the theory, history, and philosophy of physics is provided by the required core courses and electives in most of the major areas of specialization. Formal laboratory courses and directed research familiarize students with experimental techniques, modern instrumentation, and computers. Equipment in the department’s research laboratories includes low-temperature, strong magnetic field, high-vacuum, and vapor deposition facilities, electron and atomic beam apparatus, plasma devices, various lasers, spectrometers, optical telescopes, and nuclear radiation detectors. All offices, laboratories, and classrooms have computer network connections. The program is supported by a machine shop and a computer services shop. Collaborations with other universities and research institutes provide access to an even wider range of facilities.

The department offers graduate curricula leading to the M.S., M.A.T., and Ph.D. degrees. A bachelor’s degree in physics is normally required as preparation for graduate study. Students with a bachelor’s degree in another physical science, engineering, or mathematics will generally qualify after removal of a few upper-division-level deficiencies. A major in secondary education with specialization in physical science and mathematics is suitable preparation for the M.A.T. curriculum.

Research in the Department of Physics emphasizes the areas of condensed matter physics, nuclear physics, atomic physics, and plasma physics. In addition, there is an interest in research on physics teaching.

The M.S. is not a prerequisite for the Ph.D., but beginning doctoral students may earn the M.S. if they wish. General departmental course requirements exist for the M.S., M.A.T., and Ph.D. degrees, in addition to the general requirements of the Graduate College. Other course requirements are specified in the student’s study plan, developed by the student and his or her advisor and approved by the student’s supervisory committee. All graduate students are encouraged to gain some teaching experience during the course of their graduate studies.

Faculty members in the department will be happy to discuss programs in detail with interested persons. Requests for information or a tour of the facilities can be made by a letter, e-mail, or telephone call (208/885-6380) to the department.

Courses
See Part 6 for courses in Physics (Phys).

Undergraduate Curricular Requirements

PHYSICS (B.A. or B.S.)

Required course work includes the university requirements (see regulation J-3), the general requirements for either the B.A. or B.S. degree, and:

Chem 111 Principles of Chemistry I (4 cr)
Chem 112 Principles of Chemistry II (5 cr)
Math 170, 175, 275 Analytic Geometry and Calculus (11 cr)
Mathematics (upper-division) (6 cr)
Phys 200 Physics Seminar (2 cr)
Phys 211, 212, 213 Engineering Physics I, II, III (12 cr)
Phys 305 Modern Physics (3 cr)
Phys 321-322 Analytical Mechanics (6 cr)
Phys 341-342 Electromagnetic Fields I-II (6 cr)
Phys 351 Introductory Quantum Mechanics I (3 cr)
Phys 371 Mathematical Physics (3 cr)

And, for the B.A. only:

Phys 411 Physical Instrumentation I (3 cr)
Two upper-division physics courses from the following: Phys 425, 428, 431, 444, 443, 441, 463, 465, 485 (6 cr).
6 credits (two courses) in the humanities in addition to the minimum university-wide core requirement of 14 credits in the humanities/social sciences*, 3 credits (one course) in the social sciences in addition to the minimum university-wide core requirement of 14 credits in the humanities/social sciences*.
Foreign Languages 0-16 credits (zero-four courses) competence in one foreign language equivalent to that gained by the completion of four semester of college courses through the intermediate level. This requirement may be satisfied by the completion of either of the following options (1) 16 credits or four high-school units in one foreign language, or (2) 12 credits in one foreign language, and one three-credit course in literature translated from the same language. The 12 credits may be satisfied by three high-school units in one foreign language.

And, for the B.S. only:

3 credits (one course) in the humanities in addition to the minimum university-wide core requirement of 14 credits in the humanities/social sciences*.
3 credits (one course) in the social sciences in addition to the minimum university-wide core requirement of 14 credits in the humanities/social sciences*.

*Courses satisfying the humanities requirement are those dealing with the arts, literature, and philosophy. Courses satisfying the social science requirement are those dealing with a person’s social condition including social relations, institutions, history, and participation in an organized community. Refer to online degree audit system through Web registration system or your academic advisor for a listing of appropriate courses.

Academic Minor Requirements

PHYSICS MINOR

Phys 211, 212 Engineering Physics I, II (8 cr)
Phys 213 Engineering Physics III or Engr 219 Engineering Statics (3-4 cr)
Physics courses numbered 300 or above (usual prerequisites are Math 170, 175, 275) (12 cr)
Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Physics. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Science (Non-thesis Option). General M.S. non-thesis requirements apply. The student must complete at least 30 credits, 20 of which must be at the graduate level, including courses in research and theory. Specific departmental graduate course requirements are 2 credits in Phys 501 and Phys 521, 541-542, and 551. A written examination that covers graduate coursework must be taken during the final semester in residence.

Master of Science (Thesis Option). General M.S. requirements for a degree with thesis apply. The student must complete a total of at least 30 credits, 20 of which must be at the graduate level, including courses in research and theory. Specific departmental graduate course requirements are 2 credits in Phys 501 and Phys 521, 541-542, and 551. A written examination that covers graduate coursework must be taken during the final semester in residence.

All M.S. graduate students are required to enroll in Phys 501 (Physics Seminar) each semester while in residence, even if not formally registered for credit in this course. Registration may be for zero credit.

Students must pass a comprehensive examination, which must be taken at the first offering after the student has completed the core courses required for the M.S. degree. Full-time students must complete the examination within the term of their course requirements by avoiding the taking of a core course when offered except with the prior written consent of the Academic Standards Committee and the student's major professor. The examination is written and covers the general graduate-level physics as defined by the required courses for the M.S. degree. Typically, it will be administered on two different days, with a time limit of approximately three hours for each day. The results of the examination will be announced to the physics faculty. If the comprehensive examination is failed, it may be repeated only once; the repeat examination must be taken within a period of not less than three months nor more than one year following the first attempt.

A final defense of the M.S. thesis is scheduled upon completion of the thesis. Full-time students have to take this examination no later than two years after passing the comprehensive examination. The candidate is required to defend his or her work and show a satisfactory knowledge of the field in which the thesis research has been performed. The defense is oral and would typically last for one hour. The exam is to be announced to the physics faculty at least one week in advance. All members of the faculty are permitted to attend and ask questions. A recommendation of a majority of the student's graduate committee is necessary to pass the defense. If the defense is failed, it may be repeated only once; the repeat defense must be taken within a period of not less than three months nor more than one year following the first attempt.

A final defense of the Ph.D. thesis is scheduled upon completion of the dissertation. The candidate is required to defend his or her work and show a superior knowledge of the field in which the thesis research has been performed. The defense is oral and would typically last for one hour. The exam is to be announced to the physics faculty at least one week in advance. All members of the faculty are permitted to attend and ask questions. A recommendation of a majority of the student’s graduate committee is necessary to pass the defense. If the defense is failed, it may be repeated only once; the repeat defense must be taken within a period of not less than three months nor more than one year following the first attempt.

A final defense of the M.S. thesis is scheduled upon completion of the thesis. Full-time students have to take this examination no later than two years after passing the comprehensive examination. The candidate is required to defend his or her work and show a satisfactory knowledge of the field in which the thesis research has been performed. The defense is oral and would typically last for one hour. The exam has to be announced to the physics faculty at least one week in advance. All members of the physics faculty are permitted to attend and ask questions. A recommendation of a majority of the student’s graduate committee is necessary to pass the defense. If the defense is failed, it may be repeated only once; the repeat examination must be taken within a period of not less than three months nor more than one year following the first attempt.

A final defense of the M.S. thesis is scheduled upon completion of the thesis. Full-time students have to take this examination no later than two years after passing the comprehensive examination. The candidate is required to defend his or her work and show a satisfactory knowledge of the field in which the thesis research has been performed. The defense is oral and would typically last for one hour. The exam has to be announced to the physics faculty at least one week in advance. All members of the physics faculty are permitted to attend and ask questions. A recommendation of a majority of the student’s graduate committee is necessary to pass the defense. If the defense is failed, it may be repeated only once; the repeat examination must be taken within a period of not less than three months nor more than one year following the first attempt.
their individual career goals. Students receiving a plant science degree with an option in plant protection are prepared for professional careers ranging from crop consulting to production agriculture.

Students enrolled in the urban landscape and turf management option have the opportunity to focus on managing and maintaining the various components of urban landscapes including trees, shrubs, herbaceous plantings, and turf grass. Majors can specialize in arboriculture, landscape maintenance, and golf and sports turf management. This option also ties directly to the minor in arboriculture and urban forestry. The package of courses will prepare students for positions in landscape maintenance and tree and turf management within the growing green industries in the Northwestern United States and nationally.

Graduate work in plant science is offered in the following specialized areas: plant pathology, plant breeding and genetics, plant physiology, weed science, crop management, and horticulture, including fruit and vegetable crops, landscape management and ornamentals. Graduate majors in plant pathology can specialize in bacteriology, biological control, epidemiology, molecular biology, nematology, and virology.

The undergraduate soil and land resources degree program is offered for students who are interested in businesses, industries, and government agencies associated with soils and farm chemicals, as professional soil scientists working with the formation, classification, chemistry, physics, and fertility of valuable soil resources, or as environmental scientists in conserving or improving soil and water quality. Courses in geology, botany, chemistry, and physics, in addition to soils, are stressed.

Graduate students in soil and land resources may concentrate in specialty areas such as soil physics, chemistry, microbiology, biochemistry, fertility, or soil genesis and morphology. A graduate program may be focused on a wide variety of soil-related issues such as environmental contamination, water quality, soil remediation and cleanup, soil and water conservation, precision agriculture, or plant nutrition.

The degree offerings are designed to prepare students for graduate school and/or a variety of rewarding career opportunities. Each of these degree programs is based on a curriculum designed to prepare students for present and future employment. The department offers students the opportunity to work closely with faculty in classroom and field situations. The faculty members provide wide educational experiences for students who major in this department. Formal courses are offered as needed to serve the students in the various degree programs, and additional specialization may be obtained by enrolling in directed study, special topics, seminar, and other courses, with particular faculty members. An internship program is also available to provide students with practical job experience and to open doors for career opportunities.

For advanced studies, specially equipped laboratories for histology, anatomy, and physiology and greenhouse laboratory units with controlled temperature and light programmed rooms and growth chambers are available. A state of the art biotechnology facility that has space to accommodate 101 faculty, staff, and students. The university has 1,145 acres of field crops, orchards, and livestock located close to campus. Excellent field and laboratory facilities are also available at research and extension centers at Aberdeen, Parma, and Twin Falls. Additionally, the graduate program is closely coordinated with the Departments of Entomology, Crop and Soil Sciences, Horticulture and Landscape Architecture, and Plant Pathology at Washington State University (eight miles away), enhancing the department’s offerings.

Faculty members are concerned with the needs and interests of individual students. Questions regarding programs, arrangements, or facilities are welcome. Prospective majors in entomology, plant science, or soil and land resources should consult the department head in Room 242, Agricultural Science Building, or telephone 208/885-6277.

Courses
See Part 6 for courses in Entomology (Ent), Plant Science (PlSc), and Soils (Soil).

Undergraduate Curricular Requirements

ENTOMOLOGY (B.S.Ent.)

Designed for students who desire professional careers in the basic and applied fields of entomology (insect taxonomy, ecology, physiology, and agriculture, aquatic, and forest entomology).

Required course work includes the university requirements (see regulation J-3) and:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 115</td>
<td>Cells and the Evolution of Life (4 cr)</td>
</tr>
<tr>
<td>Biol 116</td>
<td>Organisms and Environments (4 cr)</td>
</tr>
<tr>
<td>Biol 210</td>
<td>Genetics (4 cr)</td>
</tr>
<tr>
<td>Biol 212</td>
<td>Molecular and Cellular Biology or Biol 213 Prin of Biological Structure and Function (4 cr)</td>
</tr>
<tr>
<td>Biol 314</td>
<td>Ecology and Population Biology (4 cr)</td>
</tr>
<tr>
<td>Chem 111</td>
<td>Principles of Chemistry (4 cr)</td>
</tr>
<tr>
<td>Chem 112</td>
<td>Principles of Chemistry II (5 cr)</td>
</tr>
<tr>
<td>Chem 275</td>
<td>Carbon Compounds (3 cr)</td>
</tr>
<tr>
<td>Engl 313</td>
<td>Business Writing or Engl 317 Technical Writing (3 cr)</td>
</tr>
<tr>
<td>Ent 211</td>
<td>Insect Biology (4 cr)</td>
</tr>
<tr>
<td>Ent 322</td>
<td>Economic Entomology (3 cr)</td>
</tr>
<tr>
<td>Ent 440</td>
<td>Insect Identification (4 cr)</td>
</tr>
<tr>
<td>Ent 484</td>
<td>Insect Anatomy and Physiology (4 cr)</td>
</tr>
<tr>
<td>PlSc 250</td>
<td>255 General Microbiology and Lab (5 cr)</td>
</tr>
<tr>
<td>PlSc 415</td>
<td>Plant Pathology (3 cr)</td>
</tr>
<tr>
<td>Stat 251</td>
<td>Statistical Methods (3 cr)</td>
</tr>
<tr>
<td>Entomology electives (5 cr)</td>
<td></td>
</tr>
<tr>
<td>Life sciences electives (11 cr)</td>
<td></td>
</tr>
<tr>
<td>Mathematics electives (4 cr)</td>
<td></td>
</tr>
<tr>
<td>Physics electives (3 cr)</td>
<td></td>
</tr>
<tr>
<td>Humanities and social sciences electives (14 cr)</td>
<td></td>
</tr>
<tr>
<td>Electives to total 132 cr for the degree</td>
<td></td>
</tr>
</tbody>
</table>

Courses strongly recommended:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 341</td>
<td>Systematic Botany (3 cr)</td>
</tr>
<tr>
<td>Biol 484</td>
<td>Invertebrate Zoology (4 cr)</td>
</tr>
<tr>
<td>CS 101</td>
<td>Introduction to Computer Science (3 cr)</td>
</tr>
<tr>
<td>Ent 491</td>
<td>Principles of Insect Pest Management (3 cr)</td>
</tr>
<tr>
<td>Math 170</td>
<td>Analytic Geometry and Calculus I (4 cr)</td>
</tr>
<tr>
<td>MMBB 380</td>
<td>Introductory Biochemistry (4 cr)</td>
</tr>
</tbody>
</table>

HORTICULTURAL AND CROP SCIENCE (B.S.Pi.Sc.)

Students in the Horticultural and Crop Science Program can tailor their degree to fit their area of interest in crop management, horticultural science, plant protection or urban landscapes and turf management. A degree in horticultural and crop science prepares a student for careers in crop management and/or in the basic sciences of crop growth, development, and improvement. Basic and applied aspects of horticultural and crop science including agronomy, field crop production, plant breeding, plant genetics, plant physiology, and weed science can be studied.

All students enrolled in the Horticultural and Crop Science Degree must take the following courses in addition to their option requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 115</td>
<td>Cells and the Evolution of Life (4 cr)</td>
</tr>
<tr>
<td>Biol 213</td>
<td>Principles of Biological Structure and Function or PlSc 205 General Botany (4 cr)</td>
</tr>
<tr>
<td>Biol 311</td>
<td>Plant Physiology or PlSc 401 Plant Growth & Development (3-4 cr)</td>
</tr>
<tr>
<td>Chem 101</td>
<td>Introduction to Chemistry or Chem 111 Principles of Chemistry I (4 cr)</td>
</tr>
<tr>
<td>Chem 275, 276</td>
<td>Carbon Compounds and Lab or Chem 277, 278 Organic Chemistry I and Lab (4 cr)</td>
</tr>
<tr>
<td>Engl 313</td>
<td>Business Writing or Engl 317 Technical Writing (3 cr)</td>
</tr>
<tr>
<td>Ent 322</td>
<td>Economic Entomology or Ent 211 Insect Biology (3-4 cr)</td>
</tr>
<tr>
<td>Ent 314</td>
<td>General Genetics (3 cr)</td>
</tr>
<tr>
<td>Math 143</td>
<td>Pre-calculus Algebra and Analytic Geom or Math 160 Survey of Calculus (3-4 cr)</td>
</tr>
<tr>
<td>MMBB 154, 155</td>
<td>Introduotory Microbiology (4 cr) or MMBB 250, 255 General Microbiology (5 cr)</td>
</tr>
<tr>
<td>MMBB 300</td>
<td>Survey of Biochemistry or MMBB 380 Introductory Biochemistry (4 cr)</td>
</tr>
<tr>
<td>PlSc 102</td>
<td>The Science of Plants in Agriculture (3 cr)</td>
</tr>
<tr>
<td>PlSc 338</td>
<td>Weed Control (3 cr)</td>
</tr>
<tr>
<td>PlSc 398</td>
<td>Internship or 499 Directed Study (3 cr)</td>
</tr>
<tr>
<td>PlSc 400</td>
<td>Seminar (1 cr)</td>
</tr>
<tr>
<td>PlSc 415</td>
<td>Plant Pathology (3 cr)</td>
</tr>
<tr>
<td>PlSc 416</td>
<td>Plant Pathology Laboratory (1 cr)</td>
</tr>
<tr>
<td>PlSc 438</td>
<td>Pesticides in the Environment (3 cr)</td>
</tr>
<tr>
<td>Stat 251</td>
<td>Statistical Methods (3 cr)</td>
</tr>
<tr>
<td>Soil 205, 206</td>
<td>The Soil Ecosystem and Lab (4 cr)</td>
</tr>
<tr>
<td>Soil 446</td>
<td>Soil Fertility (3 cr)</td>
</tr>
<tr>
<td>Ecology Elective (2-3 cr)</td>
<td></td>
</tr>
</tbody>
</table>

A. Crop Management Option

Students in the crop management curriculum can tailor their degree to fit their area of interest in crop science. A degree in crop management prepares a student for careers in crop management and/or in the basic sciences of crop growth, development, and improvement. Basic and applied aspects of crop science including agronomy, field crop production, plant breeding, plant genetics, plant physiology, and weed science can be studied.

Required course work includes the university requirements (see regulation J-3) and:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PlSc 407</td>
<td>Field Crop Production (3 cr)</td>
</tr>
<tr>
<td>Biotechnology Elective (3 cr)</td>
<td></td>
</tr>
<tr>
<td>Biol 212</td>
<td>Molecular and Cellular Biology (4 cr)</td>
</tr>
<tr>
<td>CORS 218</td>
<td>Biotechnology and Society (3 or 4 cr)</td>
</tr>
<tr>
<td>MMBB 450</td>
<td>Molecular Mechanisms in Microbiology (2 cr)</td>
</tr>
<tr>
<td>MMBB 475</td>
<td>Molecular Biology of Cells (3 cr)</td>
</tr>
<tr>
<td>MMBB 487</td>
<td>Eukaryotic Molecular Biology (3 cr)</td>
</tr>
<tr>
<td>MMBB 488</td>
<td>Genetic Engineering (3 cr)</td>
</tr>
<tr>
<td>PlSc 422</td>
<td>Genetic and Molecular Aspects of Plant Reproduction (2-3 cr)</td>
</tr>
<tr>
<td>PlSc 433</td>
<td>Plant Tissue Culture Techniques (3 cr)</td>
</tr>
<tr>
<td>PlSc 360</td>
<td>World Agriculture (3 cr)</td>
</tr>
<tr>
<td>PlSc 401</td>
<td>Plant Growth and Development (3 cr)</td>
</tr>
<tr>
<td>PlSc 408</td>
<td>Cereal Science (3 cr)</td>
</tr>
<tr>
<td>PlSc 410</td>
<td>Biology of Weeds (3 cr)</td>
</tr>
<tr>
<td>PlSc 422</td>
<td>Plant Reproduction (2-3 cr)</td>
</tr>
<tr>
<td>PlSc 433</td>
<td>Plant Tissue Culture (3 cr)</td>
</tr>
<tr>
<td>PlSc 469</td>
<td>Seed Production (3 cr)</td>
</tr>
<tr>
<td>PlSc 490</td>
<td>Field Trip (1 cr)</td>
</tr>
<tr>
<td>PlSc 490</td>
<td>Potato Science (1-3 cr)</td>
</tr>
</tbody>
</table>

Specialization Courses (12 cr)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>Animal and Veterinary Sciences</td>
</tr>
<tr>
<td>Agricultural Economics</td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>Business</td>
</tr>
<tr>
<td>Business law</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Computer related courses</td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td>Entomology</td>
</tr>
</tbody>
</table>
Environmental Science
Foreign language (4 credit maximum)
Forestry
Landscape architecture
Molecular biology/biochemistry
Physics
Plant science
Range
Soils
Electives to total 128 credits for the degree

B. Horticultural Plant Production Option

Students in the horticulture curriculum can study management of horticultural crops and systems, with an emphasis on environmental awareness and protection of natural resources. Basic or applied aspects of horticulture can be studied in the curriculum. Required course work includes the university requirements (see regulation J-3) and:

- Plant Science Core Courses (69-74 credits)
 - PlSc 201 Principles of Horticulture (3 cr)
 - PlSc 300 Plant Propagation (3 cr)
 - PlSc 334 Controlled Environments for Horticultural Plant Production or PlSc 340
 - Nursery Management (3 cr)

- Horticultural Plant Production Elective Courses (9 cr)
 - PlSc 302 Sport and Golf Turf Management (3 cr)
 - PlSc 310 Pomology (3 cr)
 - PlSc 311 Pomology lab (1 cr)
 - PlSc 313 Viticulture and Small Fruits (3 cr)
 - PlSc 320 Olericulture – Commercial Vegetable Crops (3 cr)
 - PlSc 321 Olericulture Lab – Commercial Vegetable Crops (3 cr)
 - PlSc 334 Controlled Environments for Horticultural Plant Production (3 cr)
 - PlSc 340 Nursery Management (3 cr)
 - PlSc 341 Nursery Management Lab (1 cr)
 - PlSc 418 Post-harvest Biology (3 cr)
 - PlSc 430 Ornamental Plant Production I (3 cr)
 - PlSc 431 Ornamental Plant Production II (3 cr)
 - PlSc 433 Plant Tissue Culture (3 cr)
 - PlSc 464 Landscape Maintenance (3 cr)
 - PlSc 470 Arboriculture (3 cr)
 - PlSc 480 Field Trip (1 cr)
 - PlSc 499 Directed Study (cr arr)

- Biotechnology Elective Course (select one):
 - Biol 212 Molecular and Cellular Biology (4 cr)
 - CORS 218 Biotechnology and Society (3 or 4 cr)
 - MMBB 450 Molecular Mechanisms in Microbiology (2 cr)
 - MMBB 475 Molecular Biology of Cells (3 cr)
 - MMBB 487 Eukaryotic Molecular Biology (3 cr)
 - MMBB 488 Genetic Engineering (3 cr)
 - PlSc 422 Genetic and Molecular Aspects of Plant Reproduction (2-3 cr)
 - PlSc 433 Plant Tissue Culture Techniques (3 cr)

- Specialization Courses (12 cr)
 - Accounting
 - Animal and Veterinary Sciences
 - Agricultural Economics
 - Biology
 - Business
 - Business law
 - Chemistry
 - Computer related courses
 - Economics
 - Entomology
 - Environmental Science
 - Foreign language (4 credit maximum)
 - Forestry
 - Landscape architecture
 - Molecular biology/biochemistry
 - Physics
 - Plant science
 - Range
 - Soils

Electives to total 128 credits for the degree

C. Plant Protection Option

The plant protection option examines plant culture under varying circumstances of environmental and biological stress. The plant protection curriculum focuses on the management of plants and plant pests and other production constraints in the field, garden, nursery, and woodland that impact the quantity and/or quality of plants and plant products. Plant protection is examined relative to environmental variables such as water, light, temperature, nutrients, and chemical toxictants and biological variables such as insects, diseases, weeds, and plant/pest interactions. Emphasis is placed on pest management via gene manipulation and other new biotechnologies. Via electives, students may emphasize or specialize in entomology, weed science, and/or plant pathology.

Required course work includes the university requirements (see regulation J-3) and:

- Plant Science Core Courses (69-74 credits)
 - Ent 211 Insect Biology (3 cr)
 - PlSc 407 Field Crop Production (3 cr)
 - PlSc 410 Biology of Weeds (3 cr)
 - Two of the following courses (5-6 cr):
 - Ent 446 Host Plant Resistance to Insects and Pathogens (3 cr)

- Ent 447 Fundamentals of Biological Control (3 cr)
- Ent 451 Principles of Insect Pest Management (3 cr)

- Specialization Courses (12-15 cr)
 - Accounting
 - Animal and Veterinary Sciences
 - Agricultural Economics
 - Biology
 - Business
 - Business law
 - Chemistry
 - Computer related courses
 - Economics
 - Entomology
 - Environmental Science
 - Foreign language (4 credit maximum)
 - Forestry
 - Landscape architecture
 - Molecular biology/biochemistry
 - Physics
 - Plant science
 - Range

Electives to total 128 credits for the degree

D. Urban Landscape and Turf Management Option

Urban Landscape and Turf Management Option of the Horticulture and Crop Science Major is designed to train students for careers in the booming industries of plant maintenance. Career opportunities for students include utility, municipal and commercial tree care, landscape design, landscape construction, landscape and golf course maintenance, and pest management.

Required course work includes the university requirements (see regulation J-3) and:

- Plant Science Core Courses (69-74 credits)
 - PlSc 201 Principles of Horticulture (3 cr)
 - PlSc 302 Sport and Golf Turf Management (3 cr)
 - PlSc 470 Arboriculture (3 cr)

- Urban Landscape and Turf Management Elective Courses (9 cr)
 - PlSc 300 Plant Propagation (3 cr)
 - PlSc 310 Pomology (3 cr)
 - PlSc 313 Viticulture and Small Fruits (3 cr)
 - PlSc 320 Olericulture – Commercial Vegetable Crops (3 cr)
 - PlSc 344 Controlled Environments for Horticultural Plant Production (3 cr)
 - PlSc 340 Nursery Management (3 cr)
 - PlSc 341 Nursery Management Lab (1 cr)
 - PlSc 418 Post-harvest Biology (3 cr)
 - PlSc 430 Ornamental Plant Production I (3 cr)
 - PlSc 431 Ornamental Plant Production II (3 cr)
 - PlSc 433 Plant Tissue Culture (3 cr)
 - PlSc 464 Landscape Maintenance (3 cr)
 - PlSc 470 Arboriculture (3 cr)
 - PlSc 480 Field Trip (1 cr)
 - PlSc 499 Directed Study (cr arr)

- Specialization Courses (12 cr)
 - Accounting
 - Animal and Veterinary Sciences
 - Agricultural Economics
 - Biology
 - Business
 - Business law
 - Chemistry
 - Computer related courses
 - Economics
 - Entomology
 - Environmental Science
 - Foreign language (4 credit maximum)
 - Forestry
 - Landscape architecture
 - Molecular biology/biochemistry
 - Physics
 - Plant science
 - Range

Electives to total 128 credits for the degree

SOIL AND LAND RESOURCES (B.S. Soil Sc.)

This degree prepares students for a wide variety of professional careers in challenging areas including (a) food and fiber production, (b) environmental protection, such as water quality, waste management, environmental cleanup, and soil conservation, and (c) land resource allocation and management in various ecosystems. Graduates are prepared for employment by agencies and companies such as agricultural consulting firms, farm chemical manufacturers and dealers, state and federal land and water resource organizations, waste management and environmental consulting firms, and graduate school. Graduates from the degree will apply for certification as Associate Professional Soil Scientists through the Federation of Certifying Boards in Agriculture, Biology, Earth, and Environmental Sciences (ARC-PACS).

Students must earn a grade of C or better in all courses with the Soil prefix that are required for the major.

Required course work includes the university requirements (see regulation J-3) and:
Biol 115 Cells and the Evolution of Life (4 cr)
Biol 213 Principles of Biological Structure and Function (4 cr)
Chem 111 Principles of Chemistry I (4 cr)
Chem 112 Principles of Chemistry II (5 cr)
Chem 275 Organic Chemistry (3 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
CS 101 Intro to Computer Sc or CS 112 Intro to Problem Solving and Programming (3 cr)
Engl 317 Technical Writing (3 cr)
Geol 101 Physical Geology (4 cr)
Math 160 Survey of Calculus or Math 170 Analytic Geometry and Calculus I (4 cr)
MMMB 250, 255 General Microbiology or Lab (5 cr)
Phys 111-112 General Physics I-II (8 cr)
Soil 205, 206 The Soil Ecosystem and Lab (4 cr)
Soil 415 Soil Physics (3 cr)
Soil 422 Environmental Soil Chemistry (3 cr)
Soil 446 Soil Fertility (3 cr)
Soil 454 Soil Development and Classification (3 cr)
Soil 495 DS: Professional Certification (1 cr)
Stat 251 Statistical Methods (3 cr)
Electives to total 128 cr or the degree

Academic Minor Requirements

ARBORICULTURE & URBAN FORESTRY MINOR

CSS 494 Natural Resources Communications (3 cr)
For 408 Urban Forestry (2 cr)
Larc 288 Plant Materials or For 320 Dendrology (3 cr)
PISC 464 Landscape Maintenance (3 cr)
PISC 470 Arboriculture (3 cr)
A plant physiology course (3 cr)
Two of the following courses (6 credits):
PISC 201 Principles of Horticulture (3 cr)
For 466 Diseases and Insects of Woody Plants (3 cr)
Soil 205 The Soil Ecosystem (3 cr)

CROP SCIENCE MINOR

Ent 322 Economic Entomology (3 cr)
PISC 102 The Science of Plants in Agriculture (3 cr)
PISC 338 Weed Control (3 cr)
PISC 407 Field Crop Production (3 cr)
PISC 415 Plant Pathology (3 cr)
Soil 205 The Soil Ecosystem (3 cr)
Two of the following courses (6 credits):
PISC 360 World Agricultural Systems (3 cr)
PISC 408 Cereal Science (3 cr)
PISC 438 Pesticides in the environment (3 cr)
PISC 446 Plant Breeding (3 cr)
PISC WS469 Seed Production (3 cr)
PISC 490 Potato Science (1-3 cr, max 3)
Soil 446 Soil Fertility (1-3 cr, max 3)

ENTOMOLOGY MINOR

Ent 211 Insect Biology (4 cr)
Entomology electives (14 cr)

HORTICULTURE MINOR

PISC 102 The Science of Plants in Agriculture (3 cr)
PISC 201 Principles of Horticulture (3 cr)
Two of the following courses (9 cr):
PISC 300 Plant Propagation (3 cr)
PISC 302 Sport and Golf Turf Management (3 cr)
PISC 430 Nursery Management (3 cr)
PISC 433 Plant Tissue Culture (3 cr)
PISC 464 Landscape Maintenance (3 cr)
PISC 470 Arboriculture (3 cr)
Two of the following courses (6 cr):
Larc 288 Plant Materials I (3 cr)
PISC 310 Plant Pathology (3 cr)
PISC 320 Orniculture - Commercial Vegetable Crops (3 cr)
PISC 334 Controlled Environments for Horticultural Production (3 cr)
Soil 205 The Soil Ecosystem (3 cr)

PLANT PROTECTION MINOR

Ent 211 Insect Biology (4 cr)
Ent 322 Economic Entomology (3 cr)
PISC 338 Weed Control (3 cr)
PISC 415 Plant Pathology (3 cr)
Two of the following courses (6 credits):
Ent 446 Host Plant Resistance (3 cr)
Ent 447 Fundamentals of Biological Control (3 cr)
Ent 472 Aquatic Entomology (3 cr)
Ent 491 Principles of Insect Pest Management (3 cr)
PISC 410 Biology of Weeds (3 cr)
PISC 438 Pesticides in the Environment (3 cr)

SOIL SCIENCE MINOR

Soil 205, 206 The Soil Ecosystem and Lab (4 cr)
Soil 415 Soil Physics (3 cr)
Soil 422 Environmental Soil Chemistry (3 cr)
Soil 446 Soil Fertility (3 cr)
Soil 454 Soil Development and Classification (3 cr)
Two of the following courses (6 credits):
Soil 373 Soil Biology (3 cr)
Soil 447 Soil Fertility Management (1-3 cr, max 3)

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Plant, Soil, and Entomological Sciences. See the College of Graduate Studies section of Part 4 for general requirements applicable to each degree.

Master and Doctoral students will choose a major professor with the concurrence of the faculty member involved. This choice is based upon the availability of the faculty member and the compatibility of the student’s research interests with those of the professor.

Master of Science, Major in Entomology. Thesis and non-thesis options are offered. Admission to graduate programs in entomology requires an undergraduate degree, usually in some field of biology. Specific requirements for each degree are determined by the student’s graduate committee. Candidates for the M.S. with zoology or entomology course deficiencies in their undergraduate program may be required to list those courses as deficiencies on their M.S. program.

Master of Science, Major in Plant Science or Soils (Thesis Option). General M.S. requirements apply. These requirements include a formal program of at least 30 semester hours to be chosen in consultation with the major professor and approved by the student’s supervisory committee. Candidates for this degree must complete an independent research project and submit an acceptable thesis as well as pass a final oral examination.

Master of Science, Major in Plant Science or Soils (Non-thesis Option). General M.S. non-thesis requirements apply.

Doctor of Philosophy, Major in Entomology, Plant Science, or Soils. University Ph.D. requirements apply. Additional specific requirements are determined by the student’s graduate committee.

Department of Political Science & Public Affairs Research

Donald W. Crowley, Chair, Dept. of Political Science and Public Affairs Research

Political science is the study of politics, the process of gaining, maintaining, and exercising governmental power in the United States, in other countries, and internationally. The political science major at UI provides students with a wide selection of courses in American and comparative politics, international relations, public law, public administration, and political theory. Students may choose either a Bachelor of Arts or Bachelor of Science degree program.

The department is committed to teaching excellence. Most of the introductory courses are taught by full-time faculty and all of the faculty are readily available in their offices for discussion and guidance. The department stresses the opportunity to take small classes and to interact with other students and faculty. The diversity of the faculty’s intellectual pursuits and concern for students makes these courses interesting and ensures that, whatever the students’ interests, from Middle Eastern politics to the American presidency, from the study of environmental politics to political violence and revolution, there is a scholar in the department who can teach the subject to them.

Students are encouraged to participate directly in the political process through internships in federal, state, and local government or on political campaigns. UI students have participated in internships with the Idaho state legislature, the Idaho Governor’s office, and Idaho’s U.S. senators and representatives in Washington, D.C. Other students have interned with local governments throughout the state and for federal agencies such as the State Department, and have worked on political campaigns for candidates for offices at all levels of government.

After graduation UI students find that their degree in political science opens the door to a wide variety of careers. Many students pursue careers in law. Others attend graduate school and prepare for careers in federal or state governments, as city managers or administrators, or as teachers. Some graduates choose to work with public interest groups, trade associations, and environmental groups; or eventually run for, and win, elective office. Still other graduates find that their knowledge of politics and the skills they acquire to analyze complex institutions are excellent preparation for a career in journalism. Finally, business institutions are employing more and more political science graduates because of their ability to communicate with precision and vigor, their familiarity with large organizations and complex decision making processes, as well as their understanding of how foreign and domestic governmental institutions and U.S. multi-national corporations function in an interdependent world.
Part Five
Departments of Instruction

Department of Political Science & Public Affairs Research

Courses

See Part 6 for courses in Political Science (PolS).

Undergraduate Curricular Requirements

POLITICAL SCIENCE (B.A.)

The B.A. degree emphasizes a traditional liberal arts education including a 16-credit foreign language requirement. The course work also includes the university requirements (see regulation J-3), the general requirements for the B.A. degree, and:

- PolS 101 Intro to Political Science and American Government (3 cr)
- PolS 235 Political Research Methods and Approaches (3 cr)
- PolS 425 or 426 History of Political Philosophy I or II (3 cr)
- PolS 495 Senior Seminar in Political Science (requires senior standing) (3 cr)
- Stat 251 Statistical Methods (3 cr)

Other courses in political science (including a minimum of 17 credits in upper-division courses and at least 6 credits in each of the following areas: (1) American government/public law/public administration and (2) comparative/international politics) (23 cr)

Courses in upper-division related fields (20 cr)

Note: A maximum of 6 credits of political science internship and/or directed study courses may be counted toward meeting the political science credit requirements.

POLITICAL SCIENCE (B.S.)

The B.S. degree emphasizes methodology and requires increased course work in behavioral research methods. Course work also includes the university requirements (see regulation J-3), the general requirements for the B.S. degree, and:

- PolS 101 Intro to Political Science and American Government (3 cr)
- PolS 235 Political Research Methods and Approaches (3 cr)
- PolS 425 or 426 History of Political Philosophy I or II (3 cr)
- PolS 495 Senior Seminar in Political Science (requires senior standing) (3 cr)
- Stat 251 Statistical Methods (3 cr)

Other courses in political science (including a minimum of 17 credits in upper-division courses and at least 6 credits in each of the following areas: (1) American government/public law/public administration and (2) comparative/international politics) (23 cr)

Research methods (may be counted as related field cr if upper-division) (6 cr)

Courses in upper-division related fields (20 cr)

Note: A maximum of 6 credits of political science internship and/or directed study courses may be counted toward meeting the political science credit requirements.

Academic Minor Requirements

AMERICAN GOVERNMENT/PUBLIC LAW MINOR

PolS 101 Intro to Political Science and American Government (3 cr)

Six courses from the following areas (at least 6 credits in each area) (18 cr):

- American Government
 - PolS 275 American State and Local Government (3 cr)
 - PolS 331 American Political Parties and Elections (3 cr)
 - PolS 332 American Congress (3 cr)
 - PolS 333 American Political Culture (3 cr)
 - PolS 364 Politics of the Environment (3 cr)
 - PolS 428 American Political Thought (3 cr)
 - PolS 437 American Presidency (3 cr)
 - PolS 439 Public Policy (3 cr)
 - PolS 451 Public Administration (3 cr)
 - PolS 462 Natural Resource Policy (3 cr)
 - PolS 471 Intergovernmental Relations (3 cr)

- Public Law
 - PolS 360 Law and Society (3 cr)
 - PolS 429 Contemporary Political Ethics (3 cr)
 - PolS 452 Administrative Law and Regulation (3 cr)
 - PolS 467 Constitutional Law (3 cr)
 - PolS 468 Civil Liberties (3 cr)
 - PolS 469 The Judicial Process (3 cr)

Note: Approved political science seminars may be substituted in this minor.

COMPARATIVE/INTERNATIONAL POLITICS MINOR

- PolS 205 Introduction to Comparative Politics (3 cr)
- PolS 237 International Politics (3 cr)

Five courses in the following areas (at least 3 credits in each area) (15 cr):

- Comparative Politics
 - PolS 380 Canadian Political System (3 cr)
 - PolS 381 Western European Politics (3 cr)
 - PolS 383 Middle Eastern Politics (3 cr)
 - PolS 480 Politics of Development (3 cr)

- International Politics
 - PolS 438 Conduct of American Foreign Policy (3 cr)
 - PolS 440 International Organizations and International Law (3 cr)
 - PolS 449 World Politics and War (3 cr)
 - PolS 487 Political Violence and Revolution (3 cr)

Note: Approved political science seminars may be substituted in this minor.

INTERNATIONAL POLITICAL ECONOMY MINOR

This academic minor is offered through the College of Business and Economics and the College of Letters, Arts, and Social Sciences.

- Econ 446 International Economics (3 cr)
- Econ 447 Economics of Developing Countries (3 cr)
- PolS 237 International Politics (3 cr)
- PolS 440 International Organizations and International Law (3 cr)

Nine credits selected from the following list, provided that no more than six credits are selected from a particular discipline (9 cr):

- Bus 481 International Finance (3 cr)
- Econ 385 Environmental Economics (3 cr)
- Econ 407 Public Finance (3 cr)
- Econ 415 Market Structure and Governmental Policy (3 cr)
- Econ 430 Regional/Economic Urban Economics (3 cr)
- GeoG 360 Population Dynamics and Distribution (3-4 cr)
- IS 400 International Studies Seminar
- PolS 364 Politics of the Environment (3 cr)
- PolS 404 ST: Foreign Policy of the Pacific Rim
- PolS 404 ST: Investigating International Relations
- PolS 449 World Politics and War (3 cr)
- PolS 452 Administrative Law and Regulation (3 cr)
- PolS 487 Political Violence and Revolution (3 cr)

POLITICAL SCIENCE MINOR

PolS 101 Intro to Political Science and American Government (3 cr)

- PolS 425 History of Political Philosophy I or II (3 cr)
- PolS 428 American Political Thought (3 cr)

Three courses in American government/public law/public administration (only one course may be lower division) (9 cr)

Two courses in comparative/international politics (only one course may be lower div) (6 cr)

Note: Approved political science seminars may be substituted in this minor.

PUBLIC ADMINISTRATION AND POLICY MINOR

PolS 101 Intro to Political Science and American Government (3 cr)

- PolS 275 American State and Local Government (3 cr)
- PolS 451 Public Administration (3 cr)

Four courses from the following (12 cr):

- PolS 364 Politics of the Environment (3 cr)
- PolS 439 Public Policy (3 cr)
- PolS 452 Administrative Law and Regulation (3 cr)
- PolS 454 Public Organization Theory (3 cr)
- PolS 462 Natural Resource Policy (3 cr)
- PolS 471 Intergovernmental Relations (3 cr)
- PolS 472 Local Government Politics and Administration (3 cr)

Note: Approved political science seminars may be substituted in this minor.

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Political Science and Public Affairs Research. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Arts. General College of Graduate Studies M.A. requirements for application must be followed. Applicants must also submit three letters of recommendation and a 300-500 word statement of purpose directly to the Department of Political Science.

Master of Public Administration. Although no specific undergraduate preparation is required for the M.P.A., all students must complete the following prerequisites before completion of the program: six credits in American national and state government; six credits in sociology, economics, or psychology; and three credits in accounting, computer science, or statistics.

For the minimum of 30 credits required for the M.P.A. degree, the student may use credits earned in approved courses taken at any of the cooperating universities (University of Idaho, Idaho State University, and Boise State University). The student's supervisory committee, which must include at least one professor from a discipline or university other than that of the major professor, is responsible for approving the student’s program.

At least 21 credits are required in core areas: (1) PolS 451, Public Administration; (2) three courses, one from each of the following: administrative theory; organization, and behavior; public management techniques; and public policy and policy analysis; (3) two courses, one from each of two of these five areas: administrative law; executive and administrative process; intergovernmental relations; community and regional planning; and comparative public administration; (4) a sixth course, from any of the above areas.

At least 12 credits are required in an area of emphasis. (Currently, the approved fields are: general public administration; community, state, and regional planning; criminal justice administration; environmental and natural resources administration; local government administration; public finance, budgeting, and administrative management; and public works engineering.) Students may select a thesis or non-thesis option. The preparation and oral defense of the thesis count as six credits in the area of emphasis. The non-thesis option requires oral and written exams in all areas of public administration studies.

In addition to the required 30 credits, a six-credit public service internship will be required for those students without appropriate work experience in government.

Doctor of Philosophy. General College of Graduate Studies requirements for application must be followed. Applicants to the Ph.D. program must also submit Graduate Record Examination scores, three letters of recommendation, and a 300-500 word statement of purpose directly to the Department of Political Science.
Department of Psychology and Communication Studies

Psychology is the scientific study of thinking, emotion, and behavior. It is a diverse field, and can be applied to almost all aspects of everyday life: interpersonal relationships, school and family learning, family, and the work environment. Psychology uses scientific research methods to develop and test theories, and to explain or predict behavior. Undergraduate study in psychology provides a broad coverage of the field, whereas graduate study focuses more narrowly on a particular discipline, preparing students for professional work as researchers and/or practitioners.

Communication Studies is a social science discipline that considers how people verbally and nonverbally communicate at the individual, societal, and cultural levels. It can be seen as the discipline that links other disciplines, a discipline that is vital if people, organizations, and governments are to cope with today’s complex world. Students with degrees in Communication Studies pursue careers as communication specialists in the fields of communication education, business, government and politics, high technology industries, health, and social and human services. Graduates may also pursue advanced degrees in communication and other fields.

The Department of Psychology and Communication Studies offers a B.S. or B.A. in Psychology or Communications Studies. The psychology degree requires students to take a wide variety of courses in areas such as developmental processes, social psychology, learning and memory, personality, clinical psychology, biological processes, and sensation/perception. Depending on their interests, students also select from more specialized subjects such as human factors, industrial/organizational psychology, aging, and the psychology of emotion. The Communication Studies Degree requires students to take courses in the fields of speech, interpersonal and organizational communication as well as research methods and statistics. Students choose additional coursework from the areas of conflict management, intercultural communication, persuasion, gender, and aging.

Currently, graduate training in the Department is available only in Psychology. The masters degree in psychology prepares students for careers in government and industry, teaching at the junior college level, or for continued study elsewhere at the doctoral level. The department offers an M.S. in psychology with an emphasis in either industrial/organizational psychology or clinical psychology. The intent of both emphases is to develop knowledge and skills germane to a professional position, and to provide appropriate preparation for those interested in further graduate study. Both human factors and industrial/organizational psychology emphases can be taken as thesis or non-thesis options. Occasionally, the department will accept applicants for the general experimental psychology M.S. Students interested in this option should contact the department for more information.

An applicant to the graduate program must possess an undergraduate degree in psychology or a related field, such as engineering, computer science, or business. In addition, applicants are required to have completed a course in introductory statistics, a course in experimental psychology or research methods, and a course in computer programming. Students wishing to emphasize human factors are encouraged to take upper-level courses in cognitive psychology and sensation/perception; students wishing to emphasize industrial/organizational psychology are encouraged to take upper-level courses in social psychology, IO psychology, and tests and measurement. All applicants will be considered even if recommended coursework has not been taken.

Courses
See Part 6 for courses in Psychology (Psyc) and Communication Studies (Comm).

Undergraduate Curricular Requirements

COMMUNICATION STUDIES (B.A. or B.S.)

Communication studies majors are required to take a sequence of courses that is intended to provide them with a comprehensive background in communication concepts, history, theory, and practice. A minimum 2.50 GPA is required to graduate with a degree in Communication Studies. Majors are required to take:

Comm 101 Fundamentals of Speech (2 cr)
Comm 111 Introduction to Communication Studies (3 cr)
Comm 233 Interpersonal Communication (3 cr)
Comm 255 Organizational Communication (3 cr)
Comm 455 Communication Research Methods (3 cr)
Stat 251 Statistical Methods (3 cr)

Twenty-four (24) credits selected, with faculty advisor’s guidance, from the following upper division courses. Courses recommended to fulfill these requirements include:

Comm 331 Conflict Management (3 cr)
Comm 332 Small Group Communication (3 cr)
Comm 335 Intercultural Communication (3 cr)
Comm 347 Persuasion (3 cr)
Comm 431 Professional Presentation Techniques (3 cr)
Comm 432 Gender and Communication (3 cr)
Comm 433 Advanced Organizational Communication (3 cr)
Comm 446 History of Communication Studies (3 cr)

PSYCHOLOGY (B.A. or B.S.)

Note: Psyc 101 and Psyc 218 must be completed with a grade of C or better and a minimum cumulative GPA of 2.50 must be attained for students seeking upper-division standing in the department. In order to graduate with a degree in psychology, a 2.50 GPA must be attained.

Required course work includes the university requirements (see regulation J-3), the general requirements for either the B.A. or B.S. degree, and:

Biol 102 Biology and Society or Biol 115 Cells and the Evolution of Life (4 cr)
Psyc 101 Introduction to Psychology (3 cr)
Psyc 218 Introduction to Research in the Behavioral Sciences (4 cr)
Stat 251 Statistical Methods (3 cr)

One of the following (3 cr):
CS 101 Intro to Computer Science (3 cr)
CS 112 Intro to Problem Solving and Programming (3 cr)
Phil 202 Introduction to Symbolic Logic (3 cr)

A grade of C or above in at least three courses from each of the following groups (18 cr):

Personal/Social Bases of Behavior
Psyc 305 Developmental Psychology (3 cr)
Psyc 310 Psychology of Personality (3 cr)
Psyc 311 Abnormal Psychology (3 cr)
Psyc 320 Introduction to Social Psychology (3 cr)

Biological/Experimental Bases of Behavior
Psyc 325 Cognitive Psychology (3 cr)
Psyc 372 Physiological Psychology (3 cr)
Psyc 390 Psychology of Learning (3 cr)
Psyc 430 Tests and Measurements (3 cr)
Psyc 444 Sensation and Perception (3 cr)
Psyc 456 Psychology of Emotion (3 cr)

At least 12 additional upper-division psychology credits. Up to 6 of these credits may be earned by taking Comm 331, 347, 432, or 433. Only 3 of these credits may come from Psyc 400, 497, 498, and/or 499. A grade of C or better must be earned in each course taken to complete this category.

Academic Minor Requirements

ADDITIONS MINOR

A grade of C or above is required for each class.

Psyc 470 Introduction to Chemical Addictions (3 cr)
Psyc 472 Introduction to the Pharmacology of Psychoactive Drugs (3 cr)
Psyc 477 Chemical Dependency and the Family (3 cr)

And one of the following emphasis areas:

Treatment Emphasis
Psyc 473 Blood and Airborne Pathogens: HIV/STDs/Hepatitis/TB (3 cr)
Psyc 474 Record Keeping and Case Management in Chemical Addictions Counseling (3 cr)
Psyc 475 Professional Ethics in Addictions Counseling (3 cr)
Psyc 476 Relapse Prevention in Chemical Addictions Counseling (3 cr)
Psyc 478 Individual Therapy Techniques in Chemical Addictions Counseling (3 cr)
Psyc 479 Group Therapy Techniques in Chemical Addictions Counseling (3 cr)
Psyc 482 Addictions Screening and Assessment (3 cr)

Prevention Emphasis
Psyc 305 Developmental Psychology (3 cr)
Psyc 463 Substance Abuse Prevention Theory and Applications I (3 cr)
Psyc 484 Facilitation Skills and Group Management for Prevention Providers (3 cr)
Psyc 485 Presentation - Instruction Skills for Helping Professionals (3 cr)
Psyc 486 Community Coalition Development (3 cr)
Psyc 487 Substance Abuse Program Planning and Evaluation (3 cr)
Psyc 488 Ethics in Substance Abuse Prevention (1 cr)
Psyc 489 Substance Abuse Prevention Theory and Applications II (4 cr)

COMMUNICATION STUDIES MINOR

Comm 111 Introduction to Communication Studies (3 cr)
Comm 233 Interpersonal Communication (3 cr)
Comm 332 Communication and the Small Group (3 cr)
At least three of the following (9 cr):
Comm 225 Organizational Communication (3 cr)
Comm 331 Conflict Management (3 cr)
Comm 335 Intercultural Communication (3 cr)
Comm 431 Professional Presentation Techniques (3 cr)

PSYCHOLOGY MINOR

Note: Psyc 101 and Psyc 218 must be completed with a grade of C or better.

Psyc 101 Introduction to Psychology (3 cr)
Psyc 218 Introduction to Research in the Behavioral Sciences (4 cr)
A grade of C or above in at least two courses from each of the following groups (12 cr):

Psyc 305 Developmental Psychology (3 cr)
Psyc 310 Psychology of Personality (3 cr)
Psyc 311 Abnormal Psychology (3 cr)
Psyc 320 Introduction to Social Psychology (3 cr)
Psyc 325 Cognitive Psychology (3 cr)
Psyc 372 Physiological Psychology (3 cr)
Psyc 390 Psychology of Learning (3 cr)
Psyc 430 Tests and Measurements (3 cr)
Psyc 444 Sensation and Perception (3 cr)
Psyc 456 Psychology of Emotion (3 cr)

See Part 6 for courses in Psychology (Psyc) and Communication Studies (Comm).
Person/Social Bases of Behavior
Psyc 305 Developmental Psychology (3 cr)
Psyc 310 Personality of Psychology (3 cr)
Psyc 311 Abnormal Psychology (3 cr)
Psyc 320 Introduction to Social Psychology (3 cr)

Biological/Experimental Bases of Behavior
Psyc 325 Cognitive Psychology (3 cr)
Psyc 332 Physiological Psychology (3 cr)
Psyc 390 Psychology of Learning (3 cr)
Psyc 430 Tests and Measurements (3 cr)
Psyc 444 Sensation and Perception (3 cr)
Psyc 456 Psychology of Emotion (3 cr)

And a grade of C or better in at least one additional upper-division psychology course (not including Psyc 400, 403, 497, or 499).

Graduate Degree Program

In addition to the admission requirements of the Graduate College, the department requires Graduate Record Examination scores, letters of recommendation, and a brief essay regarding plans for graduate study and professional career. The undergraduate degree need not be in psychology, although at least a minor in psychology is desirable. In the event the student has a minimal background in psychology, this deficiency may be remedied by enrolling in certain undergraduate courses that would not necessarily be included in the graduate study plan.

The study program for each student is prepared with his or her future plans as a point of departure. Some students seek the master’s degree as a terminal degree and assume positions in community mental health organizations, school systems, or industry, while others continue in doctoral studies.

Research opportunities in the department are many. Students are encouraged to begin research early in their graduate study under the direction of a major professor of mutual choice.

Students admitted to this program must fulfill the requirements of the College of Graduate Studies and of the Department of Psychology and Communication Studies. See the College of Graduate Studies section of Part 4 for the general requirements applicable to all M.S. degrees.

Department of Rangeland Ecology and Management

Karen L. Lauchnauh, Department Head (205B CNR Bldg. 83444-1135; phone 208/885-6536). Faculty: Jeffrey H. Braatne, Stephen C. Bunting, James L. Kingery, Ronald Robberecht, Lee Vierling, Kenneth D. Sanders.

The term RANGELAND was invented in the United States to describe the extensive, unforested lands dominating the western half of the continent. Rangelands around the world are known by many names including prairie, plains, grassland, shrub land, savanna, steppe, desert, semi-desert, and alpine. These many types of rangeland together form about half of the earth’s land surface. Idaho is 44% rangeland. Limited precipitation, generally sparse vegetation, sharp climatic extremes, highly variable soils, frequent salinity, and diverse topography characterize the kind of land called RANGELAND.

Rangelands produce a wide variety of goods and services desired by society, including livestock forage, wildlife habitat, water, mineral resources, wood products, wild-land recreation, open space, and natural beauty. The geographic extent and many important resources of rangelands make their proper use and management vitally important to people everywhere.

The Department of Rangeland Ecology and Management in the College of Natural Resources offers a program leading to a Bachelor of Science (B.S.) degree in Rangeland Ecology and Management with degree options in Ecology, Management, and Environmental Assesment. The Department also offers a B.S. degree in Range-Livestock Management. Studies in rangeland ecology and management are founded on a solid understanding of biology, ecology, soils and vegetation. Additional classroom training and field activities prepare students to conserve and manage rangelands in light of contemporary issues including wild-land fire, restoration ecology, invasive species, watershed management, riparian ecology, wildland habitat ecology, and sustainable livestock production. Field study and evaluation of plant and animal communities are integral parts of the curriculum in rangeland ecology and management. Internships with public land management agencies and private livestock enterprises add to the educational opportunities in the program.

Range managers enjoy careers with a variety of private organizations and government agencies. State and federal land management agencies, such as the US Forest Service, Bureau of Land Management, and State Departments of Lands, hire rangeland professionals to oversee the management of public rangelands. Wildlife management agencies also hire range managers to maintain and improve wildlife habitat. Private land owners employ range consultants and managers to oversee livestock operations, enhance hunting programs, maintain forage resources and control weeds. Biological assessment companies require the careful measurement and assessment of vegetation resources, therefore they often hire rangeland professionals. A growing number of rangeland professionals work as natural resource facilitators to bring rangeland stakeholders together to craft plans for environmental stewardship. The Rangeland Ecology and Management Department at the University of Idaho holds a record of greater than 65% of students graduating with a B.S. in the last 10 years securing careers in natural resource management or advancing to graduate school.

Because of the extent, character, and importance of Idaho’s rangelands, excellent opportunities exist for graduate study in all phases of rangeland use and management. Graduate students may earn a Master of Science degree in Rangeland Ecology and Management or the Doctor of Philosophy degree in the college with a major in Natural Resources. The graduate program allows for a diversity of courses from a variety of fields such as rangeland ecology, wildlife, animal science, soils, agricultural economics, forestry, and others.

Prospective students interested in rangeland ecology and management urged to contact the departmental office for further information (208/885-6536; range@uidaho.edu; www.uidaho.edu/range).

Courses

See Part 6 for courses in Rangeland Ecology and Management (Rnge).

Undergraduate Curricular Requirements

RANGELAND ECOLOGY AND MANAGEMENT (B.S.Rangeland Ecol.-Mgt.)

Required course work includes the university requirements (see regulation J-3) and:

First and Second Years
Biol 115 Cells and the Evolution of Life (4 cr)
Biol 116 Organisms and Environments (4 cr)
Biol 213 Principles of Biological Structure and Function (4 cr)
Chem 101 Introduction to Chemistry or Chem 111 Principles of Chemistry I (4 cr)
Chem 275 Carbon Compounds (3 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
Econ 201, 202 Principles of Economics (6 cr)
For/CSS 235 Society and Natural Resources (3 cr)
Math 143 Precalculus Algebra and Analytic Geometry or Math 160 Survey of Calculus (3-4 cr)
Rnge 102 Opportunities in Rangeland Ecology and Management (1 cr)
Rnge/WLF/For 221 Natural Resources Ecology (3 cr)
Rnge 251 Principles of Range Resources Management (2 cr)
Soil 205, 206 The Soil Ecosystem and Lab (4 cr)
Stat 251 Principles of Statistics (3 cr)

Third and Fourth Years
Biol 341 Systematic Botany (3 cr)
CSS/For/For/Rnge/WLF 470 Interdisciplinary Natural Resource Planning (3 cr)
Engl 317 Technical Writing or Engl 313 Business Writing (3 cr)
Geog 385 GIS Primer (3 cr)
Rnge 353 Rangeland Plant Identification and Ecology (3 cr)
Rnge 354 Wildland Vegetation Management and Restoration or Rnge 440 Wildland Restoration Ecology (3 cr)
Rnge 357 Rangeland and Riparian Habitat Assessment (3 cr)
Rnge 430 Riparian Ecology and Management or Rnge 435 Wetland Ecology and Management (3 cr)
Rnge 452 World Biomes: North American Ecosystems or For 429 Landscape Ecology (2 cr)
Rnge 456 Integrated Rangeland Management (3 cr)
Rnge 492 Rangeland Ecology and Management (3 cr)
Soil 454 Soil Development and Classification (3 cr)

Students must also complete 19 credits of advisor approved electives in emphasis areas that include: Restoration Ecology, Field Botany, Spatial Ecology, Watershed Science, Wildland Fire Management, Invasive Plant Management, Wildlife Habitat Management, Tribal Land Management, Rangeland Economics, Natural Resource Communication, and Environmental Consulting. Electives to total 128 credits for the degree.

RANGE LIVESTOCK MANAGEMENT (B.S.R.L.M.)

The major in range livestock management provides training in animal science with a sound background in the relationship between animals and plants and is intended for students interested in the management or operation of range and pasture beef cattle or sheep operations.

Required course work includes the university requirements (see regulation J-3) and:

AVS 101 Animal and Veterinary Orientation or Rnge 200 Seminar (1-2 cr)
AVS 108 The Science of Animals that Serve Humanity (3 cr)
AVS 222 Animal Reproduction and Breeding (3 cr)
AVS 305 Animal Nutrition (4 cr)
AVS 306 Feeds and Ration Formulation (4 cr)
AVS 450 Issues in Animal Agriculture (1 cr)
AVS 452 Physiology of Reproduction (4 cr)
AVS 474 Beef Cattle Science or AVS 478 Sheep Science (3 cr)
ASM 240 Computer Applications in Biological Systems (or advanced placement test by department) (3 cr)
Biol 115 Cells and the Evolution of Life (4 cr)
Biol 116 Organisms and Environments (4 cr)
Biol 213 Principles of Biological Structure and Function (4 cr)
Biol 341 Systematic Botany (3 cr)
Chem 111 Principles of Chemistry I (4 cr)
Chem 275 Carbon Compounds (3 cr)
Comm 101 Fundamentals of Public Speaking (2 cr)
Econ 201, 202 Principles of Economics (6 cr)
Engl 317 Technical Writing (3 cr)
Fort/CSS 235 Society and Natural Resources (3 cr)
Math 143 Pre-calculus Algebra and Analytic Geometry or Math 160 Survey of Calculus (3-4 cr)
Rnge 221 Natural Resources Ecology (3 cr)
Rnge 251 Principles of Range Resources Management (2 cr)
Rnge 354 Wildland Vegetation Management and Restoration (3 cr)
Rnge 357 Rangeland and Riparian Habitat Assessment (3 cr)
Rnge 430 Riparian Ecology and Management (2 cr)
Rnge 452 World Biomes: North American Ecosystems (2 cr)
Rnge 456 Integrated Rangeland Management (3 cr)
Rnge 459 Rangeland Ecology (3 cr)
Soll 205, 206 The Soil Ecosystem and Lab (4 cr)
Stat 251 Statistical Methods (3 cr)

Courses selected from the following (a minimum of 3 cr in each college) (8 cr):
AVS 218 Artificial Insulation and Pregnancy Detection (2 cr)
AVS 263 Live Animal and Carcass Evaluation (3 cr)
AVS 330 Genetics of Livestock Improvement (3 cr)
AVS 371 Anatomy and Physiology (4 cr)
AVS 411 Ruminant Nutrition (3 cr)
AVS 466 Horse Production (3 cr)
AVS 476 or AVS 474 (if not taken above) (3 cr)
CSS 287 Foundations of Conservation Leadership and Management (2 cr)
Fish/WLF 290 Fish and Wildlife Ecology, Mgt, and Conservation (3 cr)
For 270 Principles of Forest Ecosystem Mgt (2 cr)
Rnge 353 Rangeland Plant Identification and Ecology (3 cr)
Rnge 454 Rangeland Weed Management (3 cr)

Electives to total 132 cr for the degree

ECOLOGY AND CONSERVATION BIOLOGY (B.S.Ecol.Cons.Biol.)

See the section on “Natural Resources” above.

Academic Minor Requirements

RANGELAND ECOLOGY AND MANAGEMENT MINOR

Rnge 221 Natural Resources Ecology (3 cr)
Rnge 251 Principles of Range Resources Management (2 cr)
Rnge 353 Rangeland Plant Identification and Ecology (3 cr)
Rnge 459 Rangeland Ecology (3 cr)

Two of the following courses (5-6 cr):
Rnge 354 Wildland Vegetation Management and Restoration or Rnge 440 Wildland Restoration Ecology (3 cr)
Rnge 357 Rangeland and Riparian Habitat Assessment (3 cr)
Rnge 430 Riparian Ecology and Management (2 cr)
Rnge 452 World Biomes: North American Ecosystems (2 cr)
Rnge 456 Integrated Rangeland Management (3 cr)

One of the following courses (or a course not chosen above) (2-3 cr):
AVS 474 Beef Cattle Science (3 cr)
AVS 476 Sheep Science (3 cr)
For 426 Wildland Fire Management and Ecology (3 cr)
For 462 Watershed Management (2 cr)
Pisci 338 Weed Control (3 cr)
Pisci 410 Biology of Weeds (2 cr)
Rnge 454 Rangeland Week Management (3 cr)
Soil 454 Soil Development and Classification (3 cr)
WLF 290 Fish and Wildlife Ecology, Management, and Conservation (3 cr)
WLF 314 Wildlife Ecology I (3 cr)

Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the College of Natural Resources. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree.

Master of Science. Thesis or non-thesis options are offered. (A) Thesis option: General M.S. requirements apply except that the thesis requirements may be fulfilled by a publication(s) at the discretion of the candidate’s supervisory committee. (B) Non-thesis option: General M.S. requirements apply. A written and/or oral examination that covers graduate course work must be taken during the final semester in residence. One or more professional papers may be required at the discretion of the candidate’s supervisory committee. The non-thesis degree is designed primarily for candidates with background experience in some area of resource use or management.

Doctor of Philosophy. The Ph.D. degree is available with a major in natural resources. General Ph.D. requirements apply; see the Natural Resources section for details.

Religious Studies

The academic study of religion has deep roots in Western intellectual history. One cannot adequately grasp the full dynamics of world culture without attending to the role of religion. In the last hundred years scholars in the West have paid increasing attention to non-Western religions and to the category of “religion” itself as a dimension of human experience.

Religious studies courses do not encourage or discourage religious belief; rather, they engage in the academic study of religion as a crucial element of human culture. Religious studies employs a variety of methods including anthropological, sociological, historical, philosophical, phenomenological, literary, and linguistic approaches. The principal goal of religious studies is submitting sacred texts and traditions to descriptive, analytical, critical, and empathetic scrutiny.

In terms of employment potential, a religious studies minor primarily serves a student in the same way that history or philosophy might. It increases a student’s understanding of persons and cultures. Key liberal arts skills in close reading, analysis, research, and oral and written communication are central to religious studies. Some students will use religious studies to enhance their chances of acceptance in graduate programs in areas such as anthropology, sociology, social work, international relations, history, or various area studies. Others may use the minor as a broadly based stepping stone for professional training in theological seminaries or rabbinical schools.

Courses

See Part 6 for courses in Religious Studies (RelS).

Academic Minor Requirements

RELIGIOUS STUDIES MINOR

Courses in religious traditions chosen from the following (at least 3 cr in Asian and Pacific Religious Traditions and at least 3 cr in Western Religious Traditions) (9 cr):

Asian and Pacific Religious Traditions

Hist 180 Introduction to East Asian History (3 cr)
Phil 306 Hindu Thought (3 cr)
Phil 307 Buddhism (3 cr)
Phil 308 Confucianism and Taoism (3 cr)
RelS 204/404 Special Topics related to this category

Western Religious Traditions

Hist 442 The Medieval Church (3 cr)
Hist 447 The Age of the Renaissance and Reformation (3 cr)
Phil 302 Biblical Judaism: Texts and Thought (3 cr)
Phil 303 Early Christianity: Texts and Thought (3 cr)
RelS 204/404 Special Topics related to this category

Courses in approaches to religious studies and religion and culture chosen from least 3 cr in Religion and Culture (9 cr).

Approaches to Religious Studies

Anth 327 Belief Systems (3 cr)
Engl 375 The Bible as Literature (3 cr)
Phil 305 Philosophy of Religion (3 cr)
RelS 101 Introduction to Religious Studies (3 cr)
RelS 204/404 Special Topics related to this category
Soc 414 Development of Social Theory (3 cr)

Religion and Culture

Anth 329 North American Indians (3 cr)
FLEN 211 Classical Mythology (Gods) (2 cr)
FLEN 212 Classical Mythology (Heroes) (2 cr)
FLEN 441 Ancient Greek Civilization (3 cr)
FLEN 442 Civilization of Ancient Rome (3 cr)
Hist 101-102 History of Civilization (6 cr)
Hist 457 History of the Middle East (3 cr)
Phil 240 Belief and Reality (3 cr)
Phil 315 Existentialism (3 cr)
Phil 320 History of Ancient and Medieval Philosophy (3 cr)
Phil 321 History of Modern Philosophy (3 cr)
RelS 133 Religion and Family (2 cr)
RelS 204/404 Special Topics related to this category

Foreign languages appropriate to the minor are strongly recommended. For example, Japanese or Chinese is recommended for concentration in Asian and Pacific traditions, and Greek or Latin for those focusing on Western traditions.

Department of Sociology, Anthropology, and Justice Studies

The department houses the three distinct, but interrelated, disciplines of sociology, anthropology, and justice studies. Students can obtain a B.A. or B.S. degree from any of these disciplines. Students can also pursue a minor in any of these fields as well as a minor in American Indian studies. In general, all of these disciplines provide students with the theoretical tools and perspectives necessary to better understand both small and large-scale cultures, social issues, and complex societal problems. Graduates of the department work in a wide range of employment fields including social services, social policy research agencies, cultural resource management, law, and the justice system, or pursue advanced degrees.

Sociology is the study of group life. Sociologists investigate the structure of groups, organizations, and societies. The goal is to understand the characteristics, causes, and consequences of human behavior and social relationships in various kinds of groups and settings. Because human behavior is diverse, the field of sociology covers a range of subjects including collective behavior, marriage and family, stratification, race and ethnic
relations, gender, aging, and religion, as well as others. The sociology program’s strengths include the sociology of the family, applied research in social inequality, and theories of deviant behavior. In addition, the sociology program provides students opportunities to gain practical work experience through the form of internships and service learning.

Anthropology is concerned with the study of human conditions as a part of the natural world, and of cultural patterns that people have developed to adapt to that world. While anthropologists have largely focused on prehistoric and non-western societies and cultures, increasingly they are applying basic concepts and methods to the study of modern, complex societies. The strengths of the anthropology program include historical archaeology and the archaeological and cultural study of the North American Plateau.

The department offers a separate degree program for students interested in Justice Studies. The major is designed as an interdisciplinary program of study incorporating courses in justice studies, sociology, psychology, and political science. Courses are also offered through a cooperative arrangement with Washington State University. This program provides academic training in preparation for careers throughout the justice system, including justice and social policy research, as well as preparing students for graduate and professional schools. Field experience in the form of internships is available during the student’s junior or senior year. The strengths of the justice studies program include juvenile delinquency, applied research, and white collar crime.

The minor in American Indian studies is available through the Department of Sociology, Anthropology, and Justice Studies. In cooperation with regional Indian communities and with other academic departments within the university, the interdisciplinary and experiential curriculum of the American Indian studies minor provides students with a background in the culture, history, and literature of American Indians. It also addresses current American Indian issues.

The department offers the certificate of completion in Diversity and Stratification. This interdisciplinary certificate involves the completion of 12 credits of study focusing on issues of diversity and stratification. The certificate recognizes competency in understanding a broad range of diversity issues and in applying that understanding in the workplace and in social life.

Graduate study in anthropology is offered through the department in areas such as American Indian studies, prehistoric and historical archaeology, sociocultural anthropology, and bioanthropology. An applicant to the program must hold a bachelor’s degree from an accredited college or university and must have a minimum 3.00 overall GPA. An undergraduate major in anthropology is not required. Students who otherwise meet eligibility requirements but who do not have sufficient background in anthropology will be required to take additional undergraduate courses. The number of classes will vary with the degree of deficiency and the student’s demonstrated potential for advanced academic work. Preparation in statistics is required and proficiency in one non-English language is strongly recommended. Students with marginal qualifications may be admitted on a provisional status or may be advised to complete a year of undergraduate study in anthropology before being considered for the graduate program. Students with an overall GPA less than 3.00 but greater than 2.80 will be considered on a provisional status if their grades in upper-division classes average 3.00 or better. Students who do not have the required GPA but who have strong recommendations or acceptable professional experience will be considered for the graduate program after completing 12 credits of post-baccalaureate study in upper-division or graduate anthropology courses with A or B grades. Although the department does not require the Graduate Record Examination, applicants with marginal qualifications should take it and submit their score with their application.

The department contains the Laboratory of Anthropology. The laboratory houses collections and provides a laboratory environment for research, teaching, and hands-on experience for students. The laboratory also holds the Archive of Pacific Northwest subarctic anthropology, and the American Comparative Collection. The metal cleaning and preservation facilities are among the largest and most modern in the western states. The laboratory publishes the University of Idaho anthropological reports.

Questions concerning should be addressed to the department chair (208/885-6751).

Courses

See Part 6 for courses in Anthropology (Anth), Justice Studies (JS), and Sociology (Soc).

Undergraduate Curricular Requirements

ANTHROPOLOGY (B.A. or B.S.)

Required course work includes the university requirements (see regulation J-3), the general requirements for either the B.A. or B.S. degree, and:

Anth 100 Introduction to Anthropology (3 cr)
Anth 220 Peoples of the World (3 cr)
Anth 230 World Prehistory (3 cr)
Anth 231 Introduction to Archaeology (3 cr)
Anth 251 Introduction to Physical Anthropology (3 cr)
Anth 312 Research Methods in Anthropology (3 cr)
Anth 420 Anthropological History and Theory (3 cr)
Anth 428 Social and Political Organization (3 cr)
Anth 461 Intro to Study of Language or Anth 261 Language and Culture or Anth 450 Descriptive Linguistics (3 cr)
Soc 101 Introduction to Sociology (3 cr)
Stat 251 Statistical Methods (3 cr)
Anthropology electives (up to 15) (15 cr)
Related fields as approved by the department (12 cr)

JUSTICE STUDIES (B.A. or B.S.)

Note: Crime and justice studies majors must obtain a minimum GPA of 2.50 before they are allowed to take upper-division JS courses.

A total of 60 credits, from the required and elective list, must be completed in order to satisfy the departmental requirements for the crime and justice major.

Required course work includes the university requirements (see regulation J-3), the general requirements for the B.A. or B.S. degree, and:

Engl 209 Inquiry-Based Writing (3 cr)
JS 101 Introduction to the Justice System (3 cr)
JS 320* Police, Society, and Justice (3-3)* Corrections (3 cr)
JS 401 Justice Policy Issues (3 cr)
JS 422* Inequalities in the Justice System or Soc 427* Racial and Ethnic Relations (3 cr)
JS 425 Criminal Law or PolS 467* Constitutional Law (3 cr)
PolS 468* Civil Liberties or PolS 469* Judicial Process (3 cr)
Soc 101 Introduction to Sociology (3 cr)
Soc 310 Methods of Social Research (3 cr)
Soc 330* Juvenile Delinquency or Soc 331* Criminology (3 cr)
Stat 251 Statistical Methods (3 cr)

Electives chosen from the following (including 18 upper-division credits excluding internship) (students who take JS 498 for 6 cr need 21 credits of electives) (27 cr):

AgEc 477 Law, Ethics, and the Environment (3 cr)
Anth 451 Forensic Anthropology (3 cr)
H&S 311 Acquaintance Rape (2-3 cr)
JS 150 Organizational Environment of Criminal Justice (3 cr)
JS 204 Special Topics (var)(arr)
JS 330 Crime Control Policies (3 cr)
JS 333 White Collar Crime (3 cr)
JS 404 Special Topics (var)(arr)
JS 405 Comparative Criminal Justice Systems (3 cr)
JS 420 Law of Evidence and Criminal Procedure (3 cr)
JS 430 Juvenile Justice (3 cr)
JS 498 Internship in Criminal Justice (1-6 cr, max 6)
Phil 470 Philosophy of Law (3 cr)
PolS 275 American State and Local Government (3 cr)
PolS 360 Law and Society (3 cr)
PolS 451 Public Administration (3 cr)
PolS 452 Administrative Law and Regulation (3 cr)
PolS 454 Public Organization Theory (3 cr)
PolS 487 Political Violence and Revolution (3 cr)
Psy 305 Developmental Psychology (3 cr)
Psy 311 Abnormal Psychology (3 cr)
Psy 320 Introduction to Social Psychology (3 cr)
Soc 230 Social Problems (3 cr)
Soc 301 Introduction to Diversity and Stratification (3 cr)
Soc 314 Society and Self (3 cr)
Soc 320 Sociology of Substance Abuse (3 cr)
Soc 423 Social Stratification (3 cr)
Soc 424 Sociology of Gender (3 cr)
Soc 427 Racial and Ethnic Relations (3 cr)
Soc 430 Deviance (3 cr)

*May be used as an elective if not counted as required course.

SOCIOLGY (B.A.)

Required course work includes the university requirements (see regulation J-3), the general requirements for the B.A. degree, and the following courses (electives must be approved by the student’s advisor):

Anth 100 Introduction to Anthropology (3 cr)
Soc 101 Introduction to Sociology (3 cr)
Soc 230 Social Problems (3 cr)
Soc 310 Methods of Social Research (3 cr)
Soc 427 Racial and Ethnic Relations or Soc 424 Soc of Gender or Soc 423 Social Stratification (3 cr)
Soc 414 Development of Social Theory (3 cr)
Stat 251 Statistical Methods (3 cr)

Sociology electives (up to 15 cr each for Soc 315 or 498) (21 cr)
Related fields (more common areas including anthro, econ, geog, hist, political sc, and psych) (18 cr)

Students who wish to emphasize human services add the requirements following the B.S. in sociology below (15 cr).

Sociology (B.S.)

Required course work includes the university requirements (see regulation J-3), the general requirements for the B.S. degree, and the following courses (electives must be approved by the student’s advisor):

Anth 100 Introduction to Anthropology (3 cr)
Soc 101 Introduction to Sociology (3 cr)
Soc 230 Social Problems (3 cr)
Soc 310 Methods of Social Research (3 cr)
Soc 414 Development of Social Theory (3 cr)
Soc 427 Racial and Ethnic Relations or Soc 424 Soc of Gender or Soc 423 Social Stratification (3 cr)
Stat 251 Statistical Methods (3 cr)

Sociology electives (up to 15 cr each for Soc 315 or 498) (21 cr)
Related fields (more common areas including anthro, econ, geog, hist, political sc, and psych) (18 cr)
must be on file in the Registrar’s Office. Such institutions must have a graduate program and the work taken for graduate credit.

Department of Statistics

Rick Edgeman, Department Chair (415A Carol Ryrie Brink Hall 83844-1104; phone 208/885-2929). Faculty: Raymond Dacey, Brian C. Dennis, Raymond J. Dezzani, Rick L. Edgeman, Edward O. Garton, Ismail H. Genc, Joel R. Hamilton, Timothy R. Johnson, Paul Joyce, John J. Lawrence, Stephen S. Lee, R. Ashley Lyman, Kenneth B. Newman, Andrew Robinson, Bahman Shafii, R. Kirk Steinhorst, Christopher J. Williams.

Statistics encompasses course work in designing and analyzing experiments, planning and interpreting surveys, and exploring relationships among variables observed on social, physical, and biological phenomena. The applied nature of the program allows the student to develop data analysis tools for such diverse areas as business and economics, crop and animal production, biological sciences, human behavior, education, engineering, and natural resource management. The program thus supports major programs in other disciplines. Within the Department of Mathematics, a statistics option is available under applied mathematics leading to a baccalaureate degree.

Graduate study in statistics is designed for two types of students. Students whose undergraduate degrees are in subject matter disciplines will prepare for a career involving the application of statistical methods to their particular area of interest. Students with degrees in mathematics, computer science, or similar areas will prepare for a career in technical data analysis, statistical computing, and teaching of introductory-level statistics.

All students who wish to do graduate work in statistics should have a background in quantitative methods including Math 275, Analytic Geometry and Calculus III, and 6 hours of statistics including Stat 401 or equivalent. Additionally, students should have knowledge of at least one higher level programming language.

Faculty members in the Department of Statistics will be happy to answer questions about specific programs and courses. Such questions can also be addressed to the department chair (Brink 415; phone 208/885-4415).

Courses
See Part 6 for courses in Statistics (Stat).

Academic Minor Requirements

STATISTICS MINOR
Math 160 Survey of Calculus or Math 170 Analytic Geometry and Calculus (4 cr)
Stat 251 Statistical Methods, Stat 301 Probability and Statistics, or Stat 271 Statistical Inference and Decision Analysis (3-4 cr)
Stat 401 Statistical Analysis (3 cr)
Stat 422 Sample Survey Methods (3 cr)
Three of the following courses (9 cr):
Bus 421 Marketing Research and Analysis (3 cr)
Math 330 Linear Algebra (3 cr)
Math 451 Probability Theory (3 cr)
Stat 420 Design and Analysis of Experiments (1 cr)
Stat 424 Topics in SAS Programming (1 cr)
Stat 433 Econometrics (3 cr)
Stat 437 Statistics for Business Decisions (3 cr)
Stat 456 Quality Management (3 cr)
Stat 514 Nonparametric Statistics (3 cr)
Stat 519 Multivariate Analysis (3 cr)

Graduate Degree Program
Candidates must fulfill the requirements of the College of Graduate Studies and of the Department of Statistics. See the College of Graduate Studies section of Part 4 for the applicable general requirements for M.S. degree.

An individual graduate program is tailored for the student, but all students must complete a basic core requirement of 12 credits and either i) a thesis (Stat 500), ii) an internship report (Stat 596), or iii) a research course (Stat 599) that includes a comprehensive examination and presentation of written and oral project reports. The core requirements are Stat 451, 452, 507, and 510. A maximum of 6 credits of Stat 500 may be counted toward the thesis degree option.

Division of Teaching, Learning, and Leadership

Michael R.L. Oddl, Division Director (404B Educ. Bldg. 83844-3082; 208/885-6857), Elementary and Secondary Education Faculty: George F. Canney (Elementary Education Program Coordinator), Carol S. Christy, John Davis (Secondary Education Program Coordinator), Karen P. Guillouit, Georgia Johnson, Sally G. Machlis, Cherie R. Major, Michael R. L. Odell, Melvin J. Pedras, Richard Pollard, Joseph L. Reynolds Educational Leadership Faculty, Gary C. Arnold, Jack L. Dawson, Mary E. Gardiner, Russell A. Joki, Carolyn Keeler. Special Education Faculty: Julie A. Fodor, Jeanne Christiansen, Teresa S. Jentsch, Jennifer J. Olson (Special Education Program Coordinator).
The Division of Teaching, Learning, and Leadership includes programs for elementary and secondary education, educational leadership, and special education.

The professional degree majors in teaching, learning, and leadership provide knowledge, skills, and experiences to enable students to work effectively with K-12 students and schools. Students benefit from collaborative relationships and experience with partner schools and agencies.

Pre-service teaching degree majors are offered in elementary, secondary, and special education (B.S.Ed.). Students should consult an advisor concerning requirements for degree and/or certification.

Master’s degree majors are offered in curriculum and instruction, special education, and educational leadership (M.Ed., M.S.). Education specialist degrees are offered in curriculum and instruction, special education, higher education, and educational leadership.

The doctorate is available in education (Ed.D., Ph.D.) with emphases in:

- Elementary and Secondary Teacher Education. These programs include the university core curriculum, professional education core curriculum and program content courses. Secondary students select teaching majors and minors from subjects currently taught in secondary schools such as English, social studies, sciences, mathematics, art, and foreign languages. Elementary students receive a B.S.Ed. degree; secondary students may earn a B.S.Ed. degree through the department and college administering the academic major.

- Special Education. The UI undergraduate program in special education prepares students to teach children with cognitive, emotional, language, sensory, and physical disabilities at the K-12 level. The program may be taken as a special education major only or in conjunction with an elementary or secondary major. Early and continuous field placements have been developed as part of the special education program to help students make connections between their course work and K-12 classrooms. During the professional year, students gain experience with children in both general and special education programs. In order to be graduated in scheduling, students should begin planning early in their program by consulting with their advisor(s). Upon successful completion of the program, students will be recommended for Idaho certification.

- Graduate Education/Curriculum and Instruction. The program provides advanced professional and foundational courses that support graduate study in the College of Education. Graduate programs in curriculum and instruction with an emphasis in teacher education include (a) master’s degree programs (either Master of Education or Master of Science) in curriculum and instruction including an option for teacher certification; (b) education specialist degree programs in education, with emphases in Curriculum and Instruction; and (c) doctoral degree programs (either Doctor of Education or Doctor of Philosophy) with emphases in curriculum and instruction, and supervision and instructional leadership.

- Elementary Education. The UI undergraduate program in elementary education provides students with the preparation of school administrators and persons interested in teaching or administration in institutions of higher learning. Master of Education or Master of Science, education specialist, and the Ph.D. and Ed.D. with an emphasis in educational leadership, and options for a certificate as a principal and/or superintendent may be earned in the division.

An array of courses are offered that draw on significant research and practice in leadership, management, and the supervision of instruction. The preparation for prospective school principals includes courses in personnel administration, the principalship, research, interpretation and use, the organization and administration of schools in America, supervision, school law, curriculum design, and interpersonal relations. Certification as a school principal accompanies successful completion of master’s degree requirements.

At the education specialist degree level, the training emphasis is focused on superintendent certification for students who have master’s degrees in administration. Students with master’s degrees in related fields may achieve a principal certification when they have completed the education specialist degree. The education specialist degree further expands leadership training in school/community relations, school facilities planning, school finance, curriculum evaluation, and theory in administration. Person seeking certification in these programs must also complete an administrative internship for two semesters.

At the doctoral level (Ed.D. or Ph.D.), individualized programs may be directed to administration or teaching in higher education or toward significant leadership positions in public schools and other related agencies.

Graduate Education/Special Education. At the master’s level, the program emphasizes preparation in general special education, program administration and consultation. The education specialist degree is designed to prepare personnel in the consulting, supervisory, and administrative competencies needed for leadership roles in public school special education programs. The doctoral program prepares special educators for positions of leadership in schools, state agencies, colleges, and universities. Major emphasis is placed on research, university level teaching, and systems change. Specialized endorsements may be obtained in the areas of general special education, consulting teacher, and special education director.

Courses

See Part 6 for courses in Educational Administration (EdAd), Library Science (LibS), Special Education (EDSP), and Teacher Education (EDTE).

Undergraduate Curricular Requirements

Note: For registration in upper-division courses in education, students must have been admitted to the teacher education program and maintain a cumulative GPA of 2.75. For admission criteria, refer to “Admission to the Teacher Education Program” in the College of Education section in Part 4.

ELEME N TARY EDUCATION (B.S.Ed.)

Required course work includes the university requirements (see regulation J-3), completion of the Idaho Technology Performance Assessment and the following course requirements:

- Comm 101 Fundamentals of Public Speaking (2 cr)
- EDTE 201 Diverse Learners in Schools and Social/Cultural Contexts (3 cr)
- ED 301 Principles of Learning and Development in Education (3 cr)
- ED 302 Curriculum, Instruction, and Assessment Strategies (3 cr)
- ED 401 Professional Role Development (3 cr)
- EDTE 320 Foundations of Literacy Development (4 cr)
- Engl 102 College Writing and Rhetoric (3 cr)
- Hist 101 or 102 History of Western Civilization (3 cr)
- Hist 111 or 112 Intro to U.S. History (3 cr)
- Intr 133 Integrated Science for Elementary Education Majors (4 cr)
- Math 143 Pre-calculus Algebra and Analytic Geometry (3 cr)
- Math 235 Mathematics for Elementary Teachers I (3 cr)
- Math 236 Mathematics for Elementary Teachers II (3 cr)
- Mus T 381 Elementary School Music Methods for Nonmajors (3 cr)
- Psyc 305 Developmental Psychology (3 cr)
- Advanced composition elective (Engl 207, 208, 209, 291, 292,309,313, 317 or 401) (3 cr)
- Art elective (non-methods course) (3 cr)
- Earth science or physical science elective (4 cr)
- English elective in composition or literature (excluding Engl 101 and 102) (3 cr)
- Life science elective (4 cr)
- Literature elective (3 cr)
- Music elective (non-methods course) (2 cr)
- Social science electives other than psychology (6 cr)

Elementary Education Major Requirements

- Mathematics/Science/Social Studies/Physical Education Block:
 - EDTE 327 Elementary Mathematics Education (2 cr)
 - EDTE 328 Elementary Social Studies Education (2 cr)
 - EDTE 329 Elementary Science Education (2 cr)
 - PEP 350 Elementary Physical and Health Education (3 cr)

- Literacy/Arts Education Block:
 - EDTE 321 Literature for Children (2 cr)
 - EDTE 322 Integrated Language and Literacy (2 cr)
 - EDTE 325 Elementary Art Education (2 cr)
 - Dan 360 Children’s Dance (1 cr)
 - Thet 411 Theatre Methods (1 cr)

- Internship Year:
 - EDTE 423 Integrated Literacy in the Classroom (1 cr)
 - EDTE 425 Elementary Art in the Classroom (1 cr)
 - EDTE 427 Elementary Mathematics in the Classroom (1 cr)
 - EDTE 428 Elementary Social Studies in the Classroom (1 cr)
 - EDTE 429 Elementary Science in the Classroom (1 cr)
 - EDTE 466 Literacy Assessment and Intervention (3 cr)
 - EDTE 483 Elementary Internship I (4 cr)
 - EDTE 484 Elementary Internship II (15 cr)

- It is highly recommended that elementary students who are planning to teach grades 6, 7, and 8 select an area of concentration that meets state endorsement standards for secondary education. Students should consult with their advisor for details.

The minimum number of credits required for the degree is 128.

SECONDARY EDUCATION (B.S.Ed.)

Required course work includes the university requirements (see regulation J-3); completion of the Idaho Technology Performance Assessment; one 45-credit teaching major or one 20-credit teaching minor and one 20-credit teaching major and one 20-credit teaching minor (see “Teaching Majors and Minors” below); and the following course requirements:

- Comm 101 Fundamentals of Public Speaking (2 cr)
- ED 201 Diverse Learners in Schools and Social/Cultural Contexts (3 cr)
- ED 301 Principles of Learning and Development in Education (3 cr)
- ED 302 Curriculum, Instruction, and Assessment Strategies (3 cr)
- ED 401 Professional Role Development (3 cr)
- EDTE 463 Literacy Methods for Content Learning (3 cr)
- EDTE 465 Secondary Internship I (15 cr)
- Engl 102 College Writing and Rhetoric (3 cr)
- Psyc 101 Intro to Psychology or Psyc 305 Developmental Psychology (3 cr)
- Special methods sequence (EDTE 437/447, 440/441, 432/442, 433/443, 434/454, or 436/446) (4 cr)

- Special methods sequence (EDTE 437/447, 440/441, 432/442, 433/443, 434/454, or 436/446) (4 cr)
SPECIAL EDUCATION (B.S.Ed.)

Required course work includes the university requirements (see regulation J-3), the requirements for students preparing to teach at the elementary and/or secondary level (see the elementary and secondary education major requirements in this section); the completion of the Idaho Technology Performance Assessment; and the following courses (which will qualify the student for the Exceptional Child Certificate and Generalist K-12 endorsement):

EDSP 325 Classroom Application of Learning Theories (2 cr)
EDSP 350 Languages and Communication Development and Disorders (3 cr)
EDSP 351 Family and Community Involvement (2 cr)
EDSP 390 Special Education/Field Experience (2-3 cr)
EDSP 424 Students with Behavioral and Emotional Issues (2 cr)
EDSP 425 Evaluation of Children and Youth (2 cr)
EDSP 426 Developing Instructional Programs (2 cr)
EDSP 427 Curriculum Development and Adaptation (3 cr)
EDSP 428 Issues in Secondary Special Education (2 cr)
EDSP 484 Special Education Internship (14 cr)

Teaching Majors and Minors

One option required from the following:

One 45-credit teaching major
One 30-credit teaching major and one 20-credit teaching minor

The various teaching majors and teaching minors required to accompany several of the curricula are outlined below. Because the College of Education reserves the right to approve or disapprove the content of all proposed majors and minors, students should confer closely with their college advisors and with advisors in the academic department concerned in the selection of these courses.

ART

An academic major in Art Education is also offered in the major curriculum leading to the degree of B.S.Art Ed. (see Department of Art and Design in Part 5).

A. 45-CREDIT ART TEACHING MAJOR

Art 100 Visual Art (3 cr)
Art 110 Visual Communication (2 cr)
Art 111-112 Drawing I-II (5 cr)
Art 121-122 Visual Communication and the Design Process (5 cr)
Art 301 Early Modern Art and Aesthetics (3 cr)
Art 302 Modern Art and Theory (3 cr)

Courses selected from the following (15 cr):
Art 211 Drawing III (3 cr)
Art 221 Graphic Design I (3 cr)
Art 231 Painting I (3 cr)
Art 241 Sculpture I (3 cr)
Art 251 Printmaking I (3 cr)
Art 261 Ceramics I (3 cr)
Art 271 Interface Design I (3 cr)
Art 280 Understanding Photography (3 cr)

Two art studio courses from the following: (Art 314, 321, 330, 340, 350, 360, 370, 390) (6 cr)

In addition to the above teaching major requirements, the following special methods sequence is also required:
EDTE 436 Secondary Art Methods I (3 cr)
EDTE 446 Secondary Art Methods Lab (1 cr)

B. 21-CREDIT ART TEACHING MINOR

Art 100 Visual Art (3 cr)
Art 110 Visual Communication (2 cr)
Art 111-112 Drawing I-II (5 cr)
Art 121-122 Visual Communication and the Design Process (5 cr)

Courses selected from Art 211, 214, 221, 231, 241, 251, 261, 271, 280, or Art 314, 321, 330, 340, 350, 360, 370, 390 (6 cr)

BIOLOGICAL SCIENCES

Note: Math 143 is a prerequisite to required physics courses. A grade of “D” in any of the required courses listed below will not count toward completion of the degree in either the 45-credit composite teaching major or the 24-credit composite teaching minor.

Special Methods sequence:
EDTE 433 Secondary Science Methods I (3 cr)
EDTE 443 Secondary Science Methods Lab (1 cr)

A. 45-CREDIT COMPOSITE TEACHING MAJOR

Bio 115 Cells and the Evolution of Life (4 cr)
Bio 116 Organisms & Environments (4 cr)
Bio 210 Genetics (4 cr)
Bio 212 Molecular and Cellular Biology (4 cr)
Bio 213 Principles of Biological Structure and Function (4 cr)
Bio 314 Ecology and Population Biology (4 cr)

B. 24-CREDIT COMPOSITE TEACHING MINOR

Bio 115 Cells and the Evolution of Life (4 cr)
Bio 116 Organisms and Environments (4 cr)
Bio 210 Genetics (4 cr)
Bio 212 Molecular and Cellular Biology (4 cr)
Bio 213 Principles of Biological Structure and Function (4 cr)
Bio 314 Ecology and Population Biology (4 cr)

BUSINESS EDUCATION

21- OR 23-CREDIT BUSINESS EDUCATION TEACHING MINOR

Acct 201 Introduction to Financial Accounting (3 cr)
Bus 101 Introduction to Business Enterprises (3 cr)
Econ 272 Foundations of Economic Analysis (4 cr)
PTTE 430 Advanced Keyboarding & Document Preparation (2 cr)
PTTE 431 Leadership and Student Organizations (2 cr)
PTTE 431 Supervising PTTE Student Organizations (1 cr)
PTTE 491 Business, Marketing & Retailing Methods (2 cr)
PTTE 492 Business and Marketing Education Methods (2 cr)
PTTE 495 Administrative Office Management and Procedures (3 cr)

NOTE: This minor will not meet professional-technical certification requirements, but will enable the student to apply for a provisional professional-technical certificate.

Other required courses for professional-technical certification include:
PTTE 351 Principles and Philosophy of Professional-Technical Education (3 cr)
PTTE 447 Diverse Populations and Individual Differences (2-3 cr)
PTTE 461 Using Internet-Based Career Information in the Classroom (2-3 cr)
PTTE 464 Career Guidance and Transitioning to Work (3 cr)

CHEMISTRY

Note: See the physics and mathematics prerequisites for the chemistry courses listed below.

A. 45-CREDIT CHEMISTRY TEACHING MAJOR

Bio 116 Organisms and Environments (4 cr)
Chem 111 Principles of Chemistry I (4 cr)
Chem 112 Principles of Chemistry II (5 cr)
Chem 253 Quantitative Analysis (5 cr)
Chem 275, 276 Carbon Compounds and Lab and MMBB 380, 382 Intro Biochem and Lab or Chem 277, 278 Organic Chem I and Lab and Chem 372, 376 Organic Chem II and Lab (6-10 cr)
Chem 302, 303 Principles of Physical Chemistry and Lab (4 cr)
Math 170 Analytic Geometry and Calculus I (4 cr)
Phys 111-112 General Physics I-II (8 cr)
Chemistry elective (3 cr)

In addition to the above teaching major requirements, the following special methods sequence is also required:
EDTE 433 Secondary Science Methods I (3 cr)
EDTE 443 Secondary Science Methods Lab (1 cr)

B. 21-CREDIT CHEMISTRY TEACHING MINOR

Chem 111 Principles of Chemistry I or 101 Intro to Chemistry I (4 cr)
Chem 112 Principles of Chemistry II (5 cr)
Chem 275, 276 Carbon Compounds and Lab (4 cr)
Chem 302, 303 Principles of Physical Chemistry and Lab (4 cr)
MMBB 380 Introductory Biochemistry (4 cr)

COMPUTER SCIENCE

Computer science is not an area of endorsement for Idaho certification. Students may complete a teaching minor in computer science only under the 30-20-20 option where the 30 credit major and one of the 20 credit minors are in endorsement areas.

21-CREDIT COMPUTER SCIENCE TEACHING MINOR

CS 112 Introduction to Problem Solving and Programming (3 cr)
CS 121 Computer Science II (3 cr)
CS 150 Computer Organization and Architecture (3 cr)
Math 176 Discrete Mathematics (3 cr)
Electives chosen from the following (5 cr):
CS 310 Computing Languages (3 cr)
CS 324 Computer Graphics (3 cr)
CS 381 Software Engineering I (3 cr)
Math 385/CS 385 Theory of Computation (3 cr)
Math 395/CS 395 Analysis of Algorithms (3 cr)

CONSUMER ECONOMICS

A teaching major in consumer economics is not offered. To meet both college graduation requirements and state certification requirements, students selecting a teaching minor in consumer economics must have a teaching major in social science, or an academic major in business education, marketing education or child, family, and consumer studies to meet both college graduation requirements and state certification requirements.

20-CREDIT CONSUMER ECONOMICS TEACHING MINOR

BLaw 265 Legal Environment of Business (3 cr)
PTTE 418 Consumer Economic Methods (3 cr)
In addition to the above teaching major requirements, the following special methods sequence is also required:

EDTE 440 Secondary English Methods I (3 cr)
EDTE 441 Secondary English Methods Lab (1 cr)

ENGLISH AS A SECOND LANGUAGE

A teaching major in English as a second language is not offered.

21-CREDIT ENGLISH AS A SECOND LANGUAGE TEACHING MINOR

Modern foreign language (100-level or above) (4 cr)
Cultural diversity (i.e. Anth 261) (3 cr)
ESL methods (i.e. EDTE 437) (3 cr)
Theory, philosophical foundations, testing/identification of limited English proficient students, or applied linguistics in ESL (i.e. Engl 441, 442 or 443) (3 cr)
Practicum or field experience in ESL (i.e. EDTE 402, EDTE 597, Engl 515) (1cr)
At least one course in English language and linguistics (Engl 441, 442, 443) (3 cr)
Electives to total 21 credits (Anth/Soc 427 Racial and Ethnic Relations is recommended)

FRENCH

Basic language courses taken in high school or elsewhere may be evaluated for college equivalencies as part of this teaching major and minor. Consult the Department of Foreign Languages and Literatures for policies on earning credit for vertically-related courses.

A. 45-CREDIT FRENCH TEACHING MAJOR

Fren 101-102 Elementary French I-II (8 cr)
Fren 201-202 Intermediate French I-II (8 cr)
Fren 301 Advanced French Grammar (3 cr)
Fren 302 Advanced French Writing Skills (3 cr)
Fren 304 Connecting French Language and Culture (4 cr)
Fren 305 Reading French Texts (3 cr)
Fren 408 Topics in French Culture and Institutions (3 cr)
Fren 449 Practicum in Tutoring (1-2 cr)
Electives chosen from the following (7-10 cr):
Engl 441 Introduction to Study of Language (3 cr)
FLEN 243 English Word Origins (2 cr)
Approved upper-division course in literature
Approved upper-division French electives
Approved upper division French electives to total 45 credits in the teaching major.

In addition to the above teaching major requirements, the following special methods sequence is also required:
EDTE 437 Secondary Foreign Language Methods I (3 cr)
EDTE 447 Secondary Foreign Language Methods Lab (1 cr)

B. 22-CREDIT FRENCH TEACHING MINOR
Fren 101-102 Elementary French I-II (8 cr)
Fren 201-202 Intermediate French I-II (8 cr)
Approved upper-div French electives (either Fren 301 or 302 is req'd; lab-based and lit in translation courses are not acceptable) (6 cr)

Note: A minor in French of less than 22 credits is not acceptable.

GEOGRAPHY
A. 30-CREDIT GEOGRAPHY TEACHING MAJOR
Geog 100 Physical Geography (4 cr)
Geog 165 Human Geography (3 cr)
Geog 180 Geospatial Graphics (3 cr)
Geog 200 World Regional Geography (3 cr)
Geog 330 Urban Geog or 240 Econ Geog or 346 Transportation (3 cr)
Geog 364 Idaho and Pacific Northwest (3 cr)
Geog 385 GIS Primer (3 cr)
Geog 401 Climatology or Geog 360 Population Dynamics and Distribution or Geog 427 Decision Making in Resource Management (3 cr)
Geog 470 Geographic Visualization (3 cr)
Additional geography courses to total 30 credits (2 cr)

In addition to the above teaching major requirements, the following special methods sequence is also required:
EDTE 432 Secondary Social Science Methods I (3 cr)
EDTE 442 Secondary Social Science Methods Lab (1 cr)
B. 22-CREDIT GEOGRAPHY TEACHING MINOR
Geog 100 Physical Geography (4 cr)
Geog 165 Human Geography (3 cr)
Geog 180 Geospatial Graphics (3 cr)
Geog 200 World Regional Geography (3 cr)
Geog 240 Economic Geography (3 cr)
Geog 401 Climatology or Geog 360 Population Dynamics and Distribution or Geog 427 Decision Making in Resource Management (3 cr)
Geog 470 Geographic Visualization (3 cr)

GEOLOGY
A teaching major in geology is not offered.

20-CREDIT GEOLOGY TEACHING MINOR
Geol 101 Physical Geology (4 cr)
Geol 102 Historical Geology (4 cr)
Geol 212 Principles of Paleontology (4 cr)
Electives chosen from the following (5 cr):
Geol 335 Geomorphology (3 cr)
Geol 345 Structural Geology (3-4 cr)
Geol 401 Field Geology and Report Writing (6 cr)

GERMAN
Basic language courses taken in high school or elsewhere may be evaluated for college equivalences as part of this teaching major and minor. Consult the Department of Foreign Languages and Literatures for policies on earning credit for vertically-related courses.

A. 45-CREDIT GERMAN TEACHING MAJOR
Engl 441 Introduction to Study of Language (3 cr)
FLEN 323 or 324 German Literature in Translation (3 cr)
Germ 101-102 Elementary German I-II (8 cr)
Germ 201-202 Intermediate German I-II (8 cr)
Germ 301 Advanced German Grammar (3 cr)
Germ 302 Advanced German Speaking and Writing (3 cr)
Germ 304 20th Century German Culture and Society (3 cr)
Germ 305 Germany in the New Europe or Germ 306 Introduction to German Literature (3 cr)
Approved upper division German electives (including at least one 400-level course) to total 45 credits in the teaching major.

In addition to the above teaching major requirements, the following special methods sequence is also required:
EDTE 437 Secondary Foreign Language Methods I (3 cr)
EDTE 447 Secondary Foreign Language Methods Lab (1 cr)

B. 22-CREDIT GERMAN TEACHING MINOR
Germ 101-102 Elementary German (8 cr)
Germ 201-202 Intermediate German (8 cr)
Approved upper-division German electives (either Germ 301 or 302 is req'd; lab-based and lit in translation courses are not acceptable) (6 cr)

Note: A minor in German of less than 22 credits is not acceptable.

HEALTH EDUCATION
22-CREDIT HEALTH EDUCATION TEACHING MINOR
Students minoring in health education who plan to apply for teacher certification must include a course in anatomy or physiology or general biology or MMBB among the courses they select to meet the general studies requirements. A current advanced first aid and emergency care card is required upon graduation.

FCS 205 Concepts in Human Nutrition or 305 Nutrition Related to Fitness/Sport (3 cr)
FCS 240 Intimate Relationships or Psyc 330 Human Sexuality (3 cr)
H&S 150 Wellness Literacy (3 cr)
H&S 288 First Aid: Emergency Response (2 cr)
H&S 289 Drugs in Society (2 cr)
H&S 316 Community and Global Health (2 cr)
H&S 350 Stress Management and Mental Health (2 cr)
H&S 423 Health Education Methods and Administration (3 cr)
H&S 450 Consumer Health and Health Care Issues (2 cr)

HISTORY
A. 33-CREDIT HISTORY TEACHING MAJOR
Hist 101-102 History of Civilization (6 cr)
Hist 111-112 Introduction to U.S. History (6 cr)
Hist 290 The Historian's Craft (3 cr)
PreS 101 Introduction to Political Science and American Government (3 cr)
Upper-division history courses in the following areas:
Pre-1750 history from any region (3 cr)
Modern European history (3 cr)
Approved upper division history electives to total 33 credits in the teaching major.

Note: A single course may satisfy more than one of the upper-division requirements.

In addition to the above teaching major requirements, the following special methods sequence is also required:
EDTE 432 Secondary Social Science Methods I (3 cr)
EDTE 442 Secondary Social Science Methods Lab (1 cr)

B. 45-CREDIT HISTORY TEACHING MAJOR
Hist 101-102 History of Civilization (6 cr)
Hist 111-112 Introduction to U.S. History (6 cr)
Hist 290 The Historian's Craft (3 cr)
PreS 101 Introduction to Political Science and American Government (3 cr)
Upper-division history courses in the following areas:
Non-regional U.S. history (3 cr)
Latin American history (3 cr)
Asian or African history (3 cr)
Pre-1750 history from any region (3 cr)
Modern European history (3 cr)
Additional upper-division history courses (9 cr)
Approved upper division history electives to total 45 credits in the teaching major.

Note: A single course may satisfy more than one of the upper-division requirements.

In addition to the above teaching major requirements, the following special methods sequence is also required:
EDTE 432 Secondary Social Science Methods I (3 cr)
EDTE 442 Secondary Social Science Methods Lab (1 cr)

C. 24-CREDIT HISTORY TEACHING MINOR
History courses chosen from the following (9 cr):
Hist 101-102 History of Civilization (6 cr)
Hist 111-112 Introduction to U.S. History (6 cr)
Hist 180 Introduction to East Asian History (3 cr)
Hist 210 Introduction to Modern Latin American History (3 cr)
American government (3 cr)
Upper-division history courses, including at least 3 cr in U.S., Latin American, or African history, and at least 3 cr in Ancient, European or Asian history (12 cr)

Note: Students must take at least 9 credits in U.S. history, which may include history of a state or region of the U.S.

D. 33-CREDIT HISTORY TEACHING MAJOR THROUGH AMERICAN STUDIES
American studies majors must take 9 credits in European or Asian history to maintain the required balance of old and new world history, plus 3 credits in American government.

INDUSTRIAL TECHNOLOGY EDUCATION
30-CREDIT INDUSTRIAL TECHNOLOGY EDUCATION TEACHING MINOR
For certification to teach industrial technology education, a teaching minor must contain at least 20 credits, including not less than 15 credits distributed among and including each of the areas of metals, wood, drafting, and electricity-electronics. The remainder
may be in allied or related areas. No substitution will be permitted for any of the courses required below.

PTTE 130 Basic Electronics (4 cr)
PTTE 350 Teaching and Learning Construction Systems (4 cr)
PTTE 352 Manufacturing Technology Systems (4 cr)
PTTE 367 Teaching and Learning Computer Aided Drafting/Design (2 cr)
PTTE 402 Teaching and Learning Principles of Technology (4 cr)
PTTE 428 Teaching and Learning Computer Operating Systems for Technology (4 cr)
PTTE 482 Teaching and Learning Communication Technology Systems (4 cr)
PTTE 473 Teaching and Learning Power, Energy, and Transportation Technology Systems (4 cr)

Other required courses for professional-technical certification include:
PTTE 351 Principles and Philosophy of Professional-Technical Education (3 cr)
PTTE 447 Diverse Populations and Individual Differences (2-3 cr)
PTTE 461 Using Internet-Based Career Information in the Classroom (2-3 cr)

JOURNALISM

A. 37-CREDIT JOURNALISM TEACHING MAJOR
Art 280 Understanding Photography (3 cr)
Jamm 100 Media and Society (3 cr)
Jamm 121 Media Writing (3 cr)
Jamm 225 Reporting (3 cr)
Jamm 275 Introduction to Video/Television & Digital Media Production (3 cr)
Jamm 324 News Editing and Production (3 cr)
Jamm 401 Practicum or 498 Internship (1 cr)
Jamm 425 Feature Article Writing (3 cr)
Jamm 442 Communication Law and Ethics (3 cr)

Courses selected from the following (9 cr):
Jamm 322 Broadcast News (3 cr)
Jamm 325 Publications Editing (3 cr)
Jamm 427 Public Affairs Reporting (3 cr)
Jamm 444 Mass Media and Public Opinion (3 cr)

B. 21-CREDIT JOURNALISM TEACHING MINOR
Jamm 100 Media and Society (3 cr)
Jamm 121 Media Writing (3 cr)
Jamm 225 Reporting (3 cr)

One course from the following (3 cr):
Art 280 Understanding Photography (3 cr)
Jamm 275 Introduction to Video Production (3 cr)

Three courses chosen from the following (9 cr):
Art 280 Understanding Photography (3 cr)
Jamm 275 Introduction to Video Production (3 cr)
Jamm 324 News Editing and Production (3 cr)
Jamm 401 or 498 Practicum or Internship
Jamm 425 Feature Article Writing (3 cr)
Jamm 442 Communication Law and Ethics (3 cr)

LATIN

Basic language courses taken in high school or elsewhere may be evaluated for college equivalencies as part of this teaching major or minor. Consult the Department of Foreign Languages and Literatures for policies on earning credit for vertically-related courses.

A. 45-CREDIT LATIN TEACHING MAJOR
FLEN 211-212 Classical Mythology (4 cr)
FLEN 243 English Word Origins (2 cr)
FLEN 364 Literature of Rome (3 cr)
FLEN 442 Civilization of Ancient Rome (3 cr)
Latin at the level of 101-102 Elementary Latin I-II (or equivalent) (8 cr)

A methods course approved by advisor and classics section or Latin 449 Practicum in Tutoring (2 cr)

Electives chosen from the following (3-4 cr):
Additional upper-division Latin courses (especially recommended)
Engl 441 Introduction to Study of Language (3 cr)
FLEN 363 Literature of Ancient Greece (3 cr)
FLEN 441 Ancient Greek Civilization (3 cr)

Approved upper division Latin electives to total 45 credits in the teaching major.

In addition to the above teaching major requirements, the following special methods sequence is also required:
EDTE 437 Secondary Foreign Language Methods I (3 cr)
EDTE 447 Secondary Foreign Language Methods Lab (1 cr)

B. 23-CREDIT LATIN TEACHING MINOR
Latin 101-102 Elementary Latin I-II (or equivalent) (8 cr)
FLEN 243 English Word Origins (2 cr)
FLEN 364 Literature of Rome or 442 Civilization of Ancient Rome (3 cr)
Latin at the level of 300 and/or 400 level (to include 1 credit of Latin 368) (10 cr)

Note: A minor in Latin of less than 20 credits is not acceptable.

LIBRARY SCIENCE

A teaching major in library science is not offered.

24-CREDIT LIBRARY SCIENCE TEACHING MINOR

The teaching minor in library science must total 24 credits. At least 12 of these must be in the areas of selection, organization, and administration of library materials. This teaching minor will qualify the student for the Idaho K-12 Education Media Generalist endorsement. Because library science is not a teaching field, the teacher-librarian must also qualify for a standard Idaho elementary or secondary teacher’s certificate.

Note: Departmental approval and approval of site are required for the practicum; it is approved after the majority of the required course work has been completed.

LibS C420 Classification and Cataloging (4 cr)
LibS C421 Acquisitions and Collection Development in Libraries (3 cr)
LibS C422 Use of School Library and/or C423 Intro to Reference Work (2-5 cr)
LibS C425 Organization and Management of Small Libraries (4 cr)
LibS C427 Library and Media Center Practicum (1-3 cr)
Audiovisual aids and computer electives (minimum) (2 cr)

Note: The above selections must total at least 18 credits

Courses selected from the following to total 24 cr for this teaching minor:
Engl 445 Literature for Adolescents (3 cr)
Communication/graphic arts (6 cr)

MATHEMATICS

Math 143 and 144 may be necessary prerequisites for students with weak backgrounds.

A. 47-CREDIT MATHEMATICS TEACHING MAJOR
CS 112 Introduction to Problem Solving and Programming (3 cr)
Math 170, 175 Analytic Geometry and Calculus (11 cr)
Math 215 Seminar in Topology of the Plane (3 cr)
Math 330 Linear Algebra (3 cr)
Math 386 Theory of Numbers (3 cr)
Math 390 Axiomatic Geometry or Math 391 Modern Geometry (3 cr)
Math 461 Abstract Algebra (3 cr)
Math 471 Advanced Calculus (3 cr)
Stat 251 Prin of Stat or Stat 301 Probability and Stat or Math 451 Probability Theory (3 cr)

Three of the following courses (one must be above 400) (9 cr)
Math 310 Ordinary Differential Equations (3 cr)
Math 326 Linear Programming (3 cr)
Math 346 Applied Combinatorics (3 cr)
Math 376 Discrete Mathematics II (3 cr)
Math 390 Axiomatic Geometry or Math 391 Modern Geometry (3 cr)
Math 411 Elementary Topology (3 cr)
Math 420 Complex Variables (3 cr)
Math 433 Numerical Analysis (3 cr)
Math 451 Probability Theory (3 cr)
Math 452 Mathematical Statistics (3 cr)
Math 462 Abstract Algebra (3 cr)
Math 472 Advanced Calculus (3 cr)

Approved upper division mathematics electives to total 47 credits in the teaching major.

In addition to the above teaching major requirements, the following special methods sequence is also required:
EDTE 434 Secondary Mathematics Methods I (3 cr)
EDTE 454 Secondary Mathematics Methods Lab (1 cr)
EDTE 418 Identifying and Correcting Mathematics Deficiencies (3 cr)

B. 32-CREDIT MATHEMATICS TEACHING MAJOR
CS 112 Introduction to Problem Solving and Programming (3 cr)
Math 170, 175 Analytic Geometry and Calculus (8 cr)
Math 215 Seminar in Topology of the Plane (3 cr)
Math 330 Linear Algebra (3 cr)
Math 386 Theory of Numbers (3 cr)
Math 390 Axiomatic Geometry or Math 391 Modern Geometry (3 cr)
Math 461 Abstract Algebra (3 cr)
Math 471 Advanced Calculus (3 cr)

In addition to the above teaching major requirements, the following special methods sequence is also required:
EDTE 434 Secondary Mathematics Methods I (3 cr)
EDTE 454 Secondary Mathematics Methods Lab (1 cr)
EDTE 418 Identifying and Correcting Mathematics Deficiencies (3 cr)

C. 20-CREDIT MATHEMATICS TEACHING MINOR

Note: Students who plan to apply for teacher certification with a mathematics teaching minor are recommended to take EDTE 418.

Math 170, 175 Analytic Geometry and Calculus (8 cr)
Math 215 Seminar in Topology of the Plane (3 cr)
Math 386 Theory of Numbers (3 cr)
Math 390 Axiomatic Geometry or Math 391 Modern Geometry (3 cr)
Math 471 Advanced Calculus (3 cr)
In addition to the above teaching major requirements, the following special methods sequence is also required:

EDTE 434 Secondary Mathematics Methods I (3 cr)
EDTE 443 Secondary Mathematics Methods Lab (1 cr)*

MUSIC EDUCATION

29-CREDIT VOCAL MUSIC TEACHING MINOR

MusA 114 Individual Instruction (2 cr)*
MusA 145-146, 245-246 Piano Class (4 cr)
MusA 151 Guitar Class for Music Majors (1 cr)
MusA 387 Conducting I (2 cr)
MusC 139-140 Aural Skills I-II (4 cr)
MusC 141-142 Theory of Music I-II (4 cr)
MusH 101 Survey of Music (students may substitute MusH 111) (3 cr)
MusT 385 Choral Music in the Secondary School (2 cr)
MusT 389 Orff, Kodaly, and Dalcroze (2 cr)
MusT 485 Choral Ensemble Rehearsal Techniques (1 cr)
MusX 140 Convocation (two semesters) (8 cr)

*If students do not qualify immediately for MusA 114, they must take Voice Class until they can meet departmental approval.

PHYSICAL EDUCATION

29 TO 31 PHYSICAL EDUCATION TEACHING MINOR (Grade levels 1-12)

H&S 150 Wellness LifeStyles (3 cr)
H&S 288 First Aid: Emergency Response (2 cr)
PEP 107 Movement Fundamentals (1 cr)
PEP 161 Introduction to Physical Education (1 cr)
PEP 201 Fitness Activities and Concepts (2 cr)
PEP 300 Applied Human Anatomy & Biomechanics or PEP 418 Physiology of Exercise (2-3 cr)
PEP 305 Applied Sports Psychology or PEP 310 Cultural/Phil Aspects of Sport (2-3 cr)
PEP 360 Motor Behavior (3 cr)
PEP 380 Measurement and Evaluation (2 cr)
PEP 412 Elementary Physical Education Methods (3 cr)
PEP 421 Secondary Physical Education Methods (3 cr)
PEP 424 Physical Education for Special Populations (2 cr)
PEP 440 Physical Education Curriculum and Administration (2 cr)

One of the following individual activity courses (1 cr):

PEP 132 Skill and Analysis of Tennis, Pickleball, and Badminton (1 cr)
PEP 133 Skill and Analysis of Golf and Archery (1 cr)
PEP 202 Skill and Analysis of Stunts and Tumbling (1 cr)

One of the following team activity courses (1 cr):

PEP 134 Skill and Analysis of Track and Field (1 cr)
PEP 135 Skill and Analysis of Basketball and Volleyball (1 cr)
PEP 136 Skill and Analysis of Soccer and Speedball (1 cr)
PEP 137 Skill and Analysis of Softball and Field Sports (1 cr)

One of the following recreational activity courses (1 cr):

PEP 138 Skill and Analysis of Outdoor Activities I (1 cr)
PEP 139 Skill and Analysis of Outdoor Activities II (1 cr)

PHYSICAL SCIENCES

45-CREDIT COMPOSITE TEACHING MAJOR

This is a 40-credit composite teaching major consisting of courses in chemistry, geology, and physics. A teaching minor in mathematics is recommended to accompany this teaching major.

Biol 102 Biology and Society or Biol 116 Organisms and Environments or Geog 100 Physical Geog or Geog 401 Climatology (3-4 cr)
Chem 111 Principles of Chemistry I (4 cr)
Chem 112 Principles of Chemistry II (5 cr)
Chem 275 Carbon Compounds (3 cr)
Geol 101 Physical Geology (4 cr)
Phys 103 General Astronomy (3 cr)
Phys 211, 212, 213 Engineering Physics I, II, III (12 cr)
Phys 411 Physical Instrumentation I (3 cr)

Additional electives in chemistry, geology, or physics to total 45 credits. Recommended elective courses include Chem 302 & MMBB 380 (2-3 cr)

In addition to the above teaching major requirements, the following special methods sequence is also required:

EDTE 433 Secondary Science Methods I (3 cr)
EDTE 443 Secondary Science Methods Lab (1 cr)***

PHYSICAL SCIENCE-LIFE SCIENCE

63-CREDIT COMPOSITE TEACHING MAJOR

Biol 115 Cells and the Evolution of Life (4 cr)
Biol 116 Organisms and Environments (4 cr)
Biol 120 Human Anatomy (4 cr)
Biol 121 Human Physiology (4 cr)
Chem 111 Principles of Chemistry I (4 cr)
Chem 112 Principles of Chemistry II (5 cr)
Phys 211, 212, 213 Engineering Physics I, II, III (12 cr)
Phys 411 Physical Instrumentation I (3 cr)
PISC 205 General Botany (4 cr)

Courses in biology, chemistry, or physics (8 cr)

Electives chosen from the following (11 cr):

Biol 314 Ecology and Population Biology (4 cr)
Geog 100 Physical Geography (4 cr)
Geog 401 Climatology (3 cr)
MMBB 250, 255 General Microbiology and Lab (5 cr)
Phys 106 General Astronomy (3 cr)

In addition to the above teaching major requirements, the following special methods sequence is also required:

EDTE 433 Secondary Science Methods I (3 cr)
EDTE 443 Secondary Science Methods Lab (1 cr)***

PHYSICS

A. 45-CREDIT PHYSICS TEACHING MAJOR

Biol 116 Organisms and Environments (4 cr)
Chem 101 Intro to Chemistry I or 111 Prin of Chemistry I (4 cr)
Math 170, 175, 275 Analytic Geometry and Calculus (11 cr)
Phys 103 General Astronomy (3 cr)
Phys 211, 212, 213 Engineering Physics I, II, III (12 cr)
Phys 305 Modern Physics (3 cr)
Phys 411 Physical Instrumentation I (3 cr)

Approved upper division physics electives to total 45 credits in the teaching major.

In addition to the above teaching major requirements, the following special methods sequence is also required:

EDTE 433 Secondary Science Methods I (3 cr)
EDTE 443 Secondary Science Methods Lab (1 cr)***

B. 20-CREDIT PHYSICS TEACHING MINOR

Phys 211, 212, 213 Engineering Physics I, II, III (12 cr)
Phys 305 Modern Physics (3 cr)

Electives in physics (approved by advisor in Dept of Physics), including at least 2 credits of lab work (5 cr)

POLITICAL SCIENCE

A. 30-CREDIT POLITICAL SCIENCE TEACHING MAJOR

A minimum of 30 credits in political science courses is required with an additional 6 credits in US history necessary for certification. Courses listed in more than one field may be counted in only one of those fields. Substitutions in specific courses may be made with the consent of the advisor.

US history electives 6 cr
U.S. Government; Process and Policy (12-15 cr):

- PoS 101 Introduction to Political Science and American Government (3 cr)
- And 9-12 cr from the following: PoS 275, 431, 432, 433, 437, 438, 460, 464, 465, 469

15-18 credits from the following fields:

- Comparative Government and Politics. At least 3 credits from the following: PoS 380, 381, 383, 480, 482, 484, 485, 487
- International Relations. At least 3 credits from the following: PoS 237, 438, 440, 449
- Public Administration and Public Law. At least 3 credits from the following: PoS 451, 452, 454, 460, 467, 468, 469

Political Thought. At least 3 credits from the following:
PoS 425, 426, 428, 429

In addition to the above teaching major requirements, the following special methods sequence is also required:

EDTE 432 Secondary Social Science Methods I (3 cr)
EDTE 442 Secondary Social Science Methods Lab (1 cr)

B. 20-CREDIT POLITICAL SCIENCE TEACHING MINOR

A minimum of 20 credits in political science courses is required with an additional 6 credits in US history necessary for certification.

- PoS 101 Introduction to Political Science and American Government (3 cr)
- Three credits in U.S. government (see the list of courses in U.S. Govt: Process and Policy under teaching major above) (3 cr)
- Three credits in comparative government (see the list of courses in Comparative Government and Politics under teaching major above) (3 cr)

Other political science electives selected from courses listed in the teaching major (11 cr) US history electives (6 cr)

PSYCHOLOGY

A. 30-CREDIT PSYCHOLOGY TEACHING MAJOR

The basic objective of this teaching major is to provide the undergraduate student with preparatory material that leads to teaching psychology in secondary schools, and/or to undertake graduate work in several related areas. Though psychology is an endorsement area, it is desirable to present two teaching minors in standard secondary-school subjects. At least a teaching minor in sociobiology/anthropology is recommended for those anticipating graduate work in guidance and counseling and school psychology. A second teaching major in lieu of two teaching minors is acceptable preparation. The composite teaching majors (i.e., social science or physical science), if elected as a second teaching major, should meet the stipulated credit requirement.

- Psy 101 Introduction to Psychology (3 cr)
- Psy 305 Developmental Psychology (3 cr)
One of the following courses (3-4 cr):
Psy 218 Introduction to Research in Behavioral Sciences (4 cr)
Psy 430 Tests and Measurements (3 cr)
Two of the following courses (6 cr):
Psy 310 Psych of Personality (3 cr)
Psy 311 Abnormal Psychology (3 cr)
Psy 320 Introduction to Social Psychology (3 cr)

A. 45-CREDIT SPANISH TEACHING MAJOR

Span 101-102 Elementary Spanish I-II (8 cr)
Span 201-202 Intermediate Spanish I-II (8 cr)
Span 301 Advanced Grammar (3 cr)
Span 302 Advanced Composition (3 cr)
Span 305 Culture and Institutions of Spain (3 cr)
Span 306 Culture and Institutions of Latin America (3 cr)
Upper-division courses in Spanish language (9 credits must be at 400 level) to total 45 credits in the teaching major.

A maximum of 3 credits in FLEN 391, 393, or 394 may be counted toward a teaching major in Spanish.

In addition to the above teaching major requirements, the following special methods sequence is also required:
EDTE 437 Secondary Foreign Language Methods I (3 cr)
EDTE 447 Secondary Foreign Language Methods Lab (1 cr)

B. 22-CREDIT SPANISH TEACHING MINOR

Span 101-102 Elementary Spanish I-II (8 cr)
Span 201-202 Intermediate Spanish I-II (8 cr)

Approved upper-div Spanish electives (either Span 301 or 302 reqd; lab-based and lit in translation courses are not acceptable) (6 cr)

Note: A minor in Spanish of less than 22 credits is not acceptable.

SPEECH

A. 31-CREDIT SPEECH TEACHING MAJOR

Comm 111 Introduction to Communication Studies (3 cr)
Comm 233 Interpersonal Communication (3 cr)
Comm 331 Conflict Management (3 cr)
Comm 332 Communication and the Small Group (3 cr)
Comm 335 Intercultural Communication (3 cr)
Comm 347 Persuasion or Phil 201 Critical Thinking (3 cr)
Comm 431 Professional Presentation Techniques (3 cr)
Jamm 100 Media and Society (3 cr)
TheF 105 Basics of Performance (3 cr)

In addition to the above teaching major requirements, the following special methods sequence is also required:
EDTE 440 Secondary English Methods I (3 cr)
EDTE 441 Secondary English Methods Lab (1 cr)

B. 25-CREDIT SPEECH TEACHING MINOR

Comm 111 Introduction to Communication Studies (3 cr)
Comm 233 Interpersonal Communication (3 cr)
Comm 332 Communication and the Small Group (3 cr)
Jamm 100 Media and Society (3 cr)
TheF 105 Basics of Performance (3 cr)

In addition to the above teaching major requirements, the following special methods sequence is also required (1-2 credits will be taken concurrently with EDTE 485) (required for this teaching minor):
EDTE 440 Secondary English Methods I (3 cr)
EDTE 441 Secondary English Methods Lab (1 cr)

THEATRE ARTS

A. 45-46 CREDIT THEATRE ARTS TEACHING MAJOR

TheF 103-104 Theatre Technology I-II (8 cr)
TheF 105-106 Basics of Performance (6 cr)
TheF 201 Scene Design I (3 cr)
TheF 202 Costume Design I (3 cr)
TheF 207 Theatrical Make-up (3 cr)
TheF 305 Intermediate Acting (3 cr)
TheF 310 Basics of Performance (3 cr)
TheF 320 Theatre Management (2 cr)
TheF 371 Play Analysis (3 cr)
TheF 386 Theatre Practice (2-3 cr)
TheF 468-469 Theatre History I & II (6 cr)
TheF 471 Directing (3 cr)

In addition to the above teaching major requirements, the following special methods sequence is also required:
EDTE 440 Secondary English Methods I (3 cr)
EDTE 441 Secondary English Methods Lab (1 cr)

B. 25-CREDIT THEATRE ARTS TEACHING MINOR

TheF 103-104 Theatre Technology I-II (8 cr)
TheF 105-106 Basics of Performance (6 cr)
TheF 201 Scene Design I (3 cr)
TheF 202 Costume Design I (3 cr)
TheF 320 Theatre Management (2 cr)
TheF 471 Directing (3 cr)
Graduate Degree Programs

Candidates must fulfill the requirements of the College of Graduate Studies and of the Division of Teaching, Learning, and Leadership. See the College of Graduate Studies section of Part 4 for the general requirements applicable to each degree. Applicants for the M.S. or M.Ed. degree are expected to meet the requirements for the teaching certificate and one year of teaching experience.

Master of Science. General M.S. requirements apply.

Master of Education. General M.Ed. requirements apply.

Education Specialist in Curriculum and Instruction or Special Education. These post-master’s programs are designed to give additional graduate preparation to those who wish to continue in teaching or enter into supervisory and leadership positions in the public schools. The specialist degree is available in the Division of Teaching, Learning, and Leadership, with emphases in curriculum and instruction and special education. It is expected that these students will have had a minimum of two years of experience in public schools of which one was classroom teaching. A knowledge of basic statistics is highly recommended for beginning graduate work and essential to professional literacy. Professional degree programs require 60 hours of graduate work beyond the baccalaureate degree.

Education Specialist in Educational Leadership. This six-year program is designed to prepare students for administrative positions up to and including the superintendency. Candidates with master’s degrees in fields other than administration may acquire an education specialist degree while completing requirements for certification as a principal.

Doctor of Education. The Ed.D. and Ph.D. programs are designed for those persons who wish to continue in teaching or enter into supervisory and leadership positions in the public schools. The specialist degree is available in the Division of Teaching, Learning, and Leadership, with emphases in curriculum and instruction and special education. It is expected that these students will have had a minimum of two years of experience in public schools of which one was classroom teaching. A knowledge of basic statistics is highly recommended for beginning graduate work and essential to professional literacy. Professional degree programs require 60 hours of graduate work beyond the baccalaureate degree.

Doctor of Philosophy. See general statement about the doctoral programs with the Ed.D. degree above. Divisional requirements for the Ph.D. degree are: 18 credits in research competency, including statistics and research design; 18 credits in a cognate area of which 9 should be taken outside of the College of Education; 30 credits in a major area of competency. The credits indicated in each area are minimums.

Doctor of Education. The Ed.D. and Ph.D. programs are designed for those persons who wish to continue in teaching or enter into supervisory and leadership positions in the public schools. The specialist degree is available in the Division of Teaching, Learning, and Leadership, with emphases in curriculum and instruction and special education. It is expected that these students will have had a minimum of two years of experience in public schools of which one was classroom teaching. A knowledge of basic statistics is highly recommended for beginning graduate work and essential to professional literacy. Professional degree programs require 60 hours of graduate work beyond the baccalaureate degree.

Education Specialist in Educational Leadership. This six-year program is designed to prepare students for administrative positions up to and including the superintendency. Candidates with master’s degrees in fields other than administration may acquire an education specialist degree while completing requirements for certification as a principal.

Doctor of Education. The Ed.D. and Ph.D. programs are designed for those persons who wish to continue in teaching or enter into supervisory and leadership positions in the public schools. The specialist degree is available in the Division of Teaching, Learning, and Leadership, with emphases in curriculum and instruction and special education. It is expected that these students will have had a minimum of two years of experience in public schools of which one was classroom teaching. A knowledge of basic statistics is highly recommended for beginning graduate work and essential to professional literacy. Professional degree programs require 60 hours of graduate work beyond the baccalaureate degree.

Doctor of Philosophy. See general statement about the doctoral programs with the Ed.D. degree above. Divisional requirements for the Ph.D. degree are: 18 credits in research competency, including statistics and research design; 18 credits in a cognate area of which 9 should be taken outside of the College of Education; 30 credits in a major area of competency. The credits indicated in each area are minimums.

Doctor of Education. The Ed.D. and Ph.D. programs are designed for those persons who wish to continue in teaching or enter into supervisory and leadership positions in the public schools. The specialist degree is available in the Division of Teaching, Learning, and Leadership, with emphases in curriculum and instruction and special education. It is expected that these students will have had a minimum of two years of experience in public schools of which one was classroom teaching. A knowledge of basic statistics is highly recommended for beginning graduate work and essential to professional literacy. Professional degree programs require 60 hours of graduate work beyond the baccalaureate degree.

Education Specialist in Educational Leadership. This six-year program is designed to prepare students for administrative positions up to and including the superintendency. Candidates with master’s degrees in fields other than administration may acquire an education specialist degree while completing requirements for certification as a principal.

Doctor of Education. The Ed.D. and Ph.D. programs are designed for those persons who wish to continue in teaching or enter into supervisory and leadership positions in the public schools. The specialist degree is available in the Division of Teaching, Learning, and Leadership, with emphases in curriculum and instruction and special education. It is expected that these students will have had a minimum of two years of experience in public schools of which one was classroom teaching. A knowledge of basic statistics is highly recommended for beginning graduate work and essential to professional literacy. Professional degree programs require 60 hours of graduate work beyond the baccalaureate degree.

Doctor of Philosophy. See general statement about the doctoral programs with the Ed.D. degree above. Divisional requirements for the Ph.D. degree are: 18 credits in research competency, including statistics and research design; 18 credits in a cognate area of which 9 should be taken outside of the College of Education; 30 credits in a major area of competency. The credits indicated in each area are minimums.

Doctor of Education. The Ed.D. and Ph.D. programs are designed for those persons who wish to continue in teaching or enter into supervisory and leadership positions in the public schools. The specialist degree is available in the Division of Teaching, Learning, and Leadership, with emphases in curriculum and instruction and special education. It is expected that these students will have had a minimum of two years of experience in public schools of which one was classroom teaching. A knowledge of basic statistics is highly recommended for beginning graduate work and essential to professional literacy. Professional degree programs require 60 hours of graduate work beyond the baccalaureate degree.

Doctor of Philosophy. See general statement about the doctoral programs with the Ed.D. degree above. Divisional requirements for the Ph.D. degree are: 18 credits in research competency, including statistics and research design; 18 credits in a cognate area of which 9 should be taken outside of the College of Education; 30 credits in a major area of competency. The credits indicated in each area are minimums.

Doctor of Education. The Ed.D. and Ph.D. programs are designed for those persons who wish to continue in teaching or enter into supervisory and leadership positions in the public schools. The specialist degree is available in the Division of Teaching, Learning, and Leadership, with emphases in curriculum and instruction and special education. It is expected that these students will have had a minimum of two years of experience in public schools of which one was classroom teaching. A knowledge of basic statistics is highly recommended for beginning graduate work and essential to professional literacy. Professional degree programs require 60 hours of graduate work beyond the baccalaureate degree.

Doctor of Philosophy. See general statement about the doctoral programs with the Ed.D. degree above. Divisional requirements for the Ph.D. degree are: 18 credits in research competency, including statistics and research design; 18 credits in a cognate area of which 9 should be taken outside of the College of Education; 30 credits in a major area of competency. The credits indicated in each area are minimums.

Required course work for students pursuing the B.A. in theatre arts includes (1) the university requirements (see regulation J-3), (2) the general CLASS core requirements, and (3) the theatre arts core courses listed below.

Required course work for students pursuing the B.S. in theatre arts includes (1) the university requirements (see regulation J-3), (2) the general CLASS core requirements, and (3) the theatre arts core courses listed below.

Required course work for students pursuing the B.A. or B.S. in theatre arts includes (1) the university requirements (see regulation J-3), (2) the general CLASS core requirements, and (3) the theatre arts core courses listed below.
THEATRE ARTS (B.F.A.)
The Bachelor of Fine Arts degree is a rigorous training program for students wishing to pursue a career in the professional theatre. Admittance to the B.F.A. program in theatre requires an audition or portfolio review and faculty approval. B.F.A. candidates are closely monitored throughout enrollment utilizing performance jury and portfolio reviews each semester. Specific areas of study within the degree include (but are not limited to) acting, technical production, scenery, lighting, costume design. Individual courses are selected in consultation with an advisor, so the degree is tailored as closely as possible to a student’s specific needs and interests. Students are encouraged to seek out internships with professional theatre companies as part of their program of study.

To be eligible for admittance, continued candidacy, and graduation, the B.F.A. candidate in theatre arts must achieve a minimum grade of C in each theatre course required for the major. To participate in departmental productions, a student pursuing the B.F.A. must maintain a minimum 3.00 overall GPA each semester.

Required course work includes (1) the university requirements (see regulation J-3), (2) the departmental requirements for the B.S. or B.A., and (3) a 30-credit area of departmentally approved emphasis.

MUSICAL THEATRE (B.F.A.)
The Bachelor of Fine Arts degree in Musical Theatre is a rigorous training program for students wishing to pursue a career in musical theatre. Admittance to the B.F.A. program in musical theatre requires a voice audition, acting audition or portfolio review, and faculty approval. B.F.A. candidates are closely monitored throughout enrollment utilizing performance jury and portfolio reviews each semester. Students are encouraged to seek out internships with professional theatre companies as part of their program of study.

To be eligible for admittance, continued candidacy, and graduation, the B.F.A. candidate in musical theatre must achieve a minimum grade of C in each music and theatre course required for the major. To participate in departmental productions, a student pursuing the B.F.A. must maintain a minimum 3.00 overall GPA each semester.

Required course work includes the university requirements (see regulation J-3) and:

MusA 124 Individual Instruction (8 cr)
MusA 145 Piano Class (1 cr)
MusA 146 Piano Class (1 cr)
MusA 324 Individual Instruction (8 cr)
MusA 380 Opera Workshop (in six different semesters) (6 cr)
MusA 491 Recital (3 cr)
MusC 139 Aural Skills I (2 cr)
MusC 140 Aural Skills II (2 cr)
MusC 141 Theory of Music I (2 cr)
MusC 142 Theory of Music II (2 cr)
MusH 111 Introduction to Music Literature or MusH 101 Survey of Music (3 cr)
MusH 330 History of Music Theatre (3 cr)
MusX 283 Diction for Singers (1 cr)
TheF 103 Theatre Technology I (4 cr)
TheF 105 Basics of Performance (3 cr)
TheF 106 Basics of Performance (3 cr)
TheF 207 Theatrical Make-up (3 cr)
TheF 305 Intermediate Acting (3 cr)
TheF 396 Intermediate Acting (3 cr)
TheF 418 Voice for the Stage (1 cr)
TheF 425 BFA Acting Studio (12 cr)
TheF 444 The Business of Acting (2 cr)
TheF 468 Theatre History I (3 cr)
MusA 438 Dance Electives (in eight different semesters) (8 cr)

M.F.A. EXIT PROCEDURES (3 cr). Exit procedures vary with the area of specialization. In Virtual Technology and Design, the exit procedure revolves around a thesis project or exam completed sometime in the last two semesters of residence. Projects are designed in consultation with the candidate’s graduate committee. Candidates must enroll in TheF 596, M.F.A. Exit Project, during the semester the project is undertaken.

MusC 319 Modern Dance, 3rd semester
MusH 341 History of Film Theatre (3 cr)
MusH 342 History of the Stage (3 cr)
MusH 343 History and Literature of the Theatre (3 cr)
TheF 201 Scene Design I (3 cr)
TheF 202 Costume Design I (3 cr)
TheF 205 Lighting Design I (3 cr)
TheF 207 Theatrical Make-up (3 cr)

Upper-division technical theatre course work (3 cr)

TRENDING ISSUES (1-3 cr)

ACADEMIC MINOR REQUIREMENTS

FILM MINOR

TheF 220 History of World Cinema (3 cr)
TheF 288 Introduction to Film Studies (3 cr)

Additional credits chosen from the following list of courses, or approved electives (at least 6 credits must be at the upper division level):
TheF 201 Scene Design I (3 cr)
TheF 205 Lighting Design I (3 cr)
TheF 315 National Cinemas (s) (3 cr)
TheF 330 Literature and Film (s) (3 cr)
TheF 383 Film Genres (s) (3 cr)
TheF 386 Documentary Film (3 cr)
TheF 392 Contemporary European Fiction Film (3 cr)
TheF 415 Film Directors (s) (3 cr)
TheF 420 International Cinema and National Literatures (s) (3 cr)
TheF 430 Film Theory and Criticism (3 cr)
TheF 441 Foundations of Screenwriting (3 cr)
TheF 443 On-Camera Audition Techniques I (1-3 cr, Max 3)

TECHNICAL THEATRE MINOR

TheF 103, 104 Theatre Technology I, II (8 cr)
TheF 201 Scene Design I (3 cr)
TheF 202 Costume Design I (3 cr)
TheF 205 Lighting Design I (3 cr)
TheF 207 Theatrical Make-up (3 cr)

Upper-division technical theatre course work (3 cr)

Graduate Degree Program

The Master of Fine Arts degree at the University of Idaho is a rigorous three-year, 60-72 hour degree designed for talented students wishing to prepare themselves for a career in the professional theatre. Degree tracks in areas of design, directing, performance and technical production are built around specific curriculum categories and individual courses are selected by the candidate in consultation with his or her major professor. Student progress is monitored by portfolio review or performance jury each semester. Exit procedures from the program include a creative project and comprehensive exam.

Candidates must fulfill the general requirements of the Graduate College and a minimum of 60 credits from the course groupings listed below:

STUDIO AREA (12-16 cr). A minimum of 12 credits are taken in course work directly related to an area of specialization. The studio area of study is individualized to the candidate’s specific needs and areas of weakness. Candidates will enroll in M.F.A. Studio each semester of residence excluding summers.

RELATED STUDIO AREA (9-12 cr). A minimum of 9 credits are taken in a related studio area which generally pertains directly to the candidate’s area of specialization.

CRRAFT AREA (8-12 cr). A minimum of 8 credits are taken in courses to develop specific skills associated with the studio area.

HISTORY/LITERATURE/CRITICISM (9-12 cr). A minimum of 9 credits are taken in history or literature courses which relate directly to the studio area. Courses taken to fulfill this requirement might include dramatic literature, social history, art history, architectural history, and theatre history.

INTERNSHIP (12 cr). A maximum of 12 credits of TheF 598, Internship, are taken to augment course work with professional experiences with professional regional theatres in the area.

M.F.A. EXIT PORTFOLIO REVIEW (6 cr). A minimum of 6 credits of TheF 515, M.F.A. Jurid/Portfolio Review, must be completed with a grade of B or better before the awarding of the degree. A maximum of 1 credit of TheF 515 may be taken each semester.

The Virtual Technology and Design (VTD) program offers a B.S. degree, which emphasizes an interdisciplinary education, through a curriculum that integrates computer technology with the art and science of design.

The program recognizes the demand for design professionals who have the knowledge and skills necessary to conceive and construct electronically mediated solutions for an array of issues that give form and substance to our daily activities. As electronic media increasingly intersects with human interaction, the quality of access to information, services and the opportunity to participate fully in our communities of tomorrow hinge in part on the kinds of solutions imagined and environments planned by these “virtual” architects. The virtual designer serves both defined and yet to be defined industries. They bring a unique combination of visual, spatial and technical skills to problems that range from the need to interactively visualize complex information systems to the multi-dimensional modeling requirements of virtual environments for entertainment, educational or commercial applications.

The VTD student is a person excited by the possibilities of combining design with technology. Like other design students, inquiry, discovery and building creative solutions that responds to human needs intrigues them. However, they are more intrigued by the possibility of designing in a digital realm rather than with bricks and mortar or more traditional media. They want to build, but build and use virtually.

Graduates of the program will be prepared with the intellectual and management tools, as well as the technical and design skills, required of professionals who wish to contribute as leaders in the electronic media and design communities. Their understanding of the implications of electronically mediated information, communication and virtual environments on human activities will enable them to significantly influence the quality of every day life.

COMPUTER TECHNOLOGY

All Virtual Technology and Design majors are required to have their own laptop computer and appropriate software available for use in all VTD classes. Specific technology requirements as well as guidelines and recommendations are posted on the VTD web site at www.class.uidaho.edu/vtd.
Undergraduate Curricular Requirements
VIRTUAL TECHNOLOGY AND DESIGN (B.S.)

This is a four-year curriculum leading to a B.S. in Virtual Technology and Design. The third year design studio capacity is 20 students. After the second year of study, academic achievement is reviewed to determine eligibility for continued study in the VTD program and permission to enroll in the third year studio sequence. Applicants to the third year are required to submit an electronic media based portfolio containing examples of their art and design work. Applicants should contact the program coordinator regarding acceptable media formats. The submission should also contain a transcript of any college work outside the UI. The deadline for third year applications is the close of the spring semester. Results of the evaluation will be made known to applicants by the end of June.

Note: Students who have not been accepted into the third year of the curriculum may not enroll in the VTD design courses. Students who have left the program may only re-enter the curriculum by application to the program admissions committee.

Required course work includes the university requirements (see regulation J-3), the general CLASS requirements for the B.S. degree, and:

Art 110 Visual Communication (2 cr)
Art 121-122 Design Process i-ii (5 cr)
Art 111 Drawing I (2 cr)
CS 112 Introduction to Problem Solving and Programming (3 cr)
Math 143 Pre-calculus Algebra and Analytic Geometry (3 cr)
Phys 111 General Physics (4 cr)
Psyc 101 Introduction to Psychology (3 cr)
Vtd 244 Introduction to 3D Modeling (3 cr)
Vtd 255 Virtual Design Studio I (4 cr)
Vtd 256 Virtual Design Studio II (4 cr)
Vtd 344 Computer-Aided Design (2 cr)
Vtd 345 Advanced Modeling (3 cr)
Vtd 346 Animation (3 cr)
Vtd 355 Virtual Design Studio I (4 cr)
Vtd 356 Virtual Design Studio II (4 cr)
Vtd 400 Seminar (2 cr)
Vtd 457 Capstone Design Studio I (9 cr)
Vtd 458 Capstone Design Studio II (9 cr)
Vtd 459 Capstone Design Studio III (9 cr)
Vtd 459 Capstone Design Studio IV (9 cr)
Vtd 471 Interactive Technologies (3 cr)
Vtd 472 Virtual Reality (3 cr)
Vtd 473 Creative Computing (3 cr)
Vtd 475 Multimedia Production (3 cr)
Vtd 476 Multimedia Design (3 cr)
Vtd 477 Human-Computer Interaction (3 cr)
Vtd 478 Game Design (3 cr)
Vtd 479 Interactive Techniques (3 cr)
Vtd 480 Advanced Animation (3 cr)
Vtd 481 Women’s Literature (3 cr—may be retaken once to total 6 credits)
Vtd 482 Political Economy and Society (3 cr)
Phl 426 Medical Ethics (3 cr)
Vtd 444 Game Design (3 cr)
Vtd 445 Human-Computer Interaction (3 cr)
Vtd 446 Digital Audio Production (3 cr)
Vtd 447 Digital Imaging (3 cr)
Vtd 448 Digital Video Production (3 cr)
Vtd 449 Interactive Technologies (3 cr)

Directed electives that allow a student to develop an emphasis area or breadth in a supporting discipline, with approval of Vtd program. (14-15cr)

Electives to total 128 cr for the degree.

Program in Women’s Studies

Women’s Studies connects different kinds of knowledge and insights across many subjects. The minor offers an interdisciplinary program that uses gender to examine such cultural variables as class, ethnicity, nationality, sexual identity, and age. The courses encourage students to develop critical thinking skills that will empower them as active learners and that will lead them to a better understanding of differences in the society that surrounds them. Fields such as gerontology, mass communication, recreation, criminology, economics, health services, social work, law, psychology, and education are increasingly offering special career opportunities to students with a background in Women’s Studies.

Courses
See Part 6 for courses in Women’s Studies (WmSt).

Academic Minor Requirements

WOMEN’S STUDIES MINOR

WmSt 201 Women, Culture, and Society: Intro to Women’s Studies (3 cr)

Courses chosen from the following (12 cr)
Eng/FLEN 481 Women’s Literature (3 cr—may be retaken once to total 6 credits)
FCS 445 Issues in Work and Family Life (3 cr)
Hist 357 Women in Pre-Modern European History (3 cr)
Hist 420 History of Women in American Society (3 cr)
Phil 425 Philosophy and Feminism (3 cr)
Psyc 330 Human Sexuality (3 cr)
Soc/Anth 427 Racial and Ethnic Relations (3 cr)
Soc 424 Soc of Gender (3 cr)

Courses in two different disciplines from the list above or the following (6 cr)
Comm 432 Gender and Communication (3 cr)
FCS 240 Intimate Relationships (3 cr)
FCS 346 Personal and Family Finance and Management (4 cr)
FCS 462 Eating Disorders (2 cr)
FCS 419 Dress and Culture (3 cr)
FCS 440 Contemporary Family Relationships (3 cr)
H&S 311 Acquaintance Rape (3 cr)
Phil 365 Biomedical Ethics (3 cr)
Psyc 320 Introduction to Social Psychology (3 cr)
Soc 325 Sociology of the Family (3 cr)
WmSt 499 (a synthetic paper) (1 cr)

With prior approval of the Women’s Studies committee, a student may also include credit from survey courses, special topics courses, or seminars meeting the guidelines for inclusion of courses in a Women’s Studies minor. No more than 3 credits may count toward both the student’s major and minor.
Course Numbering System & Key to Abbreviations and Symbols

Numbering System
Courses numbered 001 are continuing education unit (CEU) courses; those numbered 010-099 are remedial-level courses carrying no credit; those numbered 100-299 are lower-division courses primarily for undergraduates; 300-499 are upper-division courses primarily for advanced undergraduates, fifth-year students, and graduates; courses numbered 500-599 are intended for and are restricted to students enrolled in the College of Graduate Studies (see regulation B-8 in part 3 for the exception to this rule); courses numbered 600-699 are intended for and are restricted to students enrolled in a doctoral program; courses numbered 800-999 are intended for and are restricted to students enrolled in the College of Law.

Letter Designations with Numbers
Certain course numbers also include letters preceding the number (i.e. R101, C100):
- C - offered by correspondence study only.
- H - offered only in University Honors Program.
- LC - cooperative course with Lewis-Clark State College offered at the LCSC and available to University of Idaho students. For complete description, consult the WSU catalog.
- ID - cooperative course with Washington State University or Lewis-Clark State College offered at the University of Idaho and available to WSU or LCSC students.
- J - courses conducted jointly, e.g., MusA J365/J565 (Chamber Ensemble), in which students’ assignments and expected levels of performance reflect the levels for which they are enrolled.
- R - offered only at the University of Idaho at Idaho Falls.
- WS - cooperative course with Washington State University offered at WSU and available to University of Idaho students. For complete description, consult the WSU catalog.

Subtitled Courses
An "s" in parentheses between the number and title of a course indicates that the course may be offered under the main title and/or with an appended subtitle, e.g., “Seminar” and/or "Seminar in the History of the Pacific Northwest." The specific area normally will be listed in the Class Schedule as a separate section of the main course.

Standard Course Numbers
University-wide numbers have been established for certain categories of courses. These courses need not be listed in a subject-field section in the catalog unless they are to be offered regularly; they may be offered and listed in the Class Schedule whenever they are needed. The following course numbers and titles are authorized: 200, 400, 501, 601 Seminar; 203, 403, 503, 603 Workshop; 204, 404, 504, 604 Special Topics; 405, 505, 605 Professional Development; 298, 398, 498, 598, 698 Internship; 299, 499, 502, 602 Directed Study; 500 Master’s Research and Thesis; 597 Graduate Practicum; 599 Non-thesis Master’s Research; 600 Doctoral Research and Dissertation.

Credit Designations
Immediately following each course title, the number of credits authorized is shown in parentheses. Typical designations are:
(3 cr) - three semester credits (for courses with more than one year, e.g., 101-102-103, the three credits apply to each year).
(1-3 cr) - one to three semester credits.
(3 cr; 2 cr) - three credits fall semester; two credits spring semester.
(1-3 cr, max 3) - one to three credits during any academic session and the course may be repeated until the maximum of three credits has been earned.
(3 cr, max 12) - three credits during any academic session and the course may be repeated until the maximum of twelve credits has been earned (for a course with more than one year, e.g., 301-302, the maximum is overall and applies to the combined numbers).
(cr arr) - credits to be arranged (may be repeated for credit without restriction as to maximum).
(1-3 cr, max arr) - one to three credits during any academic session, and the course may be repeated.

Parenthetical Course Numbers
Course numbers that appear in parentheses after the course credits are former numbers that appear for one edition only.

Other Abbreviations
primarily - offered in graduate study
altlyrs - offered in alternate years
altsem - offered in alternate semesters
coreq - corequisite
cr - credit
dem - demonstration
dep - department
disc - discussion
div - division
exam - examination

Accounting

Marcia S. Niles, Chair, Dept. of Accounting (125A J. A. Albertson Bldg. 83844-3161; phone 208/885-6453).

Note: No course (CBE or outside the college) that is required in a CBE student’s curriculum may be taken by CBE undergraduates on a P/F basis, with the exception of courses that are taught only on a P/F basis. Only upper-division CBE courses used as free electives may be taken by CBE undergraduates on a P/F basis. Only 2.35 GPA in the CBE predicator courses. Students who have not completed the prerequisite to a course for which they are otherwise eligible may register for the course with the instructor’s approval.

Act 200 (s) Seminar (cr arr). Prereq: perm.

Act 201 Introduction to Financial Accounting (3 cr) Overview of the nature and purpose of general purpose financial statements provided to external decision makers; emphasis on use of financial statement information. May involve evening exams. Carries only 1 credit after Act 205.

Act 202 Introduction to Managerial Accounting (3 cr) Intro to cost behavior and managerial use of accounting information for planning, control, and performance evaluation. May involve evening exams. Carries only 1 credit after Act 205.

Act 204 (s) Special Topics (cr arr). Prereq: perm.

Act 205 Fundamentals of Accounting (4 cr) Principles of financial and managerial accounting with emphasis on the role of accounting information in decision making by managers and external users. Projects and assignments are done using spreadsheet software. Three lectures and one hour of lab a week. May include evening exams. Carries no credit after Act 201 and 202; carries 3 credits after either Act 201 or 202.

Act 275 Accounting Information Systems (3 cr) Role of accounting information systems in effective control of organizations; coverage of internal controls, flowcharting, systems analysis and design, implementation and evaluation as they relate to the major systems cycles; revenue, purchases, production, payroll, cash receipts and disbursements. May include evening exams. Prereq: Act 201 and 202, or Act 205.

Act 299 (s) Directed Study (cr arr). Individual sections may be graded P/F. Prereq: perm.

Act 310 Accounting for Business Decisions I (2 cr) Accounting concepts and theories with emphasis on the role of accounting information in decision making within and about business; effect of accounting information on behavior; recognition and valuation issues and analysis of financial statements; and use of cost management accounting systems to support product and process planning. May include evening exams. Coreq: Bus 340.

Act 311 Accounting for Business Decisions II (2 cr) Use of accounting systems to support planning and decision-making in organizations; managing the firm’s financial, human, and information resources; and business operating decisions. May include evening exams. Prereq: Act 310. Coreq: Bus 343.

Act 315 Corporate Accounting and Reporting I (3 cr) Preparation of general purpose financial statements for external use in U.S. generally accepted accounting principles. Emphasis on transactions relating to financing and investing activities. Conceptual framework based instruction includes comparison with alternative treatments used in other countries and under U.S. tax code. May include evening exams. Prereq: Act 310.

Act 381 Accounting for Managers and Investors (3 cr) Not open for cr to College of Business & Economics majors. Development of knowledge and skills relating to the use of accounting information to enhance decision making. May involve some evening exams. Carries no credit after Act 311. Prereq: Act 201 and 202, or Act 205.

Act 400 (s) Seminar (cr arr). Prereq: perm.

Act 403 (s) Workshop (cr arr). Prereq: perm.

Act 404 (s) Special Topics (cr arr). Prereq: perm.

Act 405JS05 (s) Professional Development (cr arr). Credit earned in these courses will not be accepted toward graduate degree programs. Prereq: perm.

Act 414 Corporate Accounting and Reporting II (3 cr). Continuation of Act 315. Covers more advanced topics in the preparation of general purpose financial statements for external users according to US GAAP. Includes accounting database research. May include evening exams. Prereq: Act 315.
Acct J415/J515 Advanced Financial Accounting & Reporting (3 cr). In-depth coverage of selected concepts in financial accounting designed to introduce students to applied research in the technical literature and enhance students' ability to interpret and apply accounting standards promulgated by official standard setting entities. May include evening exams. Additional class meetings, projects, and/or assignments required for graduate credit. Prereq: Acct 315.

Acct J430/J530 Accounting for Public Sector Entities (3 cr). Conceptual and procedural issues involving accounting, reporting, and auditing public sector organizations; topics include state and local governmental accounting principles, GASB/FASB jurisdiction over not-for-profit organizations, federal financial and performance auditing standards, and relevant current issues. Additional class meetings, projects, and/or assignments required for graduate credit. May include evening exams. Prereq: Acct 201 and 202, or Acct 205.

Acct 483 Federal and State Taxes I (3 cr). Income determination, deductions, accounting methodology, sales of property, deference of tax, taxation of the individual, tax research, with primary emphasis on tax planning; the case method is used. May include evening exams. Prereq: Acct 201 and 202, or Acct 205.

Acct J484/J584 Federal and State Taxes II (3 cr). Taxation of corporations and partnerships with emphasis on tax planning, tax research; the case method is used. Additional class meetings, projects, and/or assignments required for graduate credit. May include evening exams. Prereq: Acct 483.

Acct 485/J585 Estate Planning (3 cr). Gift and estate tax consequences on property transfer during life and at death, tax research, and estate planning and personal financial planning. Additional class meetings, projects, and/or assignments required for grad cr. May include evening exams. Recommended Preparation: Acct 484/J584. Prereq: Acct 483. (Spring only)

Acct 486/J586 Accounting for Management Decision Making and Control (3 cr). Synthesize and apply accounting skills and knowledge through study of current managerial accounting topics beyond those offered in Acct 310 - Acct 311. Additional class meetings, projects, and/or assignments required for graduate credit. May include evening exams. Prereq: Acct 311. (Spring only).

Acct 492 Auditing and Controls (3 cr). Value of the audit, concepts of attestation and relevant reporting, theories of evidential development of risk analysis approaches to auditing, with emphasis on internal and performance auditing; documentation and understanding of internal control structure, environment, system design, procedures and testing. May include evening exams. Prereq: Acct 275 and 315.

Acct 497 (s) Practicum in Tutoring (1 cr. max 2). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm.

Acct 498 Accounting Internship Program (1-3 cr, max 3). Formalized learning experience in an actual work setting. Students work within an accounting related field (accounting, auditing, and taxation) and commit to a minimum of 50 hours of direct supervised work for each semester credit. May include evening exams. Prereq: Acct 275. Prereq: Sr status.

Acct 499 (s) Directed Study (cr arr). Individual sections may be graded P/F. Prereq: perm.

Acct 500 Master's Research and Thesis (1-6 cr, max 6). Prereq: perm.

Acct 501 (s) Seminar (cr arr). Prereq: perm.

Acct 502 (s) Directed Study (cr arr). Individual sections may be graded P/F. Prereq: perm.

Acct 504 (s) Special Topics (cr arr). Prereq: perm.

Acct 505 (s) Professional Development (cr arr). See Acct J405/J505.

Acct 530 Accounting for Public Sector Entities (3 cr). See Acct J430/J530.

Acct 561 Comparative Accounting Theory (3 cr). Seminar on comparative accounting theory and practice including the role of accounting information in financial markets and the impact of those markets on accounting disclosures; introduction to empirical accounting research, the role of standard setting entities, international harmonization of accounting and auditing standards, globalization of business operations, and fluctuations in currency exchange rates. Prereq: Acct 315. (Fall only).

Acct 570 Advanced Accounting Systems Analysis and Controls (3 cr). Emphasis on the role of computer and information technology in the development, analysis, and operation of accounting information systems; includes advanced coverage of accounting transaction cycles, accounting systems planning and analysis, accounting system design, accounting systems implementation and operation, and the accounting system internal control structure. May include evening exams. Prereq: Acct 315. Coreq: Acct 492. (Fall only).

Acct 582 Cost Management Systems (3 cr). Not for accounting majors. Carries no credit toward master's degree in accounting. Design and use of cost management systems to support decision making and influence behavior; includes the economics of costs to processes, products, and customers; activity-based cost management; cost estimation; performance measurement; capital budgeting; and project budget statements. May involve evening exams. Prereq: Acct 202 or 205, and Engr 360 or Bus 301.

Acct 584 Federal and State Taxes II (3 cr). See Acct J484/J584.

Acct 590 Advanced Auditing Seminar (3 cr). Independent auditor's role, legal responsibilities, and code of conduct; concepts, standards, and methods in audit judgment formulation; includes statistical and other sampling methods and EDP auditing techniques. Prereq: Acct 492 and 570. (Spring only)

Acct 592 Financial Accounting and Reporting Seminar (3 cr). Accounting for complex modern business transactions including consolidations, partnerships, and financial instruments; students are expected to conduct research in the professional literature and document their findings and conclusions in cases where there may be no authoritative guidance; cases are considered from the perspective of the reporting entity, its auditors, the users of the financial statements and other stakeholders. Prereq: Acct 515 and 561. (Spring only).

Acct 598 (s) Internship (1-3 cr, max 3). Career relevant learning experience in actual work setting with professional-level responsibilities. Students work within an accounting related field (accounting, auditing, and taxation) and commit to a minimum of 50 hours of direct supervised work for each semester credit. A paper documenting relevance of work experience and a presentation to undergraduate accounting students may be required.

Acct 599 (s) Non-thesis Master's Research (1-6 cr, max 6). May count only 3 cr toward degree. Students work with individual professor to design a research study, collect and analyze data, and prepare written report. Prereq: at least one course in research methodology and perm.

Adult and Organizational Learning

James A. Gregson, Director, Div. of Adult, Counselor, and Technology Education (210 Educ, Bldg. 38344-3083; phone 208/885-2768), Martha C. Yopp, Coordinator of Adult and Organizational Learning (UI Boise Center, 800 Park Blvd., Suite 200, Boise, ID 83712; phone 208/364-9016).

AuOL 500 Master's Research and Thesis (cr arr) Prereq: perm.

AuOL 502 (s) Directed Study (cr arr) Prereq: perm.

AuOL 503 (s) Workshop (cr arr) Graded P/F. Prereq: perm.

AuOL 504 (s) Special Topics (cr arr) Prereq: perm.

AuOL 505 (s) Professional Development (cr arr) Professional development and enrichment of certificated school personnel. Credit earned will not be accepted toward grad degree program, but may be used in a fifth-year program. Additional projects/assignments reqd for grad cr.

AuOL 526 Instructional Design and Curriculum (3 cr) An in-depth examination and implementation of instructional design systems and curriculum development as a systematic method of designing, carrying out, and evaluating the total process of teaching and learning; based on research in human learning and communication, employing a combination of human and non-human resources to bring about effective instruction. Focused on corporate training as related to HRD in Adult Ed.

AuOL 543 Administration and Supervision of Learning Programs (3 cr) Same as PTTE 543. Advanced study of the administrative and supervision responsibilities needed for learning enterprises and systems; personnel management and accountability in human resource development.

AuOL 560 Integrated Life Planning (3 cr) Builds upon the foundation of personality psychology, genetic research, and modern neuroscience in understanding the complex process of career decision-making.

AuOL 573 Foundations of Adult Education (3 cr) Philosophical, economic, sociological, and psychological bases of adult education; roles, limitations, and coordination of adult education, domestic and international programs--public and private sector.

AuOL 574 Characteristics of the Adult Learner (3 cr) Psychological, social, and physiological characteristics of adult learners; relationships to family, friends, and fellow citizens.

AuOL 575 Strategies for Teaching Adults (3 cr) Design and application of teaching strategies for learning domains and learning styles appropriate for adult learners.

AuOL 576 Communication Skills for Adults in a Diverse World (3 cr) Development of communication skills for use with culturally diverse adults; verbal and nonverbal techniques for improving communication skills.

AuOL 577 Organization Development (3 cr) Planned change strategies for human resources in organizations; motivation, training/re-training, assessing, and crafting the corporate culture through educational efforts; assessing the knowledge skill gaps in the human resources.

AuOL 581 Theory, Practices, and Challenges of Leadership (3 cr) Analysis and study of leadership of the human resource in organizations; theories, styles, and methods of effective leadership developed from past leaders blended with current models of leadership.

AuOL 583 Organizational Leadership (3 cr). Development of an understanding of groups, group behavior, development and socialization of groups, and nature of power, conflict, and leadership in groups; intended for adults who spend time with other adults in groups, committees, teams, or other relationship configurations; emphasis on leadership aspects of group behavior and participation.
Agricultural Economics

PART SIX

Courses

Agricultural Economics

Larry W. Van Tassell, Head, Dept. of Agricultural Economics and Rural Sociology (39A Iddings Wing, Ag. Sc. Bldg. 83844-2334; phone 208/885-6264; larryv@uidaho.edu)

AgEc 101 The Business of Agriculture (3 cr). May be used as core credit in J-3-d. Applications of economic and business principles to the agriculture industry; factors affecting production and marketing of agricultural products.

AgEc 201 Principles of Agricultural Economics (1 cr). Review, discussion and application of basic economic, agribusiness, and natural resource principle as applied to the agricultural economics profession. Students will have an opportunity to attend the American Agricultural Economics Association annual meetings and test their knowledge of these principles with students from other universities. Prereq: AgEc 101. (Spring Only)

AgEc IDAW278 Farm and Agribusiness Management (4 cr). WSU Ag Ec 340. AgEc WS278 available only to students at off-campus locations. Decision making and profit maximization using economic models, economic bases, records, analysis, enterprise analysis, and criticism of alternative marketing strategies. Recommended Preparation: Econ 202.

AgEc 289 Agricultural Markets and Prices (3 cr). Economics of agricultural markets and pricing institutions; analysis of supply, demand, elasticity, futures markets; institutional arrangements in food marketing. Recommended Preparation: Econ 202.

AgEc 301 Agricultural Economics (3 cr). Microeconomic principles applied to agricultural production and the management of agribusiness firms with an introduction to spreadsheet based statistical, mathematical and optimization techniques for analyzing and solving real world management problems. Prereq: Econ 202, Math 143, and Stat 251. (Fall Only)

AgEc 302 Agricultural Economics II (3 cr) Microeconomic principles applied to agricultural markets and consumer demand, with an introduction to spreadsheet based statistical and forecasting tools for analyzing associated real world pricing and consumer demand concerns facing managers of agribusiness firms. Recommended Preparation: Econ 202, Math 143, and Stat 251. (Spring Only)

AgEc 330 Agricultural Cooperatives (1 cr) Introduction to the historical basis for the formation and existence of agricultural cooperatives, the principles and policies under which they operate, and an examination of the current environment facing agricultural cooperatives. Prereq: Jr standing. (Spring Only)

AgEc 335 Conflict Management (1 cr) Collaborative processes and facilitation techniques designed to bring community and natural resource decision makers together for focused problem solving. Five week course. Three hours of lab per week. (Spring Only)

AgEc 356 Agricultural and Rural Policy (3 cr). May be used as core credit in J-3-d. Goals, methods, results of economic programs and policies in agriculture, including role of government. Recommended Preparation: Econ 202.

AgEc ID361 Farm and Natural Resource Appraisal (3 cr). Same as For 361. WSU Ag Econ 361. Methods; factors affecting the value of land and related resources; valuations for loans, sale, assessment, condemnation, and other purposes; procedures used by governmental and commercial agencies. One 1-day field trip. Recommended Preparation: AgEc 278 or Econ 202.

AgEc 370 Natural Resource Management (2 cr). Course available only to students at off-campus locations. Efficiency, equity, resource conservation, and environmental preservation as management goals; principles of resource valuation; single-use and multiple-use management; property rights, externalities, and related policy issues; methods for cost-benefit, trade-off, and economic and environmental impact analysis; current resource conflict issues. Prereq: Econ 201 and Math 143.

AgEc 371 Public Law and Policy Analysis (3 cr). Course available only to students at off-campus locations. Policies guiding the homesteading and economic development of western states; laws and policies guiding the regulation and use of water grazing, timber, and mineral resources. The significance of the Prior Appropriations Doctrine behind its fundamental role in western law and policy is emphasized. Recommended Preparation: Econ 202 or equivalent.

AgEc 383 Economics for Natural Resource Managers (3 cr). See For 383.

AgEc 389 (s) Internship (1-6 cr, max. 6). Graded F/P. Prereq: perm of dept.

AgEc 404 (s) Special Topics (cr arr). Prereq: perm.

AgEc IDJ409/J509 Mathematical Economics (3 cr). WSU AGEC 408. Same as Econ J406/J506. Economic models, application of matrix algebra and calculus to economics, comparative statics, optimization models, and mathematical programming. Primarily designed for graduate students; undergraduate students intending to pursue graduate studies or inclined to develop greater quantitative rigor may enroll with permission of the instructor and advisor. Prereq: Math 170 or equiv, Econ 351-352 or equiv, or perm.

Aerospace Studies

Douglas Salmon, Head, UI Shoup Hall 83844-2005, phone 208/885-6129; or Washington State University Kruegel Hall, phone 509/335-5598; http://www.wsu.edu/AdOL (UI AdOL)

Aero 103 Leadership Laboratory I (2 cr, max. 4). Introduces students to leadership principles, military experience, and management practice; 2 hours of laboratory and 2 hours of required physical training. Coreq: Aero 101 or 102.

Aero 201-202 Evolution of U.S. Air Force and Space Power (1 cr). Survey course that presents and overview of the history of the Air Force and key airpower concepts, development of the U.S. Air Force and its guiding principles, the employment of airpower from the advent of manned flight through the post-World War II period to current air and space operations and continued application of communication skills. Weekly lab of applied leadership exercises is required for cadets.

Aero 205 Leadership Laboratory II (2 cr, max. 4). Introduces students to leadership principles, military experience, and management practice; 2 hours of laboratory and 2 hours of required physical training. Coreq: Aero 201 or 202.

Aero 281 Four-Week Field Training Course (2 cr). Intensive study of military education, experience in leadership, and management at an active Air Force installation. Prereq: Aero 101-102, 201-202, and perm of dept (by interview).

Aero 292 Six-Week Field Training Course (6 cr). Applicants must apply by the December deadline before attending field training. Intensive study of academic core course work and military education at an active Air Force installation. Prereq: Jr standing and perm of dept (by interview).

Aero 299 (s) Directed Study (cr arr). Prereq: perm of dept.

Aero 311-312 Air Force Leadership and Management (3 cr). Leadership and quality management fundamentals, professional knowledge, leadership ethics, and communicative skills required of an Air Force officer; case studies are used to examine Air Force leadership and management situations as a means of demonstrating and exercising practical application of the concepts being studied; a weekly lab provides advanced leadership experience in officer-type activities, giving students the opportunity to apply leadership and management principles of this course. Coreq: Aero 311 or 312.

Aero ID391 Private Pilot Ground School (2 cr). WSU Aero 391. All aspects of preparation for the FAA Private Pilot Written Test. Register through the Enrichment Program. Additional fees are required (s). Prereq: perm.

Aero ID392 Instrument Pilot Ground School (2 cr). WSU Aero 392. All ground-based aspects of instrument flying to prepare students to take the FAA Instrument Pilot Written Test. Register through the Enrichment Program. Additional fees will be required. Must have a FAA Private Pilot license to obtain credit for this course.
AgEc 410 Experiencing the Idaho Public Policy Making Process (1 cr) Assessment of policy topics currently facing the agricultural industry. Students will travel to Boise while the legislature is in session to become familiar with the policy making process and to discuss current policy issues with industry and legislative officials. Three, three hour evening classes. Prereq: AgEc 350 or perm. (Spring Only)

AgEc 411 The World of International Agribusiness (1 cr) Draws on the experience and wisdom of practitioners of international businesses engaged in various fields of agriculture. Examination of current trade practices and issues. Prereq: Jr standing. (Fall only)

AgEc 413 Management of Human Resources in Agribusiness Firms (1 cr) Processes involved in the management of the human resources of organizations and the study of the personal attributes and behaviors associated with successful managers. Five week course. Three hours of lec per week. Prereq: Jr standing. (Fall Only)

AgEc 414 Financial Analysis of Agricultural Firms (1 cr) Applying cost analysis and financial statement analysis to the management of an agricultural business. Examination of cost and financial based income statement for tax and management decisions. Five week course. Three hours of lec per week. Prereq: AgEc 278 or perm. (Fall Only)

AgEc 415 Entrepreneurial Skills in Agribusiness Management (1 cr) An examination of fundamental entrepreneurial responsibilities of managers in agricultural and natural resource based firms. Identification and development of business goals, tactical and strategic plans, environmental assessment, and decision-making. Five week course. Three hours of lec per week. Prereq: AgEc 278 or perm. (Fall Only)

AgEc 416 Agricultural and Natural Resource Project Evaluation (1 cr) Application of benefit-cost analysis to natural resource and agricultural investments. The ability to use spreadsheets is essential for students enrolling. Five week course. Three hours of lec per week. Prereq: Math 143 and AgEc 278. (Spring Only)

AgEc 417 Risk Management in Agriculture (1 cr) Identification of risks facing agricultural based firms. Assessment of risk management tools and strategies (e.g. agriculture insurance programs and enterprise diversification) as applied to decision making. Five week course. Three hours of lec per week. Recommended Preparation: AgEc 278, AgEc 301 or AgEc 302. (Spring Only)

AgEc WS430 Financing Agribusiness Firms (3 cr) Wsu Ag Ec 430.

AgEc WS435 Natural Resource Law (3 cr) Wsu Ag Ec 435. Analysis of federal and state courts resolution of real-world conflicts in land and water use.

AgEc 447 Economics of Developing Countries (3 cr) See Econ 447.

AgEc 451 Land and Natural Resource Economics (3 cr) Agricultural, forest, and mineral land use and classification; factors affecting land use; ownership, tenure, taxation, values, credit, and governmental policies. Prereq: AgEc 301 or Econ 352 or perm.

AgEc 471 Agricultural and Food Policy Issues (3 cr) Course available only to students at off-campus locations. Principles of agriculture and food policy formulation; agricultural adjustment processes; agricultural price and income policies in relation to land use, water, and rural development policies; interrelationships among U.S. and foreign agriculture and trade policies. Prereq: Econ 201.

AgEc 477 Law, Ethics, and the Environment (3 cr) May be used as core credit in J-3-d. Examines the laws and related ethical questions pertaining to agricultural and natural resource issues. Recommended Preparation: Blaw 265. Prereq: Jr standing.

AgEc 478 Advanced Agribusiness Management (3 cr) May be used as core credit in J-3-d. The capstone class for Agribusiness and Agricultural Economic students. Economics and agricultural business theory is put into practice through decision cases and agribusiness simulations. Team building, written, and oral presentation skills are stressed. Recommended Preparation: AgEc 301, AgEc 302, acct 201, acct 202. Prereq: Jr standing or perm. (Spring Only)

AgEc 481 Agricultural Markets in a Global Economy (3 cr) May be used as core credit in J-3-d. Analysis of agricultural market competition and performance in a global economy; economics of global food and commodity markets and trade; economic principles applied to interaction of economic events in the world food economy. Prereq: AgEc 301 or Econ 352 or perm.

AgEc 489 Understanding and Using Futures and Options Markets (2 cr) How futures and options markets work, types of futures and options markets, a practical understanding of their role as investment and risk management tools, and individual student management of a simulated futures and options trading account. Recommended Preparation: Math 143 or higher, and Econ 202 or 272.

AgEc 499 (s) Directed Study (cr arr). Prereq: perm.

AgEc 500 Master's Research and Thesis (cr arr). Prereq: perm.

AgEc 502 (s) Directed Study (cr arr). Prereq: perm.

AgEc 504 (s) Special Topics (cr arr). Prereq: perm.

AgEc 507 Research Design in Agricultural Economics (1 cr) Theoretical background of the scientific method applied to social science research; organization, procedures, reporting, and evaluation of research. Students will present their research proposals and be introduced to faculty research projects. Prereq: grad standing and perm.

AgEc 509 Mathematical Economics (3 cr) See AgEc J409/J509.

AgEc IDWS510 Advanced Microeconomics (3 cr) See Econ 510.

AgEc 524 International Agricultural Trade and Policy (3 cr) Basic international trade theories, agricultural trade models; impacts of domestic trade policies on agricultural markets; regional and global trade liberalization; macroeconomic issues impacting trade. Prereq: Econ 446, AgEc 481 or perm.

AgEc 525 Econometrics (3 cr) Same as Econ and Stat 525. Theory and practice of multiple regression methods; applications to the study of economic and other phenomena; use of computer regression programs. Prereq: 3 cr in statistics.

AgEc 528 Advanced Production Economics and Operations Research (3 cr) Theory and application of production economics; production functions, technological change, operations research, linear programming. Prereq: Stat 251, and Econ 352 or AgEc 301 and AgEc 302.

AgEc 551 Natural Resource and Environmental Economics (3 cr) Allocation of natural resources over time and among uses; environmental policy; welfare economics; project evaluation and benefit cost analysis; valuation of exmaraket goods. Prereq: Econ 352 or perm.

AgEc 599 (s) Non-thesis Master's Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

Agricultural Education

Lou E. Riesenb, Head, Dept. of Agricultural and Extension Education (Agricultural and Extension Education Bldg., 1134 West 6th St #344-2640, phone 208/885-6358, lriesenb@uidaho.edu).

AgEd 180 Introduction to Agricultural Education (1 cr) Overview of purposes and career opportunities in agricultural education; role of secondary agriculture instructor in secondary school systems. (Fall only)

AgEd 181 Introduction to Extension Education (1 cr) Overview of purpose and career opportunities available in extension education profession; role of cooperative extension faculty; basic principles and practices of Cooperative Extension System including related legislation. (Fall only)

AgEd 211 Agricultural Education Skills (1 cr) Technical agriculture skills applicable to teaching agriculture. (Spring only)

AgEd 252 Developing Organizations (1 cr) Assisting community, collegiate, or social organization members, officers, or committee chairs to better serve the organization and to acquire practical organizational and management skills that will help them throughout their academic and professional careers.

AgEd 253 Parliamentary Procedure (1 cr) Basic knowledge and skills related to parliamentary procedure and the orderly conduct of business in meetings.

AgEd 299 (s) Directed Study (cr arr). Prereq: perm.

AgEd 306 Exploring International Agriculture (2 cr) May be used as core credit in J-3-d. General overview of agriculture around the world and the opportunity to develop an in-depth knowledge of agriculture in a country or region of student’s choice. (Spring only)

AgEd 351 Principles and Philosophy of Professional-Technical Education (3 cr). See PTE 351.

AgEd 358 Supervising FFA and SAE Programs (2 cr). Role of secondary agriculture instructors in supervising FFA and Supervised Agricultural Experience programs. (Fall only)

AgEd 359 Developing 4-H Youth Programs (2 cr). Planning, development, and leadership principles of 4-Hyouth program; role of 4-Hyouth educator and volunteer leader. Web-based course.

AgEd 400 (s) Seminar (cr arr). Prereq: perm.

AgEd 404 (s) Special Topics (cr arr). Prereq: perm.

AgEd J448/J548 Principles and Practices of Extension Education (3 cr). Philosophy and principles, social and economic significance of extension education in agriculture, home economics, and 4-H youth development; examination of behavioral science concepts in organization, development, and management of extension programs. Cr earned in AgEd 548 by completion of in-depth paper on some aspect of extension education. Prereq for AgEd 548: perm. (Alt/yr, Fall only)

AgEd J450/J550 Developing Leaders (2 cr). An action-oriented, participatory examination of aspects of “leadership.” Designed to stir students’ excitement about becoming leaders in school, home, and community; help students develop enthusiasm and interest in focusing on their vision for the future; individual and group activities allow students to identify their leadership philosophy; enhance their strengths, and improve on their weaknesses. Additional projects/assignments reqd for grad cr. (Alt/yr, Spring only)

AgEd J450/J550 Developing Leaders (2 cr) An action-oriented, participatory examination of aspects of “leadership.” Designed to stir students’ excitement about becoming leaders in school, home, and community; help students develop enthusiasm and interest in focusing on their vision for the future; individual and group activities allow students to identify their leadership philosophy; enhance their strengths, and improve on their weaknesses. Additional projects/assignments reqd for grad cr. (Alt/yr, Spring only)

AgEd 454 Facilities Organization and Management (2 cr) Applications of efficient planning, organizing, and teaching skills reqd in management of lab and shop facilities. (Spring only)
PART SIX

Courses

Agricultural Science and Technology

Lou E. Riesenberg, Head, Dept. of Agricultural and Extension Education (Agricultural and Extension Education Bldg., 1134 West 6th- 83844-2040; phone 208/885-6358; lriesenb@uidaho.edu).

Prerequisite: Enrollment in courses in this subject field requires permission of the department.

Ag WS150 Science, Society and Sustainable Food Systems (3 cr) WSU Soils 150.

Ag 299 (s) Directed Study (cr ar). Prereq: perm.

Ag 398 (s) Internship (1-6 cr, max 6). Graded P/F. Prereq: perm.

Ag 400 (s) Seminar (cr ar). Prereq: perm.

Ag 404 (s) Special Topics (cr ar). Prereq: perm.

Ag ID416 Sustainable Small Acreage Farming and Ranching (3 cr) Overview of small acreage production systems, evaluation of goals and resources, land evaluation, marketing options, and accessing community resources. Three field trips.

Ag ID417 NxLevel’s Agricultural Entrepreneurship – Tilling the Soil of Opportunity (3 cr) Assessing potential of small farm enterprises; marketing strategies, finances, feasibility, legal issues, resource evaluation and writing a business plan. One three hour class per wk.

Ag WS445 Field Analysis of Sustainable Food Systems (3 cr) WSU SOILS 445.

Ag 495 (s) Agricultural Ambassadors (cr ar). Graded A/P/F.

Ag 499 (s) Directed Study (cr ar). Prereq: perm.
American Indian Studies
Rodney P. Frey, American Indian Studies Program (116 Pinney Hall 83844-1110; phone 208/885-6268; rfrey@uidaho.edu; http://www.uidaho.edu/~rfrey/indianmin.htm)

AIST 320 The Celluloid Indian: American Indians in Popular Film (3 cr) May be used as core credit in J-3-d. Examines the representation of American Indians in film from early-mid 20th century Hollywood westerns to late 20th and early 21st century films made by Indians themselves. Traces changes in the cinematic depictions of Indian peoples and historical and cultural reasons for those changes. Emphasizes Indian-made film as extension of oral tradition, as well as indigenous aesthetics. (Spring only)

AIST 401 Contemporary American Indian Issues (3 cr). May be used as core credit in J-3-d. Identifies and addresses key cultural, economic, educational, legal, resource, and sovereignty issues facing Indian communities today; an essential component involves presentations by representatives from the Indian communities. (Spring only)

AIST 404 (s) Special Topics (cr ar). Prereq: perm.

AIST 495 Practicum (cr ar). Supervised practicum in an Indian community setting, integrating academic study with work experience; requires formal plan of activities to be approved by the on site supervisor and assigned faculty member; a final written report will be evaluated by the assigned faculty member. Prereq: perm.

AIST 498 (s) Internship (cr ar). Supervised internship in an Indian community setting, integrating academic study with work experience; requires formal plan of activities to be approved by the on site supervisor and assigned faculty member; a final written report will be evaluated by the assigned faculty member. Prereq: perm.

AIST 499 (s) Directed Study (cr ar). Prereq: perm.

American Studies
Walter A. Hesford, Coordinator, American Studies Program (121 Carol Ryrie Brink Hall 83844-1102; phone 208/885-6941); Sheila O’Brien and Patricia Hart, Co-coordinators.

AmSt 101 American Identities (3 cr). In this interdisciplinary course, students examine and interpret the expression of a diversity of American values and visions, including foundational, historical, and contemporary texts, focus on developing skills in reading material from several disciplines and in critical thinking, research, and writing.

AmSt 201 Introduction to Ethnic Studies (3 cr). May be used as core credit in J-3-d. Surveys major themes and topics in ethnic studies with a comparative emphasis on experiences of Native Americans, African Americans, Latinos/Hispanics, and Asian Americans; a multidisciplinary course that encourages participation facilitating student-to-student dialogue and allowing students to collaborate in creating a learning environment in which knowledge and experience is shared; assists students in becoming more aware of their own locations in the context of race and ethnic structures in the U.S.

AmSt 301 Studies in American Culture (3 cr). May be used as core credit in J-3-d. In-depth exploration of a significant theme or issue in American society from a variety of disciplinary perspectives; specific focus may vary, but includes consistent incorporation of a historical dimension, attention to inequalities and diversity, and analysis of aspects of contemporary American culture including a global context. Prereq: Engl 102; Jr standing or perm.

AmSt 404 (s) Special Topics (cr ar). Prereq: perm.

AmSt 499 (s) Directed Study (cr ar). Prereq: perm.

Animal and Veterinary Science
Richard A. Battaglia, Head, Dept. of Animal and Veterinary Science (213 Ag. Sc. Bldg. 83844-2330; phone 208/885-6345; susanzt@uidaho.edu)

AVS 101 Animal and Veterinary Orientation (2 cr). Career opportunities discussed to help students develop a strong sense of future direction.

AVS ID&W3109 The Science of Animals that Serve Humanity (3 cr). WSU A S 101. Role of animal agriculture in providing food, work, and pleasure for mankind; intro to animal genetics, physiology, endocrinology, nutrition, and other disciplines essential for an understanding of the contributions of animals in the expanding human population. Recommended Preparation for majors in the Animal/Vet Sc Dept: AVS 110.

AVS 110 Animal Husbandry Laboratory I (1 cr). Laboratory to support teaching in AVS 109; introductory laboratories designed to familiarize students with approved management practices of domestic livestock. Graded P/F. One 2-hr lab a wk. Coreq: AVS 109.

AVS WS1666 Horse Management Laboratory (1 cr). WSU A S 166. Introductory laboratory designed to familiarize students with approved management practices for horse enterprises. Graded P/F.

AVS 450 Issues in Animal Agriculture (1 cr). The capstone experience for seniors in AVS; students will present information on selected topics and propose solution to current problems; emphasis on problem solving using integration of information across disciplines. Prereq: Sr standing.

AVS IDW&S452 Physiology of Reproduction (4 cr). Physiology of reproduction: growth, structure, development, endocrinology, and control of reproductive function with emphasis on farm animals. Three lec and one 2-hr lab a wk.

AVS J463/J563 Advances in Meat Science (3 cr). Development of muscle and its conversion to meat; factors influencing muscle deposition, structure, chemistry, composition, palatability, nutritional value, safety, and quality. Additional projects/assignments reqd for grad cr.

AVS WS446 Horse Production (3 cr). Principles of breeding, feeding, and management of horses. Field trip required. Enrollment limited to 10. Recommended Preparation: AVS 205, 222.

AVS 471 Animal Disease Management (3 cr). Principles of immunity and disease resistance, transmission, and prevention; clinical signs, pathogenesis, and control of major diseases of economic importance in domestic animals. Prereq: Jr standing.

AVS IDW&S472 Dairy Cattle Management (3 cr). Same as Biol J472. Establishing a dairy farm, housing and managing large dairy herds, selection of breeding cattle, and marketing quality milk. Four-day field trip. Recommended Preparation: AVS 205 and 222 or equiv.

AVS IDW&S474 Beef Cattle Science (3 cr). Same as Biol J474. Breeding, feeding, and management; commercial and purebred enterprises; management of beef cattle on rangeland, pasture, and in the feedlot. One-day field trip. Recommended Preparation: AVS 205 and 222 or equiv.

AVS WS475 Advanced Dairy Management (3 cr). Application of concepts of dairy cattle management to practical situations. One lec and 1-2 hrs of lab a wk. Recommended Preparation: AVS 472.

AVS IDV476 Sheep Science (3 cr). Same as Biol J476. Application of principles of genetics, reproduction, nutrition, health, and marketing to the management of commercial and purebred sheep; new developments related to sheep industry; production, evaluation, and use of wool. Two lec and one 2-hr lab a wk; one-day field trip or equiv time. Recommended Preparation: AVS 205 and 222 or equiv.

AVS WS478 Swine Production (3 cr). Same as Biol J478. Principles of breeding, feeding, management, and marketing of swine. Two 2-hr lec-labs a wk; two-day field trips or equivalent time. Recommended Preparation: AVS 205 and 222 or equiv.

AVS IDW&S485 Animal Welfare (3 cr). Same as Biol J485. Ethical considerations and welfare of animals used as companions, for food, and in scientific research. Recommended Preparation: Biol 115.

AVS 499 (s) Directed Study (1-6 cr, max arr). Prereq: perm of dept.

AVS 500 Master's Research and Thesis (cr arr). Graded P/F.

AVS 501 (s) Seminar (cr arr). Prereq: perm.

AVS 502 (s) Directed Study (cr arr). Graded P/F. Prereq: perm.

AVS 503 (s) Workshop (cr arr). Prereq: perm.

AVS 504 (s) Special Topics (cr arr). Prereq: perm.

AVS 511 Ruminant Nutrition (3 cr). Prereq: WSU A S 511.

AVS WS516 Mineral and Vitamin Metabolism (4 cr). Prereq: WSU A S 513.

AVS IDW&S551 Endocrine Physiology (3 cr). Same as AVS J451/J551.

AVS 563 Advances in Meat Science (3 cr). Same as AVS J463/J563.

AVS 597 (s) Practicum (cr arr). Prereq: perm.

AVS 598 (s) Internship (cr arr). Prereq: perm.

AVS 600 Doctoral Research and Dissertation (cr arr). Graded P/F.

Anth 204 (s) Special Topics (cr arr). Prereq: perm.

Anth 220 Peoples of the World (3 cr). May be used as core credit in J-3-d. May be used as core credit in J-3-d. Societies of Eurasia, Africa, Americas, Australia, and islands of the Pacific.

Anth 230 World Prehistory (3 cr). Prehistoric cultures of Old and New Worlds; techniques of excavation; methods of historical archaeology.

Anth 231 Introduction to Archaeology (3 cr). Archaeological techniques for interpreting past lifeways from material remains; includes both prehistoric and historical archaeology.

Anth 235 Introduction to Physical Anthropology (3 cr). May be used as core credit in J-3-d. Evidence for primate and human evolution; processes of racial diversification; techniques of physical anthropology; human population biology.

Anth 261 Language and Culture (3 cr). May be used as core credit in J-3-d. Language as an aspect of culture; the relation of habitual thought and behavior to language.

Anth 299 (s) Directed Study (cr arr). Prereq: perm.

Anth 301 Introduction to Diversity and Stratification (3 cr). See Soc 301.

Anth 323 Introduction to Museology (3 cr). Theory and practice of science, history, and art museums. One-day and two 1/2-day field trips.

Anth 327 Belief Systems (3 cr). May be used as core credit in J-3-d. Same as RelS 327. Method and theory of comparative anthropological study of religion.

Anth 329 North American Indians (3 cr). May be used as core credit in J-3-d. Origins, physical types, languages, and cultures of North American Indians.

Anth 400 (s) Seminar (cr arr). Prereq: perm.

Anth 403 (s) Workshop (cr arr). Prereq: perm.

Anth 404 (s) Special Topics (cr arr). Prereq: perm.

Anth 409 Anthropological Field Methods (1-8 cr, max 8). Field training in archaeology and/or social anthropology.

Anth 419 Museum Administration (3 cr). Administration of the total museum program. Prereq: Anth 423.

Anth 420 Anthropological History and Theory (3 cr, max 9). Historical development of anthropology along with theoretical debates as presented in the anthropological literature. Additional projects/assignments reqd for grad cr. Prereq: upper-division standing.

Anth ID-J422/ID-J522 Native Americans (3 cr). May be used as core credit in J-3-d. Prereq: Anth 428/528. An overview of historic and contemporary Indian cultures of the Plateau; oral traditions, ceremonial life, social organization, and subsistence activities; history of contact with Euro-American society. Two 1 to 2-day field trips reqd. Additional projects/assignments reqd for grad cr.

Anth 423 Chinese Mining on the Lower Salmon River (1 cr). Exploration by river of Chinese miners’ rock dwellings, hydraulic workings, man-made reservoirs, and Chinese artifacts on otherwise inaccessible portions of the Lower Salmon River. Additional fee for off-campus class. One 3-day field, including lectures and cultural activities.

Anth 424J/524 The World of Poly Bemis (1 cr). The life of Idaho’s most famous Chinese woman, Poly Bemis, including a visit to her restored home on the Salmon River, her relationships, and other sites associated with her life and times. Additional projects/assignments required for graduate credit. Additional fee for off-campus class. One 3-day field trip, including lectures.

Anth 425/525 Society and Popular Culture (3 cr). An interdisciplinary survey of the contemporary study of popular culture and its forms. Reviews contemporary theoretical approaches, empirical studies, and representative examples of critical issues and various forms including texts, cultural practices, and material culture. Focus on critical analysis and understanding the significance of popular culture to society and students’ everyday lives. Additional projects/assignments reqd for grad cr. Prereq: Soc 101. (Fall only)

Anth 428/528 Social and Political Organization (3 cr). May be used as core credit in J-3-d. Bases of social and political organization; kin based units; non-kin units; political units through primitive states. Additional projects/assignments reqd for grad cr. Prereq: upper-division standing.

Anth J431/ID-J531 Historical Archaeology (3 cr). May be used as core credit in J-3-d. Prereq: Anth 235. Investigation of the techniques of historical archaeology as well as an introduction to historic material culture and the theories that inform historical archaeology research. Additional projects/assignments reqd for grad cr. Prereq: Anth 100.

Anth J432/J532 Historical Artifact Analysis (3 cr). An overview and detailed study of the major classes of material culture commonly recovered on historical sites. Course emphasizes the identification of historical materials and introduction of a variety of analytical tools used in historical archaeology. Prereq: Anth 230 or 431 or perm.

Anth 441 Introduction to the Study of Language (3 cr). See Engl 441.

Anth J443/J543 Plateau Prehistory (3 cr). Prehistoric cultures, chronologies, and interrelationships within the interior Northwest. Additional projects/assignments reqd for grad cr. Prereq: Anth 231 or perm.

Anth J462/J562 Human Issues in International Development (3 cr). May be used as core credit in J-3-d. Interdisciplinary analysis of complex interaction between tradition and modernity in Third World society, and its attendant human predicament. Additional projects/assignments reqd for grad cr. (All yrs.)

Anth 496 (s) Practicum in Tutoring (1 cr, max 2). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm.

Anth 497 (s) Practicum (cr arr). Prereq: perm.

Anth 499 (s) Directed Study (cr arr). Prereq: perm.

Anth 502 (s) Directed Study (cr arr). Prereq: perm.

Anth 503 (s) Workshop (cr arr). Prereq: perm.

Anth 504 (s) Special Topics (cr arr). Prereq: perm.

Anth 509 Anthropological Field Methods (1-8 cr, max 8). Individual field work in approved areas. Prereq: perm.

Anth 521 Contemporary Issues in Anthropological Theory (3 cr). In-depth exploration of contemporary theoretical issues within anthropology. Prereq: Anth 420 or equiv, or perm.

Anth 528 Social and Political Organization (3 cr). See Anth J428/J528.

Anth 525 Society and Popular Culture (3 cr). See Anth J425/J525.

Anth 530 Introduction to Archaeological Methodology and Theory (3 cr). See Anth J430/J530.

Anth ID 531 Historical Archaeology (3 cr). See Anth J431/J531.

Anth 532 Historical Artifact Analysis (3 cr). See Anth J432/J532.

Anth WS 535 Cultural Resource Management (3 cr). WSU Anth 535.

Anth 543 Plateau Prehistory (3 cr). See Anth J443/J543.

Anth 549 Lithic Technology (3 cr). See Anth J449/J549.

Anth WS 550 Descriptive Linguistics (3 cr). See Anth J450/J550.

Anth 597 (s) Practicum (cr arr). Prereq: perm.

Anth 598 (s) Internship (cr arr). Prereq: perm.

Architecture

Wendy McClure, Chair, Dept. of Architecture (207 Art and Arch. South 83844-2451; phone 208/885-6781; arch@uidaho.edu).

Note: On registering for a studio course offered in this department, the student agrees that the department may retain work completed by the student. The department will make returned work available to the student for photographing.

Arch 151 Introduction to the Built Environment (2 cr). Introduction to the built environment and the role of architecture, interior design, landscape architecture, urban design and planning in helping to shape its layers. Lectures, guest speakers, and readings will discuss the power of design to nourish the human spirit, support functional needs, and contribute to ecological and cultural sustainability. Attendance required at evening lectures by guest speakers and (3) topical seminars during the semester.

Arch 154 Introduction to Architectural Graphics (2 cr). (Arch 156) Intro to the process of graphic communication; studio projects to explore graphics through projects, lectures, and readings. Two 2-credit studios a wk and assigned work.

Arch 200 (s) Seminar (cr arr). Prereq: perm.

Arch 203 (s) Workshop (cr arr). Prereq: perm.

Arch 204 (s) Special Topics (cr arr). Prereq: perm.

Arch 251 Principles of Architecture (2 cr). Slide lecture course introducing architecture and interior architecture; methods of critical analysis; history of modern movement to contemporary design.

Arch 253 Architectural Design I (3 cr). (Arch 255) Same as ID 253. Exploration and design of basic architectural components and ordering systems and creative resolution of basic architectural design problems while developing and refining presentation techniques. Two 2-credit studios a wk and assigned work. Prereq: Arch 154 or perm.

Arch 254 Architectural Design II (3 cr). (Arch 256) Same as ID 254. Basic architectural integration of spatial ordering systems. Two 3-credit studios a wk and assigned work.

Arch 266 Materials and Methods (3 cr). Introduce physical and performance characteristics of material s; and concepts, conventions and processes of construction methods. Provide a foundation for subsequent courses in architectural technology and design.

Arch 299 (s) Directed Study (cr arr). Prereq: perm.

Arch 353 Architectural Design Ill (5 cr). Architectural building design process with emphasis on structural technology, historic influences, universal design, basic code and site related issues. Three 3-credit studios a wk and assigned work; field trips will be reqd at student expense; some class jury sessions will meet outside of scheduled hours. Prereq: Arch 254 and 266.

Arch 354 Architectural Design IV (5 cr). Continued development of architectural projects and design process that cultivate understanding of the properties of materials and building tectonics. Three 3-credit studios a wk and assigned work; field trips will be reqd at student expense; some class jury sessions will meet outside of scheduled hours. Prereq: Arch 254 and 266.

Arch 385 History of Architecture I: Pre-Modern (3 cr). A history of Western architecture and the contextual factors that have shaped and sustained it from prehistory through the Seventeenth-Century. Topics include prehistoric, Egyptian, Greek, Roman, Early Christian, Byzantine, Romanesque, Gothic, and Renaissance architecture.

Arch 386 History of Architecture II: Modern (3 cr). May be used as core credit in J-3-d. A history of modern architecture from the late Eighteenth and Nineteenth-centuries to the development of the Modern Movement in the Twentieth-Century in relation to rapid industrialization and the intellectual culture of the Enlightenment, Romanticism, Historicism, Modernism, and Post-Modernism; Topics include: the architecture of Neoclassicism, Victorian Gothic, industrial technology, the Arts & Crafts movement, and the Modern Movement.

Arch 400 (s) Seminar (cr arr). Prereq: perm.

Arch 401 Senior Design Seminar (2 cr). Specialized research and program writing in preparation for Arch 456.

Arch 403 (s) Workshop (cr arr). Prereq: perm.

Arch 404 (s) Special Topics (cr arr). Prereq: perm.

Arch ID 412 Environment and Aging (3 cr). WSU Aging 412. Exploration of the relationship between the processes of aging and the physical environment within an environment and behavior perspective.

Arch 450 Architectural Programming (2 cr). Introduction to basic principles and techniques of building programming. Recommended Preparation: Fourth-year standing.

Arch 453 Architectural Design V (5 cr). Design in the urban and/or community context. Application of urban theory and appropriate responses to climatic factors to the resolution of architectural and planning problems in community or urban contexts. Collaborative and/or interdisciplinary design encouraged. Three 3-credit studios a wk and assigned work; field trips will be reqd at student expense; some class jury sessions will meet outside of scheduled hours. Recommended Preparation: Arch 353-354.
Arch 454 Architectural Design VI (5 cr). Large architectural and/or urban design project; explore and integrate urban theory and/or concepts for sustainable design, environmental control system technologies, human and cultural factors, and construction assemblies. Design in team/collaborative settings encouraged. Three 3-hr studios a wk and assigned work; field trips will be reqd at student expense; some class jury sessions will meet outside of scheduled hours. Recommended Preparation: Arch 353-354.

Arch 455-456 Architectural Design III (5 cr). Expansion to the urban scale of the student's design awareness and ability; to acquaint the student with the multiplicity of considerations involved as project scope increases beyond a single site; to encourage creative and broad-scope thought and action on the future configuration of our cities. In Arch 456, the student undertakes a self-directed architectural design study with faculty consultation. Three 3-hr studios a wk and assigned work; field trips will be reqd at student expense; some class jury sessions will meet outside of scheduled hours. Prereq for Arch 456: Arch 401.

Arch 463-464 Environmental Control Systems (4 cr). Principles and design of solar and mechanical heating and cooling systems, natural and artificial lighting, water and waste systems, and acoustics. Three 1-hr lec and one 2-hr lab a wk.

Arch 483 Urban Theory and Issues (3 cr). History and theory of city planning and problems associated with urban growth.

Arch 486 American Architecture (2 cr). May be used as core credit in J-3-d. Selected areas of critical interest in development of American architecture; may include historical styles, key American architects, urban and public issues, and particular building types.

Arch 497 (s) Practicum in Tutoring (1 cr, max. 2). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm.

Arch 499 (s) Directed Study (cr arr). Prereq: perm.

Arch 501 (s) Seminar (cr arr). Prereq: perm.

Arch 502 (s) Directed Study (cr arr). Prereq: perm.

Arch 503 (s) Workshop (cr arr). Prereq: perm.

Arch 504 (s) Special Topics (cr arr). Prereq: perm.

Arch 510 Graduate Seminar (3 cr). Specialized research and program writing in preparation for Arch 554 as well as schematic design proposals.

Arch 520 Architectural Research Methods (3 cr) Philosophy of research in architecture, research design, data gathering and interpretation, and thesis preparation. Prereq: senior or graduate standing.

Arch 553 Architectural Design VII (5 cr). (Arch 555) Topical studio requiring comprehensive design of an architectural project that includes pre-design, schematic design and design development phases. Demonstration of ability to develop details in support of schematic design concepts. Three 3-hr studios a wk and assigned work; field trips may be reqd at student expense; some class jury sessions will meet outside of scheduled hours.

Arch 554 Architectural Design VIII (5 cr). Topical studio will explore specific issues or questions in architecture and/or urban design in depth, allowing faculty on a rotating basis to share areas of expertise with students. Topics might include but are not limited to day-lighting, historic preservation, design-build, grant-related projects, art and design interface. Three 3-hr studios a wk and assigned work; field trips may be reqd at student expense; some class jury sessions will meet outside of scheduled hours. Prereq: Arch 510 and 553.

Arch 556 Architectural Design IX (6 cr). Schematic and design development of graduate project, a self-directed architectural design study with faculty consultation within a studio context. Students will demonstrate their capacity to apply appropriate programming and research methods. The project culminates with a project book prepared by the student. Prereq: Arch 510.

Arch 568 Technical Integration of Buildings (2 cr). See Arch J468/J568.

Arch 570 Natural Lighting (2 cr). (Arch 470) Methods for design of daylighting systems for building.

Arch 575 Professional Practice (3 cr). (Arch 475) The architect's duties and responsibilities in practice (construction documents and contracts), project supervision, office administration, and comprehensive services; specification writing, unit costs, and building estimation.

Arch 597 (s) Practicum (cr arr). Prereq: perm.

Arch 598 (s) Internship (3 cr, max. 6). Work in an architectural office under the supervision of a licensed architect. Prereq: perm.

Arch 599 (s) Non-thesis Master's Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

Art 499 (s) Directed Study (cr arr). Prereq: perm.

Art 500 (s) Seminar (cr arr). Prereq: perm.

Art 504 (s) Special Topics (cr arr). Prereq: perm.

Art 505 Visual Culture (3 cr). May be used as core credit in J-3-d. An introduction to the interdisciplinary approaches in art history, visual studies, film and media studies, and sociology, and the general field of cultural studies that constitute the field of visual culture. Visual Culture addresses the societal, cultural, economic, aesthetic, and political dimensions and implications of images and the visual in our contemporary world. This course offers a broad introduction to the most important critical and theoretical methods for the analysis, critique, and evaluation of visual culture.

Art 507 Ancient to Medieval Art and Culture (3 cr). May be used as core credit in J-3-d. Survey of art and civilization from the Prehistoric era to Medieval Europe. The study and evaluation of the principal artistic and architectural monuments includes examination of the art and architecture of Ancient Egypt, the Ancient Near East, the Aegean civilizations, the art and culture of Greece and Rome, the Early Christian and Byzantine periods, and Carolingian, Romanesque, and Gothic art and architecture.

Art 509 Italian Renaissance Art and Culture (3 cr). May be used as core credit in J-3-d. A study of painting, sculpture, architecture, and art theory in Italy from c. 1350-1600. The art of Giotto, Duccio, Brunelleschi, Ghiberti, Alberti, Donatello, Fra Angelico, Fra Filippo Lippi, Andrea del Sarto, Leonardo, Raphael, Michelangelo, Bramante, Palladio, Giorfione and Titian, among others, is examined along with the broader components of Italian Renaissance culture.

Art 509 Northern Renaissance Art and Culture (3 cr). May be used as core credit in J-3-d. A study of the art and culture of northern Europe from c. 1350-1600. Major artistic achievements of the period, artistic theories, and their cultural and historical components are studied along the philosophical, religious, scientific, political, and economic developments that informed artistic production in Germany, France, England, and the Netherlands. Artists to be examined include Jan van Eyck, Rogier van der Weyden, Hugo van der Goes, Hieronimus Bosch, Albrecht Dürer, Hans Holbein, and Peter Bruegel.

Art 520 European Art and Culture 1600-1750 (3 cr). A survey of European Baroque and early Eighteenth-Century art, architecture, and culture. Principal periods and styles considered include Italian Baroque, Dutch Baroque, and art and architecture in France and Britain. The art and architecture of the Age of Louis XIV along with Rococo is also examined. Artists and architects to be studied include Caravaggio, Bernini, Borromini, Velasquez, Rembrandt, Vermeer, Poussin, and Watteau, among others.

Art 521 Drawing III (3 cr). Life drawing, work with various media to develop an understanding of the human figure. Two 3-hr studios a wk and assigned work. Prereq: Art 511-112 or perm.

Art 523 History and Theory of Modern Design (3 cr). May be used as core credit in J-3-d. A broad introduction to the historical and theoretical components of design from the Industrial Revolution to the present day. Graphic design, product design, industrial design, packaging and advertising are studied in terms of their historical development and their translation and application within contemporary concepts of design in various professional fields.

Art 522-222 Graphic Design I-II (3 cr). Art 221: Creative problem solving with emphasis on 2-D solutions; translation of concept into form using word, image, and layout; intro to history of graphic design and typography. Art 222: May be used as core credit in J-3-d. Continuation of translation of concept into form with emphasis on typography, letterforms, and typographic syntax, type specification, and preparation of art for print media. Prereq for Art 221: Art 111-112, 121-122 or perm. Prereq for Art 222: Art 221 or perm.
Art 231 Painting I (3 cr). Intro to basic fundamentals of painting; investigating color and techniques. Two 3-hr studios a wk and assigned work. Prereq: Art 211 or perm.

Art 241 Sculpture (3 cr). Introductory studio environment with emphasis on basic design principles, material safety, material exploration, and the development of unique personal expressions in three dimensions. Two 3-hr studios a wk and assigned work.

Art 251 Printmaking I (3 cr). Intro to basic printmaking techniques, relief, intaglio, and monotype; emphasis on sensitivity to materials and individual development.

Art 261 Ceramics I (3 cr). May be used as core credit in J-3-d. Intro to clay-forming techniques, wheelthrown and hand-built forming methods, ceramic design concepts, development and articulation of individual design criteria, glaze experimentation; fundamental types of ceramic ware; kiln and studio procedures. Two 3-hr studios a wk and assigned work.

Art 271-272 Interface Design I-II (3 cr). Prereq: Art 221 and 222, or perm. Two lec and one 3-hr recitation a wk.

Art 280 Understanding Photography (3 cr). Basic skills of camera operation; emphasis on image design and creative techniques; loci topics include exposure, lenses, composition, filters, and films. 35mm adjustable camera required, plus additional costs for photographic materials. Two lec and one 3-hr recitation a wk.

Art 299 (s) Directed Study (cr arr). Prereq: perm.

Art 301 Early Modern Art and Aesthetics (3 cr). Survey of the major artistic movements and historical, philosophical, political, and cultural developments that informed the theoretical and artistic advancement in 18th and 19th-century art. Special consideration is given to the philosophical, theoretical, and political groundings of European Neoclassicism, Romanticism, Realism, and Impressionism.

Art 302 Modern Art and Theory (3 cr). May be used as core credit in J-3-d. A study of the principal artistic movements and theories in modern art from c. 1880 to World War II. Beginning with late-nineteenth-century modernism, the course closely examines the concomitant historical, philosophical, political, and cultural developments that informed the theoretical and artistic advancements in 19th- and 20th-century art. Credit may be given for the philosophical, theoretical, and political groundings of European Modernism, Modernism, Existentialism, Symbolism, Fauvism, German Expressionism, Futurism, Cubism, Dada, and Surrealism, among others.

Art 303 Contemporary Art and Theory (3 cr) A survey of the principal artists, movements, theories, and artistic strategies since World War II in Europe and America. Important movements examined include the New York School, Neo-dada, Post-Posterity Abstraction, British and American Pop. Minimalism, Conceptual art, Earthworks and Environments, Performance Art, Neoexpressionism, and the various approaches within contemporary art.

Art 321 Graphic Design III (3 cr, max 6). Advanced design problems with emphasis on individual development and exploration of contemporary design issues. Two 3-hr studios a wk and assigned work. Prereq: art core, Art 221 and 222, or perm.

Art 322 Graphic Design IV (3 cr, max 6). Graphic problem-solving in the community environment; advanced production techniques for the graphic designer. Two 3-hr studios a wk and assigned work. Prereq: Art 321 or perm.

Art 330 Intermediate/Advanced Painting (3 cr, max 9) Intermediate painting in oil or acrylic; emphasis on color assignments and aesthetic problems. Advanced students emphasize individual conceptual approaches. Two 3-hr studios a wk and assigned work. Prereq: art core and Art 231 or perm.

Art 340 Intermediate/Advanced Sculpture (3 cr, max 9) Intermediate level studio environment with emphasis on promoting tool safety, material exploration, creative autonomy, portfolio development, and comprehension of historical and contemporary issues relevant to student review and critique discourse. Two 3-hr studios a wk and assigned work. Prereq: art core, Art 241 or perm.

Art 350 Intermediate/Advanced Printmaking (3 cr, max 9) Advanced printmaking; further exploration of printmaking methods and materials; emphasis on individual development in conceptual and technical abilities. Two 3-hr studios a wk and assigned work. Prereq: art core and Art 251 or perm.

Art 360 Intermediate/Advanced Ceramics (3 cr, max 9) Development and articulation of individual design criteria in ceramics; development of personal conceptual and technical skills in ceramics. Two 3-hr studios a wk and assigned work. Prereq: art core, Art 261 or perm.

Art 370 Advanced Interface Design (3 cr, max 9) Intermediate: multi-media and interface design for computer applications with emphasis on individual development and design of contemporary technical and aesthetic design issues. Advanced: multi-media and interface design for computer applications with emphasis on team design projects, Web site interface design and development, and development for stand alone delivery. Six hrs of lab a wk and assigned work. Prereq: art core and Art 271-272 or perm.

Art 380 Digital Imaging (3 cr). Computer imaging with emphasis on visual problem solving and design; development of professional techniques with industry standard software.

Art 381 Advanced Imaging Concepts (3 cr) Advanced visual design concepts learned through creative problem solving and hands on exploration. The development of professional techniques is emphasized. Recommended Preparation: Art 280, 282, 380.

Art 382 History of Photography (3 cr) May be used as core credit in J-3-d. History and development of photography in its various forms; photography as a creative art form and a reflection of society; selected slide lecs.

Art 390 Mixed Media (3 cr, max 9) Understanding synthesis of different media in context to a work of art by using two or more techniques; tutorial-based studio, production to occur outside of class. Outside lec and special events may be assigned. Prereq: art core, 9 cr of 200-level art studios, and 6 cr of 300-level art studios or perm.

Art 400 (s) Art Seminar (1-3 cr, max 6). Prereq: perm.

Art 404 (s) Special Topics (cr arr). Prereq: perm.

Art 406 Readings in Art (1-3 cr, max 6). Directed readings in various areas of art including, but not limited to, history, art theory, and art criticism. Prereq: Art 100, 301-302 or equiv, or perm of instructor before registration.

Art 410 Professional Practices (2 cr). Professional issues for studio artists and designers including obligations, duties, and responsibilities in practice, self-promotion, and career planning. Includes analysis of gallery operations. Prereq: adv standing or perm.

Art 448 Faculty Directed Internship (1-3 cr, max 6). Open only to art majors. Faculty directed work on a professional project. Prereq: successful completion of one 300-level studio sequence (6 cr), and advisor and directing faculty approval.

Art 490 Art Studio (6 cr, max 12). Open only to BFA studio art majors. Intensive tutorial studio closely monitored by all the faculty, culminating in development of a portfolio and a professional exhibition. Outside lec and special events may be assigned. Twelve formal hours of studio a wk plus outside work to equal 18 hrs of involvement a wk; field trips and guest lectures may be required. Prereq: Sr standing and completion of 15 cr in 300-level art courses with a minimum grade of C and a minimum GPA of 2.5.

Art 491 Information Design (3 cr). Project-based course in theory and practice of the design of information and information visualization for use in research, teaching, and outreach. Interdisciplinary teams of students, faculty and staff will develop and produce systems that communicate complex ideas with clarity, precision, and efficiency, using the most appropriate presentation methods: program, journal, poster, etc. Prereq: Jr standing.

Art 495 BFA Senior Thesis (2 cr, max 4). Open only to B.F.A. studio art majors. BFA majors take 2 semesters. Preparation of thesis, portfolio, and senior exhibition. Prereq: Sr standing and completion of 15 cr in 300-level art courses with a minimum grade of C and a minimum GPA of 2.5.

Art 497 (s) Practicum in Tutoring (1 cr, max 2). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm.

Art 498 (s) Internship (1-12 cr, max 12). Graded P/F. Open to art majors only; no more than 6 cr may be counted toward art degree requirements. Work with professional artists. Prereq: One 300-level studio sequence (6 cr) and perm of chair.

Art 499 (s) Directed Study (1-3 cr, max 9). Individual study areas selected by the student and approved by the faculty; it is the student’s responsibility to select a study area and prepare a semester study program; the student contacts one of the art faculty who agrees to direct the study; it is the student’s responsibility to initiate the study program and to maintain regular contact with the faculty member who has agreed to direct the study; Prereq: completion of one 300-level studio sequence (6 cr) and perm.

Art 504 (s) Special Topics (cr arr). Prereq: perm.

Art 507 (s) Art Seminar (3 cr, max 6). Open only to art majors. Seminar in professional art: guest artist programs, U of I Gallery Activities, including field trips. One 2-hr seminar a wk and assigned work.

Art 508 (s) Readings in Art: Critical Theory and Continental Aesthetics (3 cr). Introduction and examination of principal texts on art and aesthetics from the major figures in 20th-century Critical Theory and Continental philosophy. Students will be encouraged to address the possible relevancy and application of the various theoretical frameworks within the purview of their own aesthetic and critical disciplines. Open to all graduate students, and to undergraduates with instructor’s approval.

Art 510 Gallery (1-3 cr, max 6). Descriptive analysis of gallery functions; hands-on student participation installing, packaging art works for shipping, lighting, promotions, advertising and marketing; speakers series of professionals in the field or allied areas; e.g., gallery directors, artists as presenters/installers, professional art movers. Prereq: perm of U of I Gallery director.

Art 515 (s) Art Faculty Studio (3-6 cr, max 12). Open only to art majors. Studio research taken from the entire art faculty; students are required to arrange at least two studio critiques/faculty each semester.

Art 516 (s) MFA Art Studio (3-6 cr, max 9). Open only to MFA majors. Studio research taken from two or more art faculty members.

Art 520 (s) Studio Workshops (1-3 cr, max 6). Open only to art majors. Specialized studio experience; offered by art faculty members, faculty supervised and/or guest artists.

Art 521 (s) MFA/MAT Individual Critique (3-6 cr, max 9). Open only to MFA students. Studio research taken from individual art faculty members; individual instruction and critiques. One hr a wk critique session and 8 hrs a wk of individual studio research.

Art 590 (s) MFA Thesis Exhibition (4-8 cr, max 20). Open only to MFA majors. Studio research directly related to preparation of MFA “Exhibition and Statement.”

Art 597 (s) Practicum (3 cr, max 6). Open only to art majors. Classroom experience, preparation and critique of proposal or project under faculty supervision. Normally requires 4-6 hrs a wk in class and assigned work. Prereq: perm of individual faculty art and grad coordinator.

Art 598 (s) Internship (1-6 cr, max 6). Open only to art majors. Work with professional artists. Prereq: perm of major professor and dept chair.
Courses Biological and Agricultural Engineering

Part Six

Bioinformatics and Computational Biology

James A. Foster, Program Director (229 Janssen Engr. Bldg. 83844-1010; phone 208/885-7062. bcb@uidaho.edu; www.ibest.uidaho.edu/bcb).

Note: Most of the courses in this interdisciplinary program are in other academic departments and are not listed below. Please refer to the curricular requirements in Part 5 for a complete list of classes.

BCB 500 Master's Research and Thesis (cr arr).

BCB 501 (s) Seminar (cr arr).

BCB 502 (s) Directed Study (cr arr).

BCB 503 (s) Workshop (cr arr).

BCB 504 (s) Special Topics (cr arr).

BCB 506 Laboratory Experience in the Biological Sciences (cr arr). Hands-on activities in an active research laboratory whose central research interests are in the biological or biochemical sciences. Prereq: Admission to BCB program.

BCB 507 Laboratory Experience in the Computational Sciences (cr arr). Hands-on activities in an active research laboratory whose central research interests are in the computational sciences. Prereq: Admission to BCB program.

BCB 508 Laboratory Experience in Mathematics or Statistics (cr arr). Hands-on activities in an active research laboratory whose central research interests are in the mathematics or statistics. Prereq: Admission to BCB program.

BCB 516 (s) Biological Sciences Supplement (cr arr). Supplemental material to a course taught in the biological or biochemical sciences. Supplements cover material specific to bioinformatics and computation biology that component material taught in courses from other departments. Prereq: perm.

BCB 517 (s) Computational Sciences Supplement (cr arr). Supplemental material to a course taught in the computational sciences. Supplements cover material specific to bioinformatics and computation biology that component material taught in courses from other departments. Prereq: perm.

BCB 518 (s) Mathematics or Statistics Supplement (cr arr). Supplemental material to a course taught in mathematics or statistics. Supplements cover material specific to bioinformatics and computation biology that component material taught in courses from other departments. Prereq: perm.

BCB WS-J578 Introduction to Bioinformatics (3 cr). See BCB J478/J578.

BCB 597 (s) Practicum (cr arr).

BCB 598 (s) Internship (cr arr).

BCB 599 (s) Non-thesis Master's Research (cr arr).

BCB 600 Doctoral Research and Dissertation (cr arr).

Biological and Agricultural Engineering

John H. Van Gerpen, Head, Department of Biological and Agricultural Engineering (421 Engineering/Physics Bldg. 83844-0904; phone 208/885-6182; fax 208/885-7908; baenegr@uidaho.edu).

Note: All 300, 400, and 500-level biological and agricultural engineering courses require a working knowledge of computers including the use of mainframe and microcomputers, structured programming, electronic spreadsheets, and word processing.

BAE 142 Engineering for Living Systems (2 cr). Introduction to engineering principles used to solve agricultural and biological systems problems, including use of computers. One lec and one 3-hr lab a wk; two half-day field trips.

BAE 143 Engineering Problem Solving (2 cr). Engineering principles used to solve agricultural and biological systems problems, including computer programming; introduction to elements of design.

BAE 242 Engineering Analysis and Design (2 cr). Methods of analyzing and solving engineering problems and intro to elements of design; use of computers in engineering problem solving. Recommended Preparation: BAE 143 or computer science elective in a programming language.

BAE 299 (s) Directed Study (cr arr). Prereq: perm.

BAE WS-J304 Perspectives in Biomedical Engineering (1 cr, max 3). WSU BSysE 339. Current issues and career options in biomedical engineering.

BAE ID&WSS310 Biological Dynamics for System Design (3 cr). WSU BSysE 310. Modeling and analysis of biological systems including microbial growth, population dynamics, enzyme kinetics, photosynthesis, respiration, and animal energetics and behavior for designing plant, animal, and microbial systems. Two lec and three hours of lab a wk. Recommended Preparation: BAE 242, Biol 115, Math 310, and Soil 205, 206 or MMOB 250, 255.

BAE WS-J341 Environmental Hydrology (3 cr). WSU BSysE 351. Carries no credit after BAE 351.

BAE IDJ351 Hydrology (3 cr). WSU BSysE 353. Analysis of precipitation and runoff events; principles of climatology, evaporation, infiltration, and snowmelt. Recommended Preparation: one semester of calculus.

BAE ID&WSS352 Soil and Water Engineering (3 cr). WSU BSysE 352. Plant-soil-water relationships, applied hydraulics, soil erosion principles and control, drainage, and legal aspects of water resources. Two lec and one 3-hr lab a wk. Prereq: Engr 335 and BAE 351.

BAE 356 Hydrologic Measurement Techniques (1 cr) See CE 326.

BAE ID&WSS372 Agricultural Power and Machines (3 cr). WSU BSysE 362. Performance, operation, and testing of agricultural power units and machinery; functional requirements, force analysis, power transmission, safety, and economics. Two lec and three hrs of lab a wk; one 1-day field trip.

BAE WS-J386 Mechanics of Biomaterials (4 cr). WSU BSysE 320. Composition of biological materials, mechanical and thermal properties, chemical and biological changes. Two lec and one 3-hr lab a wk. Recommended Preparation: Engr 335 and 351.

BAE 398 (s) Engineering Cooperative Internship (cr arr). Supervised internship in professional engineering settings, integrating academic study with work experience; details of the co-op to be arranged with supervising professor before the start of the co-op; requires written report. Graded P/F. Cannot be used for technical elective. Prereq: perm.

BAE 404 (s) Special Topics (cr arr). Prereq: perm.

BAE J433/J533 Bioremediation (3 cr). BAE 533 same as EnvE 533. Theory and practice of bioremediation as applied to toxic and hazardous wastes, including reaction kinetics, reaction stoichiometry, and design of ex- and in-situ processes. Graduate credit requires additional design project. One-two field trips. Recommended Preparation: Biol 115. Prereq: Math 170 or perm.

BAE ID&WSS-J441/ID&WSS-J541 Instrumentation and Measurements (3 cr). WSU BSysE 541. Sensing elements, signal conditioning, data output and control. Additional projects/assignments reqd for grad cr. Two lec and one 3-hr lab a wk. Recommended Preparation: BAE 462.

BAE ID449 Design of Agricultural Structures (3 cr). WSU BSysE 472. Design of timber, steel, and reinforced concrete members and connections for agricultural structures. Two lec and one 3-hr lab a wk. Recommended Preparation: Engr 351.

BAE ID451 Engineering Hydrology (3 cr). Same as CE 421. WSU BSysE 451. Hydrologic cycle as applied to engineering projects; hydrograph routing; design hydrographs; intro to hydrologic simulation. Recommended Preparation: BAE 351. Prereq: Engr 335.

BAE ID&WSS-J452/ID&WSS-J552 Environmental Water Quality (3 cr). WSU BSysE 452. Engineering design to monitor, evaluate, and minimize non-point pollution from agriculture, environmentally acceptable disposal of wastes, bioremediation. Graduate credit requires an additional project and report. Two lec and one 3-hr lab a wk. Prereq: BAE 351, Soil 205 or MMBO 250, Chem 112.

BAE ID&WSS-J457/ID&WSS-J557 Hydrologic Modeling for Watershed Management (3 cr). WSU BSysE 457/557. Selection, application, and evaluation of models and modeling techniques to solve watershed level problems. Topics include watershed assessment, hydrologic and pollutant transport processes, solution methods, GIS techniques related to modeling, scaling issues, sensitivity analysis, evaluation of management practices, commonly used modes of hydrology. Recommended Preparation: BAE 355 or CE 325.

BAE 458 Open Channel Hydraulics (3 cr). Same as CE 428. Hydraulics of uniform and varied flow in open channels with fixed and movable beds. Recommended Preparation: BAE 402 or CE 322.

BAE ID&WSS-J469/J569 Irrigation System Design (3 cr). WSU BSysE 453. Crop water requirements, irrigation scheduling and water management, selection and design of irrigation systems, pump selection. Additional projects/assignments reqd for grad cr. Two lec and one 3-hr lab a wk; one 1-day field trip. Recommended Preparation: BAE 352.

BAE 460 Engineering Plant and Animal Environments (2 cr). In-depth analysis of biological interactions used for designing plant and animal facilities and equipment; plant and animal welfare, air quality, space, production parameters, water usage, radiant energy, and thermal properties; analytical study of animal and plant energetic relations to their environment; design of greenhouse systems, animal housing systems, ventilation systems, and environmental control systems from basic physical and biological requirements to mathematical modeling of system responses. Recommended Preparation: Math 310, Engr 320, Biol 115.

BAE ID&WSS461 Bioprocess Engineering (3 cr). WSU BSysE 461. Carries 2 credits after BAE 361 or ME 345. Processing principles and transport processes applied to the analysis and design of handling, processing, and producing of biomaterials and bioprocesses. Two lec and one 3-hr lab a wk. Prereq: Math 310, Engr 320 and 335, or perm. (Spring only, alt/yrns).
BAE 478 Engineering Design I (2 cr). May be used as core credit in J-3-d. Intro to design process, CAD/CAM facility, product liability, and project scheduling; formulation of a design problem. Prereq: Sr standing or perm.

BAE 479 Engineering Design II (2 cr). May be used as core credit in J-3-d. Individual or team design of an agricultural related problem; incl synthesis, analysis, construction, and testing; final report req'd. Two 3-hr labs a wk. Recommended Preparation: BAE 478.

BAE 482/WS-J582 Food Processing Engineering Design (3 cr). WSU BSysE 482/582. Same as FST 482/582.

BAE 483 Food Separation Processes Design (3 cr). WSU BSysE 483.

BAE 486/WS-J586 Food Rheology (3 cr). WSU BSysE 486/586.

BAE 488/WS-J588 Food Powders (3 cr). WSU BSysE 488/588.

BAE 491 Senior Seminar (1 cr). Professional aspects of the field, employment opportunities and preparation of occupational inventories. Graded P/F. Prereq: senior standing.

BAE 496/WS-J596 Conservation Engineering (3 cr). WSU BSysE 496/596.

BAE 499 (s) Directed Study (cr arr). Prereq: perm.

BAE 500 Master's Research and Thesis (cr arr).

BAE 501 (s) Seminar (cr arr). Graded P/F. Prereq: perm.

BAE 502 (s) Directed Study (cr arr). Prereq: perm.

BAE 533 Bioremediation (3 cr). See BAE J433/J533.

BAE 534 Applied Bioremediation (3 cr). Same as EnvE 535. Application of theory and design learned in prerequisite BAE 433/533 including conducting treatability studies, transportation and fate modeling in the subsurface, and hydrologic testing. Students required to complete laboratory, numerical modeling, and field-testing modules in addition to a subsurface modeling project. Prereq: BAE 433/533.

BAE 543 Instrumentation and Measurements (3 cr). See BAE J441/J541.

BAE 551 Advanced Hydrology (3 cr). WSU BSysE 550. Principles of the hydrologic cycle in mountainous areas, including precipitation, snowmelt, and systems simulation.

BAE 555 Environmental Water Quality (3 cr). See BAE J452/J552.

BAE 553 Land Surface Hydrology (3 cr). Physical transport processes within the hydrologic cycle that govern exchanges of mass (water), heat, energy, and momentum between the land surface and the atmosphere. Includes evapotranspiration modeling. Prereq: Fluid Mechanics, Calculus, and either CE 325 or BAE 355.

BAE 555 Natural Channel Flow (3 cr). Same as CE 529. Hydrodynamics of nonuniform flow in irregular channels, unsteady flow, and flow routing.

BAE 556 Natural Systems for Wastewater Treatment (3 cr). See BAE J456/J556.

BAE 558 Fluid Mechanics of Porous Materials (3 cr). WSU BSysE 558. Statics and dynamics of multiflow systems in porous media; properties of porous media; steady and unsteady flow.

BAE 559 Irrigation System Design (3 cr). See BAE J459/J559.

BAE 561 Advanced Agricultural Engineering Topics (1-4 cr, max 6). WSU BSysE 551-552.

BAE 566 Constructed Wetlands for Pollution Control (2 cr). WSU BSysE 566.

BAE 582 Food Process Engineering Design (3 cr). See BAE J482/J582.

BAE 586 Food Rheology (3 cr). See BAE J486/J586.

BAE 587 Food Plant Design (3 cr). See BAE J487/J587.

BAE 588 Food Powders (3 cr). See BAE J488/J588.

BAE 589 Food Quality Instrumentation (3 cr). WSU BSysE 589.

BAE 590 Advanced Theory of Irrigation Water Requirements (3 cr). WSU BSysE 590. (A/BY)

BAE 593 Drainage Engineering (3 cr). WSU BSysE 593.

BAE 596 Conservation Engineering (3 cr). See BAE J496/J596.

BAE 599 (s) Non-thesis Master’s Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

BAE 600 Doctoral Research and Dissertation (cr arr).

Bio

Larry J. Forney, Chair, Dept. of Biological Sciences (252 Life Sci. Bldg. 83844-3051; phone 208/885-6280).

Exception to regulation D-4: Students who transfer in a course for which the UI requires Biol 115 or 116 as a prerequisite (but who have not yet taken Biol 115 or 116), may take Biol 115 and 116 for credit.

Note: Enrollment in lab sections of departmental courses will be limited to the number of stations available in that section.

Biol 102 Biology and Society (4 cr). May be used as core credit in J-3-b. Not open to Biology majors or for minor cr. Principles of biology and their relationship to social issues. Three lec and one 3-hr lab a wk.

Biol 115 Cells and the Evolution of Life (4 cr). May be used as core credit in J-3-b. The cell, heredity and evolutionary processes. Three lec and one 3-hr lab a wk. Prereq: Coreq: CSci 121.

Biol 116 Organisms and Environments (4 cr). May be used as core credit in J-3-b. The evolution of diversity, the biology of plants and animals, and their environments. Three lec and one 3-hr lab a wk. Prereq: Biol 115 and Chem 101 or 111.

Biol 120 Human Anatomy (4 cr). Study of the anatomy of the major organ systems of the human body; lab consists of studying human gross anatomy models and prosected cadavers. Three lec and one 3-hr lab a wk. (Fall only).

Biol 121 Human Physiology (4 cr). May be used as core credit in J-3-d. Study of the physiology of the major organ systems of the human body. Three lec and one 3-hr lab a wk. Prereq: Biol 120. (Spring only).

Biol 210 Genetics (4 cr). Genetic mechanisms in animals, plants, and microorganisms. Three lec and one 3-hr lab a wk. Prereq: Biol 115 or MMBB 250. (Fall only).

Biol 212 Molecular and Cellular Biology (4 cr). Same as AVS 221. Current theory and experimental basis of the structure/function of eukaryotic cells. Topics include plasma membrane, organelles, cytoskeleton and cell mobility, the nature of genes, gene expression, DNA replication and cellular reproduction, and signal transduction. Three lec and one 3-hr lab a wk. Prereq: Biol 115. (Fall only).

Biol 311 Plant Physiology (4 cr). Study of the physiology of plant tissues. Three lec and one 3-hr lab a wk. Prereq: Biol 213, and Chem 275 or 277. (Fall only).

Biol 324 Comparative Vertebrate Anatomy (4 cr). General vertebrate anatomy and evolutionary changes in organ systems. Two lec and two 3-hr labs a wk. Prereq: Biol 115 and 116. (Spring only).

Biol 341 Systematic Botany (3 cr). Classification and identificatio of flowering plants; local flora. Two 1-hr lec and two 2-hr labs a wk; four 1-day field trips. Prereq: Biol 115 and 116. (Spring only).

Biol 354 Experimental Approaches in the Biological Sciences (2 cr). Experimental analysis of biological systems. Prereq: Biol 210, 212, and 213, or perm. (Spring only).

Biol 398 (s) Internship (1-3 cr, max 3). Supervised internship in professional biological, non-university settings, integrating academic study with work experience; requires formal written plan of activities to be approved by academic advisor and department chair before engaging in the work; a final written report will be evaluated by on-campus faculty. Graded P/F. Prereq: perm.

Biol 405 Practicum in Anatomy Laboratory Teaching (2 cr). Organization, preparation, and teaching of anatomy laboratory objectives under faculty supervision. Prereq: perm. (Fall only).

Biol 407 Practicum in Biology Laboratory Teaching (4-6 cr). Organization, preparation, and teaching of lab experiments or demonstrations under faculty supervision. Prereq: Any four of the following courses: Biol 115, 116, 210, 212, 213, or 314; and perm.

Biol 411 Senior Capstone (2 cr). May be used as core credit in J-3-d. Application of biological principles and information to the analysis of societal and philosophical issues. Prereq: Biol 210, 212, 213, 314, and Sr standing.

IWS/IDWS/J421 Advanced Evolution/Population Dynamics (3 cr). Macro and Micro evolutionary patterns and processes examined from molecular, ecological, and paleontological perspectives. Prereq: Biol 314 or For/Ringe/WLF 221. (Spring only).
Biol 423 Comparative Vertebrate Physiology (4 cr). Comparative physiology of the major organ systems found in vertebrates. Additional projects/assignments reqd for grad cr. May involve some evening exams. Prereq: Biol 213, and Chem 275 or 277. (Fall only).

Biol 425 Special Topics: Experimental Field Ecology (3 cr). Intensive course on diverse aspects of field ecology to be held off-campus. Various global locations (i.e. Costa Rica, Oregon coast, Hawaii) are possible. The course will be scheduled during an 8-10 day period preceding/following the Spring Term (i.e. January or May). Will involve travel and lodging costs at student expense. Prereq: Biol 115, 116, 210, 212, 213, and 314.

Biol ID427 Vertebrate Histology and Organology (4 cr). WSU Zool 421. Microscopic anatomy of tissues and major mammalian organs. Three lec and 3-hr lab a wk. Prereq: Biol 115 and 116; or Biol 120.

Biol WS540 Introduction to Cell Biology (3 cr). WSU GenCB 450.

Biol 444 Genomics (3 cr). Structural, functional, and comparative genomics of animals, plants, fungi, and microbes. Case studies illustrating a genomic approach to questions of fundamental biological and societal relevance will be drawn from diverse fields such as human medicine, evolutionary biology, agriculture, and biotechnology. Prereq: Biol 115, 116, 210 or MMBB 250.

Biol 448 Plant-Animal Interactions (3 cr) Principles of interactions between plants and animals; interactions and diversification, coevolution; pollination, fruit and seed dispersal, herbivory, ant-plant and ant-plant-fungal interactions, importance of interactions in conservation biology. One field trip. Biol 314 recommended. Prereq: Biol 116. (Fall, Alt/lyrs)

Biol ID461 Neurobiology (3 cr). WSU Neuro 461. Study of the nervous system, with an emphasis on mechanisms of neuronal signaling, the function of sensory and motor systems, and neural development. Prereq: Biol 213. Recommended: Phys 111, Phys 112, and Chem 275 or 277. (Fall, Alt/lyrs)

Biol 474 Principles of Developmental Biology (3 cr). Analysis of mechanisms at cellular and molecular level during metazoan development. Prereq: Biol 115 and 116 or Biol 212. (Spring, Alt/lyrs)

Biol 478 Animal Behavior (3 cr). Evolution, causation, development, and function of behavior in vertebrates and invertebrates. Prereq: Biol 115 and 116. (Spring only)

Biol 481 Ichthyology (4 cr). Anatomy, taxonomy, physiology, genetics, and zoogeography of fishes. Three lec and one 3-hr lab a wk; one half-day field trip. Prereq: Biol 115 and 116. (Spring only)

Biol 483 Mammalogy (3 cr). Evolution, systematics, distribution, and biology of mammals. Two lec and one 3-hr lab a wk; one field trip. Prereq: Biol 115 and 116. (Fall only)

Biol 493 Practicum in Physical Therapy (1 cr, max 4). Minimum of two hrs a wk of practical experience in a PT clinic. Graded P/F. Prereq: Jr standing in pre-PT or related studies and perm of U of I allied health advisor.

Biol 499 (s) Directed Study (cr ar). Prereq: perm.

Biol 501 (s) Seminar (cr ar). Prereq: perm.

Biol 502 (s) Directed Study (cr ar). Prereq: perm.

Biol 504 (s) Special Topics (cr ar). Prereq: perm.

Biol 507 (s) Research Topics in Biological Sciences (1 cr). Seminars on research being carried out in the Department of Biological Sciences.

Biol 508 Topics in Neuroscience (1 cr, max ar). Same as Neu 508. Seminars and discussion of current topics in neuroscience. Prereq: Grad standing.

Biol 510 Workshop on University Biology Teaching (1 cr) Exploration of higher education science teaching, learning theories, learning styles, teaching methods and strategies, classroom ethics, web-based instruction, and lecture and lab design. Course requires attendance the Thursday and Friday before the beginning of Fall semester. Graded P/F (Fall only)

Biol 512 Plant Growth Substances (3 cr). Hormonal regulation of physiological processes. Two lec and one 2-hr disc a wk. Prereq: Biol 311 and organic chemistry. (Alt/lyrs)

Biol WS513 Stress Physiology of Plants (3 cr). See Biol J413/J513.

Biol 514 Readings in Neurobiology (1 cr, max ar). Discussion of current neurobiology literature. Prereq or Coreq: Biol 461/561, 509 or MedS 532.

Biol WS530 General and Comparative Neurophysiology (4 cr). WSU Neuro 530.

Biol 535 Plant Geography (3 cr). Spatial relations of plants and plant communities as determined by intrinsic factors such as genetics and evolution, and extrinsic factors such as geography, geology, climate, and climatic change; mechanisms of distribution, discontinuity patterns. One 3-day field trip. Prereq: perm. (Alt/lyrs)

Biol WS538 Physiology and Biochemistry of Neuropeptides (3 cr). WSU Neuro/V Ph 537.

Biol 539 Physiological Ecology (3 cr). Physiological adaptations to various environmental and habitat conditions and their ecological consequences. Two lec and one 3-hr lab a wk. Recommended prereq: Biol 311.

Biol WS543 Ion Channels (3 cr). WSU Neuro 543.

Biol 545 Principles of Systematic Biology (3 cr). The inference of evolutionary trees (phylogeny) and the processes that generate biodiversity from analyses of morphological, molecular, and behavioral data; uses of phylogenies in testing evolutionary and other hypotheses at both inter and intraspecific levels. Additional projects/assignments reqd for grad cr. Two hrs of lec and one 3-hr lab a wk. Prereq: PSic 205 or Biol 213 and Biol 210. (Spring, Alt/lyrs)

Biol 551 Seminar on Reproductive Biology (1 cr) Current topics in reproductive biology. Prereq: Grad standing.

Biol 552 Professional Development for Biologists (3 cr) Oral and written presentation skills for communicating scientific information, including grant writing and data presentation for manuscripts and seminars. (Spring only) Prereq: Grad standing.

Biol 553 Ethical Issues in Biological Research (1 cr) Practical ethical issues for biologists. (Spring only) Prereq: Grad standing.

Biol 557 Advanced Plant Molecular Biology (3 cr). Molecular biology of plant organelles: structure of chloroplast and mitochondrial genomes and their replication; transcription, translation, and regulation of organelle genes and their interaction with nuclear genomes; genetic engineering of plant organellises-herbicide resistance, cytoplasmic male sterility. Prereq: One semester of biochemistry/or genetics

Biol 558 Reproductive Biology of Fishes (2 cr) A graduate level course covering all aspects of the reproductive biology of fishes. The class will meet once per week for 2 hours; the first hour will be used for a formal lecture, the second hour will be used for informal student presentations/discussion of current literature topics or assigned readings in the field. Prereq: Grad standing. (Spring only, Alt/lyrs)

Biol WS564 Brain-Endocrine Interactions (3 cr). WSU Neuro/V Ph 564.

University of Idaho

COURSES

BUS 340 Business Systems (4 cr). May be used as core credit in J-3-d. Open only to undergraduate CBE majors. Introduction to business as a general system; consideration of external environmental issues using an economy-industry-company framework of analysis and its extension to global scanning; discussion of socio-political forces, domestic and foreign financial markets, the role of technology in organizations; discussion of valuation models and legal issues facing organizations; examination of organizational subsystems including those responsible for generating revenues, producing the product or service, and providing support; a comprehensive integrative case is used to illustrate these ideas. May involve evening exams. Coreq: Bus 340 and 342.

BUS 342 Product and Process Planning (3 cr). May be used as core credit in J-3-d. Open only to undergraduate CBE majors. An overview of the marketing, engineering, financial, and production decisions involved in developing new products and determining the product mix; examination of the theory, tools, and approaches that can be used to assist managers in making effective new product and process decisions; specific topics include consumer behavior, marketing research, optimization techniques, capital budgeting, and product and processes design using Total Quality Management; a comprehensive integrative case is used to illustrate these ideas. May involve evening exams. Coreq: Bus 340 and 341.

BUS 343 Planning and Decision Making in Organizations (2 cr). May be used as core credit in J-3-d. Open only to undergraduate CBE majors. An overview of the managerial planning process with a focus on business decision making through the collection and analysis of data; decision-making models and approaches, sources of information, value of information, pro-forma financial analysis, and forecasting; a comprehensive integrative case is used to illustrate these ideas. May involve evening exams. Prereq: Bus 342. Coreq: Bus 344, Bus 345, and Act 311. Prereq or coreq: Engl 207, 208, 209, 313, or 317.

BUS 344 Managing the Firm’s Resources (3 cr). May be used as core credit in J-3-d. Open only to undergraduate CBE majors. An overview of the decisions necessary for the effective management of the firm’s financial, human, and information resources; topics include: management of the firm’s financial structure, dividend policy, credit analysis, attracting, maintaining, and developing the work force; systems planning, requirements analysis, and data design; a comprehensive integrative case is used to illustrate these ideas. May involve evening exams. Coreq: Bus 343 and 345.

BUS 345 Business Operating Decisions (3 cr). May be used as core credit in J-3-d. Open only to undergraduate CBE majors. An overview of the business operating decisions associated with creating demand for the firm’s products and services as well as producing the outputs; a systems approach is used to illustrate how the various business functions and support staff interact in executing these decisions; examination of the use of information technology to facilitate integration; a comprehensive integrative case is used to illustrate these ideas. May involve evening exams. Coreq: Bus 343 and 344.

BUS 350 Management Information Systems (3 cr). Data processing applications for business; intro to information systems; data base concepts; analysis, design, and implementation of computer-based information systems and consideration of associated problems. May involve evening exams.

BUS 351 Introduction to Electronic Commerce (3 cr). Introduction to the economic, legal, and management of e-commerce. Discussion of the e-commerce environment, business models, information technology, and management of technology related to the operation of an e-commerce business. May involve evening exams. Prereq: Bus 260 or 205.

BUS 352 Modern Information Technology (3 cr). Introduction to IT hardware and software including computers, storage devices, telecommunications equipment, and system software. May involve evening exams. Prereq: Bus 250.

BUS 355 Systems Analysis and Design (3 cr). Introduction to analysis and design of modern information systems. May involve evening exams. Prereq or coreq: Bus 343.

BUS 362 Real Property Appraisal (3 cr). Theories and principles in estimating value of natural resources and any attached improvements. This course has been certified by the Idaho Real Estate Commission. BUS 260, Bus 261 or course in essentials of real estate. Coreq: Acct 202 or 205.

BUS 364 Insurance (3 cr). Major branches of insurance; principles and practices.

BUS 370 Production/Operations Management (3 cr). Intro to production/operations management, including product design, process design, facility layout, facility location, job design, work measurement, project management, quality control, inventory management, marketing channels, and operations scheduling and control. May involve evening exams. Prereq: Stat 251 or 271 or 301.

BUS 378 Project Management (3 cr). Planning, organizing, staffing, controlling, and directing an organization’s resources for special projects; topics include matrix organizations, cross functional teamwork, budgeting, work breakdown structures, critical path method (CPM), program evaluation and review techniques (PERT), capacity planning, and project control. May involve evening exams.

BUS 398 (s) Internship (1-3 cr, max 6). Open only to majors in the Dept of Business. Graded P/F. Prereq: perm.

BUS 400 (s) Seminar (cr arr). Prereq: perm.

BUS 404 (s) Special Topics (cr arr). Prereq: perm.

BUS 405 Portfolio Management (3 cr). Application of security selection, portfolio theory and construction; financial futures; risk and return in investments; may involve management of actual portfolios.

BUS 407 Financial Institutions (3 cr). Management and regulation of commercial and noncommercial financial institutions. May involve evening exams. Prereq: Bus 301 or 340-345; Econ 343.

BUS 409 Problems in Financial Management (3 cr). Analysis of selected topics in financial management: asset allocation; capital budgeting and valuation; synthesis of financial management skills through case analysis; written and oral reports and computer simulations. May involve evening exams. Prereq: Bus 302.
Bus 412 Human Resource Management (3 cr). Human resource/personnel management functions: recruitment, training, compensation, performance appraisal, health and safety, labor relations, and legal issues. Prereq: Blaw 265 and Bus 311; OR prereq or coreq: Bus 343.

Bus 413 Leadership and Organizational Behavior (3 cr). Micro oriented treatment of areas including communication, motivation, group process, conflict, leadership style. Prereq: Ageq 391 or Bus 311; OR prereq or coreq: Bus 333.

Bus 414 Entrepreneurship (3 cr). Process of providing solutions to identified consumer needs; characteristics of individuals who succeed; sources of venture ideas; evaluating and developing ideas; business plans; franchising.

Bus 416 Staffing and Compensation (3 cr). Specialized human resource management topics including labor relations, recruitment, selection, and career development of employees; development and administration of monetary-nonmonetary reward programs, job evaluation systems, and wage incentive plans. Prereq: Bus 412.

Bus 418 Organization Design and Changes (3 cr). A study of design and change in effective organizations, including: organization processes, and learning organizations. Prereq: Bus 311; OR prereq or coreq: Bus 343.

Bus 420 Promotional Strategy (3 cr). Marketing management point of view: objectives, methods, strategies, budgets, and measures of effectiveness; campaign management including advertising, public relations, sales promotion, reseller support, personal selling. May involve evening exams. Prereq: Bus 321; OR prereq or coreq: Bus 343.

Bus 421 Marketing Research and Analysis (3 cr). Applied research focusing on marketing information needs for managerial decision making; includes research design, data collection methods, statistical analysis, and use of marketing information systems to forecast market and sales potential, market effectiveness of promotions, and analyze new products and distribution of goods/services. May involve evening exams. Prereq: Stat 251 or 271 and Bus 321; OR prereq or coreq: Bus 343.

Bus 422 Personal Selling and Sales Force Management (3 cr). Personal Selling including prospecting, approaching customers, consultant sales presentations, closing techniques, and sales demonstrations; sales management including recruiting, selecting, training, compensating, motivating, supervising, and directing selling efforts. May involve evening exams. Prereq: Bus 321; OR prereq or coreq: Bus 343.

Bus 423 Internet Marketing (3 cr). Explores how the internet is transforming the marketing mix activities in customer interactions through value-based web models. Topics include web commerce, business models for major industries, web technologies for personalization and customization, web communication strategies, inter distribution channels, auction pricing strategies, customer relationship management, and computer security and privacy issues. May require evening exams. Prereq: Bus 321; OR prereq or coreq: Bus 343.

Bus 424 Pricing Strategy and Tactics (3 cr). Formulation of pricing strategies and tactics for new and existing products and services; survey of pricing dynamics; competitor response to pricing strategies at the firm and product level; assessment of buyer price sensitivity. Prereq: Bus 321 or 345, and Econ 202 or 207.

Bus 425 Retail Distribution Management (3 cr). Analysis of retail operations including location, market selection, capital and physical requirements, store layout, merchandise management, customer relations, channel structure, and channel member relations. May involve evening exams. Prereq: Bus 321; OR prereq or coreq: Bus 343.

Bus 426 Marketing Channels Management (3 cr). Analysis of planning, organization, and control of distribution of goods and services; topics include retail and wholesale institutions, channel member behavior patterns, and vertical marketing systems. Prereq: Bus 321 or Bus 340-345.

Bus ID427 Services Marketing (3 cr). WSU Mktg 327. Survey of concepts addressing distinctive marketing problems and opportunities in service industries, as well as current issues in the IT service sector; includes discussion of strategies for marketing services, emphasizing the distinctive challenges and approaches that make the marketing of services different from marketing manufactured goods. May involve evening exams. Prereq: Bus 321; OR prereq or coreq: Bus 343.

Bus 428 Marketing Management (3 cr). Discussion of major marketing management functions, including market and environmental analysis, as well as marketing planning, strategy, implementation, and control concepts; special emphasis on application of such concepts to the development of a marketing plan that identifies market opportunities and proposes relevant marketing programs for a given case study. May involve evening exams. Prereq: Bus 324, 421, and one Tier 1 marketing elective.

Bus 439 Systems and Simulation (3 cr). Distribution theory, random numbers, modeling concepts and techniques, models of queuing and inventory systems. May involve evening exams. Prereq: Bus 332 or 340-345.

Bus 441 Labor Relations (3 cr). Evolution, structure, and procedures of contemporary labor-management relations; unionization, other concerted activity and employment at will. Prereq: Bus 311 or 340-345.

Bus 452 Business Telecommunications Management (3 cr). Survey of telecommunications management issues in a business environment; topics include local and wide area networks, telephony, public networks, and application of telecommunications technology in strategic business management. Prereq: Bus 352; AND Bus 345.

Bus 454 (s) Current Issues in Information Systems (3 cr, max arr). Discussion of major topics of current importance in information systems. Prereq: Bus 345 and perm.

Bus 455 IS Project (3 cr). Development of information systems and management of IS projects. May involve evening exams. Prereq: Bus 352, 355, and 453.

Bus 456 Quality Management (3 cr). Same as Stat 456. Principles of total quality management, with emphasis on problem solving techniques to continually improve processes; customer-driven quality, management and employee participation, statistical process control, process/product design, and process capability. May include evening exams. Prereq: Stat 251 or 271 and Bus 340-345.

Bus 460 Advanced Student Investment Fund Management (1 cr, max arr). Open only to students participating in the A.D. and J.E. Davis Student Investment Program. “Hands on” experience in investment management; students manage a funded portfolio in terms of establishing objectives, security selection, asset allocation, and portfolio performance. Graded P/F. Prereq: perm.

Bus 461 Retirement Planning and Employee Benefits (3 cr). Study and analysis of the retirement planning process; topics include pensions, employee benefit plans and the regulatory and legislative environment for the retirement field, and the ethics of professional financial planners as it relates to retirement planning. The course is geared towards students who plan to pursue a career in the financial services industry. May involve evening exams. Prereq: Bus 340-345 or graduate standing in the College of Business and Economics. (Fall only)

Bus 462 Principles of Financial Planning (3 cr). Study and analysis of the financial planning process including the assessment of investor risk profiles, construction of comprehensive personal financial statements and financial plans, ethics and responsibilities of financial planners. (Fall only)

Bus 470 Purchasing and Materials Management (3 cr). Overview of materials management function in organizations; includes cooperation of purchasing, logistics, and inventory management. Prereq: Bus 370 or 340-345.

Bus 472 Operations Planning and Scheduling (3 cr). In-depth study of planning and scheduling techniques with emphasis on material requirements planning. May involve evening exams and field trips. Prereq: Bus 370 or 340-345.

Bus 476 Seminar in Operations Management (3 cr). Readings on current issues in operations management and small group projects for analyzing situations faced by operations managers. May involve field trips and/or special projects. Prereq: Bus 370 or 340-345, 456, 472. Prereq or coreq: Bus 470.

Bus 481 International Finance (3 cr). May be used as core credit in J-3-d. Study of financial problems facing business engaged in international activities; foreign exchange risk management, international diversification, multinational capital budgeting, country risk analysis, financing foreign investments, international financial markets. Prereq: Bus 301 and Econ 446; OR Bus 340-345.

Bus 482 International Marketing (3 cr). May be used as core credit in J-3-d. Foreign market considerations; economic, cultural, legal, and political aspects of international markets and how they interact with the marketing mix. Prereq: Bus 321; OR prereq or coreq: Bus 343.

Bus 490 Strategic Management (3 cr). May be used as core credit in J-3-d. Capstone, integrative course; formulation and implementation of competitive strategies; both written and oral reports and cases analyzed. Prereq: Engl 207 or 208 or 209 or 313 or 317; Bus 301, 311, 321, or Bus 340-345; Sr standing.

Bus 499 (s) Directed Study (cr arr). Prereq: perm.

Bus 501 (s) Seminar (cr arr). Prereq: perm.

Bus 502 (s) Directed Study (cr arr). Prereq: perm.

Bus 504 (s) Special Topics (cr arr). Prereq: perm.

Bus 505 (s) Workshop (cr arr). Prereq: perm.

Bus 530 Managing Technical Teams (3 cr). The human side of managing teams of technical people; topics include organizational design, group process, team building, motivation, conflict management, leadership, empowerment, and performance appraisal. May involve evening exams.

Bus 531 Managing the Design Process (3 cr). Principles of management as they relate to the design and development of new products and the improvement of existing products; focus on interrelationships between marketing, engineering, and manufacturing functions; topics include strategic implications of design, marketing strategy as it relates to product design, product life cycles, understanding customer needs, translating customer information into product specifications, use of quality management principles in design, life-to-market compression in product development, concurrent engineering, design for manufacturing, and implications of ISO 9000 on design. May involve evening exams and/or field trips. Prereq: undergraduate degree in engineering or perm.

Bus 533 Strategies for Managing Complex Systems (3 cr). Introduction and application of general systems theory as a framework for understanding system life cycles, system management, and decision making in complex environments; topics include systems approach to problem solving, cost-benefit analysis, risk analysis, uncertainty due to conflict modeled using game theory, simulation, and linear programming. May involve evening exams. Prereq: Stat 251 or 271 or 301, Math 160 or 170.

Bus 534 Management of Technology and Technological Change (3 cr). Introduction to advanced engineering, information, and manufacturing technologies; exploration of opportunities and challenges in the relationship of technological change to the organization; topics include technology life cycles, the use of technology for competitive advantage, information systems, human-technology interactions, and managing changes; technologies considered include computer-aided design/computer-aided manufacturing, computer integrated manufacturing, group technology, flexible manufacturing systems, group decision support systems, and expert systems. May involve evening exams and/or field trips.

Bus 598 (s) Internship (cr arr). Prereq: perm.

Business Law

Joseph J. Geiger, Head, Dept. of Business (225A J. A. Albertson Bldg. 83844-3161; phone 208/885-6975; joeg@uidaho.edu).

Note: No course (CBE or outside the college) that is required in a CBE student’s curriculum may be taken by CBE undergraduates on a P/F basis, with the exception of courses that are taught only on a P/F basis. Only upper-division CBE courses used as free electives may be taken by CBE undergraduates on a P/F basis.

Prerequisite: Enrollment in 400-level business law courses is restricted to students who have completed at least 58 credits. In addition, CBE students must have earned at least a 2.35 GPA in the CBE predictor courses. Students who have not completed the prerequisites to a course for which they are otherwise eligible may register for the course with the instructor’s approval.

Blaw 265 Legal Environment of Business (3 cr). May be used as core credit in J-3. A Law and its relationship to society; legal framework of business enterprises; court organization and operation; private property and contracts as basic concepts in a free enterprise system. May involve evening exams.

Blaw 420 Commercial Law (3 cr). Uniform commercial code and law of agency, partnerships, and corporations. May include evening exams. Prereq: Blaw 265.

Chemical Engineering

Wudneh Admassu, Chair, Dept. of Chemical Engineering (312 Buchanan Engr. Lab. 83844-1021; phone 208/885-6793).

Che 110 Introduction to Chemical Engineering (1 cr). Introduction to chemical engineering career opportunities and process principles including problem solving and documentation skills. Graded P/F.

Che 123 Computations in Chemical Engineering (2 cr). Methods of analyzing and solving problems in chemical engineering using personal computers; spreadsheet applications, data handling, data fitting, material balances, experimental measurements, separations, and equation solving. Coordinated lab-lecture periods.

Che 204 (s) Special Topics (cr arr). Prereq: perm.

Che 299 (s) Directed Study (cr arr). Prereq: perm.

Che 326 Chemical Engineering Thermodynamics (3 cr). Behavior and property estimation for nonideal fluids; phase and reaction equilibria; applications to industrial chemical processes. Prereq: Che 223, Engr 320 and 335, Math 310. Coreq: Chem 305.

Che 330 Separation Processes I (3 cr). Equilibrium stagewise operations, including distillation, extraction, absorption. Prereq: Che 326, Chem 305.

Che 393 Chemical Engineering Projects (1-3 cr, max 9). Problems of a research or exploratory nature. Prereq: perm. of dept.

Che 398 (s) Engineering Cooperative Internship (3 cr). Supervised internship in professional engineering settings, integrating academic study with work experience; requires written report; positions are assigned according to student’s ability and interest. Graded P/F. Prereq: perm.

Che 404 (s) Special Topics (cr arr). Prereq: perm.

Che 423 Reactor Kinetics and Design (3 cr). Chemical reaction equilibria, rates, and kinetics; design of chemical and catalytic reactors. Prereq: Che 223, Math 310, Chem 305.

Che 433 Chemical Engineering Lab I (1 cr). Senior lab experiments in chemical engineering. Prereq: Che 330, 341, 423.

Che 434 Chemical Engineering Lab II (1 cr). Senior lab experiments in chemical engineering. Prereq: Che 330, 341, 423.

Che 441 Statistical Process Analysis (3 cr). Statistical analysis methods used in chemical engineering including design of experiments, reduction of process and product variability, and optimization. Recommended Preparation: Che 223.

Che 445 Digital Process Control (3 cr). Same as ECE 477. Dynamic simulation of industrial processes and design of digital control systems. Two lec and one 3-hr lab a wk. Recommended Preparation: Che 444 (Recommended Preparation for EE majors: ECE 350).

Che 451-452 Environmental Management and Design (3 cr, max arr). Che 452: May be used as core credit in J-3. Same as EnvE and EnvE 451-452. Waste management application projects; projects require original design, working model, and report. May involve week-long trip to national competition. One lec and 3 hrs of lab a wk; weekly team status report meetings plus weekly task reviews with advisor. Prereq: perm (by invitation only).

Che 453-454 Chemical Process Analysis and Design (3 cr). May be used as core credit in J-3. Estimation of equipment and total plant costs, annual costs, profitability decisions, optimization; design of equipment, alternate process systems and economics, case studies of selected processes. Che 453 and 454 are to be taken in sequence. Prereq: Che 330, 341, 423.

Che J440/IDWS-J560 Biochemical Engineering (3 cr). WSU Che E 560. Application of chemical engineering to biological systems including fermentation processes, biochemical reactor design, and biological separation processes. Additional projects/assignments req’d for grad cr. Recommended Preparation: Stat 301. Prereq: Sr or grad standing in science or engineering, and perm.

Che ID&WAS-J475/J45-WSJ-575 Air Pollution Control (2-3 cr). WSU C 408/508. Che 575 same as EnvE 575. Analysis and design of physical and chemical methods of air pollution control; particulate and gas emission control methods, standards for sources. Additional projects/assignments req’d for grad cr. Recommended Preparation: Engr 335.

Che ID&J480-ID&J580 Engineering Risk Assessment for Hazardous Waste Evaluations (3 cr). WSU Che E 580. Quantitative and qualitative approaches to assessing risks to public health and environment from chemical contaminants; toxicology, exposure assessment, risk characterization, and environmental modeling; critical review of specific toxins and aquatic ecotoxicology studies. Additional projects/assignments req’d for grad cr. Recommended Preparation: Biol 100 or 201, Stat 301, and Che 470. Prereq: Sr or grad standing in science or engineering.

Che 491 (s) Seminar (1 cr). Recent developments and topics. Graded P/F. Prereq: Sr standing.

Che 499 (s) Directed Study (cr arr). Prereq: perm.

Che 500 Master’s Research and Thesis (cr arr).

Che 501 (s) Seminar (cr arr). Prereq: perm.

Che 502 (s) Directed Study (cr arr). Prereq: perm.

Che 504 (s) Special Topics (cr arr). Prereq: perm.

Che ID&WAS515 Transport Phenomena (3 cr). Same as ME 515. WSU Che E 510. Advanced treatment of momentum, energy, and mass transport processes; solution techniques. Prereq: B.S.Ch.E. and equivalent of Che 340, 341 or perm.

Che ID&WAS527 Thermodynamics (3 cr). WSU Che E 527. Thermodynamic laws for design and optimization of thermodynamic systems, equations of state, properties of ideal and real fluids and fluid mixtures, stability, phase equilibrium, chemical equilibrium, applications of thermodynamic principles. Prereq: B.S.Ch.E. and equivalent of Che 326 or perm.

Che ID&WAS529 Chemical Engineering Kinetics (3 cr). WSU Che E 529. Interpretation of kinetic data and design of reactors for heterogeneous chemical reaction systems; homogeneous catalysts, gas-solid reactions, gas-liquid reactions; packed bed reactors, fluidized bed reactors. Prereq: B.S.Ch.E. and equivalent of Che 423 or perm.

Che 541 Chemical Engineering Analysis I (3 cr). Mathematical analysis of chemical engineering operations and processes; mathematical modeling and computer applications. Prereq: B.S.Ch.E. and equivalent of Che 444 or perm.

Che ID&WAS545-ID&WAS546 Mass Transfer Operations I-II (3 cr). WSU Che E 546. Diffusional and equilibrium operations. Prereq: B.S.Ch.E. and equivalent of Che 341 or perm.

Che 570 Hazardous Waste Management (3 cr). See Che J475/J575.

Che 571 Advanced Plant Design (3 cr). WSU Che E 571. Design of process plants for optimum costs and economic return; scale-up of pilot plants. Prereq: B.S.Ch.E. and equivalent of Che 453 or perm.

Che ID&WAS575 Air Pollution Control (2-3 cr). See Che J475/J575.

Che 579 Hazardous Waste Site Remediation Design (3 cr). Same as EnvE 579. Characterization of hazardous waste sites, identification of physical, chemical, and biological corrective action programs and site restoration; includes design problems and case studies to illustrate corrective action and site restoration in compliance with regulations. Prereq: Che 303.

Che 581 Hazardous Waste Management Seminar (1 cr). Environmental engineering and science topics related to hazardous waste characterization, cleanup, and regulations; includes case histories, paper, and oral presentation. Prereq: perm.

Che 600 Doctoral Research and Dissertation (cr arr).
PART SIX
Courses

Chemistry

Chem 050 Chemistry Fundamentals (3 cr). Chemical problem solving, SI unit conversion, mole concept, chemical stoichiometry, solution concentration problems, periodic table, chemical formulas and nomenclature, and equation balancing. Graded P/NP. A special fee is charged for this course.

Chem 100 Chemistry and the Citizen (4 cr). May be used as core credit in J-3-B. Not acceptable as a substitute where Chem 101, 111, or equiv is specified. Full credit may be earned in only one of the following: Chem 100, 101, or 111. Nonmathematical descriptive treatment relating key developments of chemistry to modern living. Three lec, dem, and one 2-hr lab a wk. Does not satisfy the prereq for Chem 112. No prerequisite.

Chem 111 Principles of Chemistry I (4 cr). May be used as core credit in J-3-B. Full credit may be earned in only one of the following: Chem 100, 101, or 111. Intensive treatment of principles and applications of chemistry. Three lec, one 3-hr lab, and one optional recitation a wk. Prereq: Chem 050 or adequate score on the chemistry fundamentals exam or satisfy departmental requirement.

Chem 112 Principles of Chemistry II (5 cr). May be used as core credit in J-3-B. Continuation of Chem 111. Some work in inorganic chemistry, kinetics, equilibrium, liquids, solids, acid-base, electrochemistry, nuclear chemistry, thermodynamics, and qualitative inorganic analysis. Three lec, one recitation, and one 3-hr lab a wk. Prereq: Chem 111 or perm.

Chem 121 Glassblowing (1 cr). Techniques used in constructing scientific apparatus from glass. Graded P/F. One 3-hr lab a wk. Prereq or dept. perm.

Chem 200 (s) Seminar (cr arr). Prereq: perm.

Chem 204 (s) Special Topics (cr arr). Prereq: perm.

Chem 253 Quantitative Analysis (5 cr). Fundamental principles and techniques of chemical analysis; intro to sampling, standardization, data evaluation, gravimetric/volumetric methods, and instrumental techniques. Three lec and two 3-hr labs a wk. Prereq: Chem 112. (Fall only)

Chem 276 Carbon Compounds Lab (1 cr). Lab to accompany Chem 275; for students who need only 1 cr of lab. One 3-hr lab a wk. Prereq or coreq: Chem 275 or 277.

Chem 278 Organic Chemistry II (1 cr). One 3-hr lab a wk. Prereq or coreq: Chem 277.

Chem 506 Introduction to Teaching and Research Skills (1 cr). Current publications in chemistry and chemical engineering with reports on typical scientific papers. Prereq: Chem 372 and Sr standing. (Fall only)

Chem 418U/518 Environmental Chemistry (3 cr). Chemistry of atmosphere, soil, and water; pollution monitoring and remediation; treatment of waste in the environment. Additional projects/assignments required for grad cr. Prereq: Chem 253, and Chem 275 or 277, or perm. (Spring only)

Chem 435U/535 Principles of Chemical Instrumentation (2 cr). Practical theory and application of modern analog/digital electronics and small computers to chemical measurement and control systems. Registration for Chem 535 requires completion of an additional term paper or other assignment. One hr of lec and one 3-hr lab a wk. Prereq: Chem 253 or 454, Phys 212, or perm. (Fall only)

Chem 441 Chemical Literature (1 cr). Survey of important chemistry reference works and periodicals; use of these sources. Prereq: perm. (Spring only)

Chem 453U/553 Separation Theory and Chromatography (2 cr). Gas and liquid chromatography and related fields. Students enrolled in Chem 553 are required to complete additional written assignments. Prereq: Chem 306.

Chem 454 Instrumental Analysis (4 cr). For students in chemistry and allied fields. Techniques in operating new and specialized instruments for qualitative and quantitative analysis and analytical methods of an advanced nature. Three lec and one 4-hr lab a wk. Prereq: Chem 253 and 305. Prereq or coreq: Chem 306. (Spring only)

Chem 455 Survey of Analytical Chemistry (3 cr). Fundamentals of modern analytical chemistry. Open only to chemistry M.S. and Ph.D. students. Cr is not allowed in both Chem 454 and 455. Prereq: Chem 306 and perm.

Chem 465 Inorganic Chemistry Laboratory (1 cr). Lab to accompany Chem 464. One 3-hr lab a wk. Coreq: Chem 464. (Spring only)

Chem 466 Survey of Inorganic Chemistry (3 cr). Fundamentals of modern inorganic chemistry. Open only to chemistry M.S. and Ph.D. students. Cr is not allowed in both Chem 463 and 466. Prereq: Chem 306 and perm.

Chem 467/467J Inorganic Spectroscopy (2 cr). Applications of spectroscopic methods to current problems of inorganic and organometallic compounds; topics include molecular and multidimensional NMR, IR and Raman, EPR, mass spectroscopy, Mossbauer spectroscopy, and x-ray crystallography. Additional projects/assignments required for grad cr. Prereq: Chem 306 and 454. (All/ys)

Chem 468 Organometallic Chemistry (2 cr). Structure, bonding, and reaction chemistry of organo-transition metal compounds; applications to homogeneous catalysis. Additional projects/assignments required for grad cr. Prereq: Chem 305-306. Prereq or coreq: Chem 463 or 466 or perm. (All/ys)

Chem 472/272 Rational Design of Pharmaceuticals (3 cr). Synthetic chemical reactivity of medicinal agents, and mechanistic chemistry germane to action of pharmaceuticals. Graduate students are required to write an original research proposal on a topic related to drug discovery. Prereq or coreq: Chem 473, 476 or perm. (All/ys)

Chem 484 Biochemistry Laboratory (2 cr). See MMBB 484.

Chem 491 (s) Research (1-6 cr, max 6). Submission of a report of the research done for placement in the permanent dept files is required. Prereq: perm of dept.

Chem 495 Thermodynamics and Kinetics (3 cr). Prereq: Chem 306 or equiv. (Fall only)

Chem 496 Survey of Physical Chemistry (3 cr). Fundamentals of modern physical chemistry. Open only to chemistry M.S. and Ph.D. students. Cr is not allowed in both Chem 495 and 496. Prereq: Chem 306 and perm.

Chem 497 (s) Practicum in Tutoring (1 cr, max 2). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm.

Chem 498 (s) Internship (cr arr). Prereq: perm.

Chem 499 (s) Directed Study (cr arr). Prereq: perm.

Chem 500 Master's Research and Thesis (cr arr).

Chem 501 (s) Seminar (cr arr). Prereq: perm.

Chem 502 (s) Directed Study (cr arr). Prereq: perm.

Chem 504 (s) Workshop (cr arr). Prereq: perm.

Chem 506 Introduction to Teaching and Research Skills (2 cr). Skills required of teaching assistants in laboratory, recitations, office hours, help sessions; skills required for research; use of library; introduction to faculty research. Graded P/F. Prereq: perm. (Fall only)
Chem 507 (s) Topics in Physical Chemistry (1-9 cr, max 9). Selected topics in modern physical chemistry such as computational quantum mechanics, statistical mechanics, nonequilibrium thermodynamics, group theory, molecular dynamics, theory of condensed phases, or other topics not covered in regularly scheduled courses. Prereq: Chem 495, 496, or perm.

Chem 509-510 Advanced Physical Chemistry (3 cr). Application of quantum theory to chemical bonding, molecular spectroscopy, and molecular structure. Prereq: Chem 306, 495, 496, or perm. (Chem 509: spring only; Chem 510: fall only)

Chem 513 Nuclear Chemistry (2 cr). Intro to artificial and natural radioactivity, tracer methods, and atomic energy. Prereq: Chem 306 or Phys 305 or perm. (Alt/yr)

Chem 541 Biochemistry (3 cr). See MMBB 541.

Chem 550 Radioanalytical Chemistry (2 cr). Fundamental concepts of radiochemistry, including the principles of radioactive decay processes and counting techniques; in-depth treatment of radioanalytical techniques, especially neutron activation and isotope dilution methods; decay processes as sources of x-rays; the use of synchotron radiation in analytical chemistry. Prereq: Chem 454, or 455, or perm. (Alt/yr)

Chem 551 Electronic Spectroscopy (2 cr). A brief review of fundamental concepts, including electronic transitions, optical properties of materials, and laws of radiation absorption; detailed coverage of instrumentation used for ultraviolet and visible absorption spectroscopy with regard to optical components, overall design strategy, and signal processing; analytical performance related to these aspects and presented from both theoretical and practical standpoints; in-depth coverage of luminescence spectroscopy, including phosphorescence and fluorescence; atomic spectroscopy (both flame and plasma-based versions), including principles of operation, instrumental requirements, and analytical application; survey of x-ray absorption and fluorescence spectroscopy. Prereq: Chem 454, 455 or perm. (Alt/yr)

Chem 552 Analytical Vibrational Spectroscopy (2 cr). Introduction to vibrational transitions, optical properties of materials, and laws of radiation absorption and emission (including why they are not always obeyed in practice); detailed discussion of instrumentation used for mid-infrared, near infrared, and Raman spectroscopy; illustration of transmission spectroscopy with examples including microscopy and spectral imaging, open-path monitoring, and spectroscopy of aqueous solutions and hyphenated techniques; introduction of time- and phase-resolved measurements; detailed coverage of specular reflection, reflection-absorption of thin films, diffuse reflection, attenuated total reflection spectroscopy, and remote measurements through optical fibers; discussion of application of near infrared spectroscopy to agricultural commodity analysis and process monitoring. Prereq: Chem 454, 455 or perm. (Alt/yr)

Chem 557 (s) Topics in Analytical Chemistry (1-9 cr, max 9). Atomic and molecular analytical spectroscopy; modern electrochemical methods; radiolysis techniques; surface analysis techniques. Prereq: Chem 454, 455, or perm.

Chem 558 Electrochemistry (2 cr). Fundamental concepts of electrochemistry, including the principles of redox processes; in-depth treatment of electroanalytical techniques, especially voltammetric and potentiometric methods; advanced treatment of selected topics, including ultramicro and in vivo electrochemical techniques. Prereq: Chem 454, or 455, or perm. (Alt/yr)

Chem 561 Advanced Inorganic Chemistry (3 cr). Theoretical approach to the underlying principles of inorganic chemistry; integration of theory and descriptive chemistry. Prereq: Chem 306, 463, 466, or perm. (Alt/yr)

Chem 565 (s) Topics in Inorganic Chemistry (1-9 cr, max 9). WSU Chem 508. Coordination compounds; halogens; less familiar elements; clathrate, interstitial, nonstoichiometric compounds; chemical bonding; inorganic reaction mechanisms. Prereq: Chem 463, 466, or perm.

Chem 569 Fluorine Chemistry (2 cr). Brief history of fluorine beginning with its isolation in 1886 through current areas of interest in fluorochemicals; in-depth study of modern aspects of fluorinated compounds and their potential applications today and in the future. Prereq: Chem 463, 466, or perm. (Alt/yr)

Chem 571 (s) Topics in Organic Chemistry (1-9 cr, max 9). Selected topics from the current literature. Prereq: Chem 473, 476, or perm.

Chem 590 Doctoral Research Proposal (1 cr). Taken no later than one semester after completion of cumulative exams; required for advancement to Ph.D. candidacy. Includes review of relevant literature and original research proposal describing the student’s intended research project.

Chem 600 Doctoral Research and Dissertation (cr.arr)

Civil Engineering

Sunil Sharma, Chair, Dept. of Civil Engineering (104 Buchanan Engr. Lab. 8344-1022; phone 208/885-6782).

CE 115 Introduction to Civil Engineering (2 cr). Intro to engineering design process and analysis techniques including problem solving skills, development of software and graphical analysis, data analysis, economic decision making, documentation skills, and use of structured programming concepts in designing personal applications. Prereq: major in civil engineering.

CE 200 (s) Seminar (cr.arr). Prereq: perm.

CE 203 (s) Workshop (cr.arr). Prereq: perm.

CE 204 (s) Special Topics (cr.arr). Prereq: perm.

CE 211 Engineering Measurements (3-4 cr). For engineering and cartography students. Theory and practice; types and distribution of errors; manipulation of instruments; route and land surveying; construction survey; intro to photogrammetry. Two lec and one 3-hr lab a wk; additional 1-hr recitation a wk for 4 cr reqd unless waived by exam. Prereq: Math 143 or 170 or 175, and Engr 105.

CE 218 Elementary Surveying (2 cr). Primarily for nonengineering students. Theory of measurements and manipulation of surveying instruments; application of surveying methods to construction; topographic and land surveys. One lec and one 3-hr lab a wk. Prereq: Math 143.

CE 299 (s) Directed Study (cr.arr). Prereq: perm.

CE 311 Computer Aided Site Engineering Design (3 cr). Design of site engineering projects using land development software to analyze engineering problems and create design drawings. Demonstration of computer aided drafting and design (CADD) methods. Three hours lecture per week. Prereq: CE 211.

CE 322 Hydraulics (3 cr). Applied principles of fluid mechanics; closed conduit flow, hydraulic machinery, open channel flow; design of hydraulic systems. Prereq: CE 215, Math 310, Phys 211, Engr 220 and 335.

CE 323 Hydraulics Laboratory (1 cr). Laboratory exercises on closed conduit flow, hydraulic machinery, open channel flow and mixing process. Ten 1-hr lec, 7 unsupervised lab sessions with hours varying from 2 to 4 hrs each. Prereq or coreq: CE 322. Coreq: CE 315.

CE 325 Fundamentals of Hydrologic Engineering (3 cr). Same as BAE 355. Principles of hydrologic science and their application to the solution of hydraulic, hydrologic, environmental, and water resources engineering problems; application of principles and measurements of precipitation, evaporation, infiltration, and snowmelt in development of rainfall-runoff models applicable to various catchment scales for engineering purposes; some emphasis on urban hydrology problems, stormwater management, and mathematical modeling. Some field exercises. Prereq: Math 310, 351, and Engr 335.

CE 326 Hydrologic Measurement Techniques (1 cr). Same as For 463. The objective of this course is for students to gain practical experience in field and laboratory measurement of various hydrologic processes including basic climatology, precipitation, infiltration, soil moisture, evaporation, and streamflow. Data analysis methods also covered. Laboratory reports required. This course is intended to complement CE 325. Coreq: CE 325/BAE 355 or BAE 351 or For 462 or GeoG 320.

CE 330 Fundamentals of Environmental Engineering (3 cr). Intro to key concepts of environmental engineering, including ecological, chemical, and microbiological processes; human health effects of pollutants; treatment of water, wastewater, sludges, and solid waste; control of air, noise, and agricultural pollution. Two lec and one 2-hr lab a wk. Prereq: Engr 335, Chem 111, CE 215 and Math 310.

CE 342 Theory of Structures (3 cr). Stresses and strains in statically determinate and indeterminate beam, truss, and rigid frame structures; effects of moving loads; matrix displacement method. Two lec and one 3-hr lab a wk. Prereq: Engr 350, Math 275, 310, and Phys 211.

CE 360 Fundamentals of Geotechnical Engineering (4 cr). Soil composition, descriptions, and classification systems; permeability and seepage; capillarity and suction; total, effective, and neutral stresses, compression and volume changes; shear strength, compaction. Two lec, 2 hrs of lab, and 1 hr of recitation a wk. Prereq: CE 215, Engr 335, Engr 350, and Math 310.

CE 372 Fundamentals of Transportation Engineering (4 cr). Intro to planning, design, and operation of highway and traffic; public transportation, and airport systems. Three lec and one 3-hr lab a wk; periodic field data collection and one or two field trips. Prereq: Stat 301 and CE 211. Coreq: Eng 317.

CE 400 (s) Seminar (cr.arr). Prereq: perm.

CE 402 Applied Numerical Methods for Engineers (3 cr). Approximate and numerical methods for solution of systems of linear and nonlinear equations, initial value, boundary value, and partial differential equations with practical applications, analysis of error, improvement of accuracy, and numerical and matrix techniques for computation by digital computer. Prereq: Math 310 and a high level programming language.
CE 403 (s) Workshop (cr arr). Prereq: perm.
CE 404 (s) Special Topics (cr arr). Prereq: perm.

CE 421 Engineering Hydrology (3 cr). Same as BAE ID451. Hydrologic cycle as applied to engineering projects; hydrograph routing; design hydrographs; intro to hydrologic simulation. Prereq: BAE 355 or CE 325.
CE ID&WS-J422/JD-J522 Hydraulic Design (3 cr). WSU CE 450. Hydraulic design of open channel and closed conduit conveyance structures, control structures, protective structures and system oriented problems. Extra design projects or different design projects for grad cr. One field trip. Prereq: CE 322 or equiv, Engr 360, or perm.
CE 428 Open Channel Hydraulics (3 cr). See BAE 458.
CE 431 Design of Water and Wastewater Systems I (3 cr). Application of basic engineering science to treatment of domestic and industrial water supplies; treatment and disposal of domestic sewage and industrial wastes. Two lec and one 3-hr lab a wk. Prereq: CE 322, 330, Engr 335, or perm.
CE J433/J533 Water Quality Management (3 cr). CE 533 same as EnEv 543. Physical, chemical, and biological techniques for analysis of water and wastewater quality management problems; development of design criteria for corrective systems. Additional projects/assignments reqd for grad cr. Two lec and one 2-hr lab a wk. Prereq: perm.
CE WS435 Hazardous Waste Engineering (3 cr). WSU CE 418.
CE 441 Reinforced Concrete Design (3 cr). Strength design method in accordance with latest ACI code. Two lec and one 2-hr lab a wk. Prereq: CE 342.
CE WS442 Prestressed Concrete Design (3 cr). WSU CE 434/534.
CE WS443 Design of Timber Structures (3 cr). WSU CE 436.
CE 444 Steel Design (3 cr). Structural steel design using latest AISC specifications. Two lec and one 2-hr lab a wk. Prereq: CE 342.
CE ID&WS-J445/ID&W-J545 Matrix Structural Analysis (3 cr). WSU CE 531. Formulation of the analysis of trusses, beams, and frames using the stiffness method of structural analysis; development of element properties, coordinate transformations, and global analysis theory; special topics such as initial loads, member and joint constraints, modification procedures. Special project demonstrating mature understanding of material properties reqd for grad cr. Prereq: CE 342 or perm.
CE 460 Geotechnical Engineering Design (3 cr). Same as GeoE 462. Applications of soil mechanics in design of earth retaining structures, shallow and deep foundations, embankments, slopes, and excavations. Prereq: CE 360.
CE 473 Highway Design (3 cr). Planning, horizontal and vertical alignments, field data collection, location and design of highway systems. Demonstrated competence in the operation of computerized design and analysis programs; computer based design and analysis software. Two lec and one 3-hr lab a wk. Prereq: CE 211 and perm. Coreq: CE 372.
CE ID474 Traffic Systems Design (3 cr). WSU CE 474. Analysis and design of network traffic systems; system evaluation using computer optimization and simulation; development and testing of alternative system designs. Two lec and one 3-hr lab a wk, field data collection and field site visits. Prereq: CE 372 or perm.
CE ID475 Pavement Design and Evaluation (3 cr). WSU CE 473. Pavement design processes; stress-strain analysis in multi-layer elastic system; materials selection and characterization methods; traffic loads, design methods for flexible and rigid pavements; performance evaluation of existing pavements; condition survey and ratings; introduction to pavement maintenance and rehabilitation techniques. Prereq: CE 357 or equiv, or perm.
CE 482 Project Engineering (3 cr). Modern project engineering techniques for planning, scheduling, and controlling typical engineering and construction projects; linear programming and other optimization techniques as applied to resource allocation; microcomputer applications are emphasized and appropriate software used throughout the course. Prereq: Stat 251, 301, or equiv, and senior standing or perm.
CE ID484 Engineering Law and Contracts (2 cr). WSU CE 462. Contract law and application to engineering services agreements and construction contracts; specifications, agency, torts, professional liability, and alternate dispute resolution. Prereq: Sr standing in engineering.
CE 491 Civil Engineering Professional Seminar I (1 cr). Employment and technical topics; preparation and presentation of professional paper. Course to be taken in last semester before graduation. Graded P/F. Prereq: Sr standing in civil engineering.
CE 492 (s) Professional Society Project (1 cr, max 2). May be used as a technical elective by CE majors. Major participation in a student project sponsored by one or more professional society chapters; students schedule, manage, and complete the project, make written and oral presentations, and present the project results to the sponsoring professional engineering society. Prereq: Jr standing in CE and perm.
CE 493-494 Senior Design Project (1-3 cr, max 4 cr). May be used as coreq credit in J-3-d. One or two semester comprehensive civil engineering design project. Requires integration of skills acquired in civil engineering elective courses, written reports, and oral presentations. May be used as capstone design coreq credit in J-3-d and e. Prereq: Sr standing in CE and perm.
CE 499 (s) Directed Study (cr arr). Prereq: perm.
CE 501 (s) Seminar (cr arr). Conferences and reports on current developments.
CE 502 (s) Directed Study (cr arr). Prereq. perm.
CE 503 (s) Workshop (cr arr). Prereq. perm.
CE 504 (s) Special Topics (cr arr). Prereq. perm.
CE 519 Fluid Transients (3 cr). Same as ME 519. Development of concepts and modeling techniques for unsteady flow of liquid and gas in piping systems; extensive computer programming used to develop tools for analysis, design, and control of transients. Prereq: Math 310 and Engr 335. (Althys)
CE 520 Fluid Dynamics (3 cr). See ME J420/J520.
CE ID&WJ521 Sedimentation Engineering (3 cr). WSU CE 517. Intro to river morphology and channel responses; fluvisal processes of erosion, entrainment, transportation, and deposition of sediment. Prereq: CE 428 or perm.
CE 5122 Hydraulic Design (3 cr). See CE J422/J522.
CE ID&WJ524 Water Resources Planning (3 cr). WSU CE 582. Use of water resources; provision for domestic water supply, power, flood control, navigation, irrigation, and recreation; design and feasibility problems; guest lecturers. Prereq. perm.
CE 526 Aquatic Habitat Modeling (3 cr). The course objective is to learn the underlying principles of the component parts of aquatic habitat modeling, to be able to perform such projects in riverine ecosystems including project design, data collection, data analysis and interpretation of the results and to learn the use of computational aquatic habitat models.
CE 528 Stochastic Hydrology (3 cr). Analyses and evaluation of hydrologic data and time series; application of stochastic models to data generation and record extension (daily and storm precipitation, monthly and annual streamflows); regression and autocorrelation analyses; extensive computer applications for data analysis and synthesis. Prereq: CE 325, introductory statistics course.
CE 529 Natural Channel Flow (3 cr). See BAE 555.
CE ID&WJ531 Environmental Engineering Unit Operations (3 cr). WSU CE 541. Same as EnEv 531. Analysis and design of physical and chemical operations of water and wastewater treatment; flow models, sedimentation, flocculation, filtration, and water conditioning. Prereq: perm.
CE 533 Water Quality Management (3 cr). See CE J433/J533.
CE ID&WJ534 Environmental Engineering Unit Process (3 cr). WSU CE 542. Same as EnEv 542. Aerated system design, biological oxidations, growth kinetics, process design of suspended growth and fixed film aerobic and anaerobic systems, biological nutrient removal, land treatment systems. Prereq: CE 431 or perm.
CE 540 Continuum Mechanics (3 cr). See ME 540.
CE ID&WJ541 Reliability of Engineering Systems (3 cr). WSU CE 531. Same as ME 583. Fundamentals of reliability theory, system reliability analysis including common-mode failures and fault tree and event tree analysis, time-dependent reliability including testing and maintenance, propagation of uncertainty, human reliability analysis, practical applications in component and system design throughout the semester. Prereq: perm.
CE ID&WJ542 Advanced Design of Steel Structures (3 cr). WSU CE 537. Composite action, hybrid sections, plate girders, curved girders, fatigue design, splices and connections, load combinations, load distribution, computer modeling and analysis. One 1-day field trip. Prereq: CE 444 or perm.
CE ID&WJ543 Dynamics of Structures (3 cr). WSU CE 512. Behavior of structures under impact, impulse, and seismic loads. Prereq: CE 441, 444, and Math 310. (Althys)
CE ID&WJ546 Finite Element Analysis (3 cr). Same as ME 549. WSU CE 532. Formulation of theory from basic consideration of mechanics; applications to structural engineering, solid mechanics, soil and rock mechanics; fluid flow. Prereq: ME 341 or CE 442.
CE ID&WJ547 Advanced Reinforced Concrete (3 cr). WSU CE 533. Composite design; slab design; limit state design; foiling; retaining walls; deep beams; brackets and corbels; torsion; seismic design; shear walls. Prereq: CE 441.
CE WS449 Advanced Topics in Structural Engineering (3 cr). WSU CE 537.
CE ID&WJ556 Properties of Pavement Materials (3 cr). WSU CE 557. Design of asphalt and portland cement concrete mixes; physical and mechanical properties; characterization methods; effects of aggregate and binder constituents; modification and grading techniques; laboratory and in-situ evaluation methods; applications of highway and airport materials. Three 1-hr lec a wk and a variable number of lab hrs for demonstration. Prereq: CE 357 or equiv, or perm.
CE 557 Mechanical Properties of Elastic and Nonelastic Materials (3 cr). Procedures for determining stress, strain, and modulus of materials used in construction, and for evaluating their performance with changes of time and frequency, temperature, and moisture under various modes of loading.

CE IDS52 Advanced Foundation Engineering (3 cr). WSU C E 528. Consolidation theories, stress and strain distribution, bearing capacity and settlements of shallow and deep foundations, pile group behavior; theory of subgrade reaction, mat foundations, laterally loaded piles. Prereq: CE 360 or perm.

CE 563 Seepage and Earth Dams (3 cr). See GeoE 535.

CE IDWS556 Earthquake Engineering (3 cr). WSU C E 524. Review of geological and seismological factors that influence design; seismic wave propagation; earthquake parameters; probabilistic hazard assessment; dynamic soil properties; response spectra; computer applications; earthquake resistant designs. Prereq: CE 360 or equiv; or perm.

CE WS557 Soil and Site Improvement (3 cr). WSU C E 425/425S.

CE IDWS556 Advanced Topics in Geotechnical Engineering (2-4 cr, max. 9). WSU C E 511. Soil dynamics, geotechnical earthquake engineering, theoretical soil mechanics, numerical methods in soil mechanics, and geohydrology, engineering geology, cold regions geotechnique.

CE IDWS551 Traffic Flow Theory (3 cr). WSU C E 501. Introduction to elements of traffic flow theory including principles of traffic stream characteristics, capacity, queueing theory, and shock waves; application of traffic flow theory to freeway and arterial traffic flow problems. Prereq. perm. (Althys)

CE IDWS552 Intersection Traffic Operations (3 cr). WSU C E 501. Application of traffic simulation models to the design and operations of traffic facilities, including intersection, arterials; assessment and design of traffic signal timing strategies. Prereq: perm. (Althys)

CE IDWS553 Transportation Planning (3 cr). WSU C E 501. Concepts and methods of transportation planning, including network modeling, travel demand forecasting, and systems evaluation of multi-modal transportation systems. Prereq: perm. (Althys)

CE IDWS554 Public Transportation (3 cr). WSU C E 501. Concepts and principles of planning and operations of public transportation systems, including bus transit, rail transit, and paratransit modes. Prereq. perm. (Althys)

CE IDWS555 Advanced Pavement Design and Analysis (3 cr). WSU C E 572. Design of new and rehabilitated asphalt and Portland Cement concrete pavements, mechanistic-empirical design processes, performance models, deflection-bias and stress-based structural analysis, remaining life analysis and overlay design, environmental effect, long-term pavement performance (LTPP), and introduction to research topics in pavement engineering. Prereq: CE 475 or equiv; or perm.

CE IDWS557 Pavement Management and Rehabilitation (3 cr). WSU C E 566. Overview of Pavement Management Systems; PMS project and network levels; serviceability concepts and performance models; PMS data needs; rehabilitation and maintenance strategies; life cycle cost analysis; implementation of PMS in design, construction, maintenance, and research; examples of working PMS; maintenance and rehabilitation of asphalt and concrete pavements. Prereq: CE 475/575 or equiv, or perm.

CE 578 Highway Traffic Operations (3 cr). Theory of two-lane highway and freeway operations, application of traffic simulation models for the design and operations of highways, development and assessment of freeway management and control strategies including Intelligent Transportation Systems applications, field data collection and analysis. Prereq. perm. (Althys)

CE 597 (s) Practicum (cr arr). Prereq: perm.

CE 598 (s) Internship (cr arr). Prereq: perm.

Comm 233 Interpersonal Communication (3 cr). May be used as core credit in J-3-d. Communication concepts and skills applied to relationship management; communication process, listening, self-disclosure, perception, conflict.

Comm 235 Organizational Communication (3 cr). Philosophy, methods, and designs for studying communication system of a complex organization.

Comm 299 (s) Directed Study (cr arr). Prereq: perm.

Comm 331 Conflict Management (3 cr). May be used as core credit in J-3-d. Principles of effective conflict management in various settings; emphasis on styles of conflict, power, goals, strategies and intervention techniques.

Comm 332 Communication and the Small Group (3 cr). Problem-solving methods; performing as a group leader or as a group member; small group behavior.

Comm 335 Intercultural Communication (3 cr). May be used as core credit in J-3-d. Survey of current theories and research on intercultural communication; development of critical thinking skills in regard to intercultural interaction and communication styles.

Comm 400 (s) Seminar (cr arr). Prereq: perm.

Comm 403 (s) Workshop (cr arr). May be graded P/F. Prereq: perm.

Comm 404 (s) Special Topics (cr arr). Prereq: perm.

Comm 431 Applied Business and Professional Communication (3 cr). Principles, skills development, and practical applications of public communication within business and other organizational contexts; emphasis on using media for creating business presentations and on the role of effective communication in career management and civic and community development. Recommended Preparation: Comm 101 and 235.

Comm 432 Gender and Communication (3 cr). The nature of interpersonal communication and gender; identification, interpretation, and analyses of theories that offer explanations of gender and culture in interpersonal interactions. Recommended Preparation: Comm 233. (Althys)

Comm 433 Organizational Communication Theory and Research (3 cr). Overview of current theory and research in organizational communication; interpretive and critical perspectives on organizational culture, organizational change, organizational and intergroup relationships, management systems and power relationships. Recommended Preparation: Comm 235.

Comm 434 Advanced Dispute Management (3 cr). Examination of third party roles, responsibilities, and processes in conflict management and survey of alternative dispute resolution techniques; focuses on theory and practices of facilitation, mediation and negotiation; involves demonstrations and simulations of facilitation, mediation, and negotiation. Can be counted toward certification by Idaho Mediation Association. Prereq: Comm 331 or perm. (Spring only).

Comm 446 History of Communication Studies (3 cr). Survey of the history of the field of communication studies with a special focus on communication campaigns.

Comm 449 Theory in Communication (3 cr). May be used as core credit in J-3-d. Interdisciplinary approach to understanding the process of communication.

Comm 455 Communication Research Methods (3 cr). Aims and methods of qualitative and quantitative communication research.

Comm 491 Communication and Aging (3 cr). A communication perspective is adopted to examine the aging process and the ability of individuals to successfully adapt to aging; issues addressed are theory, research on factors associated with communication and aging.

Comm 498 (s) Internship (cr arr). Graded P (pass)/F (fail). Prereq: perm.

Comm 499 (s) Directed Study (cr arr).

Computer Science

Robert Hiromoto, Chair, Dept. of Computer Science (235 Janssen Engr. Bldg. 83844-1010; phone 208/885-6589).

Vertically-related courses in this subject field are: CS 120-121.

CS 101 Introduction to Computer Science (3 cr). May be used as core credit in J-3-c. Survey of computer science and topics of importance to computer scientists; includes topics such as the nature of problems, unsolvability, hardware, human factors, security, social, ethical, and legal issues; exposure to practical aspects of computer networks.

Three lectures and one recitation per week. Recommended Preparation: two yrs of high school algebra.

CS 112 Introduction to Problem Solving and Programming (3 cr). May be used as core credit in J-3-c. Intro to fundamental problem solving techniques using the computer; use of a programming language, structured programming concepts; use of fundamental data types, including arrays and structures; basic concepts of computer organization, editing, and program execution; programming lab in which the student solves problems using C++. Prereq: Math 107 or sufficiently high ACT, SAT, or Math Placement Test score to qualify for Math 143.

CS 120 Computer Science I (4 cr). Fundamental programming constructs, Algorithms and problem-solving. Fundamental data structures, Overview of programming languages, Virtual machines, Introduction to language translation, Declarations and types, Abstraction mechanisms, Object-oriented programming. Three lec and one 2-hr lab a wk. Prereq: Math 108 or sufficiently high ACT, SAT, or Math Placement Test score to qualify for Math 143.
PART SIX
Courses

CS 121 Computer Science II (4 cr). Foundations of computer science; data structures, Recursion, Event-driven programming, Object-oriented programming, Basic algorithmic analysis, Algorithmic strategies, Foundations of human-computer interaction and graphics. Three lect and one 2-hr lab a wk. Prereq: CS 120, and Math 176.

CS 127 (s) Programming Language (1-3 cr, max arr). Introduction to computer programming in a selected language. Prereq: perm.

CS 150 Computer Organization and Architecture (3 cr). Digital logic and digital systems, Machine level representation, and implementation of Assembly language, Memory organization and architecture, interfacing and communication, Functional organization, Multiprocessing and alternative architectures. Prereq: CS 120.

CS 204 (s) Special Topics (cr arr). Prereq: perm.

CS 210 Programming Languages (3 cr). Major features of good programming languages, with primary emphasis on language features and their role in writing good software; programming languages as tools; various types of languages, including procedural, data-flow, functional, and object-oriented languages. Prereq: CS 121.

CS 214 Background Study in Data Structures (1 cr). Not applicable toward any UI undergraduate degree; valid only for removal of CS 121 deficiency for graduate students who do not have B.S.C.S.. See CS 121 for course description. Graded P/F based on comprehensive examination at completion of course.

CS 240 Computer Operating Systems (3 cr). Overview of operating systems. Operating system principles, Concurrency, Scheduling and dispatch, Memory management, Introduction to renel-centric computing, Communication and networking, OS security. Prereq: CS 121 and 150.

CS 299 (s) Directed Study (cr arr). Prereq: perm.

CS 336 Introduction to Information Assurance (3 cr). Introduces the confidentiality, availability and integrity goals of information systems; resistance, recognition and response categories of assurance. Focus on computer security and survivability, including cryptography, network security, general purpose operating system security, dependability and special purpose systems for high assurance security and dependability. Prereq: CS 240.

CS 360 Database Systems (3 cr). Study of database design and implementation; comparison of basic models (entity-relationship, Hierarchical, network, relational); study of query languages; discussion of issues of integrity, security, dependences, and normal forms.

CS 371 Expert Systems (3 cr). Theory and practice of knowledge engineering; knowledge acquisition, representation, coding, testing; individual project reqd.

CS 381 Software Engineering I (3 cr). Current topics in development of software systems; software life cycle model, requirements definition, design, verification and validation, and project management techniques. Prereq: CS 270 or perm.

CS 382 Software Engineering II (3 cr). Continuation of CS 381, Individual projects are developed. Prereq: CS 381.

CS 385 Theory of Computation (3 cr). See Math 385.

CS 386 Derivational Programming (3 cr). Introduction of a practical approach based on methodically developing programs from their specifications; focus on developing reliable programs with attention to real issues.

CS 398 (s) Computer Science Cooperative Internship (1-3 cr, max 3). Supervised internship in professional computer science settings, integrating academic study with work experience; requires formal plan of activities before co-op assignment and final written report evaluated by on-campus faculty members. Graded P/F. Prereq: perm.

CS 401 Contemporary Issues in Computer Science (1 cr). Ethical, legal, and intellectual property issues; current research topics, and other issues of importance to the professional computer scientist. Graded P/F. Prereq: Sr standing in CS.

CS 404 (s) Special Topics (cr arr). Prereq: perm.

CS J413/J513 Concurrent Systems (3 cr). Issues of parallel computer architecture considering a hardware/software approach; topics include convergence of parallel architectures, fundamental design issues, parallel programs, programming for performance, workload-driven evaluation, shared memory multiprocessors, snoopy-based multiprocessor design, scalable multiprocessors, cache coherence, hardware software tradeoffs, interconnection network design, latency tolerance, and future directions of concurrent systems.

CS 414 Object-Oriented Design (3 cr). Concepts and technologies used in object-oriented design (OOD) and object-oriented programming (OOP); current topics in OOP discussed; concepts illustrated with the design and implementation of both individual and group projects.

CS J415/J515 Computational Biology: Sequence Analysis (3 cr). Design and analyze algorithms that address the computational problems posed by biological sequence data, such as DNA or protein sequences. Topics may include: comparing sequences (from genes to genomes), database searching, multiple sequence alignment, phylogenetic inering, gene discovery and identification, and genome assembly. Additional class presentation and/or paper required for graduate credit. Prereq: Knowledge of high level programming language, basic probability theory, basic molecular biology, or perm.

CS J420/J520 Data Communication Systems (3 cr). Concept and terminology of data communication; communication, equipment, and signaling; local and TCP/IP), architectures, transmission alternatives, regulatory issues and network management. Additional projects/ assignments reqd for grad cr.

CS J424/J524 Advanced Computer Graphics (3 cr). Graphical user interface; rendering for realism including shading, shadows and textures; fractals; raster displays, pinnaps, and animation; 3D curves and surfaces; color theory; hidden surfaces; ray tracing; games. Additional work required for graduate credit. Prereq: CS 324, Math 175. (Spring only)

CS J435/J535 Foundations of Modern Programming Methods (3 cr). The seminal papers in computer science that form the foundation of today's programming methodology. detail and analysis of papers on theory of programming, design techniques, code development, and new methods like visual programming and object-oriented design; major influences on how and why we build programs today. Additional projects/assignments reqd for grad cr. Prereq: Jr standing and knowledge of at least two other programming languages.

CS J436/J536 Advanced Information Assurance Concepts (3 cr). (CS 442) Cryptographic systems, coding and decoding of messages; network, database, and operating system security issues, capability and access-control mechanisms; current trends and research in mandatory and discretionary security policies. Additional projects/ assignments reqd for grad cr. Prereq: CS 336.

CS ID-J438/ID-J538 Network Security (3 cr). (CS 423) WSU Cpt S 425. Practical topics in network security; policy and mechanism, malicious code; intrusion detection, prevention, response; cryptographic techniques for privacy and integrity; emphasis on tradeoffs between risk of misuse, cost of prevention, and societal issues; concepts implemented in programming assignments. Additional projects/assignments reqd for grad cr. Recommended Preparation: Knowledge of C or C++. Prereq: CS 336.

CS J441/J541 Advanced Operating Systems (3 cr). Principles of contemporary operating systems, network and distributed computer systems; sequential processes including, process synchronization, device management, file systems, memory management, and protection and security. Additional work required for graduate credit. Prereq: CS 240.

CS ID/W&S445 Compiler and Translator Design (4 cr). WSU Cpt S 452. Algorithms used by the following system software: assemblers, macro-processors, interpreters, and compilers; compiler design techniques and code optimization; all concepts implemented in major programming assignments.

CS J447/J547 Computer and Network Forensics (3 cr). Competence in using established forensic methods in the handling of electronic evidence; rigorous audit/logging and data archival practices; prevention, detection, apprehension, and prosecution of security violators and cyber criminals; identifying and correcting computer vulnerabilities in a way that is smart, prudent, and responsible. Additional work required for graduate credit. Prereq: CS 336 and perm.

CS J449/J549 Fault-Tolerant Systems (3 cr). Same as ECE J449/J549. Design, modeling, analysis and integration of hardware and software to achieve dependable computing systems employing on-line fault tolerance; theory and fundamental concepts of designing reliable systems; analytical evaluation techniques, faults and advances in ultra-fault-tolerant distributed systems; non-standard software systems; case studies include the Space Shuttle, Airbus, and Boeing fly-by-wire primary flight computers as well as systems in reliable data bases and financial markets. Additional projects and assignments reqd for grad cr. Prereq: ECE 441 or perm.

CS J470/J570 Artificial Intelligence (3 cr). Concepts and techniques involved in artificial intelligence, Lisp, goal-directed searching, history trees, inductive and deductive reasoning, natural language processing, and learning. Extra term paper reqd for cr or S/U.

CS J472/J572 Evolutionary Computation (3 cr). Solving computation problems by "natural" options; simulates natural evolution using analogues of mutation, crossover, and other genetic transformations on representations of potential solutions; standard EC techniques such as genetic algorithms and evolutionary programming, mathematical explanations of why they work, and a survey of some applications; the focus is on solving real-world problems using projects. Graduate-level research and possible paper or presentation required for grad cr.

CS 480 Design--Individual Project (4 cr). Formal development techniques applied to definition, design, coding, testing, and documentation of a computer programming project; each student completes an individual project. Two lec a wk; significant lab work reqd. Prereq: Engl 317 and Sr standing in CS.

CS 481 Senior Capstone Design (4 cr). Application of formal design techniques to development of a large computer science project performed by students working in teams. Significant lab work reqd. Prereq: CS 382 or Engl 317, or Consent.

CS J482/J582 Software Project Management (3 cr). Techniques for planning, organizing, scheduling, and controlling complex software system development and support projects. Additional projects/assignments reqd for grad cr. Prereq: CS 381 or 480 or perm.

COURSES
CS 484/J584 Software Quality Assurance (3 cr). Requirements to ensure that a software product conforms to established technical requirements; strategies for implementation and management of SQA, product reviews, test plans and procedures, audits, configuration management, and reliability assessment; concept of software quality. Preparation: CS 381. Prereq: CS 381.

CS 585 Software Process Management (3 cr). Systematic software development from management perspective that centers on constituent tasks and their interrelationships; evaluation of software development process maturity and means to improve process maturity. Additional projects/assignments reqd for grad cr. Prereq: CS 381.

CS 499 (s) Directed Study (cr arr). Prereq. perm.

CS 501 (s) Seminar (cr arr). Prereq. perm.

CS 502 (s) Directed Study (cr arr). Prereq. perm.

CS 504 (s) Special Topics (cr arr). Prereq. perm.

CS 507 Fundamentals of Research (3 cr). See For 510.

CS IDAWS510 Theory of Programming Languages (3 cr). WSU Cpt S 518. Advanced topics in programming language theory including formal syntax, formal semantics, denotational semantics, and type theory; principles of programming language design are stressed; not a comparative language class. Coreq: CS 385 or equiv.

CS 515 Computational Biology: Sequence Analysis (3 cr). See CS J415/J515.

CS 547 Computer and Network Forensics (3 cr). See CS J447/J547.

CS 548 Survivable Systems and Networks (3 cr). See CS J448/J548.

CS 570 Artificial Intelligence (3 cr). See CS J470/J570.

CS 572 Evolutionary Computation (3 cr). See CS J472/J572.

CS 586 Graduate Project (1-6 cr, max 6). Application of formal design and documentation techniques to the development of computer programming project; project selected in consultation with student’s major professor. Prereq: CS 381, 480 or perm.

CS ID581 Software Engineering Analysis (3 cr). WSU Cpt S 521. Intro to research in software engineering, with emphasis on application of quantitative techniques in the software life cycle; students will develop a command of current software engineering literature; exploration of techniques of mathematical modeling and solutions to software engineering problems.

CS 582 Software Project Management (3 cr). See CS J482/J582.

CS ID583 Software Engineering Measurement (3 cr). WSU Cpt S 523. Measurement methodology is the foundation of the emerging discipline of software engineering; software products are constructed by people engaged in a software development process in a development environment; focus on learning to measure the attributes of these four measurable qualities; examples of software measurement and the applications of these measurements: using these techniques as the basis for the design of software engineering experiments; application of the scientific method in evaluation of programming methods and models; extension of the measurement concepts into the area of statistical modeling. Prereq: CS 581.

CS 584 Software Quality Assurance (3 cr). See CS J484/J584.

CS 590 Computability and Complexity (3 cr). Various models of computation, such as Turing machines, recursive functions, and register machines; relative strengths and weaknesses of these models, with particular attention to uncomputability results; computational complexity as a natural outcome of restrictions to these models. Prereq: CS 385.

CS 596 Computational Complexity (3 cr). See CS J496/J596.

CS 599 (s) Non-thesis Master's Research (cr arr). Research not directly related to a thesis or dissertation. (There is a limit on the number of credits in 599 that can be included on a study plan.) Prereq. perm.

CS 600 Doctoral Research and Dissertation (cr arr).

Conservation Social Sciences

Steven J. Holleinhorst, Head, Dept. of Conservation Social Sciences (19 CNR Bldg. 83844-1139; phone 208/885-7911; ccss@uidaho.edu; www.cnrhome.uidaho.edu/ccss)

CSS WS181 Introduction to Hospitality Services Industries (3 cr). WSU HBM 181.

CSS 200 (s) Seminar (cr arr). Prereq. perm.

CSS 203 (s) Workshop (cr arr). Prereq. perm.

CSS 204 (s) Special Topics (cr arr). Prereq. perm.

CSS 235 Society and Natural Resources (3 cr). See For 235.

CSS WS236 Tourism, Society and Business (3 cr). WSU A 235.

CSS ID297 Foundations of Conservation Leadership and Management (2 cr). May be used as core credit in J 3-3d. WSU NATRS 371. Overview of conservation leadership and management from a political, economic, behavioral, and land use management perspective; philosophical, theoretical, historical, and managerial foundations of conservation as they relate to societal trends. Recommended Preparation: NR 101. (Fall only)

CSS 299 (s) Directed Study (cr arr). Prereq. perm.

CSS 302 Wildland Field Ecology (2 cr). Same as Fish/For/Rnge/WLF 302. Field studies of ecological and socio-political processes in terrestrial, aquatic, and human ecosystems at individual, population, community, landscape, regional, and global scales; application of ecological principles to integrated natural resource management. Two weeks all-day field course; immediately following spring semester; overnight field excursions req; special fee assessed. Recommended Preparation: For/CSS 235 and For/Rnge 221.

CSS 304 Conservation Social Sciences Field Studies (3 cr). May be used as core credit in J 3-3d. Field site evaluation of conservation and social science cases. One hundred and twenty hours of instruction during a 12-day field excursion during summer session; pre- and post-visit written and oral assignments; special fee assessed. (Summer only)

CSS 306 Winter Field Ecology (2 cr). Hands-on field study in a winter setting of ecological processes in terrestrial, aquatic, and human ecosystems from the individual to landscape and regional scales; application of ecological principles in a region of dynamic interaction of human and wildland management regimes. Seven days of classes and field laboratories and three days of individual project work. Recommended Preparation: one college-level biology course; chemistry and physics recommended.

CSS 310 Social Research Methods in Conservation (4 cr). Quantitative, qualitative, and mixed approaches to studying social aspects of conservation and the environment; how to choose and apply selective research methods; design, collection, and statistical analysis of primary and secondary data; program evaluation; reporting results; interpreting research literature; lab exercises in research design, data collection, and analysis; and the communication of research issues and findings to lay and professional audiences. Special fee assessed. Threelec and 2 hrs of lab wk. Recommended Preparation: Basic computer skills. Prereq: Stat 251. (Fall only)

CSS WS381 Hospitality Management and Organization (3 cr). WSU H A 381. See Rec 382.

CSS 383 Resource Economics for Environmental Policymaking (3 cr). Application of economic theories and methods to natural resources management and environmental policy-making, with a focus on equitable, efficient provision of private-market and public goods and services; economic analysis of commodity and amenity resource production, including integrated resource decision-making and joint production optimization. Recommended Preparation: Econ 202 or 201. (Fall only)

CSS ID385 Conservation Management and Planning I (3 cr). WSU NATRS 385. Intro to theory, processes, and techniques for the management and planning of conservation systems including conservation organizations, natural areas, and their uses; focuses on resource and user management programs and techniques such as programming, budgeting, financing, contracting, and personnel management processes as well as conservation planning processes including operational, strategic, and long-range planning for natural sites and larger landscapes. Field trips may be required. Prereq: CSS 287 or perm. (Fall only)

CSS 386 Conservation Management and Planning II (3 cr). Advanced theory, processes, and techniques for the management and planning of conservation systems including conservation organizations, natural areas, and their uses; focuses on resource and user management programs and techniques such as programming, budgeting, contracting, and personnel management processes, as well as conservation planning processes including operational, strategic, and long-range planning for natural sites and larger landscapes. Prereq: CSS 310, CSS 385, or perm. (Spring only)

CSS ID387 Environmental Communication Skills (3 cr). WSU NATRS 373. Introduction to communications skills in the context of natural resources, including environmental and cultural interpretation; communication psychology and media applied to noncaptive audiences in natural resource situations. Field trip may be required. Special fee assessed. Prereq: CSS 287 or perm. (Fall only)

CSS 398 (s) Internship (cr arr). Prereq. perm.

CSS 400 (s) Seminar (cr arr). Prereq. perm.
PART SIX
Courses

CSS 401 (s) Practicum in Tutoring (1 cr, max 2). Tutorial services provided by advanced students under faculty supervision. Graded P/F. Prereq: perm.

CSS 403 (s) Workshop (cr arr). Prereq: perm.

CSS 404 (s) Special Topics (cr arr). Prereq: perm.

CSS 470 Interdisciplinary Natural Resource Planning (3 cr). See WLF 470.

CSS 481 Conservation Leadership (3 cr). Generates essential understanding, insight, and skills into leadership of political and organizational systems designed to conserve natural resources. Field trip may be required. Recommended Preparation: CSS 235, 287. (Spring only)

CSS 483 Senior Project Presentation (1 cr). See For 483.

CSS 485 Ecology and Conservation Biology Senior Project (3 cr). Same as Fish/For/Rnge/WLF 485. Professional work experience in natural resources ecology and conservation biology; learning objectives and a specific plan for the internship experience must be developed in For 480 before starting the internship; after completing the internship, students will prepare oral and written presentation of their work experience in For 483. Prereq or coreq: For 480.

CSS ID486 Public Involvement in Natural Resource Management (3 cr). May be used as core credit in J-3-d. WSU NATRS 477. Theoretical and applied concepts of public involvement in both public and private sectors of natural resource management; historical and legal mandates, government agency responsibilities, applied methods and techniques, case studies, and personal experience. Three lec and three hrs of lab a wk; field trip may be reqd. (Spring only)

CSS ID487 Environmental Education (3 cr). WSU NATRS 476. Concept and techniques of environmental education with emphasis on informal education settings such as residential and day-use environmental education centers, nature centers, visitor centers. Field trip may be required. (Spring only)

CSS 489 Personalities and Philosophies in Conservation (2 cr). May be used as core credit in J-3-d. Lives and thinking of people who have significantly influenced conservation practice or issues surrounding it. (Spring only)

CSS 490 Wilderness and Protected Area Management (3 cr). Historical and legal aspects of the wilderness and protected area concepts, conceptual and applied approaches, considering both ecological and sociological elements; recent research. (Spring only, alt/yr)

CSS 491 Wilderness Leadership for Personal Growth (3 cr). Diverse approaches used in wilderness experience programs, theoretical bases for different approaches, and hands-on experience with soft skills and outdoor leadership. Three field trips. (Spring only)

CSS 493 International Land Preservation and Conservation Systems (3 cr). May be used as core credit in J-3-d. An examination of international approaches to land preservation and conservation; comparative analysis of philosophies, methods of implementation (Parks, Biosphere Reserves, RAMSAR sites, etc.), and associated issues and concerns with these social interventions; ramifications of conservation practices for biophysical and social systems. Field trip may be required. (Spring only)

CSS 494 Public Relations for Natural Resources Professionals (3 cr). Overview of applied communication methods necessary for the successful management of forests, wildlife, and other natural resources as well as parks and recreation areas; introduction to public involvement, marketing, public relations, environmental interpretation, and environmental education. (Fall only)

CSS 496 Monitoring Impacts in Protected Areas and Wildernesses (3 cr). Theoretical and applied concepts of identifying, measuring, and monitoring changes in wildlife and protected area ecosystems caused by human influences, including recreation use, management practices, and both on-site and off-site development. Field trips may be reqd. (Spring, alt/yr)

CSS 497 Senior Thesis (2-4 cr, max 4). Independently plan and conduct a thesis project; write and defend the thesis under supervision of an advisor. Prereq: Sr standing and minimum 3.20 GPA or perm.

CSS 498 (s) Internship (cr arr). Prereq: perm.

CSS 499 (s) Directed Study (cr arr). For the individual student; conferences, library, field, or lab work. Prereq: Sr standing, GPA 2.5, and perm.

CSS 500 Master’s Research and Thesis (cr arr). (2 cr) Address basic natural history concepts for environmental education. (2 cr) The teaching practicum is an opportunity to improve teaching methods and techniques and expand professional skills under the guidance of the Tetons School. Teaching at the Tetons School consists of classroom lectures and demonstrations with groups up to 30, as well as field teaching groups of 8 to 10. (Fall only)

CSS 560 Community Ecology for Env. Educators (3 cr) Cover plant and animal community ecology from both a qualitative and quantitative perspective. Course includes: community interaction of plants and animals; community dynamics, succession, and disturbance; basic data collection and statistical analysis of habitat association data; and the effect of abiotic factors on community structure. (Fall only)

CSS 561 Ecological Inquiry for Env. Educators (2 cr) Address basic ecological concepts and natural resource management issues in the Greater Yellowstone Ecosystem (GYE). Emphasis will be placed on developing critical thinking skills and exploring the effects of resource management policy and actions. Course direction will involve moving from a “known facts” way of thinking into the realm of questioning and evaluating the effects of human management of the GYE. (Spring only)

CSS 562 Field Science Teaching (2 cr) Address basic natural history concepts for instructors involved in experiential environmental education with students 12 to 18 years old. Field instructor readings, and constructing models of teaching techniques will be included in the format of the course. The course will focus on how to engage each student to learn ecological principles and apply them in a field teaching setting. (Fall only)

CSS 563 Place Based Env. Education (3 cr) Educating students so that they have the skills and knowledge base in order to begin to understand the human and natural environment in which they live is a complicated endeavor. This course is designed to provide a foundation of educational pedagogy, a survey of place-based literature in areas critical to this educational endeavor, and opportunities for personal and professional application. (Fall only)

CSS 564 Teaching Env. Ed. in a Winter Eviron. (2 cr) Address basic principles of ecology during winter. Emphasis will be placed on field experiences including principles of teaching in a winter environment, winter weather, and organism adaptation to winter. (Sprin only)

CSS 565 Advanced Instructional Strategies in Environmental Education (3 cr) Expand on ecological knowledge of the components of lesson planning (goals, performance objectives, assessment, and state standards) and take lesson planning to a more sophisticated level, to introduce forms of authentic assessment, to increase student familiarity of the variety and options of Env. Ed. curricula, and to explore various theories on teaching and student development, to understand how they relate to lesson planning and teaching students. (Spring only)

CSS 566 Adv. Field Ecology Course Design (5 cr) Address designing field ecology courses that include research, outdoor leadership, and natural history components. Students will be following a process to teach students about ecological information and engage them in the scientific process; a backcountry experience for high school and middle school students; a program on basic bird, mammal, insect, and plant identification and exploration of ecological concepts in skill sets. (Summer only)

CSS 567 Environmental Education Teaching Practicum I (2 cr) The teaching practicum is an opportunity to improve teaching methods and techniques and expand professional skills under the guidance of the Tetons School staff. Teaching at the Tetons School consists of classroom lectures and demonstrations with groups up to 30, as well as field teaching groups of 8 to 10. (Fall only)

CSS 568 Environmental Education Teaching Practicum II (1-2 cr) The teaching practicum is an opportunity to improve teaching methods and techniques and expand professional skills under the guidance of the Tetons School staff. Teaching at the Tetons School consists of classroom lectures and demonstrations with groups up to 30, as well as field teaching groups of 8 to 10. (Spring only)

CSS 569 Environmental Education Teaching Practicum III (2 cr) The teaching practicum is an opportunity to improve teaching methods and techniques and expand professional skills under the guidance of the Tetons School staff. Teaching at the Tetons School consists of classroom lectures and demonstrations with groups up to 30, as well as field teaching groups of 8 to 10. (Summer only)

CSS 570 Residency in Environmental Ed (5 cr) The professional residency experience is an opportunity to improve teaching methods and techniques and expand professional skills under the guidance of the Tetons School staff. Teaching at the Tetons School consists of classroom lectures and demonstrations with groups up to 30, as well as field teaching groups of 8 to 10. (Summer only)

CSS 571 Human Dimensions of Ecosystem Management (3 cr). A survey of research on key concepts, principles, and findings of social sciences pertaining to biophysical and social-ecosystems, approaches for resource management development for diverse human values and benefits, and the role of humans in ecosystems; examines the state-of-knowledge based on recent studies in environmental psychology, community development and planning, rural sociology, and economic valuation and regional economic analyses; explores their significance for understanding human-ecosystem relationships and their possible ramifications for future resource policy and management.

CSS 572 Human Dimensions of Restoration Ecology (3 cr). An in-depth investigation of the role of human activity on natural and social ecosystems, including economic, social, and political values and the role they play in maintaining, restoring, or sustaining ecosystems. Explores the major premise that projects designed for the restoration and sustainable management of ecosystems and associated resources must be ecologically sound, economically viable, and socially desirable to be successful. Web course. (Spring only)

CSS 573 Planning & Decision Making for Watershed Management (3 cr). Focus on ecological and human factors in process-oriented approaches to watershed analysis and planning for effective decision-making; emphasis on practical applications of current tools and approaches, e.g., GIS, MAU Theory, collaborative management. (Spring only, Alt/yr)

CSS 580 Restoration Ecology Practicum (2 cr) Capstone experience in the Restoration Ecology Certificate Program. Students work independently to develop plan for implementing and assessing the success of their ecological restoration project. Prereq: Familiarity with current literature, concepts, and challenges; plan shall be written with graphics and electronic submission for possible Internet publication. Prereq: Fish 513 or For 526, and Rnge 440 or perm.

CSS 583 Nature-Based Tourism (3 cr). Current methods and approaches to natural resource tourism and its social, economic, and resource impacts, organizations involved, and management styles used by travel and tourism industry. (Spring, alt/yr)
Counseling and School Psychology

CASP 200 (s) Seminar (cr arr). Prereq: perm.
CASP 203 (s) Workshop (cr arr). Prereq: perm.
CASP 204 (s) Special Topics (cr arr). Prereq: perm.
CASP 299 (s) Directed Study (cr arr). Prereq: perm.
CASP 400 (s) Seminar (cr arr). Prereq: perm.
CASP 403 (s) Workshop (cr arr). Prereq: perm.
CASP 404 (s) Special Topics (cr arr). Prereq: perm.
CASP J405/J505 (s) Professional Development (cr arr). Professional development and enrichment of certificated school personnel. Co-requipped will not be accepted toward graduation degree programs, but may be used in a fifth-year program. Additional projects/assignments reqd for grad cr.
CASP J407/J507 Orientation to Counseling and School Psychology (2 cr). Exploratory course for students considering entering counseling or school psychology. Focus is on the role and function of counselors and school psychologists, their values, and responses to contemporary issues. The course requires participation in small group work and role playing. Students are assessed on the knowledge and skills they have acquired. Successful completion of the course is one of the criteria for final admission to the masters and/or education specialist degree programs. Additional projects/assignments reqd for grad cr. Prereq: perm.

University of Idaho
PART SIX
Courses

Dance

CASP 532 Medical/Physical Aspects of Rehabilitation (2 cr). Medical terminology, physical characterization, and medical information needed to serve people with disabilities; medical and health services used to accommodate and remediate medical and physical disabilities.

CASP 533 Principles of Rehabilitation, Community, and School Counseling (2 cr). Survey of human service agencies including their history, purpose, and intent, and eligibility requirements; description of community and rehabilitation services populations and personnel.

CASP 534 Rehabilitation and Community Case Management (2 cr). Making effective case and case load management decisions including intake interviewing; medical, psychological, and vocational evaluation; job placement and rehabilitation/treatment planning; preparation in writing case histories and notes.

CASP 535 Vocational Placement and Assistive Technology (3 cr). Environmental and attitudinal barriers to employment experienced by people with disabilities; legislation and current assistive technologies examined as a means of addressing barriers to employment; methods for identifying and engaging clients, job analysis, job development, job placement, and transitional planning to overcome those barriers; integrating knowledge about the consumer and labor markets to facilitate an appropriate vocational placement and retention. Prereq: CASP 533 or perm.

CASP 536 Professional Issues, Ethics, and Law in Counseling and School Psychology (2 cr). Analytical process of ethical decision-making as it applies to casework, organizational policy, and law; examination of relevant professional and legal issues.

CASP 540 Addictions Counseling (2 cr). Knowledge and abilities of assessment, treatment, and relapse prevention of addictions; focus on interventions appropriate for people with addiction problems.

CASP 541 Counseling in the Community (3 cr). This course will provide graduate students in Counseling and School Psychology with a conceptual and practical overview of mental health issues and services in community counseling. Crisis intervention, management, and prevention will be addressed.

CASP 550 Introduction to School Psychology (2 cr). Introduction to the profession of school psychology; history, present role and function, alternative delivery systems, professional preparation, provision of services, credentialing, and the future of school psychology.

CASP 551 Assessment of Cognitive Functioning (2 cr). Overview of theories of intelligence, commonly used assessment instruments/procedures, measurement and statistical concepts, test interpretations and reporting practices, assessment of diverse populations, and ethical/legal issues. Develop competence in administering, scoring, interpreting, and reporting results of intelligence tests commonly used in school settings. Prereq: CASP 510 and perm.

CASP 563 Consultation in Counseling and School Psychology (2 cr). Constructs and processes that influence human, organizational, and systems development through consultation. Prereq: placement in counseling and school psychology specialist or doctoral programs, or perm. Coreq: CASP 597.

CASP 570 Research and Evaluation in Counseling Psychology (2 cr). Review of research and evaluation in counseling psychology; application to personal doctoral study. Prereq: graduate course in research methodology.

CASP 571 Counseling Psychology Education (2 cr). Curriculum, procedures, and best practices in counseling psychology. Coreq: CASP 597.

CASP 572 Advanced Theories in Counseling Psychology (3 cr). Analysis of contemporary counseling theories; process, procedures, and techniques of major theories; emphasis on original sources. Prereq: CASP 512, 513, 517, and perm.

CASP 573 Counseling Psychology Supervision (2 cr). Purpose, procedures, and best practices in counseling psychology supervision. Coreq: CASP 597.

CASP 578 Ethics and Legal Issues in Counseling Psychology (1 cr). Advanced considerations in application of analytical process of ethical decision-making applied to casework, organization policy, and law.

CASP 579 Lifestyle Diversity (1 cr). Exploration of differences in aspirations for social status, work climate, education, mobility, and financial security.

CASP 587 (s) Practicum (cr arr). Closely supervised experience as a counselor or school psychologist in a professional setting; 50 hrs of experience are required for each credit. Graded P/F. Prereq: CASP 510, 512, PTTE 464, and perm.

CASP 588 (s) Internship (cr arr). For advanced grad students. Currently offered in counseling, education, rehabilitation, supervision, college counseling, college student personnel services, school special services, school psychology, school counseling, agency counseling, and private counseling practice. Graded P/F. Prereq: perm.

CASP 599 (s) Non-thesis Master’s Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

CASP 600 Doctoral Research and Dissertation (cr arr).

Dance

Dan 100 Dance in Society (3 cr). May be used as core credit in J-3-d. Introduction to dance as an art form, as entertainment, and as a lifelong activity; emphasis on appreciation and understanding of movement as an expression of human values, genres and historical styles, factors affecting change, current issues.

Dan 101 First Year/Transfer Student Orientation (1 cr). Introductory course to introduce new students to the university level. Open to dance majors and minors only. (Fall Only)

Dan 105 (s) Dance (1 cr, max arr). May be used as core credit in J-3-d. Same as PEB 105. Modern, folk, ballet, jazz, tap, square, and social dancing. Two hrs a wk. Graded P/F.

Dan 112 Recreational Dance Forms (2 cr). May be used as core credit in J-3-d. Folk, square, social dance skills, cultural influences; basic teaching methods; dance in education and recreation. (Spring Only)

Dan 200 (s) Seminar (cr arr). Prereq: perm.

Dan 203 (s) Workshop (cr arr). Prereq: perm.

Dan 204 (s) Special Topics (cr arr). Prereq: perm.

Dan 210 Dance Theatre (2 cr, max 12). May be used as core credit in J-3-d. Open to all students. Stagecraft; dance styles including modern, jazz, ballet, tap. Two hrs of company class a wk plus additional rehearsals leading to performance. Recommended Preparation: dance experience.

Dan J212/J412/J512 Dance Theatre Choreography (1 cr, max 6). Independent work on intermediate and advanced levels of choreography leading to mainstage performance with Dance Theatre. Develop and refine practical skills as well as personal approaches. Additional projects for graduate credit include a research paper and oral presentation of a choreographic analysis of a minimum of two works by major choreographers in the appropriate genre; demonstrated evidence of a personal choreographic voice; demonstrated ability to integrate choreographic principles at an advance level. Prereq: perm.

Dan 216 (s) Techniques (cr arr). For majors and minors. Theory and techniques in ballet, modern, jazz, and performance. Two to three hrs a wk in a basic instructional curriculum. Prereq: perm of division.

Dan 299 (s) Directed Study (cr arr). Prereq: perm.

Dan J320/J510 Labanotation (3 cr). May be used as core credit in J-3-d. Intro to method of notating movement; rotating and reading basic elements of Motif Writing and Labanotation. Additional projects/assignments required for graduate credit include a research paper and oral presentation to class comparing early and contemporary notation systems; developing a series of lessons applying notation concepts to technique classes; these lessons must demonstrate the graduate student’s comprehension of the symbolic language system of Labanotation. Prereq: perm. (Alt/yr)

Dan J321/J511 Dance Pedagogy (3 cr). Learning styles, teaching styles, and behaviors as they affect teaching and learning in dance; science of dance training. Additional projects/assignments required for graduate credit include observation and analysis of dance teacher behavior in a minimum of two genres and two skill levels; demonstrated ability to integrate pedagogical principles in teaching a minimum of two 50-minute technique classes on the university level. Prereq: perm of division.

Dan 325 Dance Production (3 cr). Organization and production of dance concerts; program planning, marketing, management, costume design, staging the production. (Alt/yr)

Dan 360 Children’s Dance (1-2 cr). Basic principles and techniques for teaching dance to elementary school age children and integrating dance into the curriculum; emphasis on content, methods, and resource material. Onelec and two labs a wk. (Alt/yr)

Dan J384/J584 Dance Composition I (3 cr). May be used as core credit in J-3-d. Improvisation and choreography using basic compositional elements. Additional projects/assignments for graduate students include research and analysis of two major choreographic works from two different choreographers. (Fall only, Alt/yr)

Dan J385/J585 Dance Composition II (3 cr). Advanced exploration of choreographic procedures and performance. Additional projects/assignments for graduate students include research and analysis of two major choreographic works from two different contemporary choreographers. Prereq: Dan 384. (Spring only, Alt/yr)

Dan 400 (s) Seminar (cr arr). Prereq: perm.

Dan 403 (s) Workshop (cr arr). Prereq: perm.

Dan 404 (s) Special Topics (cr arr). Prereq: perm.

Dan 410 Pre-professional Dance Theatre (2 cr, max 12). Advanced work in choreography and performance. Two hrs of company class a wk plus additional rehearsals leading to performance. Recommended Preparation: Dan 210, 325, 383.

Dan 416 (s) Advanced Technique (cr arr). For majors and minors. Advanced techniques and theory in ballet, modern, jazz, and performance. Two to three hrs a wk in preprofessional technique classes. Prereq: perm of division.

Dan J421/J521 Dance History (3 cr). May be used as core credit in J-3-d. Development of the concept, social, and educational dance from lineage-based to contemporary styles. Students registering for graduate credit are required to complete an additional research paper make two substantial presentations synthesizing overarching concepts within a historical context. Prereq: Dan 100 or (Alt/yr).

Dan J422/J522 Labanalysis (3 cr). An exploration of movement concepts based on Rudolf Laban’s principles of Efforts, Shape, and Space. Additional projects/assignments for graduate students include a research paper on Irmgard Barteneff. (Spring only, Alt/yr)

Dan 433 Practicum: Dance Teaching (7 or 14 cr). Supervised teaching in grades 1-12; two-thirds of experience in secondary schools. Graded P/F. Prereq: ED 314, special methods in subject area, cumulative GPA of 2.50, and permission of dept. (Submit application via director of Center for Dance to director of clinical experiences in teacher education by December 1 of school yr before enrolling.)

Dan 490 Senior Project (3 cr). Open-ended projects representing the capstone of the student’s work, consistent with the chosen emphasis within the dance degree (e.g., concerts of original work, a major choreographic work, major performance, teaching or research projects). Prereq: senior standing.
Economics
Joseph J. Geiger, Head, Dept. of Business (225A J. A. Albertson Bldg. 83844-3161; phone 208/885-6295; jgeiger@uidaho.edu).

Notes: No course (CBE or outside the college) that is required in a CBE student’s curriculum may be taken by CBE undergraduates on a P/F basis, with the exception of courses that are taught only on a P/F basis. Only upper-division CBE courses used as free electives may be taken by CBE undergraduates on a P/F basis.

Econ 201, 202, and 272 may not exceed 6 credits.

Prerequisite: Enrollment in 300- and 400-level economics courses is restricted to students who have completed at least 58 credits. In addition, CBE students must have earned at least a 2.4 GPA in the CBE predictor courses. Students who have not completed the prerequisites to a course for which they are otherwise eligible may register for the course with the instructor’s approval.

Econ 201, 202 Principles of Economics (3 cr). May be used as core credit in J-3-d.

Prerequisite: Enrollment in 300- and 400-level economics courses is restricted to students who have completed at least 58 credits. In addition, CBE students must have earned at least a 2.4 GPA in the CBE predictor courses. Students who have not completed the prerequisites to a course for which they are otherwise eligible may register for the course with the instructor’s approval.

Econ 201, 202 Principles of Economics (3 cr). May be used as core credit in J-3-d. May be taken in either order. Econ 201: organization and operation of American economy; supply and demand, money and banking, macroeconomic analysis of employment, aggregate output and inflation, public finance, and economic growth. Econ 202: microeconomic principles governing production, price relationships, and income distribution. Econ 201 or 202 carry only two cr after 272. May involve some evening exams.

Econ 204 (s) Special Topics (cr arr). Prereq: perm.

Econ 272 Foundations of Economic Analysis (4 cr). May be used as core credit in J-3-d. One-semester introductory course on the principles of economics, covering both micro- and macro-concepts, theory, analysis, and applications. May involve evening exams. Carries no credit after Econ 201 and 202; carries 3 credits after either Econ 201 or 202. Students who have successfully completed this course, who have completed Econ 340, and later decide to major in economics are required, in consultation with the advisor, to take either Econ 201 or 202 for 2 credits.

Econ 299 (s) Directed Study (cr arr).

Econ 340 Managerial Economics (2 cr). This course covers the fundamental economic principles and provides business decisions from both micro and macroeconomic perspectives. Prereq: Econ 201 and 202, or Econ 272. Coreq: Bus 340.

Econ 343 Money and Banking (3 cr) Influence of money and banking on economic activity; influence of monetary policies to achieve society’s economic goals. May include evening exams. Prereq: Econ 201 and 202, or Econ 272.

Econ 351 Intermediate Macroeconomic Analysis (3 cr). Theory of the economy as a whole; national income accounting as a tool of analysis; national output and income, employment, price levels, and growth. May include evening exams. Prereq: Econ 201 and 202, or Econ 272, or perm.

Econ 352 Intermediate Microeconomic Analysis (3 cr). May be used as core credit in J-3-d. Theory of the consumer, firm, industry, market, price determination, and allocation of productive resources. Prereq: Econ 201 and 202, or Econ 272 or perm.

Econ 353 Quantitative Economics and Forecasting (3 cr). Quantitative economic analysis including data collection, modeling, regression analysis, forecasting methods, and time series analysis; computer applications. Prereq: Econ 201 and 202, or Econ 272; and Stat 251, 271, or 351.

Econ 385 Environmental Economics (3 cr). May be used as core credit in J-3-d. Theory of externalities and public goods, and application of economic principles to environmental issues. Prereq: Econ 202 or 272 or perm.

Econ 398 (s) Economics Internship Program (1-3 cr, max 6). Enrollment restricted to economics majors; may not be used to fulfill upper-division economics requirement in any of the three economics degree programs. Graded P/F. Relevant learning experience in business and government. Prereq. perm.

Econ 400 (s) Seminar (cr arr). Prereq: perm.

Econ 402 (s) Workshop (cr arr). Prereq: perm.

Econ 404 (s) Special Topics (cr arr). Prereq: perm.

Econ 407 Public Finance (3 cr). May be used as core credit in J-3-d. Role of government in a market economy; public choice and collective decision-making; tax-shifting and incidence; structure and economics of federal taxes; governmental budgeting; public debt; special topics. Prereq: Econ 201 and 202, or Econ 272.

Education
Jeanne S. Christiansen, Dean, College of Education (301 Educ. Bldg. 83844-3080; phone 208/885-6772).

Related Fields: See Educational Administration, Special Education, and Teacher Education.

ED 101 Orientation to the Teaching Profession (1 cr). A dual credit course open to high school students. Provides prospective teachers with experiences in the K-12 educational environment and an examination of current trends, school-based practices, and professional responsibilities of school personnel. Fulfills the 100 hr. College of Education public service requirement.

ED 201 Diverse Learners in Schools and Social/Cultural Contexts (3 cr). Introduction to an inquiry-based model to examine student learning and diversity in relation to the purposes and functions of schools in society; focus on K-12 exposure to diverse learners in a variety of contexts. Thirty hours of field experience required. Prereq: permission of the College of Education (see College of Education section, part 4).

ED 301 Principles of Learning and Development in Education (3 cr). Theoretical and practical applications of the processes of human growth, development, and learning within different educational communities. TwoLEC and 2 hrs of lab a wk. Prereq: ED 201 or perm.

ED 302 Curriculum, Instruction, and Assessment Strategies (3 cr). Examination of the curriculum development process, knowledge of instructional planning and models of teaching, and an understanding of a wide array of formal, informal, and authentic assessment strategies within and across teaching disciplines; classroom management, exceptionally, philosophical foundations, technology, multi-cultural issues, and instructional inquiry examined within each of these processes. Prereq: ED 301 or perm.
ED 328 Introduction to Educational Technology (3 cr). Provides individuals with minimal background in educational technology to help them create and develop their own technology equipment, software, and related peripherals in K-college classroom settings; includes overview of Macintosh and PC computer hardware and software, videodisc, CD-ROM applications, copyright specific hardware and software (e.g., book scanners and science probeware), and traditional audiovisual display equipment and materials.

ED 401 Professional Role Development (1-3 cr, max 3). Preservice teachers will examine and evaluate the application of foundational knowledge of teaching, learning, evaluation; school structures and professional roles; family and community resources and concerns; funding processes; legal and legislative issues; and professional development. Prereq: ED 302 and program recommendation. Coreq: enrollment in full-year internship.

ED 430 Practicum: Elementary School Teaching (7 or 14 cr). Only double program participants enroll for 7 cr. Supervised teaching in elementary schools. Graded P/F. Recommended Preparation: ED 302, EDTE 330, 338, 420. Prereq: Admission to teacher education, cumulative GPA of 2.50, and perm of dept. Coreq: ED 445. (Submit application to director of clinical experiences in teacher education by December 1 of school yr before enrolling.)

ED 431 Practicum: Secondary School Teaching (7 or 14 cr). Only double program participants enroll for 7 cr. Supervised teaching in secondary schools. Graded P/F. Recommended Preparation: ED 302, EDTE 463. Prereq: Admission to teacher education, cumulative GPA of 2.50, and perm of dept. Coreq: ED 445. (Submit application to director of clinical experiences in teacher education by December 1 of school yr before enrolling.)

ED 441 Multimedia (3 cr). Design, development, and implementation of multimedia based curriculum. Threelec and 2 hrs of lab a wk.

ED 444 Telecommunications (3 cr). See PTTE 444.

ED 468 Historical and Philosophical Foundations of Education (3 cr). Events, leaders, ideas, and movements underlying development of education.

ED 510 Schools in Context (3 cr). Introduction to an inquiry based model to examine student learning and diversity in the context of the school setting. Course examines the purpose and function of schools in a K-12 setting through the development of a teaching portfolio. Course designed for post baccalaureate students seeking teaching certification. Practicum element required.

ED 531 NBPTS Certification I (3 cr). An overview of the National Board for Professional Teaching Standards (NBPTS) certification process and a framework for completion of requirements for National Board certification; gaining an understanding of the purpose of NBPTS certification by reviewing the history of the NBPTS certification process; students examine NBPTS standards and portfolio guidelines for their area of certification and receive guidance and consultation in gathering, organizing, and writing documentation required for the NBPTS portfolio.

ED 532 NBPTS Certification II (3 cr). Continuation of ED 531. Students will complete the requirements for National Board certification, submit a complete portfolio, and prepare to take the assessments in the spring. Prereq: ED 531.

ED 542 Instructional Design (3 cr). Technology based instructional design, development, evaluation, and revision of curriculum.

ED 543 Distance Education (3 cr). Planning, implementation, and delivery of educational programming using a variety of distance education technologies.

ED 580 Foundations of Educational Research (3 cr). Examines various and diverse philosophical/theoretical frameworks, methodologies, strategies/techniques, and design. Emphasis is given to critical evaluation/positioning and the development of a research agenda. A major focus is the implementation of research in the classroom. Prereq: ED 417 or perm.

ED 581 Introduction to Quantitative Analysis in Education (3 cr). An introduction to quantitative research methods in education and the social sciences. The overall goal of the course is to help students to develop skills in the fundamental statistical concepts and procedures of data analysis. The content will include research design, measurement, and data analysis procedures commonly used in educational research.

ED 582 Introduction to Quantitative Research (3 cr). Overview of research techniques, emphasizing experimental, quasi-experimental, descriptive, analytical, single subject designs. Special emphasis on interpreting and critically evaluating research articles; planning, analyzing, and writing quantitative research studies. Prereq: graduate standing.

ED 583 Teacher as Researcher (3 cr). Introduction to classroom research to explore practice, pedagogy, and student learning using qualitative methodology; self-study, action research, collaborative research, and classroom observation.

ED 588 Introduction to Qualitative Research (3 cr). Introduction to qualitative, theoretical foundations, design, methods, and ethical issues in conducting qualitative research.

ED 684 Intermediate Quantitative Analysis in Education (3 cr). An in-depth analysis of quantitative research methods in social and behavioral sciences. Students enrolled in this course are required to develop a project to demonstrate understanding of the fundamental statistical concepts and procedures of data analysis. The overall goal of the course is to expose students to multivariate statistics and quantitative research approaches. Topics include multiple correlation/regression, discriminate analysis, exploratory and confirmatory factor analysis, multivariate analysis of variance (MANOVA), canonical correlation analysis, cluster analysis, log linear model, path analysis and structural equation modeling. Prereq: ED 684 and 586, or perm, and enrollment in a doctoral program.

ED 689 Designing and Conducting Qualitative Research (3 cr). Examination of data collection and analysis process; role of literature critique, survey of computer applications, and ethical issues. Prereq: ED 588 or perm, and enrollment in a doctoral program.

ED 690 Qualitative Research: Critiquing Frameworks, Practice, and Application (3 cr). Advanced qualitative research issues: methodologies, interpretation, formats and perspectives for reporting/publication, application, and ethics. Prereq: ED 689 or perm, and enrollment in a doctoral program.

ED 695 Educational Administration

EdAd 501 (s) Seminar (cr arr). Prereq: perm.

EdAd 502 (s) Directed Study (cr arr). Prereq: perm.

EdAd 504 (s) Special Topics (cr arr). Prereq: perm.

EdAd 505 (s) Professional Development (cr arr). Professional development and enrichment of certificated school personnel. Cr earned will not be accepted toward grad degree programs, but may be used in a fifth-yr program.

EdAd ID&WS509 Educational Policy and Politics for Principals (2-3 cr). WSU Ed Ad 580. Principles and problems of organization and administration of American education, including local, regional, and state systems.

EdAd 510 Strategic Planning for Educational Practitioners (3 cr). Specifics included in both the discipline and process of strategic planning; team building, internal and external scanning, vision development, generating belief statements and exit outcomes, writing the mission statement, developing strategies to achieve organizational objectives, and establishing action plans.

EdAd 513 Administration of Special Education Law (3 cr) Explore in-depth the legal issues related to the delivery of special education and pupil services. The course examines legal frameworks used to address issues in this area.

EdAd 521 Higher Education Administration and Governance (3 cr). Administration in colleges and universities; history, basic systems of governance in different states, internal organizational structure, finance, student services, faculty, academic programs, affirmative action, and university relations.

EdAd 522 Higher Education Community College Function, Philosophy, and Organization (3 cr). Overview of development of the community college in the U.S.; mission, role, philosophy, and organization of community colleges including comparative differences of junior colleges, universities, and other higher education institutions; exploration of curriculum and clientele of community colleges from historical, contemporary, and futures perspectives; emphasis on roles of community college administrators.

EdAd 523 Contemporary Issues in Higher Education (3 cr). Analysis of leading current issues in post-secondary education, including but not restricted to tenure, research/teaching, extended learning-outreach programs, admission, retention, graduation requirements, and student-faculty evaluations.

EdAd 524 History and Philosophy of Higher Education in the U.S. (3 cr). Exploration of history and philosophy of higher education from its origins to the present day; emphasis on trends and issues that have impacted higher education and contributed to its evolution.

EdAd 525 Higher Education Accounting, Budgeting, and Finance (3 cr). Provides a foundation for exploring the procedures and processes for providing financial support to institutions of higher education; the focus is on public institutions, and information about private institutions will be discussed as appropriate.

EdAd 526 Student Services in Higher Education (3 cr). Overview of administration of, and issues within, student affairs divisions of colleges and universities; includes organizational structures, philosophical underpinnings, history, relationship to missions of universities and colleges, and relationship to other divisions within universities and colleges.

EdAd 527 Ethics and Law in Higher Education (3 cr). Comprehensive overview of salient legal issues that have a direct impact on post-secondary education; topics include judicial review process, agency authority, labor relations/collective bargaining, Affirmative Action, Americans' Disability Act (ADA), accreditation, and the Land Grant university system.

EdAd 533 Multicultural Diversity and Educational Leadership (3 cr). An introductory graduate-level course in educational administration with an emphasis on the diverse student population that we serve. Its aim is to examine what it means to lead educational organizations in a changing society. Specifically the course focuses on policy, theory and practice, as they relate to diverse school populations. Issues related to multicultural diversity will be drawn from readings as well as personal experiences. The goal of the class is to assist students in developing their understanding and skills in becoming more effective leaders in organizations that affirm diversity.

EdAd 534 The Principalship (3 cr). Prepare students for assuming the role of elementary or secondary school principal; emphasis on skills reqd for confidence in the role of principal.
COURSES

Electrical and Computer Engineering

Demetrios Kazakos, Chair, Dept. of Electrical and Computer Engineering (214 Bu chanan Engr. Lab. 83844-1023; phone 208/885-6554).

ECE 101 Foundations of Electrical and Computer Engineering (2 cr). Course is geared toward freshmen ECE students with little or no fundamental electrical/computer engineering knowledge and is highly interactive and hands-on; includes introductory coverage of basic signal characteristics, amplifier applications and design, fundamental circuit analysis, data analysis, digital logic and computer architecture, electromagnetics, semiconductor physics and solar cells, and VLSI, etc.; non-technical topics relevant to freshmen will also be included. Coreq: Math 143 or Math 170.

ECE 204 (s) Special Topics (cr arr) Prereq: perm.

ECE 210 Electrical Circuits I (3 cr). Intro to d.c. and transient electrical circuits; mesh and nodal analysis; circuit elements; circuit theorems; transient analysis with differential equations. Three lec and one recitation a wk. Coreq: Math 310 and Phys 212.

ECE 211 Electrical Circuits Lab I (1 cr). Lab to accompany ECE 210. Lab experiments and computer simulations. One 3-hr lab a wk. Coreq: ECE 210 and Phys 212.

ECE 212 Electrical Circuits II (3 cr). Continuation of ECE 210. Intro to sinusoidal steady state circuit analysis; frequency response and feedback analysis; Laplace transforms; Fourier series; transfer functions; Bode plots, filters. Three lec and one recitation a wk. Prereq: ECE 210, Math 310, and Phys 212. Coreq: ECE 213.

ECE 213 Electrical Circuits II Lab (1 cr). Lab to accompany ECE 212. Continuation of ECE 211. Lab experiments and computer simulations. One 3-hr lab a wk. Prereq: ECE 212 and Phys 212. Coreq: ECE 213.

ECE 240 Digital Logic (3 cr). Number systems, truth tables, logic gates, flip-flops, combinational and synchronous sequential circuits using MSI, MSI, and programmable devices; intro to digital systems and basic microprocessor architecture; certification exam not reqd. Prereq: Phys 212. Coreq: ECE 241.

ECE 241 Logic Circuit Lab (1 cr). Open lab to accompany ECE 240. Design and construction of combinational and synchronous sequential logic circuits; certification exam not reqd. Prereq: Phys 212. Coreq: ECE 240.

ECE 292 Sophomore Seminar (0 cr). Curriculum options, elective courses, preparation for graduate study, professional ethics, and current technical topics. Field trip may be reqd. Graded P/F.

ECE 310 Fundamentals of Electronics (3 cr). Operational amplifier fundamentals and applications, introduction to electronic devices such as diodes, bipolar junction and field effect transistors, large and small-signal modeling of non-linear electronic devices, DC and small-signal analysis of circuits with non-linear electronic devices, biasing of electronic circuits, introduction to the analysis, design, and applications of electronic circuits such as rectifiers, power supplies, and low-frequency single-stage amplifiers. Practical limitations of amplifiers of electronic circuits. Prereq: ECE 212 and 213. Coreq: ECE 311.

ECE 311 Fundamentals of Electronics Lab (1 cr). Lab to accompany ECE 310. Coreq: ECE 310.

ECE 330 Electromagnetic Theory (3 cr). Vector mathematics; charge and current; fields as forces; work, potential and electro-motive force; Faraday’s law of induction; Gauss’s and Ampere’s laws; material modeling; waves in isotropic media. Prereq: Math 275, 310, and Phys 212. Coreq: ECE 331.

ECE 331 Electromagnetics Laboratory (1 cr). Lab to accompany ECE 330. Lab experiments and computer simulations. One 3-hr lab a wk. Prereq: ECE 213, Physics 212, Math 310. Coreq: ECE 330.

ECE 340 Microcontrollers (3 cr). Introduction to use of embedded microcontrollers and microprocessors; processor architecture; assembly language programming; use of development systems and/or emulators for system testing and debugging; software and hardware considerations of processor interfacing for I/O and memory expansion; programmed and interrupt driven I/O technologies. Three lec a wk. Prereq: ECE 240, ECE 241, CS 112. Coreq: ECE 341.

ECE 398 Electrical Engineering Cooperative Internship (1-3 cr, max arr) Supervised internship in industry in professional engineering settings, integrating academic study with work experience; requires weekly progress reports, a final written report, and a talk/presentation and additional details to be worked out with the faculty supervisor. Cannot be counted as a technical elective toward the B.S.E.E. or B.S.Comp.E. Graded P/F. Prereq: perm.

ECE 404 (s) Special Topics (cr arr) Prereq: perm.

ECE 410 Advanced Electronics (3 cr). Introduction to analog integrated circuit implementation and design; differential and common-mode signal concepts, differential amplifiers, multistage amplifiers, operational amplifier design, frequency response of electronic circuits, feedback in electronic circuits, large-signal amplifiers. Prereq: ECE 330, 341, 351.

ECE 411 Advanced Electronics Laboratory (1 cr). Lab to accompany or follow ECE 410. Prereq or coreq: ECE 410.

ECE 412/J512 Active Filters (3 cr). Second order, Butterworth, Chebychev, Elliptic and Bessel filter functions and active realizations for highpass, lowpass, bandpass, notch and all-pass filters, frequency and impedance scaling, frequency transformations; phase and group delay; filter sensitivity to passive and active elements; introduction to switched capacitor filters. Additional projects/assignments reqd for grad cr. Prereq: ECE 410 or 411. or perm.
ECE J413/J513 Communication Circuits (3 cr). Impedance transforms and matching networks, small-signal high frequency amplifiers, distortion in amplifiers, noise calculations and considerations, sine-wave oscillators, mixers and frequency translators, phase-locked loops, and power amplifiers. Additional projects/assignments reqd for grad cr. Prereq: ECE 410 or perm.

ECE J414/J514 Analog Integrated Circuit Analysis and Design (3 cr). Extension of biasing and signal analysis, active current sources and loads, response frequency analysis and compensation techniques and analysis of currently available integrated circuits. Additional projects/assignments reqd for grad cr. Recommended Preparation: ECE 310. (Alt yrs)

ECE J415/J515 CMOS Analog Electronics (3 cr). CMOS technology, modeling and circuit analysis of amplifiers, comparators, voltage regulators, and selected integrated circuits. Non-ideal characteristics of op-amps and comparators and circuit considerations, stability and compensation, active filters, non-linear circuits. Prereq: ECE 310 or perm.

ECE J417/J517 Pulse and Digital Circuits (3 cr). Electronic switching, timing, and pulse forming techniques and simplification of logic circuits with diodes, transistors, and FETs. Additional projects/assignments reqd for grad cr. Prereq: ECE 310 or perm.

ECE 423 Power Systems Analysis (3 cr). Calculation of transmission line parameters, high-speed transient analysis of transmission lines, basic concepts of unbalanced faults, Zbus methods, transient generator models, stability analysis, and emergency operation of power systems. Prereq: ECE 420.

ECE 425 Power Electronics Lab (1 cr). Measurement of operating characteristics of power electronic circuits; experiments include testing of typical power converter circuits with emphasis on control, gating, protection requirements, and measurement techniques.

ECE 427 Power Electronics and Drives (3 cr). Characteristics, limitations, and application of solid state power devices; induction machines; analysis and application of AC and DC drives; practical aspects of power electronic converter design, including rectifiers and inverters; choppers, AC phase control, device gating techniques, and snubbers. Prereq: ECE 420.

ECE 430 Microwave and Millimeter Wave Circuits (3 cr). Telegrapher's and wave equations; characteristic impedance, wave velocity and wave number; physical transmission lines, including coax, microstrip and stripline; circuit analysis techniques, reflection coefficient and power flow; impedance analysis, impedance matching techniques and Smith Chart; S-parameters; Wilkinson power dividers, circulators and hybrid couplers; transformers and filters. Prereq: ECE 330 or perm.

ECE 432 Applications of Electromagnetic Theory (3 cr). Maxwell's Equations; Prony's Method and Poinsot's Theorem; wave equation solutions (vector and scalar, homogeneous and inhomogeneous). Helmholtz equation; plane waves, reflection and refraction; introduction to classical electrodynamics, radiation from accelerated charges; introduction to antenna theory; transmission lines; waveguides and fiber optics; topics in wave propagation (microwave communication systems, wave propagation through the atmosphere, ionosphere, and magnetosphere, etc.). Prereq: ECE 330 or perm.

ECE 440 Digital Systems Engineering (3 cr). Design of digital systems using a hardware description language and field-programmable gate arrays; project assignments include a top-down design process using software tools; topics include datapath optimization, pipelining, and verification; report writing, documentation and oral presentations. Topics are considered in the context of a major design project involving a team of students. Prereq: ECE 423. (Alt yrs)

ECE 441 Computer Organization (3 cr). Register and processor level design of computer systems including design of the ALU, CPU controller, memory arrays, virtual memory, cache, I/O interfaces and interrupt structures; techniques for analyzing system performance; organization of computer networks. Prereq: ECE 240. (Alt yrs)

ECE 443 Distributed Processing and Control Networks (3 cr). This course has three major parts: real-time computing, distributed processing, and control networks. Analysis of hardware and software performance with respect to speed, accuracy, and reliability. Investigation of ways of improving the three essential processors resource, memory, CPU time and I/O throughput. Methods for writing efficient software for certain computer architectures. Prereq: ECE 340, 341, 350, and 351.

ECE 445 Introduction to VLSI Design (3 cr). Principles of design of very large scale integrated circuits; CMOS logic design; transistor sizing and layout methodologies; intro to IC CAD tools. Prereq: ECE 240, 241, or perm.

ECE IDW&S452 Communication Systems (3 cr). WSU EE 451. Introduction to modern communication systems; baseband pulse and data communication systems; communication channels and signal impairments; filtering and waveform shaping in the time and frequency domains; carrier-modulation for AM, FM, and PM; bandwidth, modulation and demodulation, digital and analog communication systems; comparison of system performance. Prereq: ECE 450. (Alt yrs)

ECE 453 Communication Systems Laboratory (1 cr). Test and measurement techniques for digital communication systems; lab work in the modulation and demodulation of information bearing signals. Three hrs of lab a wk. Coreq: ECE 452.

ECE 454 Digital Data Storage Systems (3 cr). Prereq: ECE 330, 331, and 450 or perm. (Alt yrs)

ECE 455 Information and Coding Theory (3 cr). Introduction to information theory; information content of messages; entropy and source coding; data compression; channel capacity; error detection and correction codes; fundamental limits of error correcting codes; linear block and convolutional codes; introduction to trellis-coded modulation. Recommended Preparation: Math 330 and Stat 301.

ECE 466 Semiconductor Devices (3 cr). Introduction to semiconductor physics and basic semiconductor devices; intro to electro-optical devices. Prereq: ECE 330.

ECE 471 Digital Control Systems (3 cr). Design of digital control systems; sampling, A/D, and D/A conversion issues; time domain, frequency domain, and state space design methods; use of computer-aided design tools. Three lec a wk and approximately three 3-hr labs. Recommended Preparation: ECE 470.

ECE 476 Digital Filtering (3 cr). Design methods for recursive and non-recursive filters; frequency domain characteristics; computer-aided design; applications. Prereq: ECE 350.

ECE 480-481 EE Senior Design I and II (3 cr). ECE 481: May be used as core credit in J-3. Fall. The capstone design sequence for electrical engineering majors. Course topics include design, analysis, research, simulation, and experiments. Prereq: ECE 432 and ECE 482. (Alt yrs)

ECE 482-483 Computer Engineering Senior Design I and II (3 cr). ECE 483: May be used as core credit in J-3. Fall. The capstone design sequence for computer engineering majors. Application of formal software and hardware design techniques, hardware/software interface considerations, project management; specifications, prototyping, troubleshooting and verification; report writing, documentation and oral presentiations. Topics are considered in the context of a major design project involving a team of students. Projects incorporate realistic engineering constraints; i.e. environmental, sustainability, manufacturability, ethical, safety, social and political considerations. Prereq for ECE 480: ECE 240, 241, 310, 311, 320, 321, 340, 341, and Stat 301, or perm. Prereq for ECE 481: ECE 330, 331, 350, 351, and 450, or perm.

ECE 499 Senior Seminar (0 cr). Technical topics, professional ethics, employment practice, and interviewing. One lec a wk; one 3-6 day field trip may be required. Graded P/F.

ECE 500 (s) Directed Study (cr arr). Prereq: perm.

ECE 502 (s) Directed Study (cr arr). Prereq: perm.

ECE 504 (s) Special Topics (cr arr). Prereq: perm.

ECE 512 Active Filters (3 cr). See ECE J417/J517.

ECE 513 Communication Circuits (3 cr). See ECE J413/J513.

ECE 515 CMOS Analog Electronics (3 cr). See ECE J415/J515.

ECE 517 Pulse and Digital Circuits (3 cr). See ECE J417/J517.

ECE 520 Advanced Electrical Machinery (3 cr). Synchronous machines and transformers, machine transient and subtransient reactances, excitation and voltage regulation, power controls, transformer connections, impedance, harmonics, and impulse characteristics. Prereq: ECE 423.

ECE 521 Power System Planning and Resources (3 cr). Major decision-making and economic factors in electrical energy systems, planning and resource selection, hydroelectric, nuclear, and fossil fuel plants, steady state and transient stability, reliability, voltage levels, economic factors in electrical energy systems, planning and resource selection; hydroelectric, nuclear, and fossil fuel plants, steady state and transient stability, reliability, voltage levels, and future resource potential. Prereq: ECE 423 or perm.

ECE 522 Induction Machines (3 cr). Winding theory, reference frame theory, induction machine models, complex vector methods, small signal analysis, induction machine capability, simulation, introduction to variable speed drives. Prereq: ECE 350, ECE 423, or perm.

ECE 524 Transients in Power Systems (3 cr). Voltage transients; overvoltage s during faults; recovery voltage characteristics; arc restriking, switching surges, ferroresonance, and non-linear phenomena. Prereq: ECE 423.

ECE 525 Power System Protection and Relaying (3 cr). Power system faults and applicable relay systems; review of symmetrical components as applied to fault current and consideration of lightning and voltage surge protection. Prereq: ECE 423 or perm.
ECE 527 Dynamics and Control of AC Drives (3 cr). Review of machine modeling techniques and simulation methods, principles of power converters for motor drive applications; analytical modeling and dynamic behavior of machine-drive systems; modulation of topologies and control techniques; simulation of drive systems; case studies. Prereq: ECE 320 and 470, or perm.

ECE 528 Understanding Power Quality (3 cr). Electrical fundamentals in the context of power quality; origins and characterization of power quality problems on distribution systems; applications of standards; advanced ground techniques; case study approach to common situations.

ECE 529 Utility Applications of Power Electronics (3 cr). HVdc transmission, static VAR compensators, FACTS devices, Custom Power devices, electrical energy storage systems, power quality, harmonic compensation, and alternative energy supply interfacing. Prereq: ECE 423.

ECE IDW&WS533 Antenna Theory (3 cr). WSU E E 527. Maxwell’s equations, reciprocity, equivalence theorems; wire antennas, antenna arrays, aperture antennas; analysis and design techniques; hardware considerations. Prereq: ECE 432 or perm.

ECE 539 Advanced Topics in Electromagnetics (3 cr). Topics include computational and analytical methods, remote sensing, nonlinear optics, guided wave theory, antenna theory. Prereq: ECE 530 or perm.

ECE IDF540 Asynchronous Circuit Design (3 cr). WSU E E 554. Design and analysis of asynchronous digital circuits and systems; topics include: hazards and hazards, state encoding, speed-independent and delay-insensitive circuits, micropipelines, and signal transition graphs. Prereq: ECE 440 or perm.

ECE 541 Advanced Computer Architecture (3 cr). See CS 551.

ECE 542 Digital Systems Testing (3 cr). Fundamentals of testing and design for testability of digital electronic systems at both the module and board level; topics include circuit simulation, fault modeling and simulation, test pattern generation, design for testability, and built-in self-test. Prereq: ECE 440 or equiv.

ECE 545 VLSI Design (3 cr). CMOS circuit techniques, analysis, modeling, performance, processing, and scaling; design of CMOS logic, gate arrays, data and signal processors, and memory. Prereq: ECE 445.

ECE 548 Supercomputing (3 cr). A perspective of supercomputing from Von Neumann machines to data flow machines; multiprocessors, multicomputers, multivector, multithreaded, superscalar, VHDL, and super pipelined architectures; memory organization; interconnection networks; and parallel languages and compilers. Prereq: computer architecture course and skills in at least one computer language, or perm.

ECE 554 Information Theory I (3 cr). Introduction to error control coding; finite field mathematics; polynomials; general theory of block codes; syndrome decoding; cyclic codes; Hamming codes and decoders for cyclic codes; generator polynomials; BCH and Reed-Solomon codes; convolutional codes; the Viterbi algorithm; convolutional encoders and decoders; Trellis coded modulation. Prereq: ECE 455 or 550 or perm.

ECE 555 Information Theory II (3 cr). Introduction to Shannon Theory; entropy, relative entropy, and mutual information; asymptotic equipartition; entropy rates of stochastic processes; data compression; channel capacity, differential entropy; the Gaussian channel, Lempel-Ziv coding, rate distortion theory. Prereq: ECE 554 or perm.

ECE 556 Adaptive Signal Processing (3 cr). Theory and applications of adaptive signal processing; adaptive linear combiner; performance surfaces; adaptive optimization of performance by gradient search; learning curve behavior, adaptation rates, and misadjustment; applications to filtering, prediction, estimation, control, and neural networks. Prereq: ECE 350, Math 330, ECE 452 or 476 or 477, or perm.

ECE 557 Biological Signal Processing (3 cr). Introduction to mathematical and computational modeling of signal processing mechanisms in biological organisms. The course is designed to serve an interdisciplinary audience of students from biological sciences, psychology, and engineering. Neurons and neuro models. Networks of neurons. Plasticity and learning models. Introduction to computational neuroscience. Recommended Preparation: Introductory course in linear algebra. Familiarity with at least one programming language. Prereq: Math 160 or 170, and perm. (Spring only; alt/yr)

ECE 559 Advanced Topics in Communication Systems (1-3 cr, max arr.). A selection of advanced topics from new research areas in communication systems; a representative selection of topics includes: recent developments in coding and information theory; image compression, cellular and mobile communication systems, magnetic recording, satellite communication systems, spread-spectrum modulation, set-membership theory, clock and carrier recovery methods, and communication channel modeling. Prereq: ECE 452 or perm.

ECE 560 Semiconductor Theory (3 cr). Fundamental theory and behavior of modern semiconductor devices.

ECE IDW&WS570 Random Signals (3 cr). WSU E E 507. Probability, random variables, and random signals; random processes; stochastic calculus, stationarity, ergodicity; correlation, and power spectra; propagation of random signals through linear systems; Kalman filter theory and applications. Prereq: ECE 350, and Stat 301 or 451, or perm.

ECE 571 System Identification (3 cr). Identification of dynamic system models from test data; methods to be considered include least-squares, prediction error, maximum likelihood, instrumental variables, correlation and extended Kalman filter; practical applications and computer-based exercises emphasized within a mathematically rigorous framework. Prereq: ECE 570 or perm.

ECE IDW&WS572 Linear System Theory (3 cr). WSU E E 501. Same as ME 580. Linear spaces and linear operators; descriptions of dynamic systems; input-output descriptions; state-space concepts; canonical forms; controllability and observability; minimal realizations; application to control and general systems analysis; pole assignment; observers. Prereq: ECE 470 or equivalent.

ECE 575 Advanced Vibrations (3 cr). See ME 572.

ECE 576 Digital Signal Processing (3 cr). Characteristics of discrete time signals; design of digital filters with applications; advanced digital signal processing algorithms; discrete time spectral analysis; introduction to 2D processing. Prereq: ECE 476 or perm.

ECE 577 (s) Advanced Topics in Control Systems (3 cr). Same as ME 582. Selection of advanced topics from new research areas in control systems; a representative selection of topics would include: adaptive, LOG/LTR, robust, nonlinear, fuzzy, and neural network control methods. Prereq: ECE 572 or perm.

ECE 578 Neural Network Design (3 cr). Same as ME 578. Introduction to neural networks and problems that can be solved by their application; introduction of basic neural network architectures; learning rules are developed for training these architectures to perform useful functions; various training techniques employing the learning rules discussed and applied; neural networks used to solve pattern recognition and control system problems. Prereq: perm.

ECE 579 Engineering Acoustics (3 cr). See ME J413/J513.

ECE 591 Electrical Engineering Research Colloquium (6 cr). Graded P/F. Weekly colloquia on topics of general interest in electrical engineering and related fields; speakers will be from UI Electrical Engineering Department, other departments on campus, WSU, the local community, and outside agencies and universities.

ECE 599 (s) Non-thesis Master’s Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

ECE 600 Doctoral Research and Dissertation (cr arr).

BACKGROUND COURSES

These are not introductory-level courses. They are intended for engineers and scientists whose previous degrees are not in electrical engineering from ABET/EAC-accredited programs, who need to remove deficiencies before beginning graduate studies in electrical engineering.

ECE 319 Background Study in Electronics (3 cr). Not applicable toward any UI undergrad degree; valid only for removal of electronics (ECE 310) deficiency for grad students who do not have BSEE background. See ECE 310 for description. Graded P/F based on comprehensive exam at completion of course; NTU students earn regular letter grades instead of P/F. Prereq: passing grade on Dept of Electrical Engineering’s upper-division qualifying exam.

ECE 329 Background Study in Electrical Machines (3 cr). Not applicable toward any UI undergrad degree; valid only for removal of electrical machinery (ECE 320) deficiency for grad students who do not have BSEE background. See ECE 320 for description. Graded P/F based on comprehensive exam at completion of course; NTU students earn regular letter grades instead of P/F. Prereq: passing grade on Dept of Electrical Engineering’s upper-division qualifying exam.

ECE 339 Background Study in Electromagnetic Theory (3 cr). Not applicable toward any UI undergrad degree; valid only for removal of electromagnetic theory (ECE 330) deficiency for grad students who do not have BSEE background. See ECE 330 for description. Graded P/F based on comprehensive exam at completion of course; NTU students earn regular letter grades instead of P/F. Prereq: passing grade on Dept of Electrical Engineering’s upper-division qualifying exam.

ECE 349 Background Study in Digital Computer Fundamentals (3 cr). Graded P/F based on comprehensive exam at completion of course; NTU students earn regular letter grades instead of P/F. Prereq: passing grade on Dept of Electrical Engineering’s upper-division qualifying exam.

ECE 359 Background Study in Signals and Systems Analysis (3 cr). Not applicable toward any UI undergrad degree; valid only for removal of signals and systems analysis (ECE 350) deficiency for grad students who do not have BSEE background. See ECE 350 for description. Graded P/F based on comprehensive exam at completion of course; NTU students earn regular letter grades instead of P/F. Prereq: passing grade on Dept of Electrical Engineering’s upper-division qualifying exam.
PART SIX
Courses

Engineering – General

David E. Thompson, Dean (125 Janssen Engr. Bldg.; 208/885-6479); Howard S. Peavy, Associate Dean; Steven G. Penocello, Associate Dean.

Engr 102 Introduction to Engineering (2 cr). Offered summer only for students in the JEMS Program. Introduction to engineering career opportunities through analysis of engineering design problems; introduction to computer graphics, programming languages, economics, and statistics. (Summer only.)

Engr ID&W5105 Engineering Graphics (2 cr). WSU M E 103. Freeware and computer-aided drawing in pictorial and orthographic projection; section and auxiliary views; descriptive geometry; graphical presentation of data; scales, dimensions, and measurements. Two lec and one 2-hr lab a wk.

Engr ID&W5210 Engineering Statics (3 cr). WSU C E 211. Principles of statics with engineering applications; addition and resolution of forces, vector algebra, moments and couples, resultant and static equilibrium, equivalent force systems, centroids, center of gravity, free body method of analysis, two and three dimensional equilibrium, trusses, frames, and friction. Prereq: Math 170.

Engr ID&W5220 Engineering Dynamics (3 cr). WSU M E 212. Particle and rigid body kinematics and kinetics; rectilinear, curvilinear, and relative motion, equations of motion, work and energy, impulse and momentum, systems of particles, rotation, rotating axes, rigid body analysis, angular momentum, vibration, and time response. Prereq: Engr 210.

Engr 240 Introduction to Electrical Circuits (3 cr). Not open for credit to electrical engineering majors. Circuit analysis, transient and steady state behavior, resonant systems, system analysis, and power and energy concepts; elementary differential equations will be introduced to solve basic circuit problems. Prereq: Math 175, Phys 211.

Engr ID&W5320 Engineering Thermodynamics and Heat Transfer (3 cr). WSU M E 301. First and second laws of thermodynamics; thermodynamic processes; thermodynamic properties; flow processes; conversion of heat into work; conduction, convection, radiation, and heat exchangers. Recommended Preparation: Engr 210 and Math 310.

Engr ID&W5335 Engineering Fluid Mechanics Fluid Dynamics (3 cr). WSU M E 303. Physical properties of fluids, fluid statics, centrifugal, energy, momentum relationships; laminar and turbulent flow; boundary layer effects; flow in pipes, open channels, and around objects. Prereq: Engr 210, Math 275.

Engineering Management

Sunil Sharma, Chair, Dept. of Civil Engineering (104 Buchanan Engr. Lab. 83844-1022; phone 208/885-6782).

EM J484/J584 Writing Winning Proposals (3 cr). Practical course to define the process for developing and submitting proposals. Topics include RFP identification, budgeting, scheduling, proposal writing, proposal reviews, and other topics in the proposal writing process. Guest lecturers will discuss their successful experiences. Students will produce one submission-ready proposal for review of technical writing skills. Additional projects required for grad cr.

EM 486 Software-Assisted Project Management (3 cr). Characteristics and features of project management; procedures and techniques used in identifying software features that are necessary for developing project plans and for reporting project progress; process of selecting project management software that is consistent with the organization’s procedures and requirements; evaluation of the modeling capabilities of a system in estimating and scheduling specific case studies of engineering projects. Two lec and 3 hrs of lab a wk. Prereq: CE 482 or PMP Certification.

EM 502 (s) Directed Study (cr arr). Prereq: perm.

EM 504 (s) Special Topics (cr arr). Prereq: perm.

EM 510 Engineering Management Fundamentals (3 cr). Fundamental principles of engineering management addressing management theory applied to the engineering environment; management processes and techniques; attitudes that facilitate the leadership role of the engineering manager in an engineering organization; team-taught by business and engineering faculty. Prereq: perm.

EM 511 Legal Process for Engineers (3 cr). Designed to acquaint engineering management students with the legal process in general and the role of the judiciary in issues encountered by engineering managers. The course is intended to prepare professionals and managers for legal problems and potential liabilities they may encounter in their work as managers. Course employs the Socratic process to explore business organizations, employment law, contract law and other related topics.

EM 582 Advanced Topics in Project Management (3 cr). Application of project management tools from a management perspective to address the basic nature of all types of projects including public, business, engineering, information systems, etc. Individual and group projects will apply project management tools to case studies and readings on current and future project management. The course will roughly cover the eight knowledge areas recommended by the Project Management Institute. Prereq: CE 482 or PMP Certification.

EM 584 Writing Winning Proposals (3 cr). See EM J484/J584.

EM 599 (s) Non-thesis Master’s Research (cr arr) Research not directly related to a thesis or dissertation. Prereq: perm.

Engineering – English

David S. Barber, Chair, Dept. of English (200 Carol Ryrie Brink Hall 83844-1102; phone 208/885-6156).

Prerequisites: Students may enroll for a second-semester course in English without having had the first-semester course, unless it is a stated prerequisite to the second-semester course. Engr 101 and 102 are prerequisite to all upper-division courses. A transfer student who lacks Eng 101 or 102, or both, may take either or both for credit even though he or she has already taken a literature course for which Eng 101 or 102 is prerequisite at UI. For English majors in the Creative Writing and Literature Emphases Engr 210 or permission of instructor is a prerequisite or corequisite to all literature courses numbered 300 and above; for English majors in the Professional and Teaching emphases Eng 175 or 210 or permission of the instructor is a prerequisite or co-requisite to all literature courses numbered 300 or above.

Vertically-related courses in this subject field are: Eng 101-102.

Engl 090 Developmental Writing (0 cr). A basic skills course to prepare students for Engls 101. Graded P (pass)/N (repeat)/F (fail).

Engl 101 Introduction to College Writing (3 cr). Workshop on strategies for generating ideas for writing, for planning and organizing material, and for revising and editing; intended to prepare students for the demands of college writing, focusing on reading critically and incorporating source material. Graded P (pass)/N (repeat)/F (fail). Prereq: Engls 090 or equiv.

Engl 102 College Writing and Rhetoric (3 cr). Applied principles of expository and argumentative essay writing, including summaries, critiques, and syntheses of texts, and the research essay; emphasis on clear, concise, and vigorous prose. Graded A/B/C/N (repeat)/F. Prereq: Engl 101 or equiv.

Engl 175 Introduction to Literary Genres (3 cr) Introduction to the terminology, techniques, and formal characteristics of literary genres. Intended to provide the general student and the beginning English major with basic experience in literary analysis.

Engl 201 English Grammar: Key Concepts and Terms (1 cr). Study of grammar and grammatical concepts; terms and concepts drawn from traditional and transformational grammar; includes practice in sentence diagramming with connections drawn to other grammatical systems. Not an ESL course and not remedial. (Spring only).

Engl 204 (s) Special Topics (cr arr). Prereq: perm.

Engl 207 (s) Persuasive Writing (3 cr). May be used as core credit in J-3-a. Intermediate course in the practices of writing to persuade with special emphasis on current issues and audience awareness; includes research-based writing. Prereq: Engls 102 or equiv.

Engl 208 (s) Personal and Exploratory Writing (3 cr). May be used as core credit in J-3-a. Intermediate course in the practices of personal and exploratory writing; may include personal narrative and observation, autobiography, or extended reflection; special attention to prose style and voice; includes research-based writing. Prereq: Engls 102 or equiv.

Engl 209 (s) Inquiry-Based Writing (3 cr). May be used as core credit in J-3-a. Intermediate course in the uses of writing to explore and stake out intellectual positions; special emphasis on the nature of evidence used to develop and support knowledge claims in specific fields. Prereq: Engls 102 or equiv.

Engl 210 Introduction to Literary Theory (3 cr) Practical experience with current methods and assumptions guiding the analysis and interpretation of literary texts. Prereq: Engls 102 or equiv.

Engl 257-258 Literature of Western Civilization (3 cr). May be used as core credit in J-3-d. Masterpieces reflecting development of Western thought and culture. Engr 257: Classical Greece to the Renaissance. Engr 258: 17th century to the present.

Engl 291 Creative Writing: Poetry (3 cr). May be used as core credit in J-3-d. Intermediate course in the techniques of writing poetry. Prereq: Engls 102 or equiv. May be used as core credit in J-3-d. Intro to techniques of writing poetry.

Engl 292 Creative Writing: Fiction (3 cr). Intro to techniques of writing fiction.

Engl 293 Creative Writing: Nonfiction (3 cr). May be used as core credit in J-3-d. Intro to techniques of writing creative nonfiction.

Engl 301 (s) Special Topics (cr arr). Variable content course covering special topics of contemporary interest. Topics and number of cr will be announced in the Class Schedule.

Engl 309 Advanced Prose Writing (3 cr). Theory and practice in writing prose; many assignments in expression, explanation, and persuasion. Prereq: Engls 102 or equiv.

Engl 313 Business Writing (3 cr). May be used as core credit in J-3-a. Principles and practice in business correspondence, memoranda, and reports that employ conventions, tone, and style appropriate to the specific discourse situation. Recommended for students with some business background or upper-level standing. Prereq: Engls 102 or equiv; Soph standing.

Engl 316 Environmental Writing (3 cr). May be used as core credit in J-3-a. Principles and practice in writing related to communicating information about scientific and environmental issues to public audiences through proposals, correspondence, and essays or reports. Prereq: Engls 102 or equiv; Jr standing or perm.

Engl 317 Technical Writing (3 cr). May be used as core credit in J-3-a. Principles of clear writing related to technical style; problems such as technical description, proposals, formal reports, and technical correspondence. Prereq: Engls 102 or equiv; Jr standing or perm.

Engl 321 The Novel for Nonmajors (3 cr). Major novels from the 18th century to the present.

Engl 325 Contemporary Literature for Nonmajors (3 cr). Current poetry, drama, and prose; emphasis on U.S. authors.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 330</td>
<td>Literature and Film (3 cr, max 6). Study of both literature and film in a consideration of a time period, theme, culture, or genre. Prereq: Engl 102.</td>
</tr>
<tr>
<td>Engl 343-344</td>
<td>Survey of American Literature (3 cr). Engl 343: Colonial beginnings to the Civil War. Engl 344: May be used as core credit in J-3-d. Post-Civil War to contemporary writers.</td>
</tr>
<tr>
<td>Engl 345</td>
<td>Shakespeare (3 cr). May be used as core credit in J-3-d. Introductory course; background and study of selected plays representative of Shakespeare's achievement.</td>
</tr>
<tr>
<td>Engl 375</td>
<td>The Bible as Literature (3 cr). Same as Rel 375. May be used as core credit in J-3-d. Literary qualities of the Bible.</td>
</tr>
<tr>
<td>Engl 380</td>
<td>Introduction to U.S. Ethnic Literatures (3 cr). May be used as core credit in J-3-d. Emphasis on U.S. minority writers and reading across cultures; selections will vary from semester to semester.</td>
</tr>
<tr>
<td>Engl 391</td>
<td>Intermediate Poetry Writing (3 cr). Intermediate poetry writing workshop; emphasis on workshop approach, development of portfolio, continued reading in poetry. Prereq: Engl 291 or perm.</td>
</tr>
<tr>
<td>Engl 393</td>
<td>Intermediate Nonfiction Writing (3 cr). Intermediate creative nonfiction; emphasis on workshop approach. Prereq: Engl 293 or perm.</td>
</tr>
<tr>
<td>Engl 400</td>
<td>(s) Seminar (cr or arr). Prereq: perm.</td>
</tr>
<tr>
<td>Engl 401</td>
<td>Writing Workshop for Teachers (3 cr). Enrollment limited to juniors or seniors majoring or minoring in English or in secondary or elementary education programs. Develops students' writing abilities in a workshop setting adaptable to K-12 classrooms and includes theory and practice of teaching writing in elementary and secondary schools.</td>
</tr>
<tr>
<td>Engl 402</td>
<td>Internship in Tutoring Writing (3 cr). Theoretical and practical issues involved in tutoring writing; directed experience tutoring students across the disciplines. Graded P/F. Prereq: Engl 102 or equivalent and perm.</td>
</tr>
<tr>
<td>Engl 404</td>
<td>(s) Special Topics (cr or arr). Prereq: perm.</td>
</tr>
<tr>
<td>Engl 413/J513</td>
<td>ESL Methods I: Basic Oral/Aural Skills (3 cr). Survey of most widely used classroom techniques for developing speaking and listening skills in a second language; alternative innovative approaches. Additional projects/assignments reqd for grad credit. Prereq: Engl 441 or perm. (Fall, Alt/ylls)</td>
</tr>
<tr>
<td>Engl 414/J514</td>
<td>ESL Methods II: Reading, Writing, and Special Purpose English (3 cr). Survey of most widely used classroom techniques for developing reading and writing skills in a second language and teaching techniques to specialized professional programs. Additional projects/assignments reqd for grad credit. Prereq: Engl 441 or perm. (Spring, Alt/ylls)</td>
</tr>
<tr>
<td>Engl 421</td>
<td>Development of the English Novel (3 cr). Major writers from the beginnings to Scott.</td>
</tr>
<tr>
<td>Engl 422</td>
<td>The Nineteenth-Century English Novel (3 cr). Dickens to Hardy.</td>
</tr>
<tr>
<td>Engl 425</td>
<td>Irish Literary Renaissance (3 cr). Literature of Ireland after 1880, especially Yeats, Joyce, and Synge.</td>
</tr>
<tr>
<td>Engl 426</td>
<td>Modern Poetry (3 cr). May be used as core credit in J-3-d.</td>
</tr>
<tr>
<td>Engl 427</td>
<td>American Fiction, 1914-1945 (3 cr). Fiction by writers such as Cather, Dos Passos, Faulkner, Fitzgerald, Hemingway, and Wright.</td>
</tr>
<tr>
<td>Engl 428</td>
<td>British Fiction, 1900-1945 (3 cr). Fiction by such writers as Conrad, Forster, Joyce, Lawrence, and Woolf.</td>
</tr>
<tr>
<td>Engl 429</td>
<td>Contemporary Fiction (3 cr). Fiction since 1945 by writers such as Barth, Bellow, Bellow, Ellison, Morrison, Nabokov, and Pynchon.</td>
</tr>
<tr>
<td>Engl 430</td>
<td>Perspectives in Film (3 cr). Same as TheF 430. Survey of major principles and methods of film criticism as they relate to development of film art from 1890 to the present. Recommended Preparation: Intr 126 or TheF 280.</td>
</tr>
<tr>
<td>Engl 433</td>
<td>Chaucer (3 cr). Intro to Chaucer's poetical works.</td>
</tr>
<tr>
<td>Engl 434</td>
<td>Middle English Literature (3 cr). Middle English literature to 1500, excluding Chaucer and drama.</td>
</tr>
<tr>
<td>Engl 437</td>
<td>English Drama to 1642 (3 cr). Medieval through renaissance drama, emphasis upon Marlowe, Jonson, Webster.</td>
</tr>
<tr>
<td>Engl 440</td>
<td>(s) Reading, Writing, and Rhetoric (3 cr) Selected Topics in rhetoric related to literary practices. Prereq: Engl 102. (Spring, Alt/ylls)</td>
</tr>
<tr>
<td>Engl 441</td>
<td>Introduction to the Study of Language (3 cr). May be used as core credit in J-3-d. Same as Anth 441. Surveys of sound patterns, morphological processes and syntactic structures; questions of language acquisition, variation, and history; exercises from a variety of languages, with emphasis on American English.</td>
</tr>
<tr>
<td>Engl 442</td>
<td>Introduction to English Syntax (3 cr). Structure and processes of English syntax; syntax as component of style. Prereq or coreq: Engl 441 or perm.</td>
</tr>
<tr>
<td>Engl 443</td>
<td>Language Variation (3 cr). Geographic and social dialects (e.g., Black English), levels of formality and their linguistic consequences; literary use of language variation (as in Dickens and Hardy, Twain and Faulkner); occupational dialects and jargons. Prereq or coreq: Engl 441 or perm.</td>
</tr>
<tr>
<td>Engl 445</td>
<td>Literature for Adolescents (3 cr). Theory and practice of literature study in secondary schools, and appraisal of literature appropriate to the needs, interests, and abilities of adolescents. Prereq: enrollment in a program leading to certification in secondary English or elementary ed (elementary ed majors must have completed 6 cr of literature and EDTE 321; students in secondary ed programs must have completed 9 cr of literature) or perm.</td>
</tr>
<tr>
<td>Engl 451</td>
<td>Sixteenth-Century Poetry and Prose (3 cr). Major authors of the period with emphasis on Spenser.</td>
</tr>
<tr>
<td>Engl 453</td>
<td>Seventeenth-Century Poetry and Prose (3 cr). Major authors excluding Milton; emphasis on Bacon, Browne, Burke, Donne, Herbert, Herrick, Marvell.</td>
</tr>
<tr>
<td>Engl 456</td>
<td>Restoration and Eighteenth Century (3 cr). Neoclassical poetry and prose from Dryden to Johnson.</td>
</tr>
<tr>
<td>Engl 466</td>
<td>The Victorian Period (3 cr). Poetry and prose; emphasis on Tennyson, Browning, Arnold, Carlyle, Newman, J. S. Mill.</td>
</tr>
<tr>
<td>Engl 470</td>
<td>American Literature to 1830 (3 cr). Colonial period to the early republic; emphasis on Bradford, Bradstreet, Taylor, Edwards, Franklin, Cooper, Irving.</td>
</tr>
<tr>
<td>Engl 471</td>
<td>American Literature, 1830-1865 (3 cr). American cultural movements and writers of the mid-nineteenth century.</td>
</tr>
<tr>
<td>Engl 473</td>
<td>Literature of the American West (3 cr). Writings that reflect the growth of the western U.S. from frontier days to the present.</td>
</tr>
<tr>
<td>Engl 474</td>
<td>American Literature, 1865-1914 (3 cr). Writers of realistic and naturalistic fiction such as James, Twain, Wharton, and Dreiser, and poets such as Whitman and Dickinson.</td>
</tr>
<tr>
<td>Engl 480</td>
<td>Ethnic and Minority Literature (3 cr). Texts by ethnic and minority writers, primarily but not exclusively: American, e.g., Black, Native American, Chicano, Asian American, Black South African. (Alt/ylls)</td>
</tr>
<tr>
<td>Engl 481</td>
<td>Women's Literature (3 cr). May be used as core credit in J-3-d. Same as FLEN 481. Literature by women; genres, nationalities, and historical periods may vary from semester to semester. (Alt/ylls)</td>
</tr>
<tr>
<td>Engl 482</td>
<td>(s) Major Authors (3 cr, max arr). Comprehensive study of the works of a single author. See the Class Schedule for information.</td>
</tr>
<tr>
<td>Engl 483</td>
<td>African American Literature (3 cr). Major works of African American writers; emphasis on the 20th century. (Alt/ylls)</td>
</tr>
<tr>
<td>Engl 484</td>
<td>American Indian Literature (3 cr). May be used as core credit in J-3-d. Recent poetry and prose written by and about American Indians. (Alt/ylls)</td>
</tr>
<tr>
<td>Engl 490</td>
<td>Senior Seminar (3 cr) A capstone course in which students pursue individual projects that situate their areas of concentration within an interdisciplinary and practical/professional context. Required of English majors in literature, creative writing, and professional emphasis. Prereq: Sr standing or 24cr of English courses.</td>
</tr>
<tr>
<td>Engl 491</td>
<td>Advanced Creative Writing: Poetry (3 cr, max arr). Continuation of Engl 391. Prereq: Engl 391 or perm.</td>
</tr>
<tr>
<td>Engl 493</td>
<td>Advanced Creative Writing: Nonfiction (3 cr, max arr). Advanced creative nonfiction; emphasis on workshop approach. Prereq: Engl 393 or perm.</td>
</tr>
<tr>
<td>Engl 495</td>
<td>Literary Criticism (3 cr). From Plato to the present.</td>
</tr>
<tr>
<td>Engl 496</td>
<td>History of the English Language (3 cr). May be used as core credit in J-3-d. Evolution of the language from Proto-Germanic to American English. Recommended Preparation: Engl 441.</td>
</tr>
<tr>
<td>Engl 497</td>
<td>Practicum (1-3 cr, max 6). Supervised experience in assisting in the teaching of an English course. Graded P/F. Prereq: upper-class standing and permission of instructor and director of undergraduate studies.</td>
</tr>
<tr>
<td>Engl J48/598</td>
<td>(s) Internship (1-3 cr, max 6). Graded P/F. Supervised experience in professional uses of English. Additional projects/assignments reqd for grad cr. With advisor's approval, up to 3 credits of Engl 498 may be counted toward the undergraduate English major. Prereq: perm of director of grad studies or director of undergrad studies, Dept of English.</td>
</tr>
<tr>
<td>Engl 499</td>
<td>(s) Directed Study (1-3 cr, max 3). Prereq: perm.</td>
</tr>
<tr>
<td>Engl 500</td>
<td>Master's Research and Thesis (cr or arr). Graded P/F.</td>
</tr>
<tr>
<td>Engl 501</td>
<td>(s) Seminar (cr or arr). Prereq: perm.</td>
</tr>
<tr>
<td>Engl 502</td>
<td>(s) Directed Study (1-3 cr, max 3). Normally offered in English and American literature and in linguistics; may not duplicate course offerings. Graded P/F. Prereq: perm.</td>
</tr>
<tr>
<td>Engl 504</td>
<td>(s) Special Topics (cr or arr). Prereq: perm.</td>
</tr>
<tr>
<td>Engl 505</td>
<td>Composition Pedagogy and Practice (3 cr). May be graded P/F. Introduction to composition theory with emphasis on pedagogical concepts and practices essential to teaching college-level writing. Prereq: perm.</td>
</tr>
</tbody>
</table>
Environmental Engineering

Thomas Hess, Program Director (419 Engineering Physics 83844-0904; phone 208/885-6182; FAX 208/885-7908; envs@uidaho.edu; http://www.web1.uidaho.edu/envs).

Note: Most of the courses in this program are in the Departments of Biological and Agricultural Engineering, Civil Engineering, and Chemical Engineering. Please refer to the curricular requirements in Part 5 for a complete list of courses.

EnvS 101 Introduction to Environmental Science (3 cr) May be used with EnvS 102 as core credit in J-3-d. Introduction to basic principles in the biological, physical, and social science areas of environmental science.

EnvS 102 Field Activities in Environmental Sciences (1 cr) May be used with EnvS 101 as core credit in J-3-b. Field studies for EnvS 101. Field demonstrations on waste management, water, air pollution, and the ecosystem. Field trips required. Prereq or coreq: EnvS 101.

EnvS 200 (s) Seminar (cr arr). Prereq: perm.

EnvS 225 (s) International Environmental Issues Seminar (3 cr) May be used as core credit in J-3-d. Designed for individuals who have an interest in understanding environmental issues from a global perspective. The course focuses on various social and physical issues related to the environment and natural resources using human population dynamics as a backdrop. EnvS 101 recommended. (Spring only)

EnvS 400 (s) Seminar (cr arr). Prereq: Sr standing.

EnvS 404 (s) Special Topics (cr arr). Prereq: perm.

EnvS 428 Pollution Prevention (3 cr) Basic concepts of pollution prevention and waste minimization; pollution prevention strategies and case studies for solid waste, hazardous waste, water and energy use, and air pollution. (Spring only).

EnvS 429 Environmental Audit (3 cr) Details on a variety of equipment and processes used by business in order to decrease generation of solid and hazardous waste. (Fall only).

EnvS J446/J546 Drinking Water and Human Health (3 cr) Understand the characterization, testing, and treatment of chemical, microbial and hazardous compounds and their impact on human health. Be familiar with drinking water standards, regulatory aspects and protection of municipal, community, and private well systems. (Spring, All三亚rs)

EnvS 451-452 Environmental Management and Design (3 cr, max arr). See CE 451-452.

EnvS R470 Survey of Hazardous Waste Management Problems (3 cr). Cr not granted for both CHE J470/J570 and EnvS R470. Not applicable toward any engineering degree. Environmental, technical, and political aspects of hazardous waste management. Prereq: Sr standing and perm. (Fall only).

EnvS R471 Waste Treatment Technologies (3 cr). Not applicable toward any engineering degree. Procedures for characterization of hazardous waste sites, identification and application of physical, chemical, biological, and thermal treatment. Prereq: Math 143 and Chem 112. (Spring only).

EnvS R472 Remediation Technologies and Project Implementation (3 cr). Not applicable toward any engineering degree. Waste site remediation and restoration technologies and project development; includes alternative technologies, containment, storage and disposal, emphasis on project development, organization, and practices for dealing with hazardous chemical, radioactive, and mixed wastes and for successful site remediation operations including administrative, legal, economic, and political considerations. Prereq: Sr standing and perm. (Spring only).

EnvS J479/J579 Introduction to Environmental Regulations (3 cr). Interpretation and implementation of local, state, and federal environmental rules; introduction to environmental regulatory process; topics include regulatory aspects of environmental impact assessment, water pollution control, air pollution control, solid and hazardous waste, resource recovery and reuse, toxic substances, pesticides, occupational safety and health, radiation, facility siting, environmental auditing and liability. Additional projects/assignments reqd for grad cr. (Fall only).

EnvS R-482/R-582 Natural Resource Policy and Law (3 cr). Examination of U.S. natural resource policy and law including historical contexts and current policies and laws. Additional projects/assignments reqd for grad cr. Recommended Preparation: an undergraduate course in political science. (Spring, All三亚rs)

EnvS 497 (s) Senior Research and Thesis (3 cr) May be used as core credit in J-3-d. Open only to majors in environmental science. Preparation of proposal, poster, formal presentation and written thesis based on research conducted with a faculty member. Research addresses an environmental problem using laboratory, field, or library techniques. Prereq: Sr standing. Prereq or coreq: EnvS 317 or equiv. (Spring only).

EnvS 498 (s) Internship (cr arr). Prereq: perm.

EnvS 499 (s) Directed Study (cr arr). Prereq: perm.

EnvS 500 Master’s Research and Thesis (cr arr).

EnvS 501 (s) Seminar (cr arr). Prereq: perm.

EnvS 502 (s) Directed Study (cr arr). Prereq: perm.
Family and Consumer Sciences

Nancy J. Wanamaker, Director, Margaret Ritchie School of Family and Consumer Sciences, 83844-3183; phone 208/885-6545; famcons@uidaho.edu.

FCS 101 Education Assistant (1 cr). Classroom training for education assistant and placement with a mentor teacher for a minimum of 5 hours weekly during the academic year. Dual enrollment course, offered as a FCS secondary occupational program, available in secondary Professional-Technical FCS programs. Secondary FCS students will have, at minimum, one pre-requirement course in child development prior to acceptance in the Education Assistant Program. For dual-enrollment high school students only. (Fall only)

FCS 105 Individual and Family Development (3 cr). Basic principles and sequences in individual and family development; family structure and functions as they support human development. (Fall only)

FCS ID119 Fashion from Concept to Consumer (3 cr). WSU AMT 314. Introduction to the sewn product manufacturing and merchandising industry; focus on social-psychological, cultural, historic, aesthetic, design, business, and economic factors; emphasis on careers in the sewn products industry. (Fall only)

FCS 123 Textiles (3 cr). Fiber, yarn, and fabric properties, color and finishes as they relate to performance, care, and consumer satisfaction. Two lec and one 2-hr lab a wk. (Fall only)

FCS ID170 Food: Science and Practice (3 cr). Same as FST 170. WSU FSHN 170. Fundamental processes underlying food preparation with emphasis on physical and chemical aspects. Two lec and one 3-hr lab a wk. (Fall only)

FCS 200 (s) Seminar (cr arr). Prereq: perm.

FCS 203 (s) Workshop (cr arr). Prereq: perm.

FCS 204 (s) Special Topics (cr arr). Prereq: perm.

FCS 205 Concepts in Human Nutrition (3 cr) May be used as core credit in J-3-D. Nutrition principles with their application to nutrition in life cycle; nutrition problems and considerations such as health control and nutrition for athletes; individual computerized study of student's dietary intake. (Fall only)

FCS WS208 Visual Merchandising and Promotion (3 cr). WSU AMT 208. Examination of fashion promotion components of visual display store layout, fashion show, and fashion forecasting. (Spring only)

FCS 210 Introduction to Early Childhood Education (2 cr) Provides an overview of the complexity of working with young children, including children with disabilities, and their families. The course includes introduction to history of early childhood education, supportive agencies, roles of professionals, contexts of typical and atypical child and family development, and curricular models.

FCS ID&WS223 Evaluation of Apparel and Textiles (3 cr). WSU AMT 218. Analysis of textile to apparel products relative to production methods, product performance, and consumer value. Three lec and 2 hrs of lab a wk; field trips. Prereq: FCS 123 or perm. (Fall only)

FCS ID&WS224 Apparel Design I (3 cr). WSU AMT 216. Design conception, fabric characteristics, garment assembling, principles of fitting, quality control for the apparel industry. One lec and five hrs of lab a wk. Prereq: CTD or FCS Education major or perm. (Spring only)

FCS 234 Infancy and Early Childhood (3 cr). Influences on development before birth through the preschool years; factors that determine physical, emotional, cognitive, social, and creative development. (Spring only)

FCS 235 Principles and Methods of Child Observation (3 cr). Development of skills necessary to observe, record, and interpret child behavior; observations to be arranged. Prereq: FCS 234 or perm. (Fall only)

FCS 240 Intimate Relationships (3 cr). Dynamics of intimate relationships from early adulthood through the adult lifespan. (Spring only)

FCS 251 Survey of FCS Professions (1 cr). Web delivered; survey course for students considering a career in Family and Consumer Sciences; particularly teaching. Televised interviews with professionals in a variety of FCS careers, and an in-depth look at teaching as a career. An advising meeting with the FCS Teacher Educator is required to explain the requirements of the program.

FCS 270 Intermediate Foods (3 cr). Sensory evaluation, meal planning, consumer issues, cultural influences on food choices. Two lec and one 2-hr lab a wk. Prereq: FCS 170. (Spring only)

FCS 299 (s) Directed Study (cr arr). Prereq: perm.

FCS ID305 Nutrition Related to Fitness and Sport (3 cr) WSU Ath T and FSHN 305. Identification of energy, macro/micro nutrient and fluid requirements during exercise; evaluation of dietary regimens and ergogenic aids for pre and post competition, weight maintenance, and wellness; assignments include a case analysis of a UI or WSU athlete and evaluation and critical review of related research. Prereq: FCS 205. (Fall only)

FCS ID&WS324 Apparel Design II (3 cr). WSU AMT 311. Methods and principles of flat pattern design; use of pattern making skills to create original designs; development and application of computer skills in creating apparel for the industry. One lec and five hrs of lab a wk. Prereq: FCS 224 or perm. (Fall only)

FCS 329 History of Western Dress (3 cr). Historic overview of western dress from ancient Mesopotamia and Egypt to Western Europe through the 20th century; focus on dress and human appearance as a reflection of the socio-cultural factors of the times. (Spring only)

FCS 333 Developmental Curriculum for Young Children (4 cr). Principles and practices of a developmentally based curriculum, assessment, intervention, and evaluation. Three hrs of lec and two hrs of lab a wk. Prereq: FCS 235 or perm. (Spring only)

FCS 334 Middle Childhood-Adolescence (3 cr). Behavior, development, and guidance of children and youth from entrance in school until they are launched into adulthood; influences of family, school, peer group, and larger community. Prereq: Psyc 101, Soc 101, or perm. (Fall only)

FCS 340 Parent-Child Relationships in Family and Community (3 cr). May be taken by nonmajors. Dynamics of parent-child interactions and models for parent education programs in community and school settings. Prereq: FCS 234 or 334. (Fall only)

FCS 346 Personal and Family Finance and Management (4 cr) Principles and procedures of individual and family management and their relationship to human and economic resources; applications of management principles to spending, saving, borrowing, and investing decisions. (Spring only)

FCS 350 Curriculum Development in Family and Consumer Sciences Education (3 cr). Analysis of curricular models and content; development of curricular units for family life; Prereq: admission to teacher education. (Fall only)

FCS 351 Administration of FCCLA Organizations (2 cr). This course will prepare FCS education students to become successful advisors of co-curricular FCCLA chapters. Attendance at the state FCCLA convention required. Prereq: Admission to teacher education, and PTEE 111 or Ed 328. (Spring only)

FCS 361 Advanced Nutrition (3 cr). Principles of nutrition; physiology of digestion, absorption and metabolism of nutrients. Prereq: FCS 205, MMBB 300, Biol 120 and Biol 121. (Fall only)

FCS 362 Introduction to Clinical Dietetics (3-4 cr). Nutritional assessment; introduction to nutrition therapies for disease. Three lec; 3 hrs of supervised practice a wk for 1 cr; only Clinical students take 4 credits. Prereq: FCS 361. (Spring only)

FCS 363 Diet Therapy (4 cr). Diet modification for adult and child needs in disease and convalescence. Clinical experience in Spokane hospitals. Prereq: Sr standing in CPD. (Fall only)

FCS 364 Clinical Dietetics I (4 cr). Clinical experience in Spokane hospitals. Prereq: Sr standing in CPD. (Spring only)

FCS 365 Advanced Nutrition Lab (1 cr). Lab to accompany FCS 361 for students accepted into the CPD program only. One 3-hr lab per week. Prereq: CPO major, FCS 205, MMBB 300, Biol 120 and Biol 121. (Fall only)

FCS 384 Quantity Food Production and Equipment (3 cr). Food production in large volume; use and selection of institutional equipment and food; supervised practice in food service. Three hrs of lec a wk. Prereq: FCS 270 or perm. (Fall only)

FCS 385 Quantity Food Production Lab (2 cr). Lab to accompany FCS 384 for students accepted into CPD program only. One 3-hour lab and one recitation per wk. Prereq: FCS 270. Coreq: FCS 384. (Fall only)
FCS 387 Food Systems Management (3 cr). Institutional organization and management; supervised practice in food service. Three lec a wk. Prereq: FCS 384 or perm. (Spring only)

FCS 388 Food Systems Management Lab (1 cr). Lab to accompany FCS 387 for students accepted into CPD program only. One 3-hour lab per wk. Prereq: FCS 384. Coreq: FCS 387. (Spring only)

FCS 400 (s) Seminar (cr arr). Prereq: perm.

FCS 403 (s) Workshop (cr arr). Prereq: perm.

FCS 404 (s) Special Topics (cr arr). Prereq: perm.

FCS C410 Growing Old in a New Age (3 cr). Overview of issues related to aging; life-span development, how environments affect older persons, seeking an optimal quality of life, cross-cultural considerations, how aging is studied, and how to access resources.

FCS ID411 Global Nutrition (2 cr). May be used as core credit in J-3-d. WSU FSHN 411. The history of food and hunger, and the global nature of our food systems focusing on the impact of our food decisions on the environment, agricultural production, world populations relative to food supply, hunger, biotechnology, and safety of our food supply. Compressed video course. (Spring only)

FCS WS417 Social and Psychological Aspects of Dress (3 cr). WSU AMT 417. Students engage a multidisciplinary framework in considering the social importance of the body and dress. (Fall only)

FCS 419 Dress and Culture (3 cr). May be used as core credit in J-3-d. Dress and culture examined from an interdisciplinary and cross-cultural perspective with emphasis on diversity, and in a global society; the relationship of dress to physical environments, social and economic systems, aesthetic expression, individual identity, and cultural ideals and values. Field trip. Prereq: humanities and social science core completed, Jr standing, or perm. (Spring only)

FCS 423 Sewn Product Industry Tour (1 cr, max 3 cr). Field site tours of sewn product industry firms representing the design/ manufacturing, merchandising, and auxiliary services arms of the industry. Forty-five hrs of instruction/field experience: five hours class lecture, planning and discussion; forty hours visiting companies (five 8-hour days). Variable field trip fee depending on actual cost. Prereq: CTD major or perm.

FCS 424 Aesthetics for the Apparel Professional (3 cr). May be used as core credit in J-3-d. Pattern creation through draping method; application of computer skills in designing apparel for target groups. One lec and 5 hrs of lab a wk. Prereq: FCS 119, 223, 224, or perm. (Spring only)

FCS ID428 Housing America's Families (3 cr). WSU H D 428. Housing, furnishings, and equipment as they influence family well-being, and families' housing choices as affected by social, psychological, economic, technological, and political factors. Four-five 2-hr field trips. (All yrs, spring pr only)

FCS J434/J534 Adulthood and Aging within the Context of Family (3 cr). Analysis of development from young adulthood to old age. Includes factors that influence changes as well as continuity in physical, emotional, social, cognitive, and creative development. Overview of theories of human development and current issues in aging, including dementia, family and lifestyle choices, relationships, retirement, and grandparenting. Requirements for graduate credit include conducting a review of a literature in a chosen topic and presenting it to the class. Prereq: FCS 105, Jr standing. (All yrs)

FCS 435 Feeding Young Children in Group Settings (1 cr). This course increases awareness concerning the best practices in feeding young children. Practical, hands-on activities and assignments are included in the course through videotapes and the course website. http://www.ase.uidaho.edu/feeding. Graded P/F.

FCS 436 Theories of Child and Family Development (3 cr). Identification, interpretation, and evaluation of individual and family developmental theories. (Fall only)

FCS 440 Contemporary Family Relationships (3 cr). Dynamics of the major types of family relationships: marital, parent-child, sibling, and extended-family interaction in contemporary society. Prereq: PsyC 101, Soc 101, or perm. (Spring only)

FCS J445/J545 Issues in Work and Family Life (3 cr). Study of theories, trends, policies, and issues related to work and family; examination of assessment instruments; development of proposals. Additional projects/assignments reqd for grad cr. Prereq: FCS 105 and 346, or perm. (All yrs, spring only)

FCS 448 Consumer Economic Issues (3 cr). Consumer economic issues, including consumers in the marketplace, the consumer movement, rights and remedies, advocacy, public policy, decision making, buying, credit, banking, insurance, clothing, health care, food, housing, and investments. (Fall only)

FCS 461 Methods & Strategies in FCS Education (3 cr). Changing family and societal conditions and enhancing teaching and learning processes are addressed in this course. A focus is integration of professional-technical concepts and the development of classroom presentation skills. Prereq: FCS 450.

FCS ID462 Eating Disorders (2 cr). (FCS 4605). May be used as core credit in J-3-d. WSU FSHN 4605. Examination of anorexia nervosa, bulimia nervosa, compulsive eating, obesity, and weight preoccupation; discussion of cultural and nutritional factors, family issues, and psychological consequences, as well as preventative and therapeutic interventions.

FCS 465 Introduction to FCS Internship (3 cr). Field-based introduction to the student teaching environment with guided observations and initial lesson development. Prereq: Assignment to student teaching site. (Fall only)

FCS 469 Individualized Assessment and Instruction in the FCS Classroom (2 cr). Capstone course in which the beginning teacher demonstrates understanding of how students differ in their approaches to learning, and is able to create instructional opportunities that are adapted to diverse learner needs. (FCS 470 and 471. (Spring only)

FCS 470 Curriculum Portfolio in FCS Education (2 cr). Professional portfolio preparation based on internship activities for the College of Education Exit Standards. Coreq: FCS 469 and 471. (Spring only)

FCS 471 Internship in Family and Consumer Sciences Education (12 cr). Sixteen weeks of practical experience in secondary family and consumer sciences program. Prereq: admission to teacher education, FCS 355. Coreq: FCS 469 and 470. (Spring only)

FCS 472 Clinical Dietetics (8 cr). Continuation of FCS 364. Supervised practice in Washington/Idaho hospitals. Prereq: FCS 364, Sr standing in CPD. (Spring only)

FCS ID&WS473 Community Nutrition (2-4 cr). WSU FSHN 426. Nutrition program; nutrition problems of special groups. Clinical experience in Spokane school lunch program, public health, etc. Two lec and six hrs of supervised practice a wk. Prereq: Sr standing in CPD.

FCS 474 Food Research and Development (3 cr). Same as FST 474. Independent and team research on foods and food products; sensory and objective testing of food; research writing and presentation. Two lec and 3 hrs of lab a wk. Prereq: FCS 270, MIMB 300 or perm. (Spring only)

FCS 485 Computer Applications in Food Administration (2 cr). Nutritional analysis and management of ingredients, recipes, menus, and related functions. One hr of lab and 2 hrs of lab a wk. Prereq or coreq: FCS 384 or perm. (Spring only)

FCS ID&WS486 Nutrition in the Life Cycle (4 cr). WSU FSHN 331. Maternal nutrition and fetal development; lactation; nutritional needs and dietary patterns from infancy through old age. Three lec and 2 hrs of lab a wk. Prereq: Sr standing in CPD. (Fall only)

FCS 487 Management Supervised Practice (I2 cr). Food service management; program development/analysis, and evaluation; food service facilities and resources; equipment/purchasing tours; pre-practicum experience. One lec and 3 hrs of supervised practical work. Prereq: FCS 387 and senior standing in CPD. (Fall only)

FCS 488 Management Supervised Practice II (6 cr). Supervised practice with dietitians and employees in school and hospital food service settings in Idaho or Washington. Prereq: FCS 487. (Spring only)

FCS 495 Introduction to Internship (1 cr). Preparation for professional internship experience, including identifying opportunities, fine-tuning resumes, the application process, and analyzing the internship. Prereq: CTD major (Fall only)

FCS 496 Internship: Fashion Business (2-8 cr, max 8). Supervised experience in fashion business: fashion design, textile/apparel manufacturing, retailing, merchandising; geared to career goals of student. Graded P/F. Prereq: CTD major and FCS 495.

FCS 497 (s) Practicum (cr arr). On- or off-campus supervised applied experience in family and consumer sciences major areas: child development and family relations; clothing, textiles, and home design; food and nutrition; consumer education; and cooperative extension. Prereq. perm.

FCS 498 (s) Internship (3-9 cr, max 9). Supervised internship in education institutions, governmental/social agencies, hospitals, business, or industry; geared to the professional goals of students. Prereq: perm.

FCS 499 (s) Directed Study (cr arr). Prereq: perm.

FCS 501 (s) Seminar (cr arr). Prereq: perm.

FCS 502 (s) Directed Study (cr arr). Prereq: perm.

FCS 503 (s) Workshop (cr arr). Prereq: perm.

FCS 504 (s) Special Topics (cr arr). Prereq: perm.

FCS 508 Helping Skills in Family and Consumer Sciences (3 cr). Using the Skilled Helper Model, students apply the model in working with families and clientele in FCS occupations. (Spring only)

FCS WS521 Research Methods in Human Development I (3 cr). WSU H D 513. Introduction to process of research and methods in human development; includes techniques of research, data collection, and data analysis procedures. Prereq: perm.

FCS 534 Adulthood and Aging within the Context of Family (3 cr). See FCS J434/ J534.

FCS ID540 Parent-Child Relationships (3 cr). WSU H D 558. Open to nonmajors. The development family, patterns of child rearing. Prereq: FCS 234 or 334, 440, and 6 cr in psychology and/or sociology or equivalent.

FCS 551 Techniques of Supervision (1-2 cr). Basic processes and techniques of clinical supervision with a goal of professional development of teachers. Recommended preparation: A minimum of two years professional teaching experience.

FCS WS555 Effective Intervention Programs (3 cr). WSU H D 540. Innovative, effective prevention and intervention programs from theoretical, applied, and outcome evaluation perspectives.

FCS ID561 Sports Nutrition (3 cr). WSU FSHN 561. Macronutrient and selected micronutrient utilization during exercise and restoration after feeding, dietary surveys of athletes, dietary ergogenic aids, and discussion of the origins of dietary recommendations for athletes. Prereq. (All yrs; Spring only)
PART SIX
Courses

Fishery Resources
Kerry Paul Reese, Head, Dept. of Fish and Wildlife Resources (104 CNR Bldg. 83844-1136, phone 208/885-6434).

Prerequisite: Courses in this subject field that are numbered above 299 are not open to undergraduate students on academic probation.

Fish 102 The Fishery Resources Profession (1 cr). Orientation of students to the profession of fishery resources: career opportunities, employment, duties of a fishery biologist, job preparation, management challenges in the Pacific Northwest. (Fall only)

Fish 200 (s) Seminar (cr arr). Prereq: perm.

Fish 203 (s) Workshop (cr arr). Prereq: perm.

Fish 204 (s) Special Topics (cr arr). Prereq: perm.

Fish 290 Fish and Wildlife Ecology, Management, and Conservation (3 cr). Same as WLF 290. Open to non-majors only. Application of biological and ecological principles and concepts to conservation and management of fish and wildlife populations and their habitats.

Fish 299 (s) Directed Study (cr arr). Prereq: perm.

Fish 302 Wildland Field Ecology (2 cr). See CSS 302.

Fish 313 Fish Ecology (3 cr). WSU Biol 413. Examination of physical, chemical, and biological factors that affect fish populations and communities, with emphasis on environmental stressors. Prereq: For/Rnge 221 or Biol 314. (Fall only)

Fish 316 Principles of Population Dynamics (2 cr). Basic principles of population ecology of animals. Taught first half of semester. Prereq: For/Rnge 221 or Biol 314. (Spring only)

Fish 398 (s) Renewable Natural Resources Internship (cr arr). Same as For/Rnge/WLF 398. Supervised field experience with an appropriate public or private agency. Reqtd for cooperative education students. Graded P/F. Prereq: perm. of dept.

Fish 400 (s) Seminar (cr arr). Prereq: perm.

Fish 401 (s) Practicum in Tutoring (1 cr, max 2). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm.

Fish 403 (s) Workshop (cr arr). Prereq: perm.

Fish 404 (s) Special Topics (cr arr). Prereq: perm.

Fish 4DSW5415 Limnology (4 cr). WSU ES/RP and Biol 411. Same as Biol 435. Physical, chemical, and biological features of lakes and streams. Four 1-day field trips. Prereq: For/Rnge 221 or Biol 314. (Fall only)

Fish 4DSW5416 Fisheries Management (4 cr). WSU NATRS and Biol 416. Techniques employed in sampling and application of principles toward managing recreational and commercial aquatic resources. Three lab and one 3-hr lab a wk; two weekend field trips. Prereq: Fish 314 and 411, Stat 251. (Fall only)

Fish 4D22 Concepts in Aquaculture (3 cr). WSU NATRS 424 and 425. Concepts and methods of extensive and intensive aquaculture in warm water and cold water systems. Two field trips reqd (a 1-day and a 3-day field trip). Prereq: MMBB 250; Fish 422 recommended. (Spring only)

Fish 430 Riparian Ecology and Management (3 cr). Same as Range 430. Structure, function, and management of riparian ecosystems; interactions of terrestrial and aquatic components of riparian areas. 3 field trips. Special fee required. Prereq: For/Rnge 221 or Biol 314. (Spring only)

Fish 435 Wetland Ecology and Management (3 cr). Same as Range 435. Worldwide distribution of wetlands; wetland types and functions: interactions among benthos, soils and water that govern the ecology of wetlands with an emphasis on wetland vegetation and wildlife; impacts of agricultural and forestry practices; management and restoration techniques. Two required field trips. Prereq: Biol 213, Biol 341, For 221, or For 320. (Fall only, alt/yr)

Fish 470 Interdisciplinary Natural Resource Planning (3 cr). See WLF 470.

Fish 483 Senior Project Presentation (1 cr). See For 483.

Fish 485 Ecology and Conservation Biology Senior Project (3 cr). Same as CSS/ForP/For/Rnge/WLF 485. Professional work experience in natural resources ecology and conservation biology; learning objectives and a specific plan for the internship experience must be developed in For 480 before starting the internship; after completing the internship, students will prepare oral and written presentation of their work experience in For 483. Prereq: or coreq: For 480.

Fish 494 Current Issues in Fish Health (1 cr) Focus on a range of issues related to fish health that are of regional and/or global importance. It is designed as a discussion and literature course. Professionals working in the fish health field may also present guest lectures. Recommended coreq: MMBB 250. Prereq. Sr. standing. (Fall only, alt/yr)

Fish 495 (s) Seminar (1 cr). Discusses integrating biological, social, political, economic, and philosophical aspects of problems in managing fishery resources. Prereq. Sr. standing. (Spring only)

Fish 497 Senior Thesis (1-3 cr, max 6). Preparation of thesis, exhibition, video, computer program, multimedia program, or other creative presentation based on research conducted under the guidance of a faculty mentor. Prereq: cumulative GPA of at least 3.2 in all college courses, completion of at least 90 credits, and permission of a faculty mentor.

Fish 499 (s) Directed Study (cr arr). For the individual student; conferences, library, field, or lab work. Prereq: Sr standing, GPA 2.5, and perm.

Fish 500 Master's Research and Thesis (cr arr).

Fish 501 (s) Seminar (cr arr). Major philosophy, management, and research problems of wildlands; presentation of individual studies on assigned topics. Graded P (pass)/F (fail). Prereq: perm.

Fish 502 (s) Directed Study (cr arr). Prereq: perm.

Fish 503 (s) Workshop (cr arr). Selected topics in the conservation and management of natural resources. Prereq: perm.

Fish 504 (s) Special Topics (cr arr). Prereq: perm.

Fish 5D10 Advanced Fishery Management (3 cr). WSU Biol 523. Contemporary management of marine and freshwater fish and shellfish populations of the world. Approaches, factors and models used to manage commercial, recreational and subsistence fisheries; and the policy interface of biological systems with governmental and social institutions. (Alt/yr; spring only)

Fish 5D11 Fish Physiology (2 cr). WSU Biol 515. Principles and methods used to study vital organs, organ systems, growth, and reproduction of fishes; emphasis on osmoregulation, metabolism, endocrinology, and respiration. Prereq: Fish 411 and perm. (Alt/yr; fall only)

Fish 5D12 Aquatic Pollution Ecology (3 cr). WSU Zool 512. Principles and working examples of the ecology of polluted aquatic stream and lake habitats. Two 1-day field trips. Prereq: Fish 415 or perm. (Irregular offering)

Fish 513 Aquatic Restoration Ecology (3 cr). A review of the response of impacted lake, stream, and wetland ecosystems to restoration and rehabilitation. Theory and working examples of each will be addressed. (Irregular offering)

Fish 5D14 Fish Population Ecology (2 cr). WSU Biol 510. Review of abiotic and biotic factors controlling or regulating fish population densities and critical review of relevant literature. (Alt/yr; fall only)

Fish 515 Large River Fisheries (2 cr). Management issues and problems in large river fisheries in North America and globally; importance of flood plains; ecological bases for management actions in large rivers; river fisheries in the context of multiple use of large rivers. (Alt/yr; fall only)

Fish 6WS519 Fish Genetics (2 cr). WSU Biol 514.

Fish 6D20 Fish Behavior (3 cr). WSU Biol 527. Causes, mechanisms, and functions of fish behavior, including reproduction, communication, schooling, feeding, migration, and orientation. (Irregular offering)

Fish 6D24 Fish Disease Diagnostics and Control (2 cr). WSU VM 541P. Introduction and training in diagnostic techniques and control methodologies for common fish diseases; review of the cellular mechanisms for disease defense in fish. (Alt/yr; fall only)

Fish 630 Stream Ecology (3 cr). Same as Range 530. Structure and function of running water ecosystems; principles of population, community, and ecosystem ecology in streams and rivers. Three 1-day field trips reqd. (Fall, Alt/yr)

Fish 597 (s) Practicum (cr arr). Prereq: perm.

Fish 598 (s) Internship (cr arr). Prereq: perm.

Fish 599 (s) Non-thesis Master's Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

Fish 600 Doctoral Research and Dissertation (cr arr). Prereq: admission to the doctoral program in "natural resources" and perm of dept.
Food Science and Toxicology

Denise M. Smith, Head, Dept. of Food Science and Toxicology (22 Glen C. Holm Bldg., 83844-2201; phone 208/885-7081; e-mail ftsasi@uidaho.edu).

FST 1170 Food: Science and Practice (3 cr). See FCS 170. WSU FSHN 170.

FST 204 (s) Special Topics (cr arr). Prereq: perm.

FST 220 Food Safety and Quality (3 cr). WSU FSHN 220. Regulation, safety, and wholesomeness of food products; microbiological, chemical, and physical risks associated with food; hazard analysis as related to food safety, processing and quality; sanitation and pest management principles; methods for analyzing the sensory qualities of food products; problem management associated with food quality assurance. This course is also available on-line as a web-based course.

FST 230 Food Chemical Safety (3 cr). Examines the sources of chemical and microbiological risk which foods may pose and helps students discover how scientific principles have been used to ensure the safety of our food supply through testing and processing. (Fall only, alt/ys)

FST 240 Introduction to Food Processing (3 cr). Training in food processing and unit operations at the introductory level. After completing this course, the students will be able to recognize and identify basic food science concepts and terminology used by professionals in the nutrition, foods, foodservice and food science fields; understand the multiple technologies used in the preservation of food; understand the concepts related to unit operations; and understand basic processing flow for various commodities such as milk, meat, fats and oils, and cereal grains. (Spring only, alt/ys)

FST 303 Food Processing (3 cr). WSU FSHN 303. Specialized techniques and practices of food processing and marketing. Field trip reqd. Recommended preparation: MMBB 250, Chem 275 and 276.

FST 304 Cereal Products (2 cr). WSU FSHN 304. Technical principles related to production and commercial processing of legume and cereal foods. Field trip reqd. Prereq: Chem 275, 276.

FST 363 Animal Products for Human Consumption (3 cr). See AVS 363.

FST 398 (s) Internship (cr arr). Supervised professional internship in the food industry; requires formal written plan of activities approved by academic advisor and department head. Final written report and presentation required. Prereq: perm of dept.

FST 400 (s) Seminar (cr arr). Prereq: perm.

FST 404 (s) Special Topics (cr) perm.

FST ID-J408/J518 Seminar in Food Science (1 cr). WSU FSHN 408. Critical analysis of contemporary topics in food science. Organization and communication of scientific information. Resume preparation and job interviewing skills. Additional projects/assignments required for graduate credit.

FST J409/J509 Principles of Environmental Toxicology (3 cr). Same as EnvS J409/J509. Fundamental toxicological concepts including dose-response relationships, absorption of toxicants, distribution and storage of toxicants, biotransformation and elimination of toxicants, target organ toxicity and teratogenesis, mutagenesis, and carcinogenesis; chemodynamics of environmental contaminants including transport, fate, and receptors; chemicals of environmental interest and how they are tested and regulated; risk assessment fundamentals. Students registering for FST 509 are required to prepare an additional in-depth report. Recommended Preparation: Biol 102 or 115, Chem 111, 112, 275, and Stat 251.

FST WS-J414/WS-J514 Evaluation of Dairy Products I (1 cr). WSU FSHN 406/506. Credit not granted for both FST 414 and 514. (Spring only)

FST WS-J415/WS-J515 Evaluation of Dairy Products II (1 cr). WSU FSHN 407/507. Credit not granted for both FST 415 and 515. Prereq: FST 414 or 514. (Fall only)

FST ID-A416 Food Microbiology (2 cr). WSU FSHN 416. Same as MMBB 416. Purpose for enumeration, detection, and identification of microorganisms in food products; physical, chemical, and environmental factors influencing growth and survival of foodborne microorganisms; pathogenic and spoilage microorganisms in food and their control. Prereq: MMBB 154 or 250.

FST ID-A417 Food Microbiology Laboratory (2 cr). WSU FSHN 417. Same as MMBB 417. Methods for enumeration, detection, and identification of spoilage and pathogenic microorganisms in foods. Two 3-hr labs a wk. Prereq or coreq: FST/MMBB 416.

FST J427/J527 Transmission Electron Microscopy (3 cr). Discussion and application of basic concepts in use of transmission electron microscope, including simple specimen preparation techniques and photographic darkroom skills. Additional projects/assignments reqd for grad cr.

FST WS-J429/WS-J529 Dairy Products (4 cr). WSU FSHN 429/529. Dairy chemistry, microbiology, sanitation, processing, and marketing from the cow to consumer. Prereq: MMBB 250 and 300.

FST ID-JWS433 Agricultural Processing Systems (3 cr). WSU AgTM and FSHN 433. See ASM 433.

FST WS434 Agricultural Processing Laboratory (1 cr). WSU AgTM and FSHN 434.

FST J440/J540 Biological Electron Microscopy (4 cr). Application of biological specimen preparation techniques in EM, including ultramicrotomy and use of specific stains. Students registering for FST 540 are reqd to complete an additional written report. Prereq: FST 427/527.

FST J441/J541 Scanning Electron Microscopy (3 cr). Theory and principles of scanning electron microscopy as investigative tool; includes operation and maintenance of electron microscope, specimen preparation, and photographic darkroom procedure. Students registering for FST 541 are reqd to complete an additional research paper.
Foreign Languages and Literatures

James R. Reece, Chair, Dept. of Foreign Languages and Literatures (302 Admin. Bldg. 83844-3174; phone 208/885-6179; fax 208/885-5221; forlang@uidaho.edu).

FRENCH

FREN 301 Advanced French Grammar (3 cr). May be used as core credit in J-3-d. Major modern French authors in English translation; knowledge of French is not required. Prereq: two years of high school French or perm.

FREN 302 Advanced French Writing (3 cr). May be used as core credit in J-3-d. Major modern French authors in English translation; knowledge of French is not required. Prereq: two years of high school French or perm.

FREN 305 Advanced French Literature (3 cr). May be used as core credit in J-3-d. Major modern French authors in English translation; knowledge of French is not required. Prereq: two years of high school French or perm.

FREN 307 The European Union (3 cr). May be used as core credit in J-3-d. A cross-cultural examination of the European Union, its history, evolution, and current functioning; social, cultural, and political differences among union partners; economic structure and demographics; business culture. Prereq: perm.

FREN 310 Contemporary French Film (3 cr). May be used as core credit in J-3-d. Genre, structure, and style of representation fiction and non-fiction films of France and the Francophone world. Prereq: perm.

FREN 312 French Cultural Studies (3 cr). May be used as core credit in J-3-d. An exploration of French cultural studies and its connections to other cultural studies. Prereq: perm.

FREN 313 French Literature Since 1945 (3 cr). May be used as core credit in J-3-d. An exploration of French literature since 1945. Prereq: perm.

FREN 314 French Poetry (3 cr). May be used as core credit in J-3-d. An exploration of French poetry. Prereq: perm.

FREN 361 French Civilization (3 cr). May be used as core credit in J-3-d. A cross-cultural examination of French civilization. Prereq: perm.

FREN 362 French Literature (3 cr). May be used as core credit in J-3-d. Major French authors in English translation; knowledge of French is not required. Prereq: perm.

FREN 363 French Modernism (3 cr). May be used as core credit in J-3-d. Major French authors in English translation; knowledge of French is not required. Prereq: perm.

FREN 364 French Postmodernism (3 cr). May be used as core credit in J-3-d. Major French authors in English translation; knowledge of French is not required. Prereq: perm.

FREN 421 Women in Cinema: The International Scene (3 cr). International, cross-cultural examination of genre, structure, and style of films by women directors. Recommended Preparation: an introductory course in film studies. (Fall, Alt/Yrs)

FREN 441 Ancient Greek Civilization (3 cr). May be used as core credit in J-3-d. Same as Hist 444. Survey of development of Greek civilization, BC 2000-BC 300. Prereq: perm.

FREN 442 Civilization of Ancient Rome (3 cr). May be used as core credit in J-3-d. Same as Hist 446. Survey of development of Roman civilization, BC 800-AD 500. Prereq: perm.

FREN 449 (s) Practicum in Tutoring (1 cr max. 2). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm of dept.

FREN 481 Women’s Literature (3 cr). See Engl 481. Prereq: perm.

FREN 499 (s) Directed Study (cr arr). Prereq: perm.

ARABIC

Arbc 1010-ID102 Elementary Modern Standard Arabic I & II (4 cr). WSU Forl 100-200. An elementary-level course designed to facilitate students’ acquisition of basic proficiency in communication within culturally significant contexts. Students learn Modern Standard Arabic language skill in an environment integrating interactive video distance learning and classroom instruction. Alphabet and writing system, pronunciation, vocabulary, and functional grammar. Greater emphasis on oral and written expression in second semester. (101: fall only; 102: spring only)

CHINESE

Chin WS101 Chinese First Semester (4 cr). May be used as core credit in J-3-d. WSU Chin 101.

Chin WS102 Chinese Second Semester (4 cr). May be used as core credit in J-3-d. WSU Chin 102.

Chin WS105 Elementary Conversation I (1 cr, max 2) WSU Chin 105. Graded P/F. Prereq: perm.

Chin WS111 Asian Film (3 cr) WSU Chin 111.

Chin WS121 Modern Chinese Culture (3 cr) WSU Chin 121.

Chin WS131 Masterpieces of Asian Literature in Translation (3 cr) WSU Chin 131.

Chin WS201 Chinese Third Semester (4 cr). (Chin WS203) May be used as core credit in J-3-d. WSU Chin 203.

Chin WS202 Chinese Fourth Semester (4 cr). May be used as core credit in J-3-d. WSU Chin 204.

Chin WS205 Intermediate Conversation I (1 cr, max 2) WSU Chin 205. Graded P/F. Prereq: Chin 102 or equiv.

FRENCH

Fren 101-102 Elementary French I-II (4 cr). May be used as core credit in J-3-d. Credit not given for both Fren 101-102 and 104. Pronunciation, vocabulary, reading, spoken French, and functional grammar. Students with two or more years of high school French may not enroll in Fren 101, but may earn credit for Fren 101 by successfully completing a higher vertically-related course.

Fren 103 (s) French Language Lab (1 cr, max 4). Practice in listening comprehension, pronunciation, and grammatical structures. Graded P/F. Coreq: elementary or intermediate French (Fren 101-102, 104, 201-202).

Fren 104 Elementary French Reviewed (4 cr). Not open for credit to students who have taken Fren 101 or equivalent in college. Review of subject matter covered in Fren 101-102. Prereq: two years of high school French or perm.

Fren 200 (s) Seminar (cr arr). Prereq: perm.

Fren 201-202 Intermediate French I-II (4 cr). May be used as core credit in J-3-d. Reading, grammar review, speaking, and writing. Recommended Preparation: Fren 102.

Fren 204 (s) Special Topics (cr arr). Prereq: perm.

Fren 299 (s) Directed Study (cr arr). Prereq: perm.

Fren 301 Advanced French Grammar (3 cr).

Fren 302 Advanced French Writing Skills (3 cr). Recommended for students who wish to continue in upper-division French courses.

Fren 304 Connecting French Language and Culture (4 cr). May be used as core credit in J-3-d. Practice of linguistic proficiencies within simulated cultural frames.

Fren 305 Reading French Texts (3 cr). Development and practice of reading skills and strategies.
GERMAN

Germ 101-102 Elementary German I-II (4 cr). May be used as core credit in J-3-d. Pronunciation, vocabulary, reading, spoken German, and functional grammar.

Germ 103 (s) German Language Lab (1 cr, max 2). Practice in listening comprehension and conversational skills. Graded P/F. Coreq: elementary German (Germ 101-102).

Germ 200 (s) Seminar (cr arr). Prereq: perm.

Germ 201-202 Intermediate German I-II (4 cr). May be used as core credit in J-3-d. Review and practice of basic language skills; increased emphasis on reading and free discussion. Appropriate starting point for students with two or three yrs of high school German. Recommended Preparation: Germ 102 or equiv.

Germ 204 (s) Special Topics (cr arr). Prereq: perm.

Germ 299 (s) Directed Study (cr arr). Prereq: perm.

Germ 301 Advanced German Grammar (3 cr). Emphasis on writing skills and various kinds of writing; selective review of German grammar and usage. Recommended Preparation: Germ 202. (Fall only, Allyn’s)

Germ 302 Advanced German Speaking and Writing (3 cr). Emphasis on developing proficiency in speaking and writing; discussion on topics of cultural interest. Recommended Preparation: Germ 202. (Fall only, Allyn’s)

Germ 303 German for Professional Life (3 cr) May be used as core credit in J-3-d. Emphasis on practical language usage and skills appropriate to the professional workplace. Recommended Preparation: Germ 202, 301 or 302.

Germ 304 20th Century German Culture and Society (3 cr). May be used as core credit in J-3-d. German society, political culture, and the arts in the 20th century. Recommended Preparation: Germ 202.

Germ 305 Germany in the New Europe (3 cr) May be used as core credit in J-3-d. Contemporary social and political institutions in German-speaking Europe; reading and discussion on topics of current interest in Germany and the European Union. Recommended Preparation: Germ 202.

Germ 306 Introduction to German Literature (3 cr) Introduction to the study of German literature; representative texts from various genres and periods. Recommended Preparation: Germ 202.

Germ 400 (s) Seminar (cr arr). Prereq: perm.

Germ 404 (s) Special Topics (cr arr). Prereq: perm.

Germ 420 (s) Topics in German Culture and Literature (3 cr, max 6). For advanced students; focus on literary/cultural period, theme, genre, or work by one or more authors. Recommended Preparation: Germ 301 or 302, and Germ 306. (Allyn’s, Spring Only)

Germ 440 German Media through the Internet (3 cr). May be used as core credit in J-3-d. For advanced students. Reading and discussion from contemporary media in the German-language Internet; focus on topics of current cultural interest. Recommended Preparation: Germ 301 or 302 and Germ 305 or 306.

Germ 449 (s) Practicum in Tutoring (1 cr, max 2). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm of dept.

Germ 499 (s) Directed Study (cr arr). Prereq: perm.

ITALIAN

Ital 101-102 Elementary Italian I & II (4 cr). May be used as core credit in J-3-d. Graded P/F. Prereq: perm.

Ital 201-202 Intermediate Italian I & II (4 cr). May be used as core credit in J-3-d. Practice in listening comprehension and conversational skills. Graded P/F. Coreq: Ital 101, 201, or 202.

JAPANESE

Japn 101-102 Elementary Japanese I-II (4 cr). May be used as core credit in J-3-d. Graded P/F. Prereq: perm.

LATIN

NEZ PERCE

Ancient Greek

Grek 200 (s) Seminar (cr arr). Prereq: perm.

Grek 204 (s) Special Topics (cr arr). Prereq: perm.

Grek 299 (s) Directed Study (cr arr). Prereq: perm.

Grek 349 (s) Greek Language Lab (1 cr, max arr). WSU Clas 349. A maximum of two credits may be earned in basic skills. Graded P/F. Prereq: perm.

Grek 400 (s) Seminar (cr arr). Prereq: perm.

Grek 404 (s) Special Topics (cr arr). Prereq: perm.

Grek 441-442 (s) Intermediate Greek (4 cr, max arr). WSU Clas 441-442. Readings in classical Greek prose and poetry.

Grek 449 (s) Practicum in Tutoring (1 cr, max 2). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm of dept.

Grek 499 (s) Directed Study (cr arr). Prereq: perm.

Italian

Ital 101-105 Elementary Conversation (1 cr, max 2). WSU Ital 105.

Japanese

Japn 205 Intermediate Conversation (1 cr, max 2). WSU Ital 205. Prereq: Ital 102 or equiv.

Latin

Japanese

Japn 101-102 Elementary Japanese I-II (4 cr). May be used as core credit in J-3-d. Graded P/F. Prereq: perm.

Japn 205 Intermediate Japanese I (4 cr). May be used as core credit in J-3-d. Graded P/F. Prereq: perm.

Latin

Japanese

Japn 101-102 Elementary Japanese I-II (4 cr). May be used as core credit in J-3-d. Graded P/F. Prereq: perm.

Latin

Japanese

Japn 101-102 Elementary Japanese I-II (4 cr). May be used as core credit in J-3-d. Graded P/F. Prereq: perm.

Latin

Japanese

Japn 101-102 Elementary Japanese I-II (4 cr). May be used as core credit in J-3-d. Graded P/F. Prereq: perm.
PART SIX
Courses

Forest Products

RUSSIAN
Russ WS101 First Semester Russian (4 cr). May be used as core credit in J-3-d. WSU Rus 101.
Russ WS102 Second Semester Russian (4 cr). May be used as core credit in J-3-d. WSU Rus 102.
Russ WS105 Elementary Conversation I (1 cr, max 2) WSU Rus 105. Graded P/F.
Russ WS120 Russian Culture (3 cr) WSU Rus 120. Taught in English.
Russ WS112 Contemporary Russian Culture (3 cr) WSU Rus 121. Taught in English.
Russ WS131 Masterpieces of Russian Literature in Translation (3 cr) WSU Rus 131.
Russ WS201 Third Semester Russian (4 cr). (Russ WS203) May be used as core credit in J-3-d. WSU Rus 203.
Russ WS202 Fourth Semester Russian (4 cr). (Russ WS207) May be used as core credit in J-3-d. WSU Rus 204. Recommended Preparation: Russ 202.
Russ WS308 Intermediate Grammar & Writing (3 cr) WSU Rus 308. Prereq: Russ 207.
Russ WS361 Russian for the Professionals (3 cr) WSU Rus 361.
Russ WS410 Russian Film (3 cr) WSU Rus 410.
Russ WS430 St. Petersburg (4 cr). (Russ WS207)
Russ WS450 Seminar in Russian Studies-Themes (3 cr) WSU Rus 450. Recommended Preparation: Russ 306.

SPANISH
Span 101-102 Elementary Spanish I-II (4 cr). May be used as core credit in J-3-d. Pronunciation, vocabulary, reading, spoken Spanish, and functional grammar.
Span 103 (s) Spanish Language Lab (1 cr, max 4). Practice in listening comprehension and conversational skills. Graded P/F. Coreq: elementary or intermediate Spanish (Span 101-102 or 201-202).
Span 200 (s) Seminar (cr arr). Prereq: perm.
Span 200-201-202 Intermediate Spanish I-II (4 cr). May be used as core credit in J-3-d. Reading, grammar review, speaking, and writing. Recommended Preparation: Span 102.
Span 204 (s) Special Topics (cr arr). Prereq: perm.
Span 209 (s) Directed Study (cr arr). Prereq: perm.
Span 301 Advanced Grammar (3 cr) Recommended for prospective teachers of Spanish.
Span 302 Advanced Composition (3 cr). Recommended for prospective teachers of Spanish. Prereq: Span 202 or perm.
Span 303 Spanish Conversation (3 cr). May be used as core credit in J-3-d. Further development of speaking skills for advanced students; discussion on topics of current cultural interest. Prereq: Span 302 or perm.
Span 305 Culture and Institutions of Spain (3 cr). May be used as core credit in J-3-d. Prereq: Span 302 or perm.
Span 306 Culture and Institutions of Latin America (3 cr). May be used as core credit in J-3-d. Credit may be earned in either FLEN 395 or Span 306. Prereq: Span 302 or perm.
Span 307 Hispanic Film (3 cr). May be used as core credit in J-3-d. Genre, structure, and style of representative fiction and nonfiction films of Spain and Latin America. May be taken concurrently with Span 202 with perm of instructor; may not receive credit for both Span 307 and FLEN 395.
Span 308 Proficiency in Reading (3 cr). May be used as core credit in J-3-d. Issues and methods of literary analysis; emphasis on reading, writing, and speaking skills in the target language. Prereq: Span 302 or perm.
Span 309 Spanish for Business (3 cr). May be used as core credit in J-3-d. Emphasis on business Spanish. Recommended for students in Foreign Language Business Option. Prereq: Span 302 or perm.
Span 311 Readings: Hispanic News Via Internet (3 cr) Recommended Preparation: Span 302.
Span 312 Readings: Hispanic Literatures of the U.S. (3 cr). May be used as core credit in J-3-d. Recommended Preparation: Span 302.
Span 400 (s) Seminar (cr arr). Prereq: Span 302 or perm.
Span 401 Readings: Spanish Literature (3 cr). Prereq: Span 302 or perm.
Span 402 Readings: Spanish American Literature (3 cr). May be used as core credit in J-3-d. Prereq: Span 302 or perm.
Span 404 (s) Special Topics (cr arr). May be used as core credit in J-3-d. Prereq: Span 302 or perm.
Span 413 Spanish American Short Fiction (3 cr). May be used as core credit in J-3-d. The short story in 19th- and 20th-century Spanish America. Recommended Preparation: Span 302.
Span 449 (s) Practicum in Tutoring (1 cr, max 2). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm of dept.
Span 499 (s) Directed Study (cr arr). Prereq: perm.
Span 501 (s) Seminar (cr arr). Prereq: perm.
Span 502 (s) Directed Study (cr arr). Prereq: perm.
Span 504 (s) Special Topics (cr arr). Prereq: perm.

GENERAL COURSES
FL 200 (s) Seminar (cr arr). Prereq: perm.
FL 204 (s) Special Topics (cr arr). Prereq: perm.
FL 299 (s) Directed Study (cr arr). Prereq: perm.
FL 400 (s) Seminar (cr arr). Prereq: perm.
FL 404 (s) Special Topics (cr arr). Prereq: perm.
FL 499 (s) Directed Study (cr arr). Prereq: perm.

Forest Products

Thomas M. Gorman, Head, Dept. of Forest Products (102 CNR Bldg. 83844-1132; phone 208/885-9663).

Prerequisite: Courses in this subject field that are numbered above 299 are not open to undergraduate students on academic probation.

ForP 100 Forest Products Issues and Industries (1 cr). Critical issues facing the forest products industry, manufacturing processes for wood products, and professional career opportunities. Onelec or one half-day lab trip a wk (4-6 lab trips to local forest products manufacturing sites).
ForP 203 (s) Workshop (cr arr). Prereq: perm.
ForP 204 (s) Special Topics (cr arr). Prereq: perm. (Fall only)
ForP 230 Forest Harvesting Field Measurements (2 cr). Evaluation and quantification of harvesting impacts on forest systems; public land surveying, land measurements, resource impact measurements and evaluation. Two lec and one 3-hr lab a wk for 10 wks. Recommended Preparation: Math 143 or equiv. (Fall only)
ForP 233 Forest Harvesting Field Measurements (2 cr). Evaluation and quantification of harvesting impacts on forest systems; public land surveying, land measurements, resource impact measurements and evaluation. Two lec and one 3-hr lab a wk for 10 wks. Recommended Preparation: Math 143 or equiv. (Fall only)
ForP 249 (s) Directed Study (cr arr). Prereq: perm.
ForP 336 Introduction to the Pulp and Paper Industry (1 cr). Chip supply, quality, and handling; pulping and bleaching; pollution abatement; papermaking; and paper characteristics and utilization. Three half-day field trips.
ForP 337 Physical and Mechanical Properties of Wood (3 cr). Properties of wood as they relate to physical behavior and product application; other related topics include biodeterioration, machining and adhesive technology, and strength considerations. Recommended Preparation: ForP 277 or perm. (Spring only)
ForP 365 Wood Building Technology (3 cr). Basic structural design including elementary statics and principles and technology of wood structural design. Recommended Preparation: Phys 100, Phys 111. (Fall only)
ForP 400 (s) Seminar (cr arr). Prereq: perm.
ForP 401 (s) Practicum in Tutoring (1 cr, max 2). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm.
ForP 403 (s) Workshop (cr arr). Prereq: perm.
ForP 404 (s) Special Topics (cr arr). Prereq: perm.
ForP 405 (s) Professional Development (cr arr). Cr earned in this course will not be accepted toward grad degree programs. Prereq: perm.
ForP J410U510 Wood Properties, Processes, and Uses (1-2 cr). Open to non-majors only. Physical, mechanical, and chemical properties of wood and wood products; timber harvesting technologies; and issues in use of wood products. Additional projects/assignments reqd for grad cr. Graded P/F. Five days of workshop, including field trip.
ForP 425 Forest Products Marketing (3 cr). WSU NATRS 420/520. Aspects of marketing from an industrial perspective; survey of domestic and international forest products marketing; marketing research in forest products; current issues and problems in marketing forest products. (Spring, Alt/ryrs)

ForP 430 Forest Engineering and Harvesting (3 cr). WSU NATRS 320. Survey of logging equipment capabilities; intro to cable logging systems, road layout, and design; cost analysis of logging systems; development of road and logging plans. Three days of field trips. Recommended Preparation: ForP 230. (Fall only)

ForP 431 Production and Cost Control in Forest Industry (3 cr). WSU NATRS 439. Intro to production planning and cost control for timber harvesting and forest products processing operations; development and application of machine rates and system production rates; break-even analysis; machine replacement; cash flow in investment decisions; use of microcomputers in analysis. Prereq: ForP 430 or perm. (Fall, Alt/ryrs)

ForP 432 Low Volume Forest Roads (3 cr). WSU NATRS 432. Road classification; design of forest roads; construction techniques; costing; environmental considerations, design project. Three days of field trips. Recommended Preparation: ForP 430. (Spring, Alt/ryrs)

ForP 433 Forest Tractor System Analysis (3 cr). WSU NATRS 433. Planning, layout, and cost analysis of forest tractor systems, production estimating, machine capabilities, and costs. Three days of field trips. Recommended Preparation: ForP 430 or equiv. (Spring, Alt/ryrs)

ForP 434 Cable Systems Analysis (3 cr). WSU NATRS 434. Layout, planning, and design for cable logging systems; analysis of forces involved in cable logging; crew and terrain requirements; layout and design project; cost and equipment analysis. Three 1-day field trips. Prereq: Phys 111 or 211, and ForP 430 or equiv. (Spring, Alt/ryrs)

ForP J436/J536 Wood Composites (3 cr). Raw material, processes, properties, and markets for a number of wood composites made of particles and fibers. Additional projects and assignments reqd for grad cr. One full-day field trip. Recommended Preparation: ForP 277. (Spring only)

ForP 437 Wood as a Structural Material (2 cr). Applications of mechanical behavior to wood and wood composites; structural consideration and computer analysis of wood materials, including engineered products, panels, trusses. Recommended Preparation: ForP 337 or 365. (Fall only)

ForP J438/J538 Wood Chemistry (3 cr). The chemistry of wood formation, wood structure and reactions of wood. Development projects and assignments reqd for grad cr. Two lec and one 3-hr lab a wk. Recommended Preparation: Chem 101 and ForP 277. (Fall only)

ForP 439 Operational Analysis in Timber Harvesting (3 cr). Address contemporary issues associated with timber harvesting; harvesting production and cost analysis, soil compaction, residual stand damage, landlides, road construction, optimization in forest transportation, forest biomass energy, and quality control in timber harvesting. Recommended Preparation: Work experience with public agencies and private companies. Prereq: ForP 430 or perm. (Spring, Alt/ryrs)

ForP 444 Lumber Manufacturing (3 cr). Raw materials, production methods, drying product specifications, and grading for sawn wood products; plant layout, machines, and systems analysis; plant tours. Two lec and one 5-hr lab a wk. Recommended Preparation: ForP 277. (Spring only)

ForP 450 Wood Deterioration and Preservation (2 cr). Thermal, biotic, and abiotic agents cause wood deterioration; biological control methods; design considerations; wood preservatives and preservative systems; treatability of wood; treatment mechanics; pollution control systems; preserves effectiveness; standards; environmental concerns and laws. Recommended Preparation: ForP 277. (Fall, Alt/ryrs)

ForP W5455 Construction Scheduling (3 cr). WSU Cat M 545. Precedence and arrow networking techniques for construction; fundamentals of scheduling computations; time-cost adjustments, resource leveling; computer scheduling software overview.

ForP 470 Interdisciplinary Natural Resource Planning (3 cr). See WLF 470.

ForP W5475 Estimating I (3 cr). WSU Cat M 475.

ForP J477/J577 Forest Products Business Management (3 cr). Business plans for primary and secondary wood products processing businesses; preliminary technical and economic modeling of wood products manufacture; process systems analysis; commercial aspects, principles and terminology of the international timber trade. Graduate students in ForP 577 serve as group leaders on field projects. One field lab. Recommended Preparation: ForP 277, 444. (Spring, Alt/ryrs)

ForP 480 Senior Project (2 cr). Case studies involving analysis of forest industry problems and issues using advanced techniques in team design and construction; problems addressed individually or in project teams. Field trips. Prereq: Sr standing.

ForP 483 Senior Project Presentation (1 cr). See For 483.

ForP 485 Ecology and Conservation Biology Senior Project (3 cr). Same as CSS/ Fish/ForRnge/WLF 485. Professional work experience in natural resources ecology and conservation biology; learning objectives and a specific plan for the internship experience must be developed. ForP 483 projects involving wood design and construction; problems presented individually or in project teams. Prereq: ForP 480 or 483.

ForP 490 Biomaterial Product and Process Development (2 cr). Principles of product planning and development, concept testing, product-life cycle management, portfolio analysis, targeting and positioning, team management, and implementing product decisions as they apply to wood-based materials. Prereq: Econ 201 or 202, and perm. (Spring only)

ForP 491 Biomaterial Product and Process Development Lab (1 cr). Lab to accompany ForP 490. One 3-hr lab per week. Prereq: Econ 201 or Econ 202, and perm. Coreq: ForP 490. (Spring only)

ForP 497 Senior Thesis (2-4 cr, max 4). Independently plan and conduct a thesis project; write and defend the thesis under supervision of an advisor. Prereq: Sr standing and minimum 3.20 GPA or perm.

ForP 498 Renewable Natural Resources Internship (cr arr). Supervised field experience with an appropriate public agency or private company. Required for students in the Forest Products Business Management option and for cooperative education students. Graded P/F. Prereq: perm of advisor. (Summer only)

ForP 499 (s) Directed Study (cr arr). For the individual student; conferences, library, field, or lab work. Prereq: Sr standing. GPA 2.5, or perm.

ForP 500 Master's Research and Thesis (cr arr).

ForP 501 (s) Seminar (cr arr). Major philosophy, management, and research problems of forest products industries; presentation of individual studies on assigned topics. Prereq: perm.

ForP 502 (s) Directed Study (cr arr). Prereq: perm.

ForP 503 (s) Workshop (cr arr). Selected topics in the conservation and management of natural resources. Prereq: perm.

ForP 504 (s) Special Topics (cr arr). Prereq: perm.

ForP 505 (s) Professional Development (cr arr). Earned in this course will not be accepted toward grad degree programs. Prereq: perm.

ForP 522 Advanced Forest Roads (3 cr). Field layout of L-line in a forest setting; curves; slope skaking and clearing limits; lab analysis of soil for subgrade; lab analysis of gravel for surfacing; stability analyses; costing of alternatives. Prereq: ForP 430. (Spring, Alt/ryrs)

ForP 536 Wood Composites (3 cr). See ForP J436/J536.

ForP 538 Wood Chemistry (3 cr). See ForP J438/J538.

ForP 541 Issues in Renewable Natural Resource Industries (2 cr). Overview of renewable natural resource base industries with focus on forest products, range livestock, and tourism; review of historical and economic base for industries and current social, biological, and economic issues of importance.

ForP 577 Forest Products Business Management (3 cr). See ForP J477/J577.

ForP 597 (s) Practicum (cr arr). Prereq: perm.

ForP 598 (s) Internship (cr arr). Prereq: perm.

ForP 599 (s) Non-thesis Master's Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

ForP 600 Doctoral Research and Dissertation (cr arr). Prereq: admission to the doctoral program in “natural resources” and perm of dept.

Forest Resources

Jo Ellen Force, Head, Dept. of Forest Resources (204 CNR Bldg. 83844-1133; phone 208/885-7952; fores@uidaho.edu).

Prerequisite: Courses in this subject field that are numbered above 299 are not open to undergraduate students on academic probation.

For 102 Introduction to Forest Management (1 cr). Intro to forestry, current management issues, timber and non-timber resources, educational and professional opportunities.

For 200 (s) Seminar (cr arr). Prereq: perm.

For 221 Ecology (3 cr). Same as Range 221. Principles of ecology. Major topics covered in the course include the physical environment, how organisms interact with each other and their environment, evolutionary processes, population dynamics, communities, energy flow and ecosystems, conservation biology, and human influences on ecosystems. Recommended preparation: introductory botany and zoology (i.e. Biol 213). Prereq: Biol 115 or 116, or perm.

For 235 Society and Natural Resources (3 cr). May be used as core credit in J-3-d. Same as CSS 235. The social sciences applied to natural resources management; relationship between natural resources and human socioeconomic systems; analysis of resource issues.

For 270 Principles of Forest Ecosystem Management (2 cr). Forest resources, regions, and management objectives; silvicultural principles and practices employed in management of forest ecosystems; interrelations between uses of forest land. Two 1-day field trips.

For 274 Forest Measurement and Inventory (3 cr). Practical techniques for the design and execution of the measurement and inventory of forest resources. One three hour lab and three one-hour lectures. Prereq: Stat 251. (Spring only)

For 299 (s) Directed Study (cr arr). Prereq: perm.

For 302 Wildland Field Ecology (2 cr). See CSS 302.

For 320 Dendrology (3 cr). Identification, classification, distribution, and associations of the important tree species of the U.S.; important regional shrubs. Two lec and two 2-hr labs a wk; one 1-day field trip. Prereq: PHS 205 or perm.
300 Forest Ecosystem Processes (3 cr). Chemical, physical, and physiological processes that determine tree growth and forests function; emphasis on carbon budgets, productivity, consequences of forest management, and global climate change. Two lec and one 2-hr lab a wk; one field trip. Prereq: Soil 205, Math 143 or 160, high school physics or Phys 100 or 111, or perm.

361 Farm and Natural Resource Appraisal (3 cr). See AEC 361.

375 Airphoto Interpretation and Mapping (3 cr). Methods and techniques of obtaining qualitative and quantitative spatial information from aerial photographs, maps, and the Global Positioning System for input into geographic information systems and planning processes for natural resources land management. Two lec and two 1-hr labs a wk. Prereq: college level mapping course.

383 Economics for Natural Resource Managers (3 cr). Same as AEC 383. Role of economic forces in resource analysis and conservation; planning of forest resource use by the firm and society. Prereq: Econ 202; Math 160; For/CS 235, or perm.

398 (s) Renewable Natural Resources Internship (cr). Same as Fish/Rnge/WLF 398. Supervised field experience with an appropriate public or private agency. Req'd for cooperative education students. Graded P/F. Prereq: perm of dept.

400 (s) Seminar (cr). Prereq: perm.

401 (s) Practicum in Tutoring (1 cr, max. 2). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm.

403 (s) Workshop (cr). Prereq: perm.

404 (s) Special Topics (cr). Prereq: perm.

408 Community and Urban Forestry (2 cr). Community and urban environment as affects that includes forest; forest management's role in urban development; issues; management by selection, design, planting, care, and maintenance. Prereq: perm.

423 Forest Community Ecology (1 cr). Principles of ecology related to vegetation classification and interpretation of structural and compositional change in communities following disturbance; practice in plant association/habitat type delineation as applied in western U.S. Accelerated first nine wks; eight lec periods and four 8-hr field trips. Recommended Preparation: For 221. Graded P/F.

424 Forest Dynamics and Management (4 cr). Integrated methods and techniques for sustainable management of forest ecosystems including, stand and disturbance dynamics, regeneration, exercises in forest assessment, forest modeling and communicating management guidelines. This course will be accelerated and completed in the first 13 weeks of the semester to take advantage of the good weather for field exercises. Field trips required. One 4-hr lec/lab and one 5-hr lec/lab a wk. Prereq: For 320 or 330.

426 Wildland Fire Management and Ecology (3 cr). Integrated fire-related biological, ecological, physical, and economic information for land managers; autecology and syntaxonomy of plant species in wildlands; natural role of fire; fire as a management tool; application to current issues. Two days of field trips. Recommended Preparation: For/Rnge/WLF 221.

427 Prescribed Burning Lab (2 cr). Fire use planning with emphasis on preparation, execution, and evaluation. Eight days of field trips. Recommended Preparation: For 426. Prereq: Sr standing, and perm. (Alt/yr)

429 Landscape Ecology (2 cr). Same as Rnge 429. Ecological relationships and conservation issues in wildland biotic communities across the landscape, including spatial and temporal dynamics and patterns, and importance of landscapes in maintenance of ecosystem diversity and function. One or more field trips. Prereq: For/Rnge/WLF 221. (Spring only)

462 Watershed Science and Management (3 cr). Influence of land management practices on hydrologic processes, water quality, and riparian habitat/wetlands on wildland watersheds. Two days of field trips. Recommended Preparation: Math 143 or 160, high school physics or Phys 100 or 111. (Fall only)

463 Hydrologic Measurement Techniques (1 cr). See CE 326.

466 Diseases and Insects of Woody Plants (3 cr). Fundamentals of pathogenic and entomology of woody plants; labs focus on diagnosis. Two lec and 3 hrs of lab a wk; two field trips. (Spring only)

470 Interdisciplinary Natural Resource Planning (3 cr). See WLF 470.

472 Remote Sensing of the Environment (3-4 cr). Current airborne and satellite systems, data acquisition on ground and from remote locations, instrumentation, imagery interpretation and digital analysis, applications for natural resource management. One additional two-hour lab a wk; two field trips. (Spring only)

474 Forest Inventory (3 cr). Principles and practice of natural resources dynamics and forest growth and yield simulation, applied mathematical programming techniques, quantitative decision support. Two lec and 2 hrs of lab a wk. Prereq: Stat 251 and perm.

476 Forestry Project Evaluation (3 cr). Applied financial and economic analyses of site-level integrated resources decisions in forested ecosystems; commodity and intangible resources; investment decision; forest management regimes of timber and non-timber commodity resources; joint production feasibility; links to forest planning and international development; forest taxation. Three hrs of lec and 1 hr of application lab a wk. Recommended Preparation: For 270, 383.

For ID355 Tropical Forests (3 cr). Fundamentals of the ecology of tropical forest ecosystems; biogeography; forest structure and function; forest management and conservation issues. Three hrs of lec and 2 hrs of lab a wk. Prereq: For 221. Graded P/F.

For ID377 Integrated Forest Management Models (3 cr). WSN NATRS 440. Applied mathematical and computer programming techniques for simultaneous consideration of temporal and spatial processes, and natural resource management; case studies and examples from current literature; topics include genetic diversity, inbreeding, population structure, gene flow, genetic drift, molecular phylogenetics, and hybridization.

For ID476 Water Quality Analysis (3 cr). Same as For 476. Chemical, physical, and biological water quality analysis; nutrient cycling; water and ecosystem function. Two hrs of lec and one 2-hr lab a wk. Prereq: For 361. Graded P/F.

For ID477 Integrated Forest Management Models (3 cr). Same as ID377. Applied mathematical and computer programming techniques for simultaneous consideration of temporal and spatial processes, and natural resource management; case studies and examples from current literature; topics include genetic diversity, inbreeding, population structure, gene flow, genetic drift, molecular phylogenetics, and hybridization.

For ID480 Forest Policy and Administration (2 cr). May be used as core credit in J-3-S. Evaluation of land and forest problems and policies in the U.S.; analysis of current conditions and policies; historical development of governmental and private agencies concerned with the administration of forest conservation program.

For ID485 Ecology and Conservation Biology Senior Project (3 cr). Same as WSN Fish/Rnge/WLF 485. Professional work experience in natural resources ecology and conservation biology; learning objectives and a specific plan for the internship experience must be developed in For 480 before starting the internship; after completing the internship, students will present an oral and written presentation of their work experience in For 483.

For ID487 (s) Senior Thesis (2-4 cr, max 4). Independently plan and conduct a thesis project; write and defend the thesis under supervision of an advisor. Prereq: Sr standing and minimum 3.20 GPA or perm.

For ID488 (s) Renewable Natural Resources Internship (cr). Supervised field experience with an appropriate public or private agency. Req'd for cooperative education students. Graded P/F.

For ID489 (s) Directed Study (cr). Prereq: For the individual student; conferences, library, field, or lab work. Prereq: Sr standing, GPA 2.5, and perm.

For ID500 Master’s Research and Thesis (cr). Prereq: Sr standing, GPA 3.0, and perm.

For ID501 (s) Seminar (cr). Major philosophy, management, and research problems of wildlands; presentation of individual studies on assigned topics. Prereq: perm.

For ID502 (s) Directed Study (cr). Prereq: perm.

For ID503 (s) Workshop (cr). Selected topics in the conservation and management of natural resources. Prereq: perm.

For ID504 (s) Special Topics (cr). Prereq: perm.

For ID510 Fundamentals of Research (3 cr). Same as CSE 507. The research process, the graduate program, and the graduate research project; objectives, techniques, and challenges; science and the scientific method; research literature; ethics; creativity; writing and speaking about research; preparation of a proposal for the graduate research project. Students should be in very early stages of planning their research. Prereq: perm.

For ID551 Introduction to Population Genetics (3 cr). WSN Bio S 519.

For ID560 Physical Hydrology (3 cr). A quantitative treatment of the physical processes that control water flows in the environment. Specific emphasis on evaporation, transpiration, snow processes and soil water flow. (Fall only; Alt yrs)

For ID561 Current Literature in the Hydrologic Effects of Forest Management (1 cr). Evaluation and discussion of how management activities affect hydrologic processes and flow regimes in forested watersheds. Seminar based on primary literature. (Spring only; Alt yrs)

For ID570 Tropical Ecosystems (3 cr). See For J420/J520.

For ID575 Advanced Silviculture (3 cr). Silvicultural systems and cultural practices; design of silvicultural prescriptions. Term project, field labs, and two days of field trips. Prereq: For 424 and/or perm. (Alt yrs)

For ID576 Fire Ecology (3 cr). Fire-related ecology of plant and animal species in wildlands; effects of fire occurrence and suppression on physical environment, landscapes, and processes in both natural and managed ecosystems. Two days of field trips. Prereq: general ecology course. (Alt yrs)

For ID577 Forest Landscape Ecology of Forests and Rangelands (2-3 cr). Ecological relationships of biotic communities in heterogeneous environments, spatial and temporal patterns, importance of landscapes in maintenance of ecosystem diversity and function. One 2-hr lecture/discussion a wk based on extensive reading of current literature and case studies. In addition, those students having 3 credits will meet an additional hour a week, focusing on quantitative landscape analysis, and they will participate in a 2-day field trip. Prereq: upper-division plant or animal ecology. (Spring only)

For ID582 Forest Gene Resource Management (3 cr). WSU NATRS 527. Genetic principles applied to forest ecosystem management; the origin and functions of genetic diversity; implications of silvicultural practices and ecosystem management on gene pools; management for genetic change; genetic considerations in forest ecosystems. One 3-hr discussion a wk based on readings of current and classic literature; two to three days of field trips. Prereq: For 270 or perm. (Alt yrs)

For ID583 Forest Ecosystem Analysis (3 cr). Forest ecosystem processes and analysis from the leaf to the landscape scale; techniques for measuring forest ecosystem attributes; integration with forest management. Field trip required. (Fall only)

For ID584 Conservation Genetics (3 cr). Basic principles of population genetics and phylogenetics and their applications to the field of conservation genetics and natural resource management; case studies and examples from current literature; topics include genetic diversity, inbreeding, population structure, gene flow, genetic drift, molecular phylogenetics, and hybridization.
For 551 Current Literature in Forest Ecology/Tree Physiology (1 cr, max arr). Review recent articles in forest ecology and physiology journals. Students choose, critically review, and discuss the articles to develop critical-thinking skills and confidence in their knowledge of the literature. Graded P/F.

For 552 Current Literature in Remote Sensing (1 cr, max arr). Review recent articles in remote sensing journals. Students choose, critically review, and discuss the articles to develop critical-thinking skills and confidence in their knowledge of the literature. Graded P/F.

For 553 Current Literature in Genetics and Ecology (1 cr, max arr). Review recent articles in genetics and ecology journals. Students choose, critically review, and discuss the articles to develop critical-thinking skills and confidence in their knowledge of the literature. Graded P/F.

For 566 Ecology and Genetics of Forest Fungi (3 cr). Ecology and genetics of forest fungi with emphasis on pathogens of woody plants of North America. Two lec and one lab a wk; one field trip. Prereq: For 467 or equiv. (Spring only)

For 569 Advanced Forest Entomology (3 cr). Methods and applications of biological and economic evaluation and control strategies of forest insect populations in relation to pest management programs. One 1-hr seminar and one 2-hr lab a wk; two 1-day field trips. Prereq: For 467466 or equiv. (Allyn's, Spring)

For IDWS557 Spatial and Biophysical Modeling (3 cr). WSU SoilS 574. Development of concepts, techniques, and methods for the fusion of remote sensing, GIS and bio-geochemical modeling techniques for analyzing energy and material pathways and cycles; review latest methods for temporal and spatial scaling of datasets and models to develop and test hypotheses for understanding forest ecosystem structure and function.

For ID581 Integrated Forest Resource Economics (2 cr). WSU NATS 511. Microeconomic theory of forest resource production and supply; valuing non-commodity and intangible forest resources; optimizing jointly produced resources; hierarchical decision analysis, case studies and policy evaluation. Prereq: undergraduate course in natural resource economics or perm. (Allyn's)

For 584 Natural Resource Policy Development (2 cr). The development of natural resource policy with emphasis on the policy process in the legislative branch of U.S. government; the role of and interrelationships between staff, committees, agencies, and elected officials; the relationship of science and scientists with policy and politicians in the development of natural resource policy, including preparation of testimony related to natural resource science and policy issues. Prereq: undergraduate course in natural resource policy or political science or perm. (Allyn's)

For 585 Natural Resources Policy Analysis (2 cr). Theories of policy analysis, natural resource policy formulation, and applications for developing policy-relevant information. Prereq: undergraduate course in natural resource policy or political science or perm. (Allyn's)

For 594 Analysis of Correlated Data (3 cr). Same as Stat 594. Theory and application of statistical tools to data of intricate correlation structures, such as are commonly found in natural resources. Coverage will include mixed-effects linear models and either nonlinear models or geostatistical techniques, depending on student interests. Use of R and Stata for data analysis. Graded P/F. Prereq: Stat 401. (Spring only)

For 597 (s) Practicum (cr arr). Prereq: perm.

For 598 (s) Internship (cr arr). Prereq: perm.

For 599 (s) Non-thesis Master’s Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

For 600 Doctoral Research and Dissertation (cr arr). Prereq: admission to the doctoral program in “natural resources” and perm of dept.

Geography

Harley E. Johansen, Head, Dept. of Geography (203 McClure Bldg. 83844-3021; phone 208/885-6216; geog@uidaho.edu)

Geog 100 Physical Geography (4 cr). May be used as core credit in J-3. Natural environment; nature, distribution, and relationships of climate, landforms, oceans, vegetation, hydrogeography, and soils. Three lec and one 2-hr lab a wk; may involve evening classes.

Geog 165 Human Geography (3 cr). May be used as core credit in J-3. Intro to geographic dimension in human behavior and how this is evident in population distribution, rural and urban land use, and social, economic, and political attributes of societies. (Fall only)

Geog 180 Geospatial Graphics (3 cr). May be used as core credit in J-3. An introduction to cartography and some of the issues of map-making. The course includes instruction in the graphic language of maps, map reading and interpretation, map use, map use and new mapping technologies. Two lec and 1 hr of lab a wk.

Geog 200 World Regional Geography (3 cr). May be used core credit in J-3. Countries, regions, and peoples of the world; interrelationships between humans and their physical and cultural environments.

Geog 201 (s) Seminar (cr arr). Prereq: perm.

Geog 202 Global Change Summit (3 cr). Basic scientific principles behind global climate change; energy balance of the earth; greenhouse gases; climate feedbacks. Global policy implications of potential change. Students represent countries around the world that may be affected by climate change in the future. (Fall only)

Geog 203 (s) Workshop (cr arr). Prereq: perm.

Geog 204 (s) Special Topics (cr arr). Prereq: perm.

Geog 240 Economic Geography (3 cr). May be used as core credit in J-3. Reciprocal relations between people and the earth environment within an economic framework; resource distribution, developmental alternatives, movement, processing and industrialization, local to global perspective, theories and case studies.

Geog 299 (s) Directed Study (cr arr). Prereq: perm.

Geog 301 Meteorology (3 cr). Atmospheric processes that produce weather; temperature; moisture, clouds, and precipitation; synoptic-scale weather; severe storms; weather instrumentation, weather maps, and forecasting; influences of weather on humans and impacts of humans on weather. One 1/2-day field trip. Prereq: Geog 100 or Phys 100 or perm. (Fall only)

Geog 315 Geomorphology (3 cr). See Geol 335. (Spring only)

Geog 320 Survey of Hydrologic Science (3 cr). Survey of topics in hydrologic science. Topics including: the global water cycle, storage and movement of soil moisture, soil hydraulic characteristics, rainfall/runoff relationships, approaches to watershed modeling, basic principles of groundwater flow. Lab includes hands-on field and computer lab exercises. Two hrs lecture and two hrs lab per wk. Prereq: Math 143, and Chem 111 or Phys 111 or Phys 221 or equiv.

Geog 330 Urban Geography (3-4 cr). Theory and models of the functions, origin, development, structure, and distribution of cities; land-use classification; geographic aspects of city planning. One hour additional meeting per week or project for fourth credit. One 1-day field trip. Prereq: Geog 200 or perm. (Fall only)

Geog J340/J540 Business Location Decisions (3 cr). Locational decision making in primary industries; secondary, and tertiary industry; resulting patterns of industrial location; importance of location and impact of industries on other characteristics of communities as demonstrated by examples from each sector. One 1-day field trip. Additional assignments and exams reqd for grad cr. Prereq: Geog 200 or perm.

Geog J350/J550 Geography of Development (3-4 cr). May be used as core credit in J-3. Geographic appraisal of resource problems and development potentials of the Third World. One hour additional meeting per week or project for fourth credit. Additional assignments and exams reqd for grad cr. Prereq: Geog 200 or perm. (Spring only)

Geog J360/J560 Population Dynamics and Distribution (3-4 cr). May be used as core credit in J-3. Effects of fertility, mortality, and migration on population size and distribution; demographic trends in U.S. and other societies and how these relate to economic, political, environmental, and other factors. One hour additional meeting per week or project for fourth credit. Additional assignments and exams reqd for grad cr. Prereq: Geog 200 or perm. (Spring only)

Geog 364 Idaho and the Pacific Northwest (3 cr). Regional and systematic geography of the Northwest; emphasis on Idaho and contemporary problems. One 2-day field trip.

Geog 365 Political Geography (3 cr). A survey of the geographical framework of the State and its development over the last 400 years. An examination of the ideas of geopolitics and the role of hegemony in interstate relations as well as the geographical implications of globalization are emphasized. The creation of diverse political landscapes of actual and imagined communities and their impact on ideas of nationalism and electoral behavior are also discussed. Prereq: Geog 200 or permission. (Allyn's)

Geog 378 Interactive Cartography (3 cr). Integration of GIS, desktop mapping, and office productivity applications; development of software applications. Two lec, 2 hrs of lab, and 6 hrs of outside work per wk. Prereq: perm.

Geog 380 Cartography and Graphic Communication (3 cr). For the map-making professions (e.g., agriculture, engineering, forestry, geosciences, planning). Map design and construction; map as graphic communication device. Design and drafting processes for map creation and production. Two lec and 6 hrs of lab a wk.

Genetics

Though there is no genetics degree at the University of Idaho, many degrees emphasize genetics. Information about research programs, specifics of courses, and academic advising is available from any member of the genetics faculty.

Gene 200 (s) Seminar (cr arr). Prereq: perm.

Gene 299 (s) Directed Study (cr arr). Prereq: perm.

Gene 314 General Genetics (3 cr). Principles of molecular genetics, microbial genetics, cytogenetics, qualitative genetics, quantitative genetics, and population genetics. Prereq: Biol 115 or MMDB 154 or perm. (Spring only)

Gene IDWS320 Genetics of Livestock Improvement (3 cr). See AVS 330.

Gene 400 (s) Seminar (cr arr). Prereq: perm.

Gene 499 (s) Directed Study (cr arr). Prereq: perm.

Gene 501 (s) Seminar (cr arr). Prereq: perm.

Gene 502 (s) Directed Study (cr arr). Prereq: perm.

Geog ID385 GIS Primer (3 cr). WSU ES/RP 385. Intro to basic concepts and applications of geographic information systems (GIS). Basic GIS lab exercises on PC-based GIS packages. Two lec and 2 hrs of lab a wk. Prereq: basic knowledge of PC-based operating system.

Geog 400 (s) Seminar (cr arr). Prereq: perm.

Geog 401 Climatology (3 cr). Physical basis for climatic processes and patterns; mechanisms of global atmospheric circulation; radiation balance and heat budget of the earth; models of weather patterns and climate. Prereq: Geog 100 or Geog 301 or Phys 100 (Spr only).

Geog 403 (s) Workshop (cr arr). Prereq: perm.

Geog 404 (s) Special Topics (cr arr). Prereq: perm.

Geog 409 Rural Development (3 cr) Readings and discussion seminar on rural societies in various countries. Rural trends and development prospects. Students do research paper. (Fall only)

Geog 420 Land, Resources, and Environment (3 cr). May be used as core credit in J-3 and J-4. Legal aspects of land-use control and resource management; methods of research in law libraries for planners and resource managers not trained as attorneys. Prereq: Geog 200 or perm. (Spring only)

Geog J424/J524 Hydrologic Applications of GIS and Remote Sensing (3 cr). Concepts of area-based hydrologic modeling and assessment and the various types of spatially distributed information commonly used in these activities, such as topographic data, vegetation, soils, and meteorologic data. Hands-on experience in manipulating these types of data sets for hydrologic applications. Recommended Preparation: Geog 385, For 462 or BAE 351 or BAE 355 or CE 325 or Geog 320 or equiv. (Fall only)

Geog J427/J527 Spatial Decision Support Techniques (3 cr). May be used as core credit in J-3 and J-4. Theory and applications of evaluation, collaborative spatial decision making, and optimization techniques in planning and management of natural resource systems; focus on operational knowledge of techniques, applicability, and limitations. Additional assignments and exams req’d for grad cr. Prereq: Geog 240, Math 160 or Stat 251 or perm. (All/rys)

Geog 440 The New Global Economy (3 cr). The course will explore the structures of global economic integration and labor migration to trade bloc formation and regional specialization. An understanding the role of location in the creation and modification of economic landscapes will be emphasized. Recommended Prep: Econ 446. Prereq: Econ 352 and Geog 350 or permission. (All/rys)

Geog WS-J444/WS-J544 Environmental Assessment (4 cr) WSU ES/RP 444. (Spring only)

Geog 470 Geographic Visualization (3 cr). An introduction to the science and art of cartography and spatial graphic representation. The theory and methods of spatial information representation are presented in the context of map design and data composition. Geographic data mining, geospatial data visualization and manipulation, representation modes and the components of cartographic implementation are discussed. Prereq: Geog 385.

Geog ID475 Geographic Information Systems (3 cr). WSU ES/RP 575. Spatial analysis in raster- and vector-based systems; concepts, techniques, and applications of GIS technology using microcomputer and workstation platforms. Two lec and 2 hrs of lab a wk. Prereq: Geog 385 or perm.

Geog 477 Web Resource Development for Geography (3 cr). Deployment of GIS content on the Internet; geo-spatial data management; client-side vs. server-side; online public and private sector sites: coding in HTML, Visual Basic, scripting. Two lec, 2 hrs of lab and 6 hrs of outside work a wk. Prereq: Geog 378 or perm.

Geog 479 Web-Based GIS (3 cr). Use of web-based mapping sites that offer dynamic and real-time access to geographic information systems and elements of spatial analysis. How to provide maps, tabular data and satellite imagery over the web and design sites of utility to multiple users. Prereq: Geog 385, Geog 475 or perm.

Geog J483/J583 Remote Sensing/GIS Integration (3 cr). Concepts and tools for the processing, analysis, and interpretation of digital images from satellite and aircraft-based sensors. The integration of remotely sensed data and the other spatial data types within Geographic Information Systems. Additional assignments and exams req’d for grad cr. Two lec and 2 hrs of lab a wk. Prereq: For 472 or equiv, and Stat 251. Coreq: Geog 385 or equiv. (Spring only)

Geog J484/J584 Advanced Topics in Remote Sensing and Image Processing (3 cr). Advanced concepts in the applications of remote sensing data to natural resource issues. Expanded and advanced capabilities for the analysis and interpretation of digital imagery. Additional assignments and exams req’d for grad cr. Two lec and 2 hrs of lab a wk. Prereq: Geog 385 and 483.

Geog 491 (s) Field Techniques (1-3 cr, max 6). Acquisition of data in the field, analysis, interpretation, and presentation of results of field investigations. May also be taken in conjunction with other geography courses. Prereq: perm. (Fall only)

Geog 497 (s) Practicum (1-6 cr, max 6). Practical on-the-job experience in applied geography and cartography. Oral and written reports are presented in which the student reviews and constructively criticizes the experience gained. Prereq: perm.

Geog 498 (s) Internship (cr arr). Prereq: perm.

Geog 499 (s) Directed Study (cr arr). Prereq: perm.

Geog 500 Master’s Research and Thesis (cr arr).

Geog 501 (s) Seminar (cr arr). Prereq: perm.

Geog 502 (s) Directed Study (cr arr). Prereq: perm.

Geog 503 (s) Workshop (cr arr). Prereq: perm.

Geog 504 (s) Special Topics (cr arr). Prereq: perm.

Geog 505 Climate and Water Resources Change (3 cr). See Geog J405/J505.

Geog 509 Alpine Hydrology (3 cr). Alpine runoff generation in concept of climatic and environmental changes, with particular emphasis on snow and glacier hydrology, permafrost, snow-water chemistry, watershed meteorology, watershed energy balance, land classification and suitability analysis, interpolation techniques, terrain analysis and modeling, interpolation. Sources and ramifications of potential, problems of a small watershed in water resources changes (restoration and conservation). Prereq: Geog 320, Geog 401, and one semester of calculus, or perm.

Geog 516 Advanced Field Glaciology (6 cr). See Geol 536.

Geog 520 Land and Resource Regulation Seminar (3-6 cr, max 6). Current legal issues in land use control and mineral resource management. Prereq: Geog 420 or perm.

Geog 527 Seminar in Resource Geography (3 cr). Examination of spatial ramifications of resource issues; emphasis on fuel and non-fuel minerals and development of spatial models used in evaluation process.

Geog 542 Special Statistics (3 cr). The course focuses on the basic theory and methods of spatial statistics including spatial dependence assessment and modeling. The course will cover basic spatial data analysis, point pattern analysis, spatial autocorrelation measures, and the analysis of lattice structures. Geographically weighted regression, spatial auto regression and the analysis of geographically continuous data using kriging methods will also be covered. Prereq: Geog 475, Math 170, Math 330, and Stat 401 or permission. (All/rys)

Geog 580 GIS Seminar (3 cr). Advanced topics in GIS and GIS applications including macro programming, user interface design, and data integration. Prereq: Geog 380 or perm.

Geog 582 Modeling and Simulation with Geographic Information Systems (3 cr). Principles and techniques of modeling and simulation of spatial and temporal processes; map algebra modeling language; model design and implementation using map algebra and a GIS macro programming language in UNIX environment. Two lec and 2 hrs of lab a wk. Prereq: Geog 475 and 580. (All/rys)

Geog 584 Advanced Topics in Remote Sensing and Image Processing (3 cr). See Geog J484/J584.

Geog 591 History and Philosophy of Geography (3 cr). Evolution of geography as a discipline, focusing on post-scientific revolution developments and identification of major themes in contemporary geographic thought. (Fall only)

Geog 597 (s) Practicum (cr arr). Prereq: perm.

Geog 598 (s) Internship (cr arr). Practical, on-the-job experience with governmental agencies or commercial establishments; oral and written reports are presented in which the student reviews and constructively criticizes the experience gained; salary may be received for services performed. Prereq: perm.

Geog 600 Doctoral Research and Dissertation (cr arr).

PART SIX Courses

Geological Engineering

Sunil Sharma, Chair, Dept. of Civil Engineering (104 Buchanan Engr. Lab. 83844-1022; phone 208/885-6762).

GeoE 403 (s) Workshop (cr arr). Prereq: perm.

GeoE 404 (s) Special Topics (cr arr). Prereq: perm.
GeoE 407 Rock Mechanics (3 cr). Mechanical properties of rocks and rock masses; lab and insitu techniques to estimate strength, stress distribution, and deformation behavior in rock masses; application of analytical tools such as the finite element method to design stable excavations and support systems in rock. Prereq: Engr 350.

GeoE 410 Techniques of Groundwater Study (3 cr). See Geol 410.

GeoE 420 Erosion and Sediment Control (3 cr). Erosion and sediment control principles and practices, with emphasis on construction activities and compliance with regulatory guidelines. One 1-day field trip. Prereq: perm.

GeoE ID428 Geostatistics (3 cr). Same as Stat 428. WSU Geol and Stat 428. Applications of random variables and probability in geologic and engineering studies; regression, regionalized variables, spatial correlation, variograms, kriging, and simulation. Recommended Preparation: Stat 301.

GeoE 436 Geological Engineering Analysis and Design (3 cr). Geological engineering analysis and design methods, including data collection, stability analysis, and ground reinforcement techniques; individual and teamwork approaches to formulation and solving geological engineering problems. One 1-day field trip. Prereq: CE 360 or grad standing.

GeoE 462 Geotechnical Engineering Design (3 cr). See CE 460.

GeoE 465 Excavation and Materials Handling (3 cr). Principles of excavation design and handling of earth materials related to construction projects, quarries, and mines; blasting, excavation planning and scheduling, equipment selection and replacement, cost estimating, geographic information and management information systems. Computerized design using Gemcom and/or other appropriate software. Prereq: CE 211 or perm.

GeoE 499 (s) Directed Study (cr arr). Prereq: perm.

GeoE 502 (s) Directed Study (cr arr). Prereq: perm.

GeoE 503 (s) Workshop (cr arr). Prereq: perm.

GeoE 517 Tunnel Design and Construction (3 cr). Geotechnical considerations for tunneling, drilling and blasting, TBM, ground support, haulage, ventilation, water handling, and trenchless technology. Application of analytical techniques such as the finite element method to design stable underground structures and support systems. Prereq: GeoE 407 or perm.

GeoE 528 Advanced Topics in Geological Engineering (3 cr). Advanced theory and applications, with emphasis on geostatistical simulations, soil and rock reinforcement, and computer modeling methods in geological engineering. Prereq: GeoE 428 and 435.

GeoE ID536 Slope Stability Analysis (3 cr). Theory of stability analysis of slopes, landslides, and embankments for soil and rock masses; problem solutions using hand calculations and the latest computer codes; problems explore practical applications in the geotechnical engineering field.

GeoE 598 (s) Internship (cr arr). Prereq: perm.

GeoE 212 Principles of Paleontology (4 cr). Studies of morphology, classification of fossil groups and of fossil faunas and floras in both pre-Cenozoic and Cenozoic environments; ages of sedimentary rocks. Threelec and one 2-hr lab a wk; one 1-to-2 day field trip. Recommended Preparation: Geol 102.

GeoE J236/J336 Processes in Glacial and Periglacial Environments (3-6 cr). Quantitative treatment using examples from regions of existing glaciers and permafrost. Two lecs and one 3-hr lab a wk or (for 6 cr) 2-wk intensive session in Alaska and Canada.

GeoE 249 Mineralogy and Optical Mineralogy (4 cr). Principles of crystallography, crystal chemistry, and crystal structure; mineral identification; principles of optical mineralogy and use of the polarized light microscope. Three lecs and one 2-hr lab a wk; two 1-day field trips. Prereq: GeoE 101 and Chem 111.

GeoE 290 Field Geology I (3 cr). Introduction to field mapping and field techniques; interpretation of sedimentary sequences; introduction to tectonic structures; preparation of reports based on field observations and interpretations. Accident and health insurance required. Three week, off-campus field course. Prereq: GeoE 101 or 111, and 102. (Summer only)

GeoE 299 (s) Directed Study (cr arr). Prereq: perm.

GeoE 309 Groundwater (3 cr). Occurrence, movement, and properties of subsurface water; intro to ground-water geology and hydrology. Prereq: GeoE 101 or 111, and Math 130 or 143.

GeoE 323 Geology of the Pacific Northwest (3 cr). Description and development of the distribution of rocks and mineral deposits in the Pacific Northwest. One 2-day field trip. Prereq: GeoE 101 or Geo 100.

GeoE 324 Principles of Stratigraphy and Sedimentation (4 cr). Description and identification of sedimentary rocks; organization and correlation of layered rocks in all scales, including factors controlling their distribution; cycles in sedimentation and stratigraphy; sequence stratigraphy and basin dynamics. Two lecs and two 2-hr labs a wk; two 1-day field trips; optional 7-day field trip. Prereq: GeoE 102.

GeoE 326 Igneous and Metamorphic Petrology (4 cr). Hard rock petrology plus megascopic and microscopic petrography of igneous and metamorphic rocks. Two lecs and two 2-hr labs a wk; two 1-day or one 2-day field trips. Prereq: GeoE 249.

GeoE 335 Geomorphology (3 cr). Same as Geog 315. Classification, recognition, origin, and significance of land forms; land form analysis in interpretation of geologic structure and history. Two 1-day field trip. Prereq: GeoE 101 or 102 or 111, or Geog 100, or perm.

GeoE ID344 Earthquakes and Seismic Hazards (3 cr). WSU Geol 444. The geology of earthquakes including the cause of fault rupture, seismic waves, focal mechanisms, and earthquakes associated with all fault types in a variety of tectonic settings; methods of identifying paleo-earthquakes in the geologic record, and the assessment of seismic hazard and risk in active fault environments. One 3-day field trip. Prereq: GeoE 101 or 111.

GeoE 345 Structural Geology (3-4 cr). Deformed rocks; mechanics of failure, recognition, description, classification, and genesis of folded and fractured rocks. Geology majors must enroll for 4 credits. Two lecs and one 2-hr lab a wk; one 2-day field trip (geology majors must take five 1-day field trips). Prereq: one semester high-school trigonometry or Math 144, GeoE 101 or 111, and Phys 111 or 211.

GeoE 360 Geologic Hazards (3 cr). Survey of natural geologic hazards, their controlling factors, recognition of hazard potential; emphasis on flash floods, earthquakes, landslides, volcanic hazards, subsidence. Three 1-day field trips. Prereq: GeoE 101 or 111.

GeoE 361 Geology and the Environment (3 cr). May be used as core credit in J-3-d. Environmental consequences of development of geologic resources; geochemistry of pollution due to geologic resource use; geology and geochemistry of waste disposal sites. Two 1-day field trips. Prereq: GeoE 101 or 111.

GeoE 375 Geology of National Parks (2 cr). Primarily for non-geology majors who want to acquire a better knowledge of geologic concepts and processes through study of geology of national parks. One 2-day field trip. Prereq: GeoE 101 or 102 or 111 or Geog 100.

GeoE 400 (s) Seminar (cr arr). Prereq. perm.

GeoE IDAWS401 Field Geology and Report Writing (6 cr). WSU Geol 308. Field problems and methods, use of instruments; interpretation of field data; preparation of reports based on field observations and interpretations. Three field trips. Accident and health insurance reqd. Prereq: GeoE 345; Geo 324 and 326.

GeoE 410 Techniques of Groundwater Study (3 cr). Same as GeoE 410. Collection and analysis of field data for reconnaissance groundwater studies. Two weekend field trips. Prereq or coreq: GeoE 308.

GeoE J416/J516 Advanced Field Methods in Geosciences (3 cr). Application of field techniques to the recognition and solution of problems of applied and research interest; design and implementation of integrated geological, geochemical, and geophysical programs. For 500-level credit, an additional independent project is required that demonstrates the student’s ability to design and carry out a geologic/geochemical/geophysical survey. Accident and health insurance required. Three week field trip. Prereq: GeoE 401 or perm.

GeoE 417 Advanced Paleontology (3 cr). Fossil assemblage analyses and report writing; marine faunal assemblage 1st half semester; nonmarine faunal assemblage 2nd half semester. Three 2-hr labs a wk; one 1-day field trip. Prereq: GeoE 212 or perm.

GeoE J418/J518 Geomicrobiology (3 cr). Same as Hydr J418/J518. Explore the interactions of microorganisms with the environment, particularly soil-rock-water interactions, and how microorganisms are important to our understanding of geological and hydrological processes. Topics include ground water microbiology, subsurface microbiology and the microbiology of extreme environments. Additional work required for graduate credit. (Spring only)
PART SIX

Geology

- **Geol 421 Environmental Geophysics (3 cr)**. Introduction to surface and borehole geophysics with emphasis on environmental problems. One 1-day field trip.

- **Geol 422 Principles of Geophysics (3 cr)**. Outline of geophysical methods for geological investigations. One 1-day field trip.

- **Geol 423 Principles of Geochemistry (3 cr)**. Physiochemical principles applied to geologic processes. Topics covered include atmospheric geochemistry, environmental geochemistry, aqueous geochemistry, crystal chemistry, radiogenic and stable isotopes. Two lec and one 2-hr lab a wk. Prereq: Chem 101 or 111, and Chem 112.

- **Geol J432-IDJ532 Geologic Development of North America (3 cr)**. WSU Geol 529. Tectonic, magmatic, and sedimentary sequence studies of North American continent through time; concepts of metal and petroleum enrichment related to time and geographical processes. Additional questions on two exams and written report of field trip reqd for grad cr. One 7-day field trip.

- **Geol IDWS-J448/IDWS-J548 Tectonics (3 cr)**. WSU Geol 540. Fundamentals of global plate tectonics, evolution of ocean basins, and the development of continental orogenic belts; focus on theoretical aspects of global tectonics, the salient physical constraints leading to the paradigm, and practical application of the model to regional geological problems. Graduate credit requires additional work including independent research, presentation of the research results in a class presentation, writing a research paper; and answering an additional question in examinations. Two lec and 2 hrs of lab a wk; one or two 1- to 2-day field trips.

- **Geol IDWS-J459/IDWS-J559 Geodynamics (3 cr)**. WSU Geol 559. Dynamics, movement, and deformation of the earth's lithosphere, asthenosphere, and mantle; emphasis on deformation processes and constraints derived from investigation of active tectonics using geophysics, seismology, geodesy, and structural geology. Graduate credit requires additional paper and examination questions. Prereq: Geol 345. (Alt/ys)

- **Geol J464/J564 The Geochemistry of Natural Waters (3 cr) Same as Hydr J464/J564. Basic principles of aqeous geochemistry applied to natural waters (groundwaters, lake and river waters, seawater), presented at an intermediate level; carbonate equilibria and alkalinity, solubility of minerals, sorption processes and surface reactions, redox reactions and Eh-pH diagrams, organic geochemistry, etc. For graduate credit, students are required to prepare two in-depth papers and demonstrate through exam work and papers more in-depth understanding of the material. One compressed video and one web-based lecture a wk. Prereq: Chem 111-112. Suggested preparation: Geol 423.

- **Geol J467-IDJ567 Volcanology (3 cr)**. WSU Geol 567. Eruption mechanisms, volcanic processes and landforms, and volcanic deposits. Additional projects/assignments reqd for grad cr. Two lec and one 2-hr lab a wk; seven days of field trips.

- **Geol WS470 Introduction to Economic Geology (4 cr)**. WSU Geol 470.

- **Geol 475 Mineral Deposits (4 cr)**. Occurrence, classification, and origin of metallic and nonmetallic economic mineral deposits. Three lec and one 3-hr lab a wk; one 3-day field trip. Prereq: Geo 249 and 345. (Geol 423 recommended).

- **Geol ID-J476-ID-J576 Mineral Deposits & Exploration Methods (3 cr)**. Characteristics of metallic and nonmetallic economic mineral deposits and design of mineral exploration programs. Geologic and geophysical techniques of exploration. Graduate credit requires an independent project and demonstration through exam work and papers of a more in-depth understanding of the material. One 10-day field trip. Prereq: Geo 249 and 345.

- **Geol IDWS-J483/IDWS-J583 Radioactive Isotopes and Geochemistry (3 cr)**. WSU Geol 483/583. Nuclear structure, radioactive decay, isochrons, the age of meteorites, the geospeedometry; dissolution and precipitation kinetics; weathering rates; crystal defects. Prereq: Chem 302 or Geol 555, or perm. (Alt/ys)

- **Geol 503 Advanced Topics in the Geochemistry of Hydrothermal Ore Deposits (3 cr)**. Same as Hydr J578. Detailed treatment of subjects introduced in Geol J483/J583, plus computer modeling of aqueous systems. Application of solution chemistry to hydrothermal solutions; Eh-pH, log f(02), pH, activity - activity diagrams; estimation techniques; water structure; metal complexation; solubility, transport and deposition; equilibrium speciation; geothermal fluids; experimental methods, activity coefficients. Two lec and three hrs of lab a wk, one 4-day field trip. Prereq: Chem 302 and Geol 555, or perm. (Alt/ys)

- **Geol 509 Advanced Topics in Sedimentary Rocks (3 cr)**. WSU Geol 520. Prereq: Geol 252. (Alt/ys)

- **Geol ID527 Sedimentary Petrography (3 cr)**. WSU Geol 527. Description and classification of sedimentary rocks in thin sections and hand specimens. One lec and two 2-hr labs a wk; one 3-day field trip.

- **Geol WS528 Clastic Depositional Systems (3 cr)**. WSU Geol 521. (Alt/ys)

- **Geol WS529 Carbonate Depositional Systems (3 cr)**. WSU Geol 525. (Alt/ys)

- **Geol ID532 Geologic Development of North America (3 cr)**. See Geol J432/J532.

- **Geol 536 Advanced Field Glaciology (6 cr)**. Same as Geog 516. Advanced quantitative treatment of glaciological problems carried out on selected glaciers of the Juneau icefield, Alaska, or an alternative area in the Rocky Mountains or Cascades. (Intensive 7-wk summer field session)

- **Geol IDWS5341 Structural Analysis (3 cr)**. WSU Geol 541. Structural analysis of complexly deformed rocks in orogenic belts. Field trip required.

- **Geol ID542 Geomechanics (3 cr)**. Concepts of linear elastic fracture mechanics as applied to the classification, origin and evolution of all types of rock fractures; continuum theory in rock mechanics; rock strength and failure criteria; stress tensors; elastic theory. Two 1-day field trips. Prereq: Phys 111 or 211, Math 175.

- **Geol ID546 Fault Mechanics (3 cr)**. Examination of fundamental concepts of fault mechanics, including brittle failure, rock friction, fluid pressure effects, and variable rheological behaviors; examination of internal fault architectures to distinguish fault zone styles; stress, strain, and displacement fields addressed from a theoretical perspective and the application of geodeic measurement techniques and secondary structure analyses; emphasis on interpretation of fault slip distributions and relationship to rock properties, fault shape, and mechanical interaction in echeon fault systems; such insights placed in context of 3-D fault systems; inextricable links between seismology and seismological hazard recognition. One weekend field trip. Prereq: Geol 345.

- **Geol WS548 Tectonics (3 cr)**. See Geol J448/J548.

- **Geol WS550 Advanced Mineralogy (3 cr)**. WSU Geol 550. (Alt/ys)

- **Geol WS551 Ore Microscopy and Fluid Inclusion Analysis (3 cr)**. WSU Geol 551. (Alt/ys)

- **Geol WS552 X-ray Analysis in Geology (3 cr)**. WSU Geol 552.

- **Geol ID554 Physical Petrology (3 cr)**. WSU Geol 554. Applications of continuum mechanics and fluid dynamics to generation, rise, storage, and eruption of magmas.

- **Geol 555 Thermochemistry of Geological Processes (3 cr)**. Thermodynamic principles applied to geological problems; specific topics include real gases at high P and T, estimation and measurement of thermodynamic data, solid solution modeling, geobarometry, geomechanics, thermodynamic and phase stabilities. Prereq: Chem 302 or perm. (Alt/ys)

- **Geol 556 Geological Reaction Rates and Diffusion (3 cr)** Chemical kinetics applied to geological sciences; diffusion in crystals, melts and fluids; crystal growth and nucleation; geospeedometry; dissolution and precipitation kinetics; weathering rates; crystal defects. Prereq: Chem 302 and Geol 555, or perm. (Alt/ys)

- **Geol ID557 High-Temperature Aquochemical Geochemistry I (3 cr)**. WSU Geol 557. Application of solution chemistry to hydrothermal solutions; Eh-pH, log f(02), pH, activity - activity diagrams; estimation techniques; water structure; metal complexation; solubility, transport and deposition; equilibrium speciation; geothermal fields; experimental methods, activity coefficients. Two lec and three hrs of lab a wk, one 4-day field trip. Prereq: Chem 302 and Geol 555 or perm. (Alt/ys)

- **Geol ID558 High-Temperature Aquochemical Geochemistry II (3 cr)** WSU Geol 558. Expands on topics covered in Geol 457/J557 through seminar format. Selected readings from primary literature followed by presentations and discussions in class. Prereq: Chem 302, Geol 555 and J557, or perm. (Alt/ys)

- **Geol IDWS559 Geodynamics (3 cr)**. See Geol J459/J559.

- **Geol WS560 Advanced Igneous Petrology (3 cr)**. WSU Geol 560.

- **Geol 564 The Geochemistry of Natural Waters (3 cr)**. See Geol J464/J564.

- **Geol 567 Volcanology (3 cr)**. See Geol J467/J567.

- **Geol WS571 Geochemistry of Hydrothermal Ore Deposits (3 cr)**. WSU Geol 571.

- **Geol WS573 (s) Advanced Topics in Economic Geology (2 cr)**. WSU Geol 573.

- **Geol ID575 (s) Advanced Topics in Mineral Deposits Exploration (1-4 cr, max arr)**. Examination of variable aspects of geochemical character and setting of mineral deposits and evolving exploration techniques employed for their discovery. Prereq or coreq: Geol 476 or 470.

- **Geol ID576 Mineral Deposits & Exploration Methods (3 cr)**. See Geol J476/J576.

- **Geol ID577 (s) Advanced Topics in the Geochemistry of Hydrothermal Ore Deposits (3 cr)**. WSU Geol 561. Advanced study of geochemical aspects of the formation of and environmental impact of metallic ores of hydrothermal origin; selected readings from the primary literature followed by presentations and discussions in class. One 3-day field trip. Prereq: Geol 557 or 470.

- **Geol 578 Advanced Geochimistry of Natural Waters (3 cr)**. Same as Hydr 578. Detailed application of aqueous geochemistry to natural waters at an advanced level; advanced treatment of subjects introduced in Geol 468/J568, plus computer modeling of aqueous systems; accompanying lab will stress familiarization with analytical techniques including those adaptable for field use. Students must complete an in-depth term project involving design, execution, and interpretation of analyses of a contaminated water. Two lec and three hrs of lab a wk, one 2-day field trip. Prereq: Geol 468/J568 or perm.

- **Geol IDWS583 Radioactive Isotopes and Geochemistry (3 cr)**. See Geol J483/J583.
Geol 587 Instrumental Techniques in Geochemistry (3 cr) Modern instrumentation for geochemical analyses including: ion chromatography, gas chromatography, FTIR spectroscopy, ICP-AES, ICP-MS, atomic absorption, UV-visible absorption spectrophotometry, geological sampling preparation. Students must carry out a term project involving the design, testing, and use of analytical protocol using one or more of the instruments covered in class; this project will be reported as a term paper worth a significant proportion of the grade and must reflect an in-depth understanding of the subject material. Two lec and one 3-hr lab w/ wk. Prereq: perm. (All yrs)

Geol WS588 Isotope Geology (3 cr) WSU Geol 588.

Geol 589 Water Resources Seminar (1 cr) See Intr 589.

Geol WS592 Advanced Topics in Structural Geology (1-4 cr, max 6). WSU Geol 592.

Geol IDS53 (s) Advanced Topics in Geomechanics (1-4 cr, max arr). Advanced treatment of current topics in geomechanics and related disciplines such as structural geology, hydrogeology, engineering geology, and petroleum engineering.

Geol 597 (s) Practicum (cr arr). Prereq: perm.

Geol 598 (s) Internship (cr arr). Prereq: perm.

Geol 599 (s) Non-thesis Master’s Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

Geol 600 Doctoral Research and Dissertation (cr arr).

Geophysics

Dennis J. Geist, Head, Department of Geological Sciences (320 Mines Bldg, 83844-3022; phone 208/885-6192).

H&S 150 Wellness Lifestyles (3 cr). May be used as core credit in J-3-d. Health concepts and strategies that affect one’s wellness; emphasis on personal responsibility and lifestyle choices.

H&S 200 (s) Seminar (cr arr). Prereq: perm.

H&S 203 (s) Workshop (cr arr). Prereq: perm.

H&S 204 (s) Special Topics (cr arr). Prereq: perm.

H&S 245 Introduction to Athletic Injuries (3 cr). Special fee course. Athletic training; recognition, evaluation, general care of athletic injuries; adhesive taping. Two lec and one lab w/ wk.

H&S 288 First Aid: Emergency Response (2 cr). Emergency care of injuries resulting from accidents or illness; administration of oxygen and blood pressure measurements. Qualified students will be awarded two certificates: American Red Cross Emergency Response and American Red Cross CPR for the Professional Rescuer. Certification/lab fee reqd. Two lec and 1 hr of lab w/ wk.

H&S 289 Drugs in Society (2 cr). Legal implications, values, and physical, social, and emotional factors involved in the use and abuse of drugs in society.

H&S 299 (s) Directed Study (cr arr). Prereq: perm.

H&S 311 Acquaintance Rape (2-3 cr). Overview of acquaintance sexual assault and rape, related research and statistics, impact on victims, socialization process of gender role stereotyping, exploration of myths and misconceptions, psychology of perpetrators, rape, related research and statistics, impact on victims, socialization process of gender roles, and life-style choices.

H&S 390 Athletic Training High School Clinical Experience (1 cr) Guided observation, supervision, instruction, and team and independent teaching in high school athletic training setting. Emphasis is on supervised clinical orthopedic/general medical conditions and disabilities, injuries and illnesses. Students receive supervised clinical experience in Athletic Training under the supervision of NATABOC Certified Athletic Trainers. Prereq: perm.

H&S 392 Athletic Training General Medical & Orthopedic Clinical Experience (1 cr). Guided observation, supervised instruction, and comprehensive team and independent teaching in a medical practice setting. Emphasis is on supervised clinical orthopedic/general medical conditions and disabilities, injuries and illnesses. Students receive supervised clinical experience in Athletic Training under the supervision of NATABOC Certified Athletic Trainers, Physicians, Physician Assistants, and Nurses. Prereq: perm.

H&S 400 (s) Seminar (cr arr). Prereq: perm.

H&S 403 (s) Workshop (cr arr). Prereq: perm.

H&S 404 (s) Special Topics (cr arr). Prereq: perm.

H&S 412 Emergency Response Instructorship (1 cr). Develops skills and knowledge to train others in emergency responses. Successful participants will receive emergency response instructor certification. Prereq: H&S 150, H&S 288, and perm. (Fall only)

H&S J43JU533 Health Education Methods and Administration (3 cr). Curriculum design, organization and administration, methods and strategies, and resource materials for teaching health in school and community health setting. Team leadership project and activity required for grad cr. Prereq: H&S 150. (Fall only)

H&S 431 Practicum: Student Teaching (7 or 14 cr). Supervised student teaching at the intermediate and/or secondary levels (grades 6 through 12). Double majors select the 7-cr option; all other students select the 14-cr option. Credits earned in this course may not be applied to total credits needed for the school and community health education major. Graded P/F. Prereq: admission to teacher education, H&S 323, ED 312 and 314, cumulative GPA of 2.5, and perm of dept. (Submit application to director of clinical experiences in the College of Education before 12 of the school year before enrolling.)

H&S 432 Medical Terminology (2 cr). See Rec 431.

H&S J43JUS536 Health Promotion Program Planning (3 cr). May be used as core credit in J-3-d. Provides in-depth study of plan development, implementation and evaluation of health promotion/wellness programs in a variety of settings, including workplace and community. Students obtain hands-on experience planning a health promotion program. Special emphasis on competencies necessary for the health educator to function in a variety of community settings. Additional projects reqd for grad cr. Prereq: H&S 150 and perm. (Spring only)

H&S J45JU550 Consumer Health and Health Care Issues (2 cr). May be used as core credit in J-3-d. Examination of major personal health and health care consumer issues including advertising, labeling, health insurance, Medicare, health care services, over-the-counter drugs, disease prevention and control, health fads, detection of health fraud and quackery, sources of consumer protection, and other topics of interest to the consumer. Term project reqd for grad cr. Prereq: H&S 150.

H&S 455 Design & Analysis of Research in HPERD (3 cr). Same as PEP 455 and Rec 455. This course is designed to survey the basic types of research methods often found in health, physical education, sport science, and recreation. A variety of research designs and computerized statistical analyses are studied to help students understand the systematic nature of problem solving. Various research problems as they relate to health, physical education, recreation, and human performance are discussed for the purpose of identifying the broad and diverse nature of research in the movement, leisure, and health professions. Prereq: Jr Jr Sr standing. (Spring only)

H&S 466 Athletic Training Evaluation (3 cr). Advanced injury evaluation theory and techniques in athletic training. Prereq: H&S 245 or perm. (Fall only)

H&S 467 Athletic Training Rehabilitation (3 cr). Advanced injury rehabilitation theory and techniques in athletic training. Prereq: H&S 245 and 466, or perm. (Spring only)

H&S 468 Athletic Training Modalities (3 cr). Advanced theory and techniques of modality use in athletic training. Prereq: H&S 245 or perm. (Fall only)

H&S 469 Athletic Training Organization and Administration (3 cr). The organization and administration of athletic training programs. Prereq: H&S 245 or perm. (Spring only)

H&S 470 Seminar in Athletic Training (2 cr). Capstone course designed to prepare students for entry into Athletic Training profession. Additional items include preparation for NATABOC national examination, career development, portfolio and resume completion, professionalism and other ethics, and various professional topics. Prereq: H&S 466, 467, 468, 469, or perm. (Spring only, all yrs)

H&S 484 Internship in Health Teaching (1-15 cr). Guided observation and mentoring, supervised instruction, and comprehensive team and independent teaching in a school setting for a total of one semester. Prereq: ED 302 and perm.

H&S 495 (s) Practicum in Tutoring (1 cr, max arr). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm.

H&S 496 (s) Practicum in Coaching and Mentoring (1 cr, max arr). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm.

H&S 497 (s) Practicum in Coaching and Mentoring (1 cr, max arr). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm.

H&S 498 (s) Practicum in Coaching and Mentoring (1 cr, max arr). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm.

H&S 499 (s) Practicum in Coaching and Mentoring (1 cr, max arr). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm.

H&S 589 Advanced Topics in Structural Geology (1-4 cr, max 6). WSU Geol 592.

H&S IDS49 Advanced Athletic Injuries (3 cr). WSU Ath T 349. Special fee course. Etiologic symptoms of sports-related injuries; diagnostic emphasis given to specific injuries of the extremities. Two lec and one lab w/ wk. Prereq: H&S 245 or perm.

H&S 350 Stress Management and Mental Health (2 cr). May be used as core credit in J-3-d. Application of behavioral stress management techniques that have the potential to relieve mental and physical stress; emphasis on development of skills related to mental and physical health.

H&S 355 Accident Control, Prevention, and Human Ecology (2 cr). The study of accidents, accident prevention, and injury control in variety of settings within society; emphasis on human resources impact. (All yrs)
PART SIX
Courses

H&S 498 Internship in Health/Safety (1-9 cr). Supervised field work. Prereq: Rec 445 and Sr standing.

H&S 499 (s) Directed Study (cr ar). Prereq: perm.

H&S 501 (s) Seminar (cr ar). Prereq: perm.

H&S 502 (s) Directed Study (cr ar). Prereq: perm.

H&S 503 (s) Workshop (cr ar). Prereq: perm.

H&S 504 (s) Special Topics (cr ar). Prereq: perm.

H&S 505 (s) Professional Development (cr ar). Cr earned in this course will not be accepted toward grad degree programs. Prereq: perm.

H&S 523 Health Education Methods and Administration (3 cr). See J423/J523.

History

Katherine G. Aiken, Chair, Dept. of History (315 Admin. Bldg. 83844-3175; phone 208/885-6253).

Note: In jointly numbered courses, additional projects/assignments are required for graduate credit.

Prerequisite: Two-semester courses in this field may be taken in either order. Students may enroll in second-semester courses without having had the first. Ordinarily six lower-division credits in history are advised for registration in upper-division courses.

Hist 101-102 History of Civilization (3 cr). May be used as core credit in J-3-d. Contributions to the modern world. Hist 101: to 1650. Hist 102: 1650 to present.

Hist 111-112 Introduction to U.S. History (3 cr) May be used as core credit in J-3-d. Political, diplomatic, economic, social, and cultural history; earliest times to the present. Hist 111: to 1877. Hist 112: 1877 to present.

Hist 180 Introduction to East Asian History (3 cr). May be used as core credit in J-3-d. Survey of traditional and modern Chinese and Japanese history.

Hist 210 Introduction to Modern Latin American History (3 cr). Survey of economic, political, social, and cultural developments in selected Latin American countries, each of which represents a large region, from independence to the present; emphasis on cultural uniqueness, economic development, pressures for social change, and mass political movements.

Hist 290 The Historian's Craft (3 cr). Introduction to the discipline of history, basic skills for course work and research, and major schools of historical writing.

Hist 313 Red, White, and Black: The Peopling of Early North America (3 cr). May be used as core credit in J-3-d. Survey; Native American, Euroamerican, and Afro-American heritage in North America, 1400-1790.

Hist 315 Comparative African-American Cultures (3 cr). May be used as core credit in J-3-d. An overview of African American history in the U.S. from the late 16th century to the present; comparisons with the experience of African Americans in other parts of the Americas; study of important personalities and historical forces that have influenced African Americans and the societies in which they live.

Hist 350 European Cultural History, 1600–1800 (3 cr) History of thought, material culture, and “mentalities” in early modern Europe, including the Scientific Revolution and Enlightenment.

Hist 357 Women in Pre-Modern European History (3 cr). May be used as core credit in J-3-d. Survey of historical experience of women from the Greeks through the 17th century.

Hist 366 Intellectual and Cultural History of Modern Europe (3 cr). May be used as core credit in J-3-d. Evolution of attitudes and values of European societies during the 19th and 20th centuries; influence of key events and ideas, including those of Marx, Darwin, Freud, Einstein, and Sartre.

Hist 380 Disease and Culture: History of Western Medicine (3 cr) Survey of Western medicine from Antiquity to the present. Examination of changing theories of disease, the scientific study of the human body, evolution of medical practices and treatment, the institutionalization of medical practice, and the evolution of public health policy. Prereq: Jr standing or perm. (Alt/rys)

Hist 382 History of Biology: Conflicts and Controversies (3 cr) Explores the social and intellectual development of the life sciences as a discipline in Europe and North America, with focus on biography in the 19th, 19th, and 20th centuries. Emphasis on evolutionary thought, heredity, development, social uses of biology, and women and gender. Prereq: Jr standing or perm. (Alt/rys)

Hist 385 History of Sexuality (3 cr) Analysis of sexuality and gender in Europe and North America, primarily from 1750 to the present. Focus upon changing sexual behavior both inside and outside of marriage and the efforts to regulate, repress, or encourage sexual behavior and attitudes. Prereq: Jr standing or perm. (Alt/rys)

Hist J401/J501 (s) Seminar (cr ar). May be used as core credit in J-3-d. Research papers in U.S., Latin American, ancient, English, or European history. Prereq: perm of dept.

Hist 404 (s) Special Topics (cr ar). Prereq: perm.

Hist 407 (s) Colloquium in European History (cr ar). Reading and analyzing historical literature in European history.

Hist 408 (s) Colloquium in Latin American History (cr ar). Reading and analyzing historical literature in Latin American history.

Hist J409/J509 (s) Colloquium in American History (cr ar). Reading and analyzing historical literature in American history.

Hist J411/J511 Colonial North America, 1492-1763 (3 cr) Native American societies; Spanish, French, and English colonization; international rivalries, 1492-1763.

Hist J412/J512 Revolutionary North America and Early National Period, 1763-1828 (3 cr) Era of the American War of Independence; Confederation; Early Nationhood, 1703-1828.

Hist J415/J515 Civil War and Reconstruction, 1828-1877 (3 cr). Sectionalism, westward expansion, slavery, the Civil War and Reconstruction.

Hist J416/J516 Rise of Modern America, 1877-1900 (3 cr) May be used as core credit in J-3-d. Industrial and economic development, political reform, populism.

Hist J417/J517 United States, 1900-1945 (3 cr). Populism, Progressivism, World War I, the Twenties, the Depression, the New Deal, and World War II.

Hist J418/J518 Recent America, 1945-Present (3 cr) America since 1945.

Hist J419/J519 Twentieth-Century American West (3 cr). History of the 11 Rocky Mountain and Pacific states from 1900 to the present.

Hist J420/J520 History of Women in American Society (3 cr). Examination of the roles of women (social, economic, and political) in U.S. history from colonial times to the present.

Hist J422 The American Landscape (3 cr). Using a regional approach to study the development of North America during the past three centuries, viewing and appreciating history as reflected in the continent’s changing landscapes and built environment.

Hist J423/J523 Idaho and the Pacific Northwest (3 cr) Political, economic, social development; earliest times to the present.

Hist J424/J524 American Environmental History (3 cr). May be used as core credit in J-3-d. History of changing American attitudes and actions toward the environment over three centuries.

Hist J425/J525 Immigration and Ethnicity in the United States (3 cr). Survey of the history of American immigration from the era of colonization to the present. Course will investigate the process of immigration and adaptation to life in the United States, as well as the reaction to immigrants by native-born Americans. Course will consider how immigrants fit within the larger framework of American identity and help define what it means to be “American.” Additional assignments required for graduate credit. Recommended preparation: Hist 111 and 112. (Alt/rys)

Hist J428/J528 History of the American West (3 cr). Spanish beginnings, Anglo-French expansion, the American occupancy, 1540 to present.

Hist J430/J530 U.S. Diplomatic History (3 cr) World power through war and the quest for peace, 1888 to present.

Hist J431/J531 History of Indian-White Relations (3 cr). May be used as core credit in J-3-d. Survey 1400 to present; dynamics and themes of Indian history with emphasis on Indian-White relations in the U.S.

Hist J435/J535 Latin America: The Colonial Era (3 cr) Indian civilization, European colonization, Spanish Imperial System, wars of independence.

Hist J438/J538 Modern Mexico and the Americas (3 cr) May be used as core credit in J-3-d. Survey and analysis of political, economic, social, and cultural aspects from independence to present; emphasis on Iberian and Amerindian legacies, economic development, relations with U.S., and social revolution of 1910-1920.

Hist J439/J539 Modern Latin America (3 cr) May be used as core credit in J-3-d. Political, economic, social, and cultural development; search for stability; growth of nationalism.

Hist J440/J540 Social Revolution in Latin America (3 cr) May be used as core credit in J-3-d. Analysis and comparison of 20th-century social revolution in selected Latin American countries: Cuba and two others; emphasis on origins of movements for social change, economic development issues, impact of the revolutions, and relations between new governments and the U.S.

Hist J441/J541 Comparative Slavery and Emancipation in the Atlantic World (3 cr) Analysis of the way in which African slavery became the predominant labor force in the Americas.

Hist J442/J542 The Medieval Church: Europe in the Early and High Middle Ages (3 cr) May be used as core credit in J-3-d. Evolution of medieval Christian society from reign of Constantine (c. 300) to pontificate of Innocent III (1215), as expressed in monastic and heresy.

Hist J443/J543 The Medieval State: Europe in the Late Middle Ages (3 cr) May be used as core credit in J-3-d. Analysis of how the vitality of particular medieval princes, of the commercial revolution, and of such movements as development of common law was harnessed in the evolution of medieval government from feudalism to the modern state.

Hist 444 Ancient Greek Civilization (3 cr). See FLEN 441.
Hist 445 Medieval English Constitutional and Legal History: 1066-1485 (3 cr). May be used as core credit in J-3-d. The study of the origins and development of English law and the English constitution during the Middle Ages.

Hist 446 Civilization of Ancient Rome (3 cr). See FLEN 442.

Hist J447/J547 The Age of the Renaissance and the Reformation (3 cr). May be used as core credit in J-3-d. Hist 447 same as RelS 447. Survey of European history and society through changes wrought by the Renaissance, the Exploitations, and the Reformation.

Hist J451/J551 French Revolution and Napoleonic Era (3 cr). Conditions in pre-revolutionary and revolutionary France; the Napoleonic state and impact of French changes upon Europe.

Hist J452/J552 19th Century Europe (3 cr). Nationalism and nation-building; Imperialism and the Great Powers; Capitalism and Socialism; tensions and rivalries leading to WWI.

Hist J455/J555 20th Century Europe (3 cr). May be used as core credit in J-3-d. World Wars, revolutions, and totalitarianism; decline and fall of the European empires; rise of a New Europe.

Hist 456 Anti-Semitism and the Holocaust (3 cr). The roots and character of European anti-Semitism from the Roman Empire to the Nazis and beyond; special focus on the Third Reich and World War II.

Hist J457/J557 History of the Middle East (3 cr). May be used as core credit in J-3-d. Survey of the Middle East from the beginning of the Islamic period to the present.

Hist J458/J558 Military History (3 cr). May be used as core credit in J-3-d. Survey of military history from ancient times to present; emphasis on international relations of war, society, and technology.

Hist J459/J559 World Wars, 1900-1950 (3 cr). This course examines the two world wars that dominated the first half of the 20th century and continued to influence the second. Arguably, the wars were the most important factor in shaping contemporary society and consciousness. This course will examine military history of campaigns and battles, origins and aftermath of both wars, the inter-war period, and will consider the social, political, economic, and cultural ramifications. Additional work required for graduate credit. Recommended preparation: Hist 101 and 102, or Hist 111 and 112. (All/ys)

Hist J460/J560 Conspiracies and Secret Societies in History (3 cr). The notion that human affairs are shaped by conspiratorial and occult forces bent on the achievement of secret agendas has attained wide currency. The idea that the world is governed by powerful, unseen forces has a long history that this course will explore. Additional work required for graduate credit. Recommended preparation: History 101 and 102. (All/ys)

Hist J466/J566 Eastern Europe Since 1774 (3 cr). May be used as core credit in J-3-d. Nationality, nation-building, and dissolution; emphasis on Poland, the Habsburg Empire, and the Balkans.

Hist J467/J567 Russia to 1894 (3 cr). Russia from medieval origins to 1894: development of Tsarist autocracy and serfdom; reaction, reform, and rise of the revolutionary movements.

Hist J468/J568 Russia and Soviet Union Since 1894 (3 cr). May be used as core credit in J-3-d. The last years of Tsarism; revolutions of 1905 and 1917; development of the Soviet Union under Lenin, Stalin, and their successors.

Hist J469/J569 Modern France, 1815-present (3 cr). May be used as core credit in J-3-d. Cultural, social, and economic transformations in French society from 1815 to the present. Impact of industrialization, revolution, and war upon people's lives.

Hist J470/J570 Modern Germany, 1815-present (3 cr). May be used as core credit in J-3-d. Development of Germany from the Bismarck era to present; parallel developments in the Habsburg monarchy and Austrian Republic.

Hist J481/J581 America's Wars in Asia (3 cr). Focus on the three wars the United States fought in Asia between 1941 and 1975—the Pacific Theatre of World War II, the Korean War, and the Vietnam War. Emphasis on military, diplomatic, political, and cultural developments. Perspectives from all sides explored. Additional work required for graduate credit. Recommended preparation: Hist 111 and 112. (All/ys)

Hist J482/J582 Japan, 1600 to Present (3 cr). May be used as core credit in J-3-d. Western impact on the political, cultural, and economic fabric of Japanese society.

Hist J484/J584 Modern China, 1840s to Present (3 cr). May be used as core credit in J-3-d. Last century of Qing dynasty, 1911 Revolution and Republican experiment, Revolution of 1949, and People's Republic of China.

Hist 499 (s) Directed Study (cr arr). Prereq: perm.

Hist 500 Master's Research and Thesis (cr arr).

Hist 502 (s) Directed Study (cr arr). Prereq: perm.

Hist 504 (s) Special Topics (cr arr). Prereq: perm.

Hist 531 History of Indian-White Relations (3 cr). See Hist J431/J531.

Hist 539 Modern Latin America (3 cr). See Hist J439/J539.

Hist 541 Comparative Slavery and Emancipation in the Atlantic World (3 cr). See Hist J441/J541.

Hist 542 The Medieval Church: Europe in the Early and High Middle Ages (3 cr). See Hist J442/J542.

Hist 543 The Medieval State: Europe in the High and Late Middle Ages (3 cr). See Hist J453/J543.

Hist 566 Eastern Europe Since 1774 (3 cr). See Hist J466/J566.

Hist 567 Russia to 1894 (3 cr). See Hist J467/J567.

Hist 568 Russia and Soviet Union Since 1894 (3 cr). See Hist J468/J568.

Hist 569 Modern France (3 cr). See Hist J469/J569.

Hist 570 Germany and Central Europe Since 1815 (3 cr). See Hist J470/J570.

Hist 582 Japan, 1600 to Present (3 cr). See Hist J482/J582.

Hist 584 Modern China, 1840s to Present (3 cr). See Hist J484/J584.

Hist 597 Practicum: Teaching College History (1 cr, max 4). Required for graduate students assigned to survey course sections. Does not satisfy 78-cr requirement for doctorate. Graded P/F. Prereq: perm of dept chair.

Hist 600 Doctoral Research and Dissertation (cr arr).

Hydrology

Dennis J. Geist, Head, Dept. of Geological Sciences (320 Mines Bldg. 83844-3022; phone 208/885-6192).

Hyd J409/J509 Quantitative Hydrogeology (3 cr). A rigorous introduction to the description of flow in porous media; the basic equations of potential flow theory as they relate to groundwater problems, with application to common engineering problems encountered by hydrogeologists and engineers; dimensional analysis, properties assignment, and heterogeneous systems. For graduate credit additional reading, presentations, and/or written reports of assigned literature required. Prereq: Math 275, Stat 251 or 301.

Hyd J412/J512 Environmental Hydrogeology (3 cr). Methods of hydrogeologic site characterization for the delineation of environmental problems such as contaminated ground water plumes, and ground water dewatering for landslide remediation. For grad credit, students are required to complete an additional independent research paper/project. Prereq: Geol 309.

PART SIX
Courses

Hydr J414/514 Ground Water-Surface Water Interaction (3 cr). Physical and chemical ramifications of interactions between ground water flow systems and surface water bodies. Particular emphasis will be placed on water supply and surface water/ground water contamination issues. Graduate credit requires completion of an additional, separate research paper on a selected topic. Prereq: Geol 309 or Hydr 409. (All yrs)

Hydr J464/564 The Geochemistry of Natural Waters (3 cr) See Geol J464/J564.

Hydr J468/568 Aquifer Test Design and Analysis (3 cr). Same as Geol J468/J568. Analysis of single and multiple well aquifer tests in a range of hydrogeologic environments. Additional projects/assignments reqd for grad cr. Prereq: Geol 309.

Hydr 496 Hydrogeology Senior Thesis (3 cr) Completion of original research and report. Course is taken over two semesters; first semester is graded IP until completion of second semester. Prereq: Geol 309 or Hydr 409/509 and Geol 410.

Hydr 500 Master’s Research and Thesis (cr arr).

Hydr 501 (s) Seminar (cr arr). Graded P/F. Prereq: perm.

Hydr 502 (s) Directed Study (cr arr). Prereq: perm.

Hydr 503 (s) Workshop (cr arr). Prereq: perm.

Hydr 518 Geomicrobiology (3 cr) See Geol J418/J518.

Hydr 564 The Geochemistry of Natural Waters (3 cr) See Geol J464/J564.

Hydr W5566 Groundwater Geochemistry (4 cr). WSU C E and Geol 579. Processes controlling the quality and chemistry of groundwater; applications to geologic and water resource problems. Twolec and one 2-hr lab a wk. Prereq: Geol 309 or perm.

Hydr 569 Contaminant Hydrogeology (3 cr). Characteristics of contaminant migration in ground water systems including analysis of field problems. Prereq: Geol 309 or Math 175.

Hydr W5571 (s) Advanced Topics in Hydrogeology (1-4 cr, max 9). WSU Geol 570.

Hydr ID 576 Fundamentals of Modeling Hydrogeologic Systems (3 cr). WSU Geol 576. Development and application of models representing physical systems, with particular emphasis on groundwater flow. Development and solution of the basic equations of ground water potential flow will be covered, along with their assumptions and limitations. Properties assignment, parameter sensitivity, and dimensional analysis will also be discussed. The course will emphasize when modeling is appropriate, how to design a model, and how properties should be selected to achieve meaningful results. Prereq: Math 275 and Hydr 563 (or equiv), or perm.

Hydr 578 Advanced Geochemistry of Natural Waters (3 cr) See Geol 578.

Hydr 581 Hydrogeological Data Analysis (3 cr). Techniques in the analysis of data, with emphasis on groundwater systems; exploratory analysis of data, coping with spatial variability in hydrogeologic properties, and techniques for the analysis of temporally variable piezometric surfaces. Prereq: Geol 309 (or equiv) and Math 175, or perm.

Hydr 597 (s) Practicum (cr arr). Prereq: perm.

Hydr 598 (s) Internship (cr arr). Prereq: perm.

Hydr 599 (s) Non-thesis Master’s Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

Interdisciplinary Studies

Joseph R. Zeller, Undergraduate Program Coordinator (112 Admin. Bldg. 83844-3154; phone 208/885-6426); Margrit von Braun, Graduate Program Coordinator (112 Morrill Hall 83844-3017; phone 208/885-6243).

Intr 101 (s) Freshman Transition Seminar (2 cr). Open to freshmen; open to other students with permission. Cr not given for both Intr 101 and 102. Development of strategies for setting academic goals and coping with course work; includes study strategies, university orientation, learning styles, purpose of college, career options.

Intr 102 (s) Freshman Interest Group (2 cr). Open to freshmen; open to other students with permission. Cr not given for both Intr 101 and 102. Each seminar is organized around a topic of mutual interest; students study the seminar topic as well as a variety of transition topics such as college study skills and campus resources.

Intr 103 Integrated Science for Elementary Education Majors (4 cr). Scientific method, physics and chemistry of atoms and molecules, molecules of life, chemical energy and thermodynamics, cellular structure, electrical circuits, tissues and organs. Two 3-hr class meetings a wk. Recommended Preparation: Math 143. Prereq: Elementary ed major.

Intr 105 Freshman Interest Group: Career Decision-Making (2 cr). Not open to students who have taken the career decision-making section of Intr 102. Provides student with an understanding of the career decision-making process; explores students’ interests and abilities; provides overview of possible majors and careers through readings, activities, Internet exploration, and interviews with students, faculty, staff, and UI alumni; assists students with development of resume-writing skills.

Intr 106 Freshman Interest Group: Service Learning (2 cr). Open to freshmen; open to other students with permission. Learning that combines community service with classroom instruction; working with local agencies, exploring service in contexts such as citizenship and activism; using service experiences to enhance communication, critical thinking, and group problem solving; and learning more about society, social relationships, and self.

Intr 126 Film and International Culture (3 cr). Interdisciplinary approach to diversity of modern culture as reflected in film art; comparative study of U.S. and foreign cultures, intro to film history, techniques, and criticism.

Intr 200 (s) Seminar (cr arr). Prereq: perm.

Intr 201 Skill Building for Career Decision-Making (1 cr). Accelerated 8-week course focusing on helping students understand the process of career development and develop career decision-making skills; learning how to assess the characteristics important in selecting a major or career and how to use these characteristics in exploring potential choices; emphasis on experiential learning.

Intr 204 (s) Special Topics (cr arr). Prereq: perm.

Intr 299 (s) Directed Study (cr arr). Prereq: perm.

Intr 400 (s) Seminar (cr arr). Prereq: perm.

Intr 404 (s) Special Topics (cr arr). Prereq: perm.

Intr 497 Tutor Training (1 cr). Training tutors for the Tutoring and Academic Assistance Center in the areas of learning strategies, study skills, problem solving, communication skills, group dynamics, and special population concerns; administrative recordkeeping and scheduling procedures necessary to the tutoring program. One and one-half hrs oflec a wk. Prereq: perm.

Intr 498 Practicum in Tutoring (1 cr, max 2). Tutorial services performed by advanced students under faculty supervision. Prereq: perm.

Intr 499 (s) Directed Study (cr arr). Prereq: perm.

Intr 500 Master’s Research and Thesis (cr arr).

Intr 501 (s) Seminar (cr arr). Prereq: perm.

Intr 502 (s) Directed Study (cr arr). Prereq: perm.

Intr 503 (s) Workshop (cr arr). Prereq: perm.

Intr 504 (s) Special Topics (cr arr). Prereq: perm.

Intr 589 Water Resources Seminar (1 cr). Same as BAE 591, and CE, Fish, For, Geol, GeoE, 589. Reports by faculty members and grad students on current problems and projects; reports are organized to give maximum interchange of ideas between divisions.

Interior Design

Wendy McClure, Chair, Dept. of Architecture (207 Art and Arch. South 83844-2451; phone 208/885-6781); Rula Z. Awwad-Rafferty, Program Coordinator, Interior Design (202 Art and Arch. Interior Design 83844-2451; phone 208/885-6832).

Note: On registering for a studio course offered in this department, the student agrees that the department may retain work completed by the student. The department will make retained work available to the student for photographing.

ID 151 Introduction to Interior Design (3 cr). Introduction to residential and commercial design and its relationship to other design disciplines; emphasis areas include design theories, vocabulary, and visual awareness of the built environment. Attendance at outside events (such as lectures and symposiums) is required.

ID 152 Interior Design I (3 cr). Study of the relationship of design theories to the interior environment; exploration, through a variety of media, of the elements and principles of design, with emphasis on spatial relationships and color theory. Focus of design problems is residential design and beginning small-scale contract design. Attendance at outside events; some class jury sessions outside of scheduled hours. Recommended Preparation: Arch 154. Prereq: Art 121, ID 151, or perm.

ID 200 (s) Seminar (cr arr). Prereq: perm.

ID 203 (s) Workshop (cr arr). Prereq: perm.
University of Idaho

216

International Studies

IS 200; 400 (s) Seminar (cr arr). Prereq: perm.

IS 203; 403 (s) Workshop (cr arr). Prereq: perm.

IS 204; 404 (s) Special Topics (cr arr). Prereq: perm.

IS 299; 499 (s) Directed Study (cr arr). Prereq: perm.

IS 310 Model United Nations – Fall (3 cr, max 12) Overview of principle UN agencies and current UN activities; emphasis on written and oral presentations through resolution and position paper writing, negotiations, and Model UN simulations. (Fall only).

IS 320 Model United Nations – Spring (2 cr, max 8) Advanced preparation for IS 310 members selected to attend the National MUN Conference in New York; emphasis on a particular country and region through study of political, social, and economic indicators, policy goals, and bloc negotiations. Prereq: IS 310. (Spring only).

IS 495 International Studies Senior Seminar (3 cr) May be used as core credit in J-3rd. Capstone course required of all International Studies majors in their senior year. Focuses on incorporating interdisciplinary training in global, regional, and issue emphases through oral and written presentations. Prereq: Sr standing. Int'l studies major or perm. (Spring only).

Journalism and Mass Media

R. Kenton Bird, Interim Director, School of Journalism and Mass Media (201 Shoup Hall 83844-1072; phone 208-885-6458).

Note: See School of Journalism and Mass Media requirements in part 5 for eligibility requirements for registration in upper-division courses.

Jamm 100 Media and Society (3 cr) Overview of mass communication; history and structure of media organizations; the political, economic and social context of media; legal and ethical considerations; media literacy; cultural approaches to mass communication research.

Jamm 121 Media Writing (3 cr) Basic principles of writing for print, broadcast and online media; skills in identifying and evaluating credible information. Two 2-hr face-to-face labs a wk. Recommended Preparation: Ability to type. Prereq: Engl 102.

Jamm 225 Reporting (3 cr) Writing news for print, broadcast and online media. Introduction to newsroom structures and processes, news judgment and decision making. Prereq: Jamm 121.

Jamm 252 Principles of Public Relations (3 cr) Understanding public relations programs, functions and techniques; projects related to student’s interest. Prereq: Jamm 121.

Jamm 265 Principles of Advertising (3 cr) Survey of advertising practices and the role of advertising in American society, including effects on consumers; regulation, media, and advertising as a creative process.

Jamm 270 Principles of Radio and Television (3 cr) Basic writing principles in audio, video, and online formats. Introduction to commercials; news and sports; talk shows; music, variety, and comedy programs; educational, corporate, and children’s programs. An examination of radio and television industry practices and station policies.

Jamm 275 Introduction to Video/Television & Digital Media Production (3 cr) Introduction to art and craft of various broadcast media-related production environments. Emphasis on aesthetics of story telling through visual imagery, sound, and associated processes of production covering scripting, directing, and editing. Work with both analog and digital equipment for field and studio assignments.

Jamm 280 Lighting (3 cr) Practical experience in studio and field lighting techniques for videotelevision and digital media production.

Jamm 299 Directed Study (cr arr). Prereq: perm.

Jamm 322 Broadcast News (3 cr) News reporting for radio, television and the internet, emphasizing writing, editing, producing, and on-air performance skills; analysis of broadcast news practices. Prereq: Jamm 225, 270 or perm.

Jamm 324 News Editing and Production (3 cr) News selection, evaluation, editing, display, pagination and design for print and online media. Prereq: Jamm 211 and 225, or perm.

Jamm 325 Publications Editing (3 cr) Introduction to the development, management, editing, design and distribution of print and Web publications; focuses on periodicals, such as magazines and student-originated projects.

Jamm 340 Cultural Diversity and the Media (3 cr) An examination of media studies scholarship related to aging, class, disabilities, gender, race and sexual orientation.

Jamm 350 Public Relations Writing and Production (3 cr) Public relations writing, publication and design processes for print, broadcast and online media. Prereq: Jamm 121.

Jamm 361 Advertising Creativity (3 cr) Advertising creative process in print, broadcast and online media, including copywriting and production processes and techniques. Prereq: Jamm 265.

Jamm 364 Advertising Media Planning (3 cr) Advertising media planning for broadcast, print and online media; includes interpretation of ratings and market data, media strategies and concepts, and specific buying process in each advertising medium. Prereq: Jamm 265.

Jamm 370 Digital Audio Production (3 cr) Audio production principles and techniques, with an emphasis on sound design, writing and announcing skills; digital technologies for radio, television, internet, and music recording.

Jamm 371 Broadcast Announcing (3 cr) Principles of effective and responsible on-air media, including voice analysis and improvement; pronunciation and articulation; audio and video performance.
PART SIX

Courses

Justice Studies

Jammm 376 Digital Animation in Mass Media (3 cr). Creation and animation of both video and graphics in the digital realm for television, film, and interactive multi-media. Production fundamentals through individual projects will be emphasized as a means to help stimulate viewer attention and to improve the processing of information and content. Recommended Preparation: Jammm 275.

Jammm 377 Documentary (3 cr). Theoretical examination of the documentary in the mass media: development and evolution of nonfiction film, television, radio; documentary style and form; documentary's power to communicate; issues raised by documentary.

Jammm 378 American Television Genres (3 cr). Historic development of dominant television genres, discussion of characteristics unique to each genre; examination of the cultural context of television programming.

Jammm 400 (s) Seminar (cr arr). Prereq: perm.

Jammm 401 (s) Practicum (1 cr, max 6). Graded P/F. Prereq: perm.

Jammm 403 (s) Workshop (cr arr). May be graded P/F. Prereq: perm.

Jammm 404 (s) Special Topics (cr arr). Prereq: perm.

Jammm 420 Public Radio Journalism (3 cr). History and development of news in public radio style; writing and production of news documentaries, features, and enterprise stories; use of advanced audio production techniques in story telling. Recommended Preparation: Jammm 322.

Jammm 422 Advanced Broadcast News (3 cr). Advanced news reporting for radio, television and the internet, including writing, editing, producing, and on-air performance skills; analysis of broadcast news judgments and decision making. Prereq: Jammm 322.

Jammm 425 Feature Article Writing (3 cr). Writing human interest stories, editorials, reviews, and columns. Recommended Preparation: Jammm 121.

Jammm 427 Public Affairs Reporting (3 cr). Problems and practice in reporting the courts, government, politics, other public issues. Prereq: Jammm 121 and 225, or perm.

Jammm 428 Environmental Journalism (3 cr). Reporting on natural resources issues and the environment. Recommended Preparation: Jammm 225.

Jammm 440 Culture and Mass Media (3 cr). Cultural study of mass media technologies and their relationship to society; an examination of the social and cultural impacts of technologies.

Jammm 442 Media Law and Ethics (3 cr). Examination of First Amendment law and the ethical responsibilities of media professionals.

Jammm 443 Media Management and Economics (3 cr). Management principles as they apply to mass media; emphasis on personnel management, budgeting, programming, sales, marketing and promotion, legal constraints, new technologies, and strategic planning; study of media ownership.

Jammm 444 Mass Media and Public Opinion (3 cr). Role of media in the formation of public opinion; overview of survey methodology and interpretation.

Jammm 445 History of Mass Media (3 cr). Growth and development of mass media in the U.S.

Jammm 449 Media Criticism (3 cr). Examination of critical approaches to the study of mass communication, including interdisciplinary perspectives of media and culture.

Jammm 452 Public Relations Campaign Design (3 cr). Examination of public relations programs; practice in developing and executing campaigns with emphasis on problem/issue identification, design of campaign elements, presentations skills and equipment. Prereq: Jammm 252.

Jammm 458 Public Relations Case Studies and Issues Management (3 cr). Examination of actual and created public relations case studies; reasons for their success or failure examined and evaluated. Prereq: Jammm 252.

Jammm 466 Advertising Campaign Strategy (3 cr). Advanced advertising strategies in creative approaches and media usage; current ad campaigns and development of a complete advertising campaign for a client. Recommended Preparation: Jammm 364, and Art 121 or 225. Prereq: Jammm 361.

Jammm 468 The Advertising Agency (3 cr). Functioning of an advertising agency, including management, accounting, creative and media buying systems, government regulation, account management, and creative strategies in the marketplace. Field trips. Recommended Preparation: Jammm 466.

Jammm 469 Advertising Competition Team (3 cr). Participation in the National Student Advertising Competition (NSAC). Students form an advertising agency and produce a complete ad campaign for an actual national client. Includes attendance at the regional professional conference of the American Advertising Federation. Prereq: junior/senior standing and perm.

Jammm 475 Digital Media Thesis Production (3 cr). Thesis production and program content development for television, documentary, and narrative cinema. Combines advanced techniques, aesthetics, and craft of the overall broadcast production disciplines. Projects will be produced primarily within the digital environment. Final thesis work will be showcased at annual digital media festival. Prereq: Senior standing and perm.

Jammm 478 Broadcast/Cable/Web Programming (3 cr). Program development, theory, and scheduling, with emphasis on the regulations and strategies involved in radio, television, cable, and web programming at both the national and local levels. Prereq: Jammm 121.

Jammm 490 Global Media (3 cr). Technologies and concepts of international media; models of international content flow; cross-cultural mass media.

Jammm 498 (s) Internship (0-3 cr, max 6). Supervised experience in professional media organization. Graded P/F. Prereq: perm of director, School of Journalism and Mass Media.

Jammm 499 (s) Directed Study (cr arr, max 6). Prereq: perm.

Justice Studies

Donald E. Tyler, Chair, Dept. of Sociology/Anthropology/Justice Studies (101 Phinney Hall 83844-1110; phone 208/885-6751).

Justice Studies

JS 101 Introduction to the Justice System (3 cr). Survey of criminal justice organizations and procedures including history and function of law enforcement, probation, and parole agencies.

JS 200 (s) Seminar (cr arr). Prereq: perm.

JS 204 (s) Special Topics (cr arr). Prereq: perm.

JS 299 (s) Directed Study (cr arr). Prereq: perm.

JS 320 Police, Society, and Justice (3 cr). History, development, and role of the police as a part of the justice system, with particular attention to the relationship of the police to community, society, and related institutions of social control; societal control of the police as well as the influences of social change and urban decay and disorder on methods of policing. A one-day field trip. Prereq: JS 101.

JS 332 Corrections (3 cr). See Soc 332.

JS 333 White Collar Crime (3 cr). The costs, causes, and control of crime by and against businesses and other organizations; the relationship between trust and white collar crime; the impact of the media in shaping perceptions of white collar crime.

JS 340 Crime, Justice, and the Media (3 cr). Critical evaluation of the media portrayals of crime and the criminal justice system; analysis of how the media help to shape public understanding and public policy.

JS 400 (s) Seminar (cr arr). Prereq: perm.

JS 401 Justice Policy Issues (3 cr). Focus on social, political, and economic factors that influence operation of the justice system and justice policy formation; critical issues such as the media and fear of crime to drugs and sentencing policy. Prereq: Sr standing and departmental major or minor or perm.

JS 404 (s) Special Topics (cr arr). Prereq: perm.

JS 422 Inequalities in the Justice System (3 cr). Critical focus on the issues of race, class, and gender and their consequences for the operation of the justice system; the role of the justice system in the history and experience of various minorities, theories of minority crime, and issues of selective enforcement, sentencing disparity, and disproportionate incarceration; the role of gender considered through the examination of offenders, victims, and criminal justice professionals.

JS 430 Juvenile Justice (3 cr). History, philosophy, and theory behind juvenile justice; explanation of the process and outcomes of cases, including in-depth coverage of juvenile corrections and the “continuum of care”; focus on current legislation and trends. Prereq: Soc 330.

JS 498 (s) Internship in Criminal Justice (1-6 cr, max 6). Directed internship in designated criminal justice agency or institution. Graded P/F. Prereq: perm.

JS 499 (s) Directed Study (cr arr). Prereq: perm.

JS WS505 Comparative Criminal Justice Systems (3 cr). See JS J405/J505.

JS WS541 Seminar in Corrections (3 cr). WSU Crm J 531. Current issues related to the control, management, and sanctioning of criminal offenders.
Landscape Architecture

Stephen R. Drown, Chair, Dept. of Landscape Architecture (207 Art and Architecture 83844-2481; phone 208/885-7448; larch@uidaho.edu; http://www.uidaho.edu/larch).

LARC 155 Introduction to Landscape Architecture I (1 cr). Introduction to the profession of landscape architecture; exposure to a range of professional issues through a series of lectures and presentations by faculty and visiting professionals. Graded P/F.

LARC 156 Introduction to Landscape Architecture II (1 cr). Attendance at a series of senior landscape architecture students’ critiques and thesis; preparation of a paper summarizing and comparing a select number of thesis topics.

LARC 200 (s) Seminar (cr arr). Prereq: perm.

LARC 203 (s) Workshop (cr arr). Prereq: perm.

LARC 204 (s) Special Topics (cr arr). Prereq: perm.

LARC 210 Computer Applications in Landscape Architecture (2 cr). Exploration of hardware and software tools that are used by landscape architects throughout the design process; emphasis on CAD with an introduction to related landscape architecture specific tools. Open to landscape architecture majors only; non-majors by permission. (Fall only)

LARC 245 Landscape Graphics I (2 cr). May be used as core credit in J-3-6. Development of hand drawn techniques and skills in various media in the preparation of landscape architecture presentations both in plan, section/elevation and perspective rendering. Selected field trips at student expense. Prereq: LARC major, LARC minor, or perm. (Fall only)

LARC 246 Landscape Graphics II (2 cr). Application of computer-based graphic technologies to the preparation of landscape architecture presentations in both plan, section/elevation and perspective rendering. Recommended preparation: Art 110, Art 111, and LARC 245. Prereq: LARC major, LARC minor, or perm. (Fall only)

LARC 259 Landscape Architecture I (3 cr). Introduction to landscape architecture design; emphasis on theory, process, and design elements as they apply to the profession; includes readings, lectures, field trips, small-scale design projects. Nine studio hrs a wk; field trips required at student expense; guest lectures required outside of class meeting time. Recommended Preparation: LARC 288, 289, and Art 111. Prereq: Engl 101 and 102 with minimum grade of C. Art 110. (Fall only)

LARC 260 Landscape Architecture I (6 cr). Integration and application of principles acquired in plant materials, grading, and drainage, and in LARC 259 to small scale planning and design projects. Selected field trips at student expense; attendance at outside events (lectures, symposiums, films). Prereq: LARC 259. (Spring only)

LARC 268 Landscape Construction I (2 cr). Site grading and drainage with a focus on areas around buildings, roads, parking, walks and plazas, cut and fill and horizontal road layout. Recommended Preparation: Math 143. Prereq: LARC major, LARC minor, or perm. (Spring only)

LARC 269 Landscape Construction II (2 cr). Storm water management, grading swales, calculating runoff, sizing conveyance and detention basins. Recommended preparation: LARC 268 and Math 143. Prereq: LARC major, LARC minor, or perm. (Spring only)

LARC 288 Plant Materials I (3 cr). Plant identification and selection; use of plant materials in relation to soils, topography, and climate; analysis of design principles in relation to plant compositions. Selected field trips at student expense. (Fall only)

LARC 289 Plant Materials II (4 cr). Continuation of LARC 288 with emphasis on plant design projects as they relate to small or large scale public and private use areas. Two lec and 4 hrs of lab a wk; selected field trips at student expense. Prereq: LARC 288. (Spring only)

LARC 299 (s) Directed Study (cr ar). Prereq: perm.

LARC 301 Survey of Landscape Architecture & Golf Course Design (4 cr). Survey of landscape architecture design principles and processes with application to golf course design. CAD skills desirable. Prereq: Jr standing and PGIM student

LARC 356 Landscape Architecture II (3 cr). Intermediate site planning with a focus on community projects done in cooperation with the Department of Architecture. Prereq: LARC 210, 245, 246, 260, 268, and 269 cr. (Fall only)

LARC 357 Landscape Architecture III (3 cr). Intermediate site planning and design problems that emphasize the analysis, development and presentation for urban, rural and regional housing and open space planning projects; introduction of senior case study. Selected field trips at student expense. Recommended Preparation: LARC 288, 289. Prereq: LARC 210, 245, 246, 260, 268, and 269 cr. (Fall only)

LARC IDAWS358 Professional Office Practice in Landscape Architecture (2 cr). WSU LA 480. May be used as core credit in J-3-6. Office organization, fees, contracts, bonding, bidding specifications, insurance, and relationships with subcontractors. (Fall only)

LARC 361 Landscape Architecture II (3 cr). Intermediate scale land planning and design problems that emphasize sustainable development practices for the urban and rural environment with a focus on the integration of wetland ecology planning, storm water management and wildlife habitat with an emphasis on the use of indigenous plant materials for restoration and rehabilitation. Selected field trips at student expense. Recommended Preparation: LARC 288 and 289. Prereq: LARC 260, 268, and 269. (Spring only)

LARC 362 Landscape Architecture II (3 cr). Intermediate scale land planning and design problems that emphasize sustainable development practice with a focus on landscape restoration, the application of visual analysis using GIS and the use of indigenous plant materials for restoration or rehabilitation. Selected field trips at student expense. Recommended Preparation: LARC 288, 289. Prereq: LARC 268 and 269 cr. (Spring only)

LARC 364 Summer Study Abroad Design Studio (6 cr). Intermediate site scale planning and design with an emphasis on regional context, sustainable development and the cultural landscape as influencing site design factors. A summer abroad studio that may be substituted for LARC 356, LARC 361, and LARC 362. Recommended Preparation: Art 110, 111. Prereq: LARC 210, 245, 246, 259, 260, and 268. Coreq: LARC 382 and 390. (Summer only)

LARC 368 Landscape Architecture Construction III (2 cr). Construction detailing, layout and dimensioning, construction and materials specifications, retaining walls and concrete detailing with an emphasis on the use of sustainable materials. Prereq: LARC major, LARC minor, or perm. (Spring only)

LARC 380 Water in the Urban Context (2 cr). Irrigation as a design process; principles of water conservation and water harvesting in site design with the production of a number of drawings and projects at different scales. Accelerated three-week course. Recommended Preparation: LARC 210. (Spring only)

LARC 382 Landscape, Language and Culture (2 cr). Students study the Italian language, urban design of the regional, historic landscape of southern Piedmont and the markets, museums, and cultural events of Cremolini, Ovada and Aqui Terme as a resource for enhancing language skills. Prereq: LARC 245, 246, 259, and 260. Coreq: LARC 364 and 390. (Summer only)

LARC 383 Architectural Site Design (3 cr). Fundamentals of site analysis, site design, and site planning for architects; principles and theories in technical, functional, social, legal, and perceptual issues related to the building site. Non-credit lab section for discussion and presentation of additional technical issues and site-related design projects; field trips and special sessions may be reqd. (Fall only)

LARC IDAWS389 History of Landscape Architecture (3 cr). May be used as core credit in J-3-6. WSU LA 260. Overview of man and the landscape from the pre-Egyptian civilization through Ancient Greece and Rome, the Middle Ages, the Renaissance, the Oriental, and including contemporary styles and trends. (Spring only)

LARC 390 Italian Hill Towns and Urban Centers (3 cr). A summer lecture and field experience course exploring the historical foundations of community and urban pattern utilizing Italian hill towns and urban centers as a resource. Students study the organic and formal relationships between landscape and human settlement as well as the relationship between urban form and political and historical context. Recommended Preparation: Art 111, 206, 209, LARC 155, 156, 389. Prereq: LARC 245, 246, 259, and 260. Coreq: LARC 364 and 382. (Summer only)

LARC 395 GIS in Land Planning (3 cr). LARC 385) A primer on geographic information systems (GIS) applied to land planning with lab exercises using state-of-the-art GIS software. Three hrs of sec/lab a wk. (Fall only)

LARC 400 (s) Seminar (cr ar). Prereq: perm.

LARC 403 (s) Workshop (cr ar). Prereq: perm.

LARC 404 (s) Special Topics (cr ar). Prereq: perm.

LARC 459 Landscape Architecture III (6 cr). Design development and the preparation of contract documents. Selected field trips at student expense; attendance at outside events (lectures, symposiums, films). Prereq: LARC 268, 269, 366; and either LARC 357 and 362, or LARC 357 and 364, or LARC 362 and 364, or perm. (Fall only)

LARC 460 Landscape Architecture IV (6 cr). Case study of a professional landscape architectural project; completion of a comprehensive project(s) demonstrating mastery in areas of land planning and/or design, plant materials, construction, graphics, and computer applications. Prereq: LARC 459. (Spring only)

LARC 480 Issues for the Emerging Landscape (3 cr). A capstone course exploring the emerging cultural and environmental issues significant to the practice and scholarship of landscape architecture, land planning and community development. (Includes a service learning option.) Recommended Preparation: Comm 101. Prereq: Jr. standing. (Spring only)

LARC 495 Computer-Aided Regional Landscape Planning (3 cr). (LARC 480) Advanced methods and regional-scale landscape planning using state-of-the-art geographic information system (GIS) software; application of ecological principles and land use analysis; emphasis on use of GIS as tool for landscape planning and management. Prereq: LARC 365 or Geog 385 or perm.

LARC 499 (s) Directed Study (cr ar). Prereq: perm.

LARC 500 Master’s Research and Thesis (cr ar). Prereq: graduate standing.

LARC 501 (s) Seminar (cr ar). Prereq: perm.
PART SIX
COURSES

Law

ID & WS 559 The Northern Rocky Regional Landscapes (4 cr). WSU LA 520. Biophysical characteristics of the Northern Rocky Mountain regional landscape. Prereq: graduate standing.

ID & WS 5560 Cultural Interpretation of Regional Landscapes (4 cr). WSU LA 521. Cultural characteristics of the Northern Rocky Mountain regional landscape. Prereq: graduate standing.

ID & WS 5580 Philosophy and Theory in Landscape Architecture (3 cr). WSU LA 510. Natural and cultural processes that characterize the interaction between humans and the landscape. Prereq: graduate standing.

ID & WS 5581 Methodology and Communication in Landscape Architecture (3 cr). WSU LA 511. Methods of investigation and analysis of tools used for communication in landscape architecture research. Prereq: graduate standing.

Law 599 (s) Non-thesis Master’s Research (cr ar). Research not directly related to a thesis or dissertation. Prereq: graduate standing and perm.

Latin American Studies

Dale T. Gradn, Coordinator, Program in Latin American Studies (305-A Admin. Bldg. B3844-3175; phone 208/885-8956; graden@uidaho.edu).

LAS 200; 400 (s) Seminar (cr ar). Prereq: perm.

LAS 203; 403 (s) Workshop (cr ar). Prereq: perm.

LAS 204; 404 (s) Special Topics (cr ar). Prereq: perm.

LAS 299; 499 (s) Directed Study (cr ar). Prereq: perm.

LAS J410/J510 Human Rights in Latin America (3 cr). Basic issues and concepts of international human rights law; history of the field, its underlying conflicts, emerging doctrines, and institutional frameworks specifically in the Americas; primary focus on Latin America, but the U.S. is also studied, especially U.S. foreign policy. Additional projects/assignments required for graduate credit.

LAS 510 Human Rights in Latin America (3 cr). See LAS J410/J510.

Law

Donald L. Burnett, Jr., Dean, College of Law (101 Law Bldg. 83844-2321; phone 208/885-4977).

Note: Registration by non-law students in any course offered by the College of Law requires permission in advance by the associate dean and the instructor of the course.

Law 805 Introduction to Law and Procedure (3 cr). Introduction to the history, institutions, and philosophy of law; roles and responsibilities of lawyers, nature of legal claims, processes of legal analysis and reasoning, and principles of statutory interpretation; introduction to civil procedure in state and federal courts, including jurisdiction, trials, and preclusive effects of judgments.

Law 806 Procedure II (3 cr). Continuation of the study of civil procedure from Law 805, including jurisdiction, venue, pleading, joinder of claims and parties, motions, discovery, trials, judgments, and appellate procedure.

Law 807-808 Property I-II (3 cr each). Future interests, landlord and tenant, bailment, easements, covenants respecting the use and enjoyment of land, rights incident to land ownership and fixtures; adverse possession, gifts of personal property, conveyance of land, recording acts, land title assurance, and public control of land use.

Law 809-810 Torts I-II (3 cr each). Common law providing private redress for injuries primarily to person or property; examination of the three basic theories of tort liability: intent, negligence, and strict liability.

Law 812 Criminal Law (3 cr). The sources and purposes of the criminal law; the meaning of criminal responsibility; the elements of crimes, and the administration of criminal justice.

Law 813-814 Contracts I-II (3 cr each). Basic elements of private, consensual agreements enforced by law: formation, principles of bargain or reliance, methods to police the bargain, interpretation, performance/breach and remedies for breach, defenses to liability, and the rights and liabilities of third parties upon assignment and delegation.

Law 815 Legal Research and Writing (3 cr). Year-long course. An introduction to traditional and computer-assisted legal research, objective and persuasive legal writing, and oral argument.

Law 901 (s) Seminar (cr ar). See the Class Schedule for specific topics.

Law 902 Constitutional Law I (3 cr). An examination of the institution of judicial review and of the constitutional divisions of government power in the United States; the principles of separation of powers and federalism; and the constitutional protection of certain individual rights and liberties, particularly under the 14th amendment.

Law 904 Federal Courts (3 cr). The constitutional structure and the practical role of the federal court system, with great emphasis on the working relationship between federal and state courts.

Law 905 Constitutional Law II (3 cr). Continuation from Law 902 of the study of individual rights and liberties protected by the Constitution, with emphasis on civil rights legislation under Section 5 of the 14th Amendment; the "state action" doctrine, and freedom of speech and religion under the First Amendment.

Law 906 Seminar, Natural Resources Law and Policy (3 cr). Selected topics in natural resources law and policy; topics vary with the interest of the instructor and students.

Law 907 Administrative Law (3 cr). An examination of (1) the constitutional limits on administrative agencies, (2) the procedural requirements for agency decision-making, and (3) judicial review of agency actions; the focus is on federal administrative law.

Law 908 Introduction to the Law of the Workplace (4 cr). Survey course covering state common law exceptions to the employment at will doctrine, federal anti-discrimination statutes, federal statutory protection of collective activity, and other state and federal law governing the employment relationship; exploration of the processes of hiring, firing, and setting the terms and conditions of employment.

Law 910 Antitrust and Trade Regulation (3 cr). Regulation of economic activity in a free enterprise system; antitrust laws examined in detail.

Law 911 Principles of Suretyship (1 cr). General overview of principles of suretyship and guarantee including rights of the guarantor, guarantor’s defenses, and unique applications of suretyship doctrine. Accelerated course.

Law 912 Civil Mediation (2 cr). Dynamics, benefits, and skills needed in third-party intervention in the settlement of civil disputes; step-by-step introduction to mediation process; examination of mediation as a collaborative process of resolving conflicts and assisting disputants to reach mutually satisfactory agreements. The final paper required in this course does not count toward the upper-division writing requirement. Graded P/F.

Law 913 Family Mediation (2 cr). The process of divorce mediation from initial consultation through and beyond settlement; dispute resolution theory and the practical application of these theories. The final paper required in this course does not count toward the upper-division writing requirements. Graded P/F.

Law 914 (s) Dispute Resolution (1 cr, max 3). As part of the Northwest Institute for Dispute Resolution, the College offers one or two courses each year that examine discreet areas of dispute resolution.

Law 915 International Business Transactions (3 cr). The study of issues and general rules related to the conduct of business in the international market with emphasis on international sale of goods, and import and export regulation. Prereq: Law 924 or perm. (Fall only).

Law 916 Public International Law (3 cr). Survey of major areas of the law of nations and international organizations. (Irregular)

Law 917 Negotiation and Alternative Dispute Resolution (2 cr). Simulation and seminar style instruction in negotiation techniques, mediation and arbitration, focusing on skill development and legal and ethical issues frequently faced by lawyers. Enrollment may be limited. (Irregular)

Law 919 Business Associations (4 cr). Agency, partnerships, corporations, and other types of business organizations; limitations on powers and authority of partners, corporate officers, and directors.

Law 921 Basic Legal Accounting (1 cr). Examination of basic accounting principles designed as background for the tax and business law courses for those students without accounting and business experience and intended to make the lawyer conversant with accountants. Accelerated course.

Law 922 Intellectual Property: Unfair Competition (2 cr). Survey of the common law and statutes by which a business can protect its names, the marks used to identify its products and services, and the ideas, information, and business relationships which it has developed; trade names, trademarks, trade secrets, and other aspects of the law regulating unfair competition.

Law 923 Negotiable Instruments, Bank Collections and Deposits, and Other Payment Systems (3 cr). The study of paper based and other methods of payment under state and federal law with primary focus on the law of Negotiable Instruments under Article 3 of the Uniform Commercial Code, Bank Deposits and Collections, and Electronic Funds Transfers under Articles 4 and 4A of the UCC and Federal Reserve Board Regulations J and CC and related federal statutes. (Irregular).

Law 924 Sales (3 cr). The study of the law relating to the sale of goods under Article 2 of the Uniform Commercial Code and related statutes and treaties, including introduction to the structure, purposes, and principles of the Uniform Commercial Code.

Law 925 Creditors’ Rights and Secured Transactions (3 cr). Comparison of unsecured and secured credit: analysis of the creation, perfection, priority, and enforcement of judicial and statutory liens and consensual Article 9 security interests; includes methods used to collect debts and judgments and the interplay between Article 9 and other law, such as the Federal Tax Lien Act and agricultural statutory liens.

Law 926 Bankruptcy (3 cr). Federal bankruptcy law, the collective forum for resolving the rights of financially distressed debtors and their creditors, emphasizing basic principles applicable to all filings, liquidation, or rehabilitation of consumer debtors, and the pervasive effect of bankruptcy on everything from family law to business transactions and relationships.

Law 927 Business Entities Taxation (4 cr). Examination of the federal taxation of pass-through entities and corporations; topics include formation, operations, allocation, distributions, and liquidation; the opportunity to study the concepts of business enterprise taxation as an integrated unit.

Law 929 International Income Taxation (2 cr). The taxation of United States citizens and resident aliens on their worldwide income and the taxation of non-resident aliens on the United States income. Prereq: Law 930. (Spring only, Alt/yr).
Law 930 Taxation (3-4 cr). Income and deductions, accounting methods, transactions resulting in capital gain, deferral of tax, and choice of the taxable person; introduction to tax procedure and to income taxation of trusts, estates, and partnerships.

Law 931 Intellectual Property: Patents and Copyrights (2 cr). A survey of the means by which inventors and authors obtain and enforce rights under the patent and copyrights statutes.

Law 932 Estate Planning (3 cr). Inter vivos, testate, and intestate disposition of property with emphasis upon estate and gift tax impact and consideration of the law of future interests. Prereq or coreq: Law 941. (Fall only).

Law 935 Idaho Constitutional Law (3 cr). Survey of the Idaho Constitution, with particular emphasis on those sections that caused controversy at Idaho’s constitutional convention and remain important today.

Law 937 Natural Resources Law and Legal History (3 cr). Historical examination of the role of law in shaping the evolution of resource use and management in the Pacific Northwest.

Law 941 Wills, Estates, and Trusts (3 cr). Intestate succession, wills, and administration of estates in probate.

Law 942 Water Law (3 cr). Acquisition and scope of water rights, water pollution control, and other environmental regulations, water distribution organizations, federal-state relations in water resource management.

Law 943 Real Estate Finance (3 cr). Mortgages, deeds of trust, installment land contracts, construction financing, mechanics’ liens, sale and leasebacks, and ground leases; brief coverage of condominiums, shopping center leases, and real estate listing agreements.

Law 944 Local Government and Land Use Law (3 cr). Legislative, regulatory, tax, and, borrowing authority of local government; contract and tort issues; special attention to land use regulation. A research paper may be required instead of an examination depending on size of class. Enrollment of second-year students may be limited by instructor.

Law 945 Community Property (2 cr). Special problems that arise in connection with the community property system in the western states.

Law ID947 Environmental Law (3 cr). WSU ES/RRP 548. Environmental planning and protection, regulation of air and water pollution, waste disposal, use of pesticides and other toxic chemicals, and remedies for environmental injury. (Spring only).

Law ID948 Public Land Law (3 cr). WSU ES/RRP 549. History of public lands; special problems arising from ownership of land by governments. (Fall only).

Law 949 Indian Law (3 cr). Study of judicial, statutory, and administrative materials concerning the historical development of Federal Indian Policy, treaties, the trust relationship, tribal sovereignty and self-government, civil and criminal jurisdiction, rights of individual Indians, state’s rights, hunting and fishing rights, and the natural resources of tribes.

Law 950 Evidence (3 cr). The law governing the presentation of proof in Idaho and federal courts.

Law 952 Remedies (3 cr). Consideration of legal and equitable relief available to aggrieved parties in contractual or other relationships.

Law 953 Criminal Procedure (3 cr). Search and seizure, arrest, interrogation, identification, right to counsel, and guilty pleas, with special attention to constitutional law and pre-trial procedures. (Spring only).

Law 954 Practice Court (3 cr). Instruction in the skills fundamental to litigation and the techniques of persuasive witness examination and argument, combining classroom instruction and individually critiqued student exercises. Prereq: Law 950 and perm.

Law 955 Appellate Advocacy Program (1-2 cr). A brief writing seminar including two briefs and the preliminary oral arguments of the McNichols Competition; the faculty advisor is the final arbiter of the number of credits awarded within the guidelines. Graded P/F; credits earned are not class hours.

Law 956 Appellate (Moot) Court/Mock Trial (1-2 cr). Preparation of appellate briefs and argument of cases orally in regional or national competition; grading and evaluating briefs of students participating in second-year appellate advocacy program (with approval of the faculty advisor of the second-year appellate advocacy program); the faculty supervisor of each competition is the final arbiter of the number of credits awarded within the guidelines. Graded P/F; credits earned are not class hours. Only those students who will complete all the activities for their appellate moot court program (including attending the competition) by the end of fall semester may register for credits in the fall semester; all other students eligible for credits under this course register in the spring. Graded P/F; credits earned are not class hours.

Law 957 Mock Trial (2 cr). Participation as an attorney on a mock trial team in regional or national competition; the faculty supervisor of each competition is the final arbiter of the credits awarded within the guidelines.

Law 958 Trial Advocacy (2 cr). An intensive seven-day course offered the week before classes regularly begin in the fall. The course follows the National Institute of Trial Advocacy Training format of faculty demonstration, discussion, student performance, and critique, culminating in a mock jury trial on the last day of the training. Limited enrollment. Graded P/F. Prereq: Law 950 and perm.

Law 960 Conflict of Laws (2 cr). A study of the principles for deciding which law applies to incidents and transactions crossing state lines and of the constitutional limitations on a state’s rights to impose its own law in suits arising out of such incidents and transactions; enforcement of foreign judgments, the jurisdiction of courts, and the special jurisdictional problems in domestic relations cases.

Law 961 Jurisprudence (2 cr). Consideration of the various views and philosophies of law as expressed in classical and contemporary writings; methods of legal analysis, the relationship between law and justice, between law and power, and between law and truth.

Law 962 Professional Responsibility (2 cr). Status and function of the legal profession, responsibility to clients, the profession, the public, and the administration of justice.

Law 963 Family Law (3 cr). Legal problems of the family, including marriage, annulment, adoption, and divorce.

Law 964 Children and the Law (2 cr). Children and the Law examines the legal status of children, including topics such as the parent-child relationship, guardianship, representation of children, neglect, and adoption.

Law 965 Elder Law (2 cr). An overview of the legal regimes and practical issues that face lawyers representing older clients. (Spring only, Allrights.)

Law 971 Lawyering Process Seminar (2 cr). Client representation skills, with an emphasis on oral advocacy and legal research; classroom and simulation instruction in interviewing, counseling, and negotiating skills, pleading, discovery, and motion practice. Enrollment may be limited.

Law 972 Legal Executiveship (1 cr). Legal work under the supervision of judges or government, non-profit, or private attorneys. Graded P/F; credits earned are not class hours. Prereq: approval of Director of Clinical Programs under standards approved by the faculty and available to students and supervising attorneys.

Law 973 Public Service Externship (1-10 cr, max 10). Includes placements with judges, prosecutors, public defenders, other government attorneys, or attorneys for non-profit organizations. The following courts and offices have programs with standing approval of the director: The Supreme Court and Court of Appeals of Idaho, the United States Court of Appeals for the Ninth Circuit, the United States District Court for the District of Idaho, the Attorney General of Idaho, and the United States Attorney for the District of Idaho. Graded P/F; credits earned are not class hours. Prereq: approval of Director of Clinical Programs under standards approved by the faculty and available to students and supervising attorneys.

Law 974 Legal Aid Internship (3 cr, max 6). In this two-semester course, students represent clients in civil and criminal cases. Field trips required when appropriate for serving clients. Prereq: qualification for limited license in Idaho, Law 950 and 971, and perm. Coreq: Law 958; Law 953 recommended.

Law 975 Classroom Credit Public Service Externship (5 cr). Students work in selected public service placements under the supervision of experienced judges and lawyers; attendance at a weekly seminar is required (the seminar is available in Moscow, Boise, Coeur d’Alene, and Idaho Falls through interactive video). Graded P/F. Prereq: perm. (Summer)

Law 976 Semester in Practice (1-112 cr, max 12). Open only to students in their last year of law school. Externs in the public sector under the supervision of a field placement supervisor and the College of Law director of externships program. Field placement and a weekly classroom component.

Law 977 Clinical Lab (1 cr, max 4). The College offers one-credit lab courses that provide clinical experience for interested second- and third-year students. The labs are designed to allow students to obtain practical experience in the upper-division substantive courses. The labs are supervised by experienced practitioners.

Law 978 Small Business Legal Clinic (2-3 cr) Real-life experience handling transactional legal problems and assisting businesses and not-for-profits. Prereq: Law 919.

Law 982 Law Review (1-4 cr, max 4). Graded P/F; credits earned are not class hours. The awarding of credit is subject to approval by the editor-in-chief and faculty advisor.

Law 983 Directed Study (1-12 cr, max 4). Individual research on a significant legal problem and the writing of a paper thereon that must be approved by the faculty member under whose direction the work is done. Graded P/F; credits earned are not class hours. Prereq: perm.

Law 999 (5) Study Abroad or Off Campus (cr arr). Graded P/F. Prereq: perm of associate dean, College of Law.

Library Science

LibS 415 Technical Services for Small Libraries (1 cr). Examine library technical services of the small or one-person public or school library. Explore techniques for finding sources for material, using cataloguing systems, classifying, and preparing materials to get them ready for use. Print, multimedia, and electronic formats, automatic systems and networking will be discussed. Recommended Preparation: LibS 425.

LibS 416 Library Services to Rural Areas (1 cr). Explore the administration and programming of rural public libraries, including historical and social context, financing and governance, staffing, and programming for the community. Recommended Preparation: LibS 425.

LibS 417 Censorship and Libraries (2 cr). This course will explore censorship in society and how this affects library services. Students will learn about historical roots, who censors, the purposes of censorship, and the laws and legal cases that influence our understanding about censorship in libraries. Strategic solutions to providing open access to library collections will be considered.

LibS 419 Computer Applications in Libraries (3 cr). Trends and developments in library automation; practical applications of microcomputers to library work and administration. Note: This is an academic course intended to teach fundamental terms and concepts. It is not a course on automating a library.

LibS C-J424 Information Sources on the Internet for Librarians (3 cr). Principles of development and trends in Internet information resources that libraries access and use; emphasis on searching, evaluating, and providing to patrons needed reference material.

LibS C426 Information Literacy for the Library Media Specialist (3 cr). Explores the role of the Library Media Specialist (LMS) in providing information literacy instruction. Defines information literacy, as well as places it in a national, state, and local framework. Research process as it correlates with information literacy is covered in great detail.

LibS C427 Library and Media Center Practicum (1-3 cr). Experience in a library or other information center under professional supervision. Ninety hours of supervised experience per credit. Recommended Preparation: 6 cr in library and information science.

LibS C428 Children’s Literature for Librarians (3 cr). This course will develop students’ basic knowledge and understanding of the field of children’s literature, particularly as it pertains to librarians, with a focus on children ages 2-12. This course will emphasize skills, tools, and insights necessary for effective professional librarianship in the area of services to children.

LibS C429 Adolescent Literature for Librarians (3 cr). This course will develop students’ knowledge of adolescent literature as it pertains to librarians, with a focus on youth grades 6-12. It emphasizes the skills and discernment necessary by the librarian to effectively serve adolescents. Evaluation tools for selecting literature and electronic resources will be covered, and issues relating to materials selection and promotion for the secondary school library will be explored.

LibS C432 Good Free Web Stuff (1 cr). The World Wide Web (WWW) offers just about everything and lots of it. But how do you find the good stuff? Information that’s reliable and likely to stay put? This one-credit course will help identify some of those sources, as well as guide you in evaluating any Yahoo source you may run across.

LibS C520 Classification and Cataloging (4 cr). See LibS J420/J520.

Martin School of International Affairs

Rand C. Lewis, Director, Martin School of International Affairs (1 Cont. Educ. Bldg. 83844-3229; phone 208/885-6257).

Mtn 404 (s) Special Topics (cr arr). Prereq: perm.

Materials Science and Engineering

Francis H. (Sam) Froses, Dept. Head (203B McClure Hall. 83844-3024; phone 208/885-6376).

MSE 201 Elements of Materials Science (3 cr). See Met 201.

MSE 308 Thermodynamics of Materials (3 cr). See Met 308.

MSE 313 Physical Metallurgy (4 cr). See Met 313.

MSE 344 Hydropyrolysis of Materials (4 cr). See Met 344.

MSE 400 (s) Seminar (cr arr). Prereq: perm.

MSE 404 (s) Special Topics (cr arr). Prereq: perm.

MSE 412 Mechanical Behavior of Materials (3 cr). See Met 412.

MSE J413/J513 Phase Equilibria in Materials (3 cr). See Met J413/J513.

MSE 414 Process Design (3 cr). See Met 414.

MSE ID415 Materials Selection and Design (3 cr). See Met 415.

MSE 417 Instrumental Analysis (3 cr). See Met 417.

MSE 430 Electrical, Optical, and Magnetic Properties of Materials (3 cr). Materials for circuits, Magnetism and magnetic materials, Ferroelectric and piezolectric materials, Semiconductors. Optical properties of semiconductor for Optoelectronics. Prereq: Sr standing or perm. (Spring only)

MSE 432 Fundamentals of Thin Film Fabrication (3 cr). Physical deposition, chemical deposition, post deposition process, film characterization, and film properties. Prereq: Sr standing or perm. (Fall, Alt/Even)

MSE 434 Fundamentals of Polymeric Materials (3 cr). Basic information on polymeric materials, both fundamentals and uses. Prereq: Chem 111 and 112. (Fall only)

MSE 442 Pyroprocessing of Materials (4 cr). See Met 442.

MSE 463 Mechanics of Materials Processing (3 cr). Mechanics and energy balances in unit processes in materials manufacturing; processes include casting, rolling, extrusion and sheet forming, inelastic deformation applied to model some unit manufacturing processes; other processes explored as time and interest permit. Recommended Preparation: Engr 350 or equiv. Prereq: ME 345.

MSE 498 (s) Internship (cr arr). Prereq: perm.

MSE 499 (s) Directed Study (cr arr). Prereq: perm.

MSE 501 (s) Seminar (cr arr). Prereq: perm.

MSE 502 (s) Directed Study (cr arr). Prereq: perm.

MSE 504 (s) Special Topics (cr arr). Prereq: perm.

MSE 513 Phase Equilibria in Materials (3 cr). See Met J413/J513.

MSE 516 Magnetic Materials (3 cr). See Met 516.

MSE 517 Kinetics of Metallurgical Reactions (3 cr). Application of absolute rate theory; time and temperature dependence; kinetics of gas-solid reactions; corrosion, diffusion, and recrystallization. Prereq: perm. (Alt/Even)

MSE 518 Advanced Mechanical Metallurgy (3 cr). See Met 518.

MSE R534 Radiation Effects in Materials (3 cr). See Met 534.

MSE 535 Failure of Structural Materials (3 cr). See Met 535.

MSE 536 Mechanics of Composite Materials (3 cr). See ME 534

MSE 539 Advanced Mechanics of Materials (3 cr). See ME 539.

MSE 598 (s) Internship (cr arr). Prereq: perm.

MSE 600 Doctoral Research and Dissertation (cr arr).

Mathematics

Monte Boise, Chair, Dept. of Mathematics (300 Carol Ryrie Brink Hall 83844-1103; phone 208/885-6742).

Vertically-related courses in this subject field are: Math 170-175-275-471-472.

Credit Limitations: Math 108 carries no credit after Math 137 or 143; Math 143 carries no credit after 160 or 170; Math 170 carries 2 credits after 160; Math 160 carries no credit after 170, Math 215 carries no credit after 411 or 471.
Math 108 Intermediate Algebra (3 cr). Carries no credit after Math 137 or 143.
Review of algebraic methods, intermediate expressions, exponents, radicals, quadratics, equations of lines. Taught using the Polya Math Center, a studio environment featuring group study, one-to-one interaction with instructors, computer-mediated modules, and lectures. Does not satisfy core requirement.

Math 123 The Spirit of Mathematics (3 cr). May be used as core credit in J-3-c.
For students who are curious about what mathematics is and what mathematicians do but who do not plan to use mathematics as an essential tool in their careers; discussion of some aspects of mathematics through study of problems of "applied" and of "pure" type, taken from areas such as number theory, geometry, topology, probability, and combinatorics; discussion of the historical development.

Math 130 Finite Mathematics (3 cr) May be used as core credit in J-3-c.
Systems of linear equations and inequalities, matrices, linear programming, and probability. Prereq: high school or college cr in trigonometry. Trigonometric functions, inverse functions, variables, and multiple integration. Prereq: Math 175.

Math 137 Algebra with Applications (3 cr). May be used as core credit in J-3-c. Carries no credit after Math 143. Algebraic, exponential, logarithmic functions, systems of equations, applications. Prereq: 1-1/2 years high school algebra, 1 yr high school plane geometry, and sufficient score on SAT, ACT, or COMPASS Math Test.

Math 138 Analytic Trigonometry (1 cr). Not open for cr to students who have previous high school or college cr in trigonometry. Trigonometric functions, inverse functions, applications. Taught using the Polya Math Center, a studio environment featuring group study, one-to-one interaction with instructors, computer-mediated modules, and lectures. Prereq: 1-1/2 yrs high school algebra, 1 yr high school plane geometry, and sufficient score on SAT, ACT, or COMPASS Math Test, or Math 106 with grade of C or better. It is recommended that Math 137 be taken within two years of passing Math 106 or its equivalent.

Math 143 Pre-calculus Algebra and Analytic Geometry (3 cr). May be used as core credit in J-3-c. Carries no credit after Math 160 or 170; carries 2 credits after Math 137. Algebraic, exponential, logarithmic functions; graphs of conics; zeros of polynomials; systems of equations, induction. Taught using the Polya Math Center, a studio environment featuring group study, one-to-one interaction with instructors, computer-mediated modules, and lectures. Prereq: 1-1/2 yrs high school algebra, 1 yr high school plane geometry, and sufficient score on SAT, ACT, or COMPASS Math Test, or Math 106 with grade of C or better. It is recommended that Math 143 be taken within two years of passing Math 106 or its equivalent.

Math 144 Analytic Trigonometry (1 cr). Not open for cr to students who have previous high school or college cr in trigonometry. Trigonometric functions, inverse functions, applications. Taught using the Polya Math Center, a studio environment featuring group study, one-to-one interaction with instructors, computer-mediated modules, and lectures. Prereq: 2 yrs high school algebra (or Math 143) and 1 yr plane geometry, and/or coreq: Math 143 or 170. Concurrent enrollment in Math 143 or 170 permitted.

Math 160 Survey of Calculus (4 cr). May be used as core credit in J-3-c. Carries no credit after Math 160 or 170. Functions, limits, continuity, differentiation, integration, applications, differential and integral equations of lines. Taught using the Polya Math Center, a studio environment featuring group study, one-to-one interaction with instructors, computer-mediated modules, and lectures. Prereq: 1-1/2 yrs high school algebra, 1 yr high school plane geometry, and sufficient score on SAT, ACT, or COMPASS Math Test, or Math 106 with grade of C or better. It is recommended that Math 143 be taken within two years of passing Math 106 or its equivalent.

Math 170 Analytic Geometry and Calculus I (4 cr). May be used as core credit in J-3-c.
Carries 2 credits after Math 160. Functions, limits, continuity, differentiation, integration, applications, differential and integral equations of lines. Taught using the Polya Math Center, a studio environment featuring group study, one-to-one interaction with instructors, computer-mediated modules, and lectures. Prereq: Math 143, or 2 yrs high school algebra and 1 yr plane geometry and 1/2 yr analytic trigonometry and sufficiently high score on SAT, ACT, or COMPASS Math Test.

Math 175 Analytic Geometry and Calculus II (4 cr). Differentiation and integration of transcendental functions, integration techniques, general mean value theorem, numerical techniques, and series. Prereq: Math 170.

Math 176 Discrete Mathematics (3 cr). Induction, set theory, graph theory, number systems, Boolean algebra, and elementary counting. Prereq: 2 yrs high school algebra and sufficiently high score on SAT, ACT, or COMPASS Math Test; or Math 143.

Math 204 (s) Special Topics (cr ar). Prereq: perm.

Math 215 Seminar in Topology of the Plane (3 cr). Carries no credit after Math 411 or 471. For students preparing to prove theorems; open and closed sets, connectedness, compactness, continuity, etc. Class size limited to 15. Prereq: Math 175 and permission. (Fall only)

Math 235 Mathematics for Elementary Teachers I (3 cr). Mathematical development of arithmetic and problem solving as those subjects are currently taught in elementary schools. Three lec and one 1-hr lab a wk. Prereq: 1 year of plane geometry, and Math 143 or 137 (or sufficient score on SAT, ACT, or COMPASS Math Test).

Math 236 Mathematics for Elementary Teachers II (3 cr). Mathematical development of informal geometry, problem solving, and probability and statistics as those subjects are currently taught in elementary schools. Three lec and one 1-hr lab a wk. Prereq: Math 235.

Math 299 (s) Directed Study (cr ar). Prereq: perm.

Math 301 Early Childhood Mathematics (4 cr). Focus on the mathematics for early childhood: numbers and operations, algebraic thinking, geometry, measurement, probability and statistics. Emphasis on being placed on representing, communicating, and exploring current research. This course is restricted to students from either the School of Family and Consumer Sciences or the College of Education. This course will not count as a 300 – level mathematics course in any major or minor in the College of Science. Recommended preparation: Stat 150. Prereq: One core math course. (Fall only)

Math 310 Ordinary Differential Equations (3 cr). Classification, initial and boundary value problems of one variable, exact equations, methods of solving higher-order linear equations, second-order equations with constant coefficient, series solutions, systems of linear equations, Laplace transforms, and existence theorems. Prereq: Math 175 (275 recommended).
Math 480 Partial Differential Equations (3 cr). Intro to Fourier analysis, application to solution of partial differential equations; classical partial differential equations of engineering and physics. Prereq: Math 310 or perm. (Spring, Alt/yr)

Math 490 Introduction to Set Theory (3 cr). Set operations, functions, binary operations and relations, cardinal and ordinal numbers, axiom of choice, partially ordered sets, and Zorn's lemma. Prereq: Math 275. (Alt/yr)

Math 497 (s) Practicum in Tutoring (1 cr, max 2). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm. of dept.

Math 499 (s) Directed Study (cr ar). Prereq: perm.

Math 501 (s) Seminar (cr ar). Prereq: perm.

Math 502 (s) Directed Study (cr ar). Prereq: perm.

Math 504 (s) Special Topics (cr ar). Prereq: perm.

Math 505 (s) Professional Development (cr ar). Cr earned in this course will not be accepted toward grad degree programs. Prereq: perm.

Math 510 Seminar on College Teaching of Mathematics (1 cr). Development of skills in the teaching of college mathematics; includes structure of class time, test construction, and various methods of teaching mathematics; supervision of teaching assistants in their beginning teaching assignments. Graded P/F. Prereq: perm.

Math 513 Problem Solving Through History (3 cr). Historical study of approaches to solving problems in geometry, number theory, and set theory. This course is specifically designed for the MAT program, and will not satisfy the requirements of other mathematics degree programs.

Math 514 Foundations of Calculus (3 cr). Real numbers, sequences, topology of the real numbers, continuous functions, differentiation, and integration; emphasis on developing the conceptual understanding needed to teach calculus in secondary school. This course is specifically designed for the MAT program, and will not satisfy the requirements of other mathematics degree programs.

Math 515 Problems in Geometry (3 cr). Exploration of topics in geometry with emphasis on developing geometric reasoning and problem solving. This course is specifically designed for the MAT program, and will not satisfy the requirements of other mathematics degree programs.

Math 516 Groups and Symmetry (3 cr). Exploration of groups, symmetry, and permutations. This course is specifically designed for the MAT program, and will not satisfy the requirements of other mathematics degree programs.

Math 519 (s) Special Topics (cr ar). Special topics of interest to mathematics teachers. This course is specifically designed for the MAT program, and will not satisfy the requirements of other mathematics degree programs. Prereq: perm.

Math ID&WSS53-ID&WSS54 Algebraic Topology (3 cr). WSU Math 527-528. Basic homotopy theory, covering spaces, homology theory, and applications. (Alt/yr)

Math 525 (s) Seminar in Topology (1-3 cr, max ar). Current literature.

Math 526 (s) Topics in Topology (1-3 cr, max 12).

Math 528 Differentiable Manifolds (3 cr). Fundamentals of smooth manifolds, tangent spaces, vector fields, Lie groups, integration on manifolds, and applications. Prereq: Math 411 or 521, and 471.

Math ID&WSS55 Complex Variables (3 cr). WSU Math 503. Theory of functions of a complex variable. (Spring, Alt/yr)

Math 535 Real Variables (3 cr). Measure and integration theory for functions of one or several variables. (Fall, Alt/yr)

Math 536 Probability Theory (3 cr). Random variables, characteristic functions, convergence theorems, central limit theorem, conditional probability, and stochastic processes as developed from a measure theoretic basis. Prereq: Math 535 or perm. (Spring, Alt/yr)

Math ID&WSS59 Theory of Ordinary Differential Equations (3 cr). WSU Math 512. Existence, uniqueness, and stability of solutions of first-order systems; other topics. (Fall, Alt/yr)

Math 540 Partial Differential Equations (3 cr). Existence and uniqueness theorems for the wave, heat, and Laplace's equations of physics; additional topics such as nonlinear models in mathematical biology, perturbation methods, etc. Prereq: Math 539 or perm.

Math WS543 Approximation Theory (3 cr). WSU Math 543.

Math WS544 Advanced Matrix Computations (3 cr). WSU Math 544.

Math WS547 Numerical Analysis of Elliptic PDEs (3 cr). WSU Math 546.

Math ID&S50 Linear Algebra (3 cr). WSU Math 554. Vector spaces, direct sums, quotient spaces, similarity, diagonal forms, inner products, eigenvalues, eigenvectors, spectral theory. (Fall, Alt/yr)

Math ID&S51 Ring Theory (3 cr). WSU Math 551. Ideals, quotient rings, modules, radicals, semisimple Artinian rings, Noetherian rings. (Spring, Alt/yr)

Math ID&S52 Galois Theory (3 cr). WSU Math 552. Field extensions, automorphisms, normality, splitting fields, radical extensions, finite fields, separability. Knowledge of group theory is presumed. (Spring, Alt/yr)

Math 553 Group Theory (3 cr). Permutation groups, isomorphisms, direct products, Sylow theory, normal series, abelian groups. (Fall, Alt/yr)

Math WSS544 Advanced Topics in Geometry (3 cr). WSU Math 550. (Alt/yr)

Math ID&WSS561 (s) Seminar in Algebra (1-3 cr, max ar). WSU Math 582. Current literature.

Math 563 Mathematical Methods for Population Genetics and Evolution (3 cr). Same as Biol 563. Investigation of aspects of evolutionary biology with an emphasis on stochastic models and statistical methods; topics include: diffusion methods in molecular evolution, genealogies and the coalescent, inferring coalescent times from DNA sequences, population subdivision and F statistics, likelihood methods for phylogenetic inference, statistical hypothesis testing, the parametric bootstrap. Prereq: Math 160 or 170 and Stat 251 or 301. (Fall, Alt/yr)

Math 575-576 Graph Theory (3 cr). Basic concepts and theorems; topics include trees and connectivity, eulerian and hamiltonian graphs, graph colorings, matchings, graph decomposition, and extremal graph theory. (Math 575: Fall, Alt/yr. Math 576: Spring, Alt/yr)

Math 578 Combinatorial Optimization (3 cr). Optimization problems on graphs, network flow problems, complexity analysis of algorithmic solutions, and related topics. (Fall, Alt/yr)

Math 581 (s) Seminar in Combinatorics (1-3 cr, max ar).

Math WS583 Seminar in Applied Mathematics (3 cr, max ar). WSU Math 583.

Math 585-586 (s) Recent Developments in Mathematics (3 cr, max ar). For students with extensive background in specific areas of mathematics.

Math 600 Doctoral Research and Dissertation (cr ar).

Note: Pre-advising is required for all mechanical engineering courses; consult the department office to be assigned to an advisor.

ME 123 Introduction to Mechanical Design (3 cr). Introduction to engineering design process and analysis techniques including problem solving skills, development of software learning skills, graphical analysis, data analysis, economic decision making, documentation skills, and use of structured programming concepts in designing personal applications. Three lec and one 2-hr lab a wk. Coreq: Math 143 or 170.

ME 223 Mechanical Design Analysis (3 cr). Use of a design and problem solving methodology in the creation of application programs; matrix methods; numerical integration; solution of differential equations; oral/written communication. Three lec and one 2-hr open lab a wk. Prereq: ME 123. Coreq: Math 175.

ME 225 Introduction to Machine Design (2 cr). Two dimensional hand drawing of solid objects, three dimensional concepts, drawing processes, dimensioning, threads & fasteners, and tolerances. Prereq: ME 123.

ME 262 Sophomore Laboratory (3 cr). Foundation of experimental methods; testing of structures and engineering systems subject to various loads; use of computers for data reduction and analysis; development of visualization skills and engineering record keeping skills. Two lec and 2-hrs of lab a wk. Prereq: Engr 210. Coreq: ME 143 or 170.

ME 301 Computer Aided Design Methods (3 cr). Two and three dimensional graphics including geometric dimensioning and tolerancing (GD&T), use of solid modeling software in engineering design (CAD), finite element analysis (FEA), and manufacturing (CAM). Prereq: ME 223, 225, 262 or Engr 105.

ME 307-308 Group Mentoring II (1 cr). Mentoring of student groups in engineering classes where a process education environment is used; students taking this course will improve their engineering skill in the area they are mentoring as well as improving their team, communication, and leadership skills. Students must attend all classes or labs where group activities in the process education environment are done (a minimum of 2 mentoring sessions per week). Prereq: perm.

ME 313 Dynamic Modeling of Engineering Systems (3 cr). Application of basic engineering principles to model and analyze the dynamic response of engineering systems; problem solutions will utilize transfer function methods, state variable techniques, and simulation software. Prereq: ME 223, Engr 220, Engr 240, and Math 310.

ME 323 Design Seminar (3 cr). Structuring a solution approach for open-ended problems. Emphasis is on modern design theory. Multidisciplinary teamwork. Information collection and self-directed learning. Professional issues in engineering practice such as economics, ethics, environmental topics, safety, and patents. Approximately 25% of class time is devoted to project work. One or two field trip(s). Prereq: ME 223.

Ralph S. Budwig, Chair, Dept. of Mechanical Engineering (3241 Engineering/Physics Bldg. 83844-6902; phone 208/885-6579).
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 422</td>
<td>Applied Thermodynamics (3 cr). Advanced topics in applied thermodynamics in the design of thermal energy systems; advanced power and refrigeration cycles, combustion, thermodynamic properties of real fluids, phase equilibrium, and chemical equilibrium. Prereq: Engr 320.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 424</td>
<td>Mechanical Systems Design I (3 cr). May be used as core credit in J-3d. Study of production realization process including project planning, concept design, detail design, and manufacturing processes; modern design and manufacturing practices in each of these areas applied to a two-semester, industrial sponsored capstone design project (continued in ME 426). Prereq: ME 301, 313, 323, 325, 330, 335, and Certification.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 425</td>
<td>Machine Component Design II (3 cr). Emphasis on material selection, manufacturing processes, quality planning, and surface treatment; design using metals, non metals and composite materials for strength, fatigue, creep and corrosion resistance; other topics include lubrication theory. Discussions of case studies and detailed design projects involving machine component elements. Prereq: ME 325.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 426</td>
<td>Mechanical Systems Design II (3 cr). May be used as core credit in J-3d. Continuation of ME 424. Additional manufacturing issues: continuation of a two-semester, industrial sponsored capstone design project (begun in ME 424) to include the detail design, prototype construction, and testing. Prereq: ME 424.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 430</td>
<td>Senior Lab (3 cr). Detailed lab investigation of engineering problem; statistical design of experiments; application of engineer's principles to analyze experimental data; technical report writing; oral communication skills. One lec and four hrs of lab a wk. Prereq: ME 313 and 330. Coreq: Engr 317.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 433</td>
<td>Combustion Engine Systems (3 cr). Theory and characteristics of combustion engines; combustion process analysis; fuels, exhaust emissions and controls; system analysis and modeling. Coreq: ME 345 or perm.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 435</td>
<td>Thermal Energy Systems Design (3 cr). Application of fluid mechanics, thermodynamics and heat transfer in the design of thermal energy systems; topics include thermal energy system component analysis and selection, component and system simulation, dynamic response of thermal systems, and system optimization. Prereq: Engr 335 and ME 345.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 443</td>
<td>Analysis of Thermal Energy Systems (3 cr, max. arr). Analysis of thermal energy systems; topics vary depending on instructor and may include one or more of the following thermal systems: solar energy, refrigeration, vapor power generation, gas power generation, geothermal energy, wind energy, fuel cells, nuclear energy, thermoelectric systems, and thermionic systems. Additional assignments and a technical research report required for graduate credit. Prereq: Engr 335 and ME 345; perm reqd to repeat course for credit.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 449</td>
<td>Air Conditioning Engineering (3 cr). WSU M E 419. Requirements for air conditioned spaces for human comfort; thermodynamic properties of air-water vapor mixtures; heating and cooling loads; design of systems for heating, cooling, and ventilation. Prereq: ME 345.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 451</td>
<td>Experimental Methods in Fluid Dynamics and Heat Transfer (3 cr). Not granted for both ME 451 and ME 551. Theory and applications of transducers and instrumentation to measure velocity, temperature, and related quantities; flow visualization, pressure measurements, thermal anemometry, laser Doppler velocimetry, temperature and concentration measurement, and heat flux measurement. Additional projects/assignments reqd for grad cr. One 1-1/2 hr lec and one 3-hr lab a wk. Recommended Preparation: Eng 317, ME 345. Prereq: ME 330.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 461</td>
<td>Fatigue and Fracture Mechanics (3 cr). Fracture mechanics approach to structural integrity, fracture control, transition temperature, microstructural and environmental effects, fatigue and failure analysis. Prereq: ME 261 and Engr 350.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 477</td>
<td>Design for Manufacturing and Assembly (3 cr). Techniques to design for ease of production of components that form a product and the assembly of those components; techniques for design for other life-cycle issues such as design for service and design for the environment. Additional assignments reqd for grad cr. Coreq: ME 424 or equiv.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 481</td>
<td>Control Systems (3 cr). WSU M E 481. Same as ECE 470. Analysis and design of feedback control systems utilizing frequency and time domain methods, and computer-aided design tools. Prereq for EE and CoE majors: ECE 350. Prereq for ME majors: ME 313.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 499</td>
<td>Directed Study (cr arr). Selected topics. Detailed report reqd. Prereq: Sr standing and perm.</td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td>ME 500</td>
<td>Master's Research and Thesis (cr arr).</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>ME 502</td>
<td>Directed Study (cr arr). Supervised study, including critical reading of current literature. Prereq: perm.</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>ME 503</td>
<td>Workshop (cr arr).</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>ME 504</td>
<td>Special Topics (cr arr).</td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td>ME 508</td>
<td>Mechanics of Plates and Shells (3 cr). Formulation of governing equations, assumptions, stress analysis, calculation of displacements, discussion of experimental analysis, buckling and vibration of plates and shells. Prereq: ME 341 or CE 342.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 513</td>
<td>Engineering Acoustics (3 cr). See ME J413/J513.</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
PART SIX Courses

ME 515 Transport Phenomena (3-4 cr). See ChE 515.
ME 517 Turbomachinery (3 cr). See ME J417/J517.
ME 518 Discrete System Simulation and Animation (3 cr). See ME J418/J518.
ME 519 Fluid Transients (3 cr). See CE 519.
ME 520 Fluid Dynamics (3 cr). See ME J420/J520.
ME R525 Advanced Heat Transfer (3 cr). Application of fundamentals of heat conduction, radiation, and convection; relationships to fluids dynamics and mass transfer; economics and design applications. Prereq: perm.
ME I&D&W527 Thermodynamics (3 cr). WSU Ch E 527. Thermodynamic laws for design and optimization of thermodynamic systems, equations of state, properties of ideal and real fluids and fluid mixtures, stability, phase equilibrium, chemical equilibrium, applications of thermodynamic principles. Prereq: Engr 320 or perm.
ME 529 Combustion and Air Pollution (3 cr). Formation of pollutants during combustion processes and their subsequent transformations in the atmosphere; emphasis on the effects of design and operating parameters of combustion devices on the nature and composition of exhaust gases, improvements, post-combustion treatment of effluent gases, atmospheric processes and their subsequent transformations in the atmosphere; emphasis on the effects. Prereq: Engr 320 and 335, ME 345 or perm.
ME I&D&W534 Mechanics of Composite Materials (3 cr). WSU ME 534. Same as MSE 536. Analysis of micromechanical and macromechanical behavior of composite materials with emphasis on fiber-reinforced composite; prediction of properties; stiffness and strength properties; laminated beams and plates; dynamic behavior; environmental effects. Prereq: ME 341 or CE 342.
ME 535 Failure of Structural Materials (3 cr). See Met 535.
ME 539 Advanced Mechanics of Materials (3 cr). Same as ME 510 and MSE 539. Limitations of results of elementary mechanics of materials, complex situations of loading and structural geometry, applications to design of machines and structure, introduction to elasticity. Prereq: ME 341 or CE 342.
ME 540 Continuum Mechanics (3 cr). Same as CE 540. Stress and deformation of continua using tensor analysis; relationship between stress, strain, and strain rates in fluids and solids; applications. Prereq: perm.
ME 541 Mechanical Engineering Analysis (3 cr). Mathematical modeling and solutions to mechanical engineering problems; analytical solutions to linear heat and mass diffusion, waves and vibrations; introduction to approximate techniques. Prereq: ME 345, Engr 350 or equiv.
ME 544 Conduction Heat Transfer (3 cr). Formulation of steady-state and transient one- and multi-dimensional heat conduction problems; analytical solution techniques for linear problems including separation of variables, integral transforms, and Laplace transforms. Prereq: ME 345 or equiv., or perm.
ME 545 Numerical Conduction Heat Transfer (3 cr). Steady-state and transient conduction and advection of heat; analytical and numerical methods including finite differences, finite elements, and boundary elements. Prereq: ME 345.
ME ID&W546 Convective Heat Transfer (3 cr). WSU ME 515. Energy conservation equations; laminar and turbulent forced convective heat transfer; internal and external flow; free convection. Prereq: ME 345 or perm.
ME 548 Elasticity (3 cr). Mathematical analysis of strain and stress, including vectors, tensors, coordinate transformations; equations of elasticity; stress problems involving extension, torsion, and flexure; theories of failure. Prereq: ME 341 or CE 342.
ME 549 Finite Element Analysis (3 cr). See CE 548.
ME 557 Advanced Fluid Dynamics (3 cr). Potential flow and boundary layer theory; plus one or more advanced topics. Prereq: ME J420/J520 or 540 or perm.
ME I&D&W572 Advanced Vibration (3 cr). WSU ME 541. Same as ECE 575. Free and forced vibration of strings, membranes and plates; response to random inputs; advanced topics in spectral analysis to include statistical properties, windowing, and the zoom transforms; analysis of nonlinear systems including linearization, local and global stability, perturbation methods, and numerical simulation; introduction to chaos theory. Prereq: ME 472 or ECE 470 or perm.
ME 573 Acoustic Waves in Elastic Solids (3 cr). Wave propagation in elastic solids; isotropic, anisotropic and piezoelectric materials; bulk, bar, plate (Lamb) and surface (Rayleigh) waves; reflection from interfaces; layered media; point sources; fluid-structure coupling. Applications to NonDestructive Testing (NDT), piezoelectric transducer design. Prereq: ME 413S/513 or perm.
ME 575 Optimal Control Theory (3 cr). See ECE 574.
ME 577 Design for Manufacture and Assembly (3 cr). See ME J477/J577.

ME 578 Neural Network Design (3 cr). See ECE 578.
ME 580 Linear System Theory (3 cr). See ECE 572.
ME I&D&W581 Fuzzy Logic Control Systems (3 cr). Same as ECE 573. Introduction to fuzzy logic control systems and the methods used to design these systems. Prereq: ME 481 or ECE 470 or perm.
ME 582 (s) Advanced Topics in Control Systems (3 cr). See ECE 577.
ME 585 Advanced Topics in Engineering Design (3 cr). Introduction to advanced methodologies for the design and manufacture of products; topics include robust design, concurrent engineering, design for manufacture and assembly, and expert systems. Prereq: ME 424 and Stat 301, or grad standing and perm.
ME 599 (s) Non-thesis Master’s Research (cr arr). Research not directly related to a thesis or dissertation. Prereq. perm.
ME 600 Doctoral Research and Dissertation (cr arr).

Medical Science

Andrew L. Turner, Ph.D., Director, WWAMI (Washington, Wyoming, Alaska, Montana, Idaho) Medical Education Program (304 Student Health Services Bldg. 83444-4207; phone 208/885-6696; e-mail brenda@uidaho.edu).

Note: Ordinarily, only students enrolled at the University of Washington School of Medicine register to take medical science courses. Matriculated graduate and senior undergraduate students may register for credit in certain medical science courses under appropriate circumstances. In such cases prior approval must be obtained from the faculty member chairing the course and the WWAMI director. Permission to register will usually depend on the student also having approval from his or her academic advisor (senior undergraduate students must also obtain approval from the vice provost for research and graduate studies) and be limited to not more than two medical science courses per semester. MedS 505 (Preceptorship) and MedS 513, 522, and 535 (Introduction to Clinical Medicine I, II, and III) are closed to all but WWAMI medical students.

MedS 501 (s) Seminar (cr arr).
MedS 502 (s) Directed Study (cr arr). Areas normally offered are directed dissection of the extremities, trunk, head, neck, abdomen, and pelvis; endocrinology, physiology, and other medically related studies. (Spring only).
MedS 504 (s) Special Topics (cr arr).
MedS 505 Preceptorship (1 cr). Provides opportunity for first-year medical students to gain personal experience with and insight into medical practice situations; the student will be stationed with physicians in their offices in accordance with preference of discipline and availability at the WWAMI sites.

MedS I&D&W510 Microscopic Anatomy (4 cr). WSU Med S 510. Provides the principles and concepts of histology, defines the morphological characteristics of the cells, tissues and organs of the human body and relates this information to functional processes. Threelec and one 3-hr lab a wk. (Fall only).

MedS I&D&W511 Anatomy and Embryology I (5 cr). WSU Med S 511. Presents understanding of the formation and 3-dimensional relationships of the major structures in the human body. This is a laboratory course where the diversity variability and adaptability of the human phenotype will be examined in the dissection laboratory and in living anatomy. Focus is on trunk anatomy. Two lec and one 3-hr lab a wk. (Fall only).

MedS I&D&W512 Mechanisms in Cellular Physiology (3 cr). WSU Med S 512. Presents fundamental cellular events underlying the following topics: physiology of the cell membrane intrinsic and extrinsic gradients, active transport, excitability and action potentials; biophysics of sensory receptors; neuromuscular transmission; muscle energetics and contractility; spinal reflexes and central synaptic transmission; autonomic nervous system; energy metabolism and temperature regulation; epithelial transport; gastrointestinal motility and secretions. (Fall only).

MedS I&D&W513 Introduction to Clinical Medicine I (2 cr). WSU Med S 513. Explores students to clinical skills and professional issues with instruction in interview techniques that form the basis for the doctor-patient relationship and the skills of communicating with patients. (Fall only).

MedS I&D&W514 Biochemistry I (3 cr). WSU Med S 514. Focuses on how the genome serves as a source of information, and how molecular understanding of gene function produces new therapeutic and diagnostic tools. Topics include how genetic information is stored, mobilized, and used; targets of regulation; molecular medicine; cancer; and genomic therapies. (Fall only).

MedS I&D&W516 Systems of Human Behavior I (1 cr). WSU Med S 516. Selected overview of contributions from behavioral sciences to clinical practice of primary care physicians. Senses students to impact of such factors as emotional and physical development, cultural background, social roles, families, sexual identities, and belief systems upon their effectiveness as physicians. Encourages appreciation of the role of behavioral factors in major management problems faced in medical practice; covers physical and psychological development of the individual from the embryo through old age; teaches skills in analyzing behavior, defining behavior objectives, and designing precise treatment strategies to obtain these objectives. (Fall only).

Metallurgical Engineering

Francis H. (Sam) Froes, Head, Dept. of Materials Science and Engineering (203B McClure Hall 38344-3024; phone 208/885-6376).

Met S 101 Introduction to Metallurgy and Materials Science (2 cr). Same as MSE 101. Earth resources, metallurgy, materials science, and manufacturing. (Fall only)

Met S 201 Elements of Materials Science (3 cr). Same as ME 261 and MSE 201. Principles relating properties of metals, ceramics, polymers, and composites to their structures. Prereq: Met S 101. (Fall only)

Met S 202 Microstructural Evaluation (2 cr). Same as MSE 202. Techniques for preparing materials for observation and evaluation of microstructure by optical and scanning transmission electron microscopy. One 2-hr and one 3-hr lab a wk. Recommended Preparation: Met 201.

Met S 204 (s) Special Topics (cr arr). Prereq: perm.

Met S 299 (s) Directed Study (cr arr). Prereq: perm.

Met S 308 Thermodynamics of Materials (3 cr). Same as MSE 308. Intro; first, second, and third law; auxiliary functions; behavior of solutions; free energy composition and phase diagrams of binary systems; reaction equilibria in systems containing components in condensed solutions; ternary diagrams; thermodynamics of alloys and ceramic materials. Recommended Preparation: Chem 111 and 112, and Math 310. (Spring only)

Met S 309 Transport Phenomena for Design (4 cr). WSU MSE 309. Same as MSE 309. Mass, momentum, and energy balances applied to materials process and reactor design. Recommended Preparation: Math 275, Math 310, Phys 212, Engr 210, and Chem 112. (Spring only)

Met S 313 Physical Metallurgy (4 cr). Same as MSE 313. Theory, structure, and properties of materials. Recommended Preparation: Met/MSE 201 or MSE 261. (Fall, Alt/yr)

Met S 341 Particulate Materials Processing (4 cr). WSU MSE 341. Same as MSE 341. Engineering science of particulates; powder production, powder properties, separation; design of systems applied to metals, ores, and concentrates. Three lec and one 3-hr lab a wk; two 1-day field trips. Recommended Preparation: CS 211, Phys 212, and Engr 240. Prereq: Chem 112. Coreq: Math 310. (Fall only)

Met S 344 Hydroprocessing of Materials (4 cr). Same as MSE 344. Intro to hydrotreatment; dissolution of metals, minerals, and materials; recovery of metals from solutions; solvent extraction, ion exchange, precipitation; electrowetting; bipolar process; design of agitators, mixer-settlers, electrolytic cells; flowsheet design and analysis. Three lec and one 3-hr lab a wk. Prereq: Met 306 and 309. (Spring only)

Met S 400 (s) Seminar (cr arr). Review of current literature. One 3-day field trip. Prereq: perm.

Met S 404 (s) Special Topics (cr arr). Prereq: perm.

Metallurgical Engineering

Francis H. (Sam) Froes, Head, Dept. of Materials Science and Engineering (203B McClure Hall 38344-3024; phone 208/885-6376).

Met S 101 Introduction to Metallurgy and Materials Science (2 cr). Same as MSE 101. Earth resources, metallurgy, materials science, and manufacturing. (Fall only)

Met S 201 Elements of Materials Science (3 cr). Same as ME 261 and MSE 201. Principles relating properties of metals, ceramics, polymers, and composites to their structures. Prereq: Met S 101. (Fall only)

Met S 202 Microstructural Evaluation (2 cr). Same as MSE 202. Techniques for preparing materials for observation and evaluation of microstructure by optical and scanning transmission electron microscopy. One 2-hr and one 3-hr lab a wk. Recommended Preparation: Met 201.

Met S 204 (s) Special Topics (cr arr). Prereq: perm.

Met S 299 (s) Directed Study (cr arr). Prereq: perm.

Met S 308 Thermodynamics of Materials (3 cr). Same as MSE 308. Intro; first, second, and third law; auxiliary functions; behavior of solutions; free energy composition and phase diagrams of binary systems; reaction equilibria in systems containing components in condensed solutions; ternary diagrams; thermodynamics of alloys and ceramic materials. Recommended Preparation: Chem 111 and 112, and Math 310. (Spring only)

Met S 309 Transport Phenomena for Design (4 cr). WSU MSE 309. Same as MSE 309. Mass, momentum, and energy balances applied to materials process and reactor design. Recommended Preparation: Math 275, Math 310, Phys 212, Engr 210, and Chem 112. (Spring only)

Met S 313 Physical Metallurgy (4 cr). Same as MSE 313. Theory, structure, and properties of materials. Recommended Preparation: Met/MSE 201 or MSE 261. (Fall, Alt/yr)

Met S 341 Particulate Materials Processing (4 cr). WSU MSE 341. Same as MSE 341. Engineering science of particulates; powder production, powder properties, separation; design of systems applied to metals, ores, and concentrates. Three lec and one 3-hr lab a wk; two 1-day field trips. Recommended Preparation: CS 211, Phys 212, and Engr 240. Prereq: Chem 112. Coreq: Math 310. (Fall only)

Met S 344 Hydroprocessing of Materials (4 cr). Same as MSE 344. Intro to hydrotreatment; dissolution of metals, minerals, and materials; recovery of metals from solutions; solvent extraction, ion exchange, precipitation; electrowetting; bipolar process; design of agitators, mixer-settlers, electrolytic cells; flowsheet design and analysis. Three lec and one 3-hr lab a wk. Prereq: Met 306 and 309. (Spring only)

Met S 400 (s) Seminar (cr arr). Review of current literature. One 3-day field trip. Prereq: perm.

Met S 404 (s) Special Topics (cr arr). Prereq: perm.
PART SIX

Courses

Microbiology, Molecular Biology and Biochemistry

Patricia Hartzell, Head, Dept. of Microbiology, Molecular Biology and Biochemistry (142 Life Sc. Bldg, 83844-3552, phone 208/885-7966; mmbbb@uidaho.edu; http://www.ag.uidaho.edu/mmbbb)

MMBB 154 Introductory Microbiology (3 cr). May be used with MMBB 155 as core credit in J-3-b, J-3-d, J-3-e, J-3-f, J-3-i, or J-3-j when taken with MBBB 155. May be taken by microbiology majors, but carries no credit after MMBB 250. Introduction to microorganisms and their role in disease, health, foods, and the environment; current topics in microbiology.

MMBB 155 Introductory Microbiology Laboratory (1 cr). May be used with MMBB 154 as core credit in J-3-b or J-3-d when taken with MMBB 154. Introduction to the laboratory techniques currently being used. Includes sterile technique, bacterial enumeration methods, culturing techniques, yogurt preparation and analysis, recombinant DNA techniques. Three hrs of lab a wk. Coreq: MMBB 154.

MMBB 250 General Microbiology (3 cr). May be used with MMBB 255 as core credit in J-3-b. Includes sterile technique, bacterial enumeration methods, culturing techniques, yogurt preparation and analysis, recombinant DNA techniques. Three hrs of lab a wk. Coreq: MMBB 250.

MMBB 255 General Microbiology Lab (2 cr). May be used with MMBB 250 as core credit in J-3-b. Training in the handling of microscopes, basic lab equipment, and manipulation of microorganisms. Two 2-hr labs per wk. Coreq: MMBB 250.

MMBB 300 Survey of Biochemistry (3 cr). Carries no credit after MMBB 380. Survey of structure, function, and metabolism of major constituents of living systems. Prereq: Chem 101 or 111. Coreq: Chem 275 or 277.

MMBB 380 Introductory Biochemistry (4 cr). Carries one credit after MMBB 300. Introduction to the structure, function, and metabolism of major constituents of living systems. Three hrs lec and one hr with interactive problem solving. Prereq: Chem 101 or 111, and Chem 252 or 277. Recommended preparation: Chem 252 or 277.

MMBB 382 Introductory Biochemistry Laboratory (2 cr). Lab training in modern methods. One 3-hr lab and one 1-hr recitation a wk. Prereq: Chem 101 or 111, and 278. Prereq or coreq: MMBB 380 or equiv.

MMBB 398 (s) Internship (1-3 cr, max 3). Supervised internship in professional, non-University of Idaho settings, integrating academic study with work experience in the fields of microbiology, molecular biology or biochemistry; requires formal written plan of activities to be approved by academic advisor and departmental head before engaging in the work; a final report will be evaluated by on-campus faculty. Prereq: perm.

MMBB 400 (s) Seminar (1 or more). May be used as a science elective after 1 required credit, up to a maximum of 4 credits. Graded P/F. Prereq: perm.

MMBB 401 Undergraduate Research (1-4 cr, max 8). Individual study. Prereq: permission of supervisor.

MMBB 404 (s) Special Topics (cr or arr). Prereq: perm.

MMBB J409/J509 Immunology (3 cr). Carries no credit after MMBB WS426. Theory and mechanisms of the cellular basis of immune responses; antibody structure, function, and synthesis; cell-mediated immunity; complement; hypersensitivity; immunologic diseases; transplantation; tumor immunity. Extra oral or/and written assignments reqd for grad cr. Coreq: MMBB 300 or 380. (Spring only, All yrs)

MMBB J412/J513 Pathogenic Microbiology (3 cr). Epidemiology, host-parasite relationships, pathology, host response; treatment, prevention, and control of pathogenic microorganisms. Extra oral or/and written assignments reqd for grad cr. Prereq: MMBB 250. (All yrs)

MMBB 416 Food Microbiology (2 cr). See FST 416.

MMBB 417 Food Microbiology Laboratory (2 cr). See FST 417.

MMBB WS420 Epidemiology (3 cr). WSU MBioS 446. Study of diseases in human populations; concepts of etiology, disease rates, susceptibility, and risk factors, screening for disease, and prevention. Prereq: J-5 or standing.

MMBB 421 Clinical Internship (12 cr). Year long rotation in a hospital clinical laboratory. Basic science information and practical knowledge of clinical diagnostic tests in the areas of hematology, chemistry, and microbiology. Prereq: Microbiology major. Coreq: admission into a hospital or equivalent internship program.

MMBB J425/J525 Microbial Ecology (3 cr). Same as Soil J425/J525. Biochemical activities and relationships of microorganisms in soil, water, plants, and animals. Extra oral and/or written assignments reqd for grad cr. Recommended Preparation: MMBB 250, Math 137 or 143.

MMBB J432/J532 Virology (3 cr). A survey of virology, with special emphasis on the molecular basis of replication, host-pathogen interactions and diseases associated with animal viruses. Extra oral and/or written assignments reqd for grad cr. Prereq: MMBB 380, Biol 210 or Gene 314 or permission. Recommended preparation: MMBB 250.

MMBB 440 Advanced Laboratory Techniques (4 cr). Intensive hypothesis-driven laboratory course that will prepare the student for research in molecular biology; emphasis on areas of microbial physiology, microbial genetics, immunology, and pathogenic microbiology. Prereq: MMBB 250.

MMBB J442/J542 Advanced Biochemistry II (3 cr). MMBB 542 same as Chem 542. Intermediate biochemistry: metabolism, molecular physiology, and molecular biology. Extra oral and/or written assignments required for grad credit. Prereq: Chem 372; MMBB 380 or Chem 302 or 306; or perm. (Spring only)

MMBB ID-J450/J550 Molecular Mechanisms in Microbiology (2 cr). WSU MBioS 447. In-depth discussion of molecular mechanisms and different experimental approaches in microbiology. Extra oral and/or written assignments reqd for grad cr. Prereq: MMBB 380, J442/J542. (Fall/Spring)

MMBB J460/J555 Microbial Physiology (3 cr). Concepts of microbial growth, metabolism, regulation, variation, structural-functional relationships. Extra oral and/or written assignments reqd for grad cr. Prereq: MMBB 250. (Alt/Spring)

MMBB J465/J565 Microbial Transformations (3 cr). Use of microbes in the biodegradation of wastes and bioprocessing to produce valuable chemical stocks. Extra oral and/or written assignments reqd for grad cr. Prereq: MMBB 380, J460/J555.

MMBB J471/J571 Advanced Pathogenesis: Host Pathogen Interactions (3 cr). How pathogens modify, disrupt or utilize cellular functions for their own purposes and the significance of these interactions in terms of both pathogenesis and host-cell biology. Pathogens that will be examined include viruses, bacteria, parasites, fungi and protozoa. Students will learn how to critically evaluate the scientific literature, develop hypotheses and design experiments to test these hypotheses. Students will gain a working knowledge of techniques currently being used to study host-pathogen interactions. Additional oral and/or written assignments will be required for graduate-level credit. Recommended preparation: MMBB 412 and 432. Prereq: MMBB 380 or 442/542 or perm. (Fall only)

MMBB J475/J575 Molecular Biology of Cells (3 cr). Introduction to the organization and function of the major components of the eukaryotic cell; emphasis on the composition of cells, the structures and assembly processes of molecules that make up cells, diversity of cell types found in multicellular organisms, and how common interacting processes are coordinately controlled. Extra oral and/or written assignments reqd for grad cr. Prereq: Biol 115 and either MMBB 300 or 380.

MMBB J476/J576 Biophysical Chemistry (3 cr). Basic principles and applications of physical chemistry as applied to biological processes. An emphasis will be placed on using thermodynamics to describe protein folding and stability and quantum mechanics to describe the principle spectroscopic methods used to study biological macromolecules. Additional oral and/or written assignments reqd for grad cr. Prereq for 476/576: Chem 372, Phys 312, and MMBB 380, and MMBB 382. Coreq for 476: Math 160 or 170. Prereq for 576: MMBB 541.

MMBB J486/J586 Plant Biochemistry (3 cr). Biochemistry of higher plants with an emphasis on physiology and molecular biology. Extra oral and/or written assignments reqd for grad cr. Prereq: MMBB 380. (Allyn's)

MMBB 490 Senior Thesis and Research (2 cr, max 4). Problem solving using a combination of laboratory and/or library skills. Prereq: Sr standing. Recommended preparation: Undergraduate degree in Microbiology, Biochemistry or related topic. Prereq: Enrollment in a doctoral program.

MMBB 498 (s) Internship (1-3 cr, max 3). See MMBB 398 for description. Prereq: perm.

MMBB 499 (s) Directed Study (cr arr). Prereq: perm.

MMBB 501 (s) Seminar (1 cr, max arr). A maximum of 2 cr may be counted toward an M.S. degree and a maximum of 4 cr toward a Ph.D. Graded P/F. Prereq: perm.

MMBB 502 (s) Directed Study (cr arr). Areas normally offered are: molecular biology, microbiology and biochemistry. Prereq: perm.

MMBB 504 (s) Special Topics (cr arr). Prereq: perm.

MMBB 507 Master's Degree Rotation (1 cr). Incoming MS students receive a grade for laboratory rotations. The grade is based on performance in the laboratory and on a public seminar at the end of the rotation semester. Recommended Preparation: Undergraduate degree in Microbiology, Biochemistry or related topic. See MMBB J409/J509.

MMBB 509 Immunology (3 cr). See MMBB J409/J509.

MMBB 511 Research and Curriculum Progress (1 cr, max arr). Required of all graduate students one semester per year. The grade is based on preparation of an oral and written presentation of research goals and coursework for the completion of the degree. A letter grade is assigned by committee members at the time of the student's graduate committee meeting. Recommended preparation: Undergraduate degree in Microbiology, Biochemistry or related topic.

MMBB 513 Pathogenic Microbiology (3 cr). See MMBB J412/J513.

MMBB 520 Instrumental Analysis (2 cr). Theory and techniques involved in the use of various instruments in modern biological laboratories; topics include chromatography, spectrometry, sterilization, sample preparation, radioisotope techniques, electrophoresis, centrifugation, and fermentation. Prereq: perm.

MMBB 522 Cellular and Molecular Basis of Disease (3 cr). See MMBB J422/J522.

MMBB 525 Microbial Ecology (3 cr). See MMBB J425/J525.

MMBB 532 Virology (3 cr). See MMBB J432/J532.

MMBB 537 Soil Biochemistry (3 cr). See Soil 537.

MMBB 541 Biochemistry (3 cr). Same as Chem 541. Max 7 cr in any combination of MMBB 380, 480, 541, and 542. Intermediate biochemistry. Intro to metabolism and the chemical and physical properties of biomolecules. Prereq: Chem 372, MMBB 380 or coreq: Chem 302 or 306; or perm.

MMBB 542 Advanced Biochemistry II (3 cr). See MMBB J442/J542.

MMBB 550 Molecular Mechanisms in Microbiology (2 cr). See MMBB J450/J550.

MMBB 555 Microbial Physiology (3 cr). See MMBB J450/J555.

MMBB 560 Advanced Microbial Physiology (3 cr). Use of current literature to study recent advances in research on the physiology of microorganisms. Prereq: MMBB J460/J565 or perm.

MMBB 571 Advanced Pathogenesis: Host Pathogen Interactions (3 cr). See MMBB J471/J571.

MMBB 575 Molecular Biology of Cells (3 cr). See MMBB J475/J575.

MMBB 576 Biophysical Chemistry (3 cr). See MMBB J476/J576.

MMBB 582 Proteins and Enzymes (3 cr). See MMBB J482/J582.

MMBB 585 Prokaryotic Molecular Genetics (3 cr). See MMBB J485/J585.

MMBB 587 Eukaryotic Molecular Genetics (3 cr). See MMBB J487/J587.

MMBB 588 Genetic Engineering (3 cr). See MMBB J488/J588.

MMBB 589 Advanced Topics in Molecular Biology, Microbiology and Biochemistry (1-8 cr, max 9). Recent research in enzymes, hormones, complex lipids, vitamins, nucleic acids, antibiotics, viruses, and MMBB genetics. Prereq: perm.

MMBB 590 Teaching Practicum (2 cr). Teaching by master's students under faculty supervision. Prereq: perm.

MMBB 591 Teaching Practicum (2 cr). Teaching by Ph.D. students under faculty supervision. Prereq: perm.

MMBB 598 (s) Internship (1-3 cr, max 3). See MMBB 398 for description. Graded P/F. Prereq: perm.

MMBB 599 (s) Non-thesis Master's Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

Military Science

MS 101 Introduction to Military Science (1 cr). May be used as core credit in J-3-d. Introduction to mission and organization of the U.S. Army; provides background in role of an Army officer as a career choice in either the Active Army or the National Guard/Reserves;lec, conference, and activities dealing with military subjects; option of participating in challenging outdoor activities such as whitewater rafting, mountaineering, rifle marksmanship, and rappelling; texts and lab fees provided by dept; no mandatory uniform wear; students also learn about available two- and three-year scholarships and other financial programs for which they may be eligible. Coreq: MS 111. Participation entails no military obligation.

MS 102 Fundamentals of Leadership and Management (1 cr). May be used as core credit in J-3-d. Continuation of MS 101. Development of greater understanding of roles and responsibilities of Army officers;lec, conference, and activities dealing with military subjects; participation in challenging outdoor activities such as orienteering, mountaineering, and weapons qualification; occasional uniform wear; reqd; texts, uniforms, and lab fees provided by dept; more focus on leadership development and the development of personal confidence. Coreq: MS 112. Participation entails no military obligation.

MS 111-112 Leadership Lab (1 cr). Building fundamental characteristics of leadership using a military model; hands-on training in small group leadership. Two hrs of lab every wk. Coreq: MS 101-102.

MS 201 Applied Leadership and Management (2 cr). Application of leadership and management skills to various case studies; organization and structure of Army units; basic first aid; practical field training in variety of outdoor skills (mountaineering, rafting, rifle marksmanship); uniform wear; reqd; texts, uniforms, and lab fees provided by dept. Prereq: MS 102 or perm. Coreq: MS 211. Participation entails no military obligation.

MS 202 Applied Leadership and Management (2 cr). Troop leading procedures and application of procedures to planning and conducting small unit operations; individual soldier skills, such as military communication, basic map reading, and survival skills; practical field training in variety of outdoor skills (mountaineering, rafting, rifle marksmanship); uniform wear; reqd; texts, uniforms, and lab fees provided by dept. Prereq: MS 201 or perm. Coreq: MS 212. Participation entails no military obligation.

MS 211-212 Leadership Lab (1 cr). Building fundamental characteristics of leadership using a military model; hands-on training in small group leadership. Two hrs of lab every wk. Coreq: MS 201-202.

MS 280 Raider Operations (1 cr, max 4). The Chrisman Raider Team is an elite group of individuals who compete on intercollegiate level in military skills of marksmanship, physical fitness, navigation, weapons, rope bridging, and long distance marching; rigorous physical training and practicing technical skills in preparation for two-day competition among schools throughout western U.S. Coreq: MS 101 or 202 or 203 or 301 or 302 or 401 or 402.

MS 289 Leadership Training Course (cr arr, max 6). Intensive five-week summer encampment at Fort Knox, Kentucky; hands-on training in fundamentals of leadership in a military environment, land navigation, weapons training, drill and ceremony, and basic skills in doctrinal tactics employed by light infantry leaders. Prereq: 50 cr hrs, 2.0 GPA, and perm of dept head.

MS 290 Color Guard/Drill Team (1 cr, max 4). Participation and training in color guard and drill team. Coreq: MS 101 or 102 or 201 or 202 or 301 or 302 or 401 or 402.

MS 299 (s) Directed Study (cr arr). Prereq: perm.

MS 301-302 Advanced Leadership and Management (3 cr). Practical leadership skills in a light infantry environment; leadership techniques practiced while learning patrolling and offensive and defensive tactics at squad and platoon level; prepares cadets for five-week Advanced Camp at Fort Lewis, Washington. Three hrs of lecs; 2 hrs of lab, and 3 hrs of physical training a wk, plus field training exercises. Prereq: either ROTC Basic Course, Commission Challenge, or Basic Training from any U.S. military branch of service. Coreq: MS 311, 312.

MS 311-312 Leadership Lab (1 cr). Building fundamental characteristics of leadership using a military model; hands-on training in small group leadership. Two hrs of lab every wk. Coreq: MS 301-302.

MS 401-402 Seminar in Leadership and Management (3 cr). Practical application of leadership and management skills, military justice system, administrative and logistical procedures; preparation for service as an Army lieutenant. Prereq: MS 301-302. Coreq: MS 411-412, 471-472.
Music

James L. Murphy, Director, Lionel Hampton School of Music (205 Music Bldg. 83844-4015; phone 208/885-6321; e-mail music@uidaho.edu).

Vertically-related courses in this subject field are: MusA 145-146-245-246.

APPLIED PERFORMANCE STUDIES

MusA 114 (s) Individual Instruction (1 cr, max. arr). For secondary or minor instrument, nonmajors, and undeclared majors; may not be taken for audit. One-half hour of private instruction per week. Two recitals offered in piano, organ, harpsichord, voice, flute, oboe, clarinet, saxophone, bassoon, trumpet, horn, euphonium, trombone, tuba, percussion, violin, viola, cello, contrabass, harp, or guitar. Final exam conducted by jury in some sections. Prereq: audition by committee.

MusA 115 (s) Individual Instruction (2 cr, max 4). For music majors who need to correct deficiencies in major instrument area; may not be taken for audit. One hour of private instruction a wk plus conversation/area recital/studio class; final exam conducted by jury. See MusA 114 for instructional areas. Prereq: placement audition by committee. MusA J116/J316/J516 Concert Choir–Vandaleers (1 cr, max. arr). Open to all students. Four rehearsals a wk; field trips. Prereq: perm. (Spring only)

MusA J117/J317/J517 (s) University Choir (1 cr, max. arr). May be used as core credit in J-3 or. Open to all students. Two 1/2 hr night rehearsals a wk. Prereq: perm. MusA J118/J318/J518 (s) Jazz Choir (1 cr, max. arr). Open to all students. Three rehearsals a wk. Prereq: perm. MusA J119/J319/J519 (s) Marching Band (1-3 cr, max arr). Performance at home football games and other events and travel to selected away football games; field trips. Prereq: perm. (Fall only)

MusA J212/J322/J522 (s) Concert Band (1 cr, max. arr). Open to all students. Three rehearsals a wk. Prereq: perm. (Spring only)

MusA J213/J323/J523 (s) Orchestra (1 cr, max. arr). Open to all students. Two rehearsals a wk. Prereq: audition and perm. MusA 124 (s) Individual Instruction (2 cr, max. arr). For music majors in music degree programs other than performance; may not be taken for audit. One hour of private instruction a wk plus conversation/area recital/studio class; final exam conducted by jury. See MusA 114 for instructional areas. Prereq: placement audition by committee. MusA J125/J325/J525 Symphonic Band (1 cr, max. arr). Open to all students. Three rehearsals per week. Prereq: Audition and perm. (Spring only)

MusA 134 (s) Individual Instruction (3 cr, max arr). For applied music majors in the B.Mus. performance degree; may not be taken for audit. One hour of private instruction a wk plus conversation/area recital/studio class; final exam conducted by jury. See MusA 114 for instruction areas. Prereq: placement audition by committee. MusA J145-J146/J245-J246 Piano Class (1 cr). May not be taken for audit. Four-quarter beginning piano sequence. Two lec-labs a wk. Prereq for MusA 145: perm. Prereq for MusA 146: “C” or better in MusA 145 or perm. Prereq for MusA 245: “C” or better in MusA 146. Prereq for MusA 246: “C” or better in MusA 245. (MusA 145/245, Fall only – MusA 146/246, Spring only)

MusA 153 Guitar Class for Nonmajors (2 cr). Group instruction in guitar and basic musicianship. May not be taken for audit. MusA 200 (s) Seminar (cr arr). Prereq: perm. MusA 203 (s) Workshop (cr arr). Prereq: perm. MusA 204 (s) Special Topics (cr arr). Prereq: perm. MusA 210 Jazz Improvisation (2 cr). Overview of basic jazz improvisation with an emphasis on style and basic jazz theory. (Spring only)

MusA 212 Introduction to Jazz Piano I (1 cr). Interpretation of fake books and lead sheets in various styles including swing, blues, ballad, Latin and pop. Emphasis on chord voicings, comping, style, and basic improvisation. Recommended Preparation: Equivalent of 2 years piano instruction. MusA 213 Introduction to Jazz Piano II (1 cr). This course is designed to expand upon styles and techniques learned in Intro to Jazz Piano I. Prereq: MusA 212.

MusA 299 (s) Directed Study (cr arr). Prereq: perm.

MusA 314 (s) Individual Instruction (1 cr, max. arr). See MusA 114 for description. Prereq: perm.

MusA J315/J515 Accompanying (1 cr, max arr). Principles of accompanying with use of keyboard instruments; lab assignments under supervision. Two lec-labs a wk. Prereq: audition and completion of semester of MusA 124 or 134.

MusA 316 Concert Choir–Vandaleers (1 cr, max arr). See MusA J116/J316/J516.

MusA 317 (s) University Choir (1 cr, max arr). See MusA J117/J317/J517.

MusA 318 (s) Jazz Choir (1 cr, max arr). See MusA J118/J318/J518.

MusA 319 (s) Marching Band (1-3 cr, max arr). See MusA J119/J319/J519.

MusA 322 (s) Orchestra (1 cr, max. arr). See MusA J222/J322/J522.

MusA J323/J523 (s) Jazz Ensemble (1 cr, max arr). Open to all students. Three rehearsals a wk. Prereq: audition and perm. MusA 324 (s) Individual Instruction (2 cr, max arr). See MusA 124 for description; see “Upper-Division Standing” in part 5 for prerequisites.

MusA 325 Symphonic Band (1 cr). See MusA J125/J325/J525.

MusA 334 (s) Individual Instruction (3 cr, max arr). See MusA 134 for description; see “Upper-Division Standing” in part 5 for prerequisites.

MusA J365/J565 (s) Chamber Ensemble (1 cr, max arr). Open to all students. Performance opportunities in chamber ensembles: string, brass, woodwind, percussion, keyboard, vocal, and mixed. Prereq: audition and perm.

MusA 387 Conducting II (2 cr). Conducting techniques, score reading, and interpretation of scores for large choral and instrumental ensembles. Prereq: MusA 141. (Fall only)

MusA 400 (s) Seminar (cr arr). Prereq: perm.

MusA 403 (s) Workshop (cr arr). Prereq: perm.

MusA 404 (s) Special Topics (cr arr). Prereq: perm.

MusA 445/J545 Keyboard Performance Practices (1 cr). Study of interpretation of keyboard music from Baroque through 20th century; learn to interpret scores, teach, and perform keyboard music stylistically; acquire knowledge of major performing artists and recordings from each period of music. Registration for graduate credit requires additional research into original treatises from each period of music, resulting in the editing of a piece of music from each of these periods. (Fall, First odd yrs)

MusA 487 Conducting II (2 cr). Prereq: MusA 387 or perm. (Spring only)

MusA 490 Half Recital (0 cr). For students required to have one-half recital. Graded P/F. Prereq: audition and must be enrolled in at least the second semester of MusA 324 or MusA 334 Individual Instruction and perm. Coreq: MusA 324 or 334.

MusA 491 Recital (0 cr). For students required to have a full recital. Graded P/F. Prereq: audition and must be enrolled in at least the third semester of MusA 324 or MusA 334 Individual Instruction and perm. Coreq: MusA 334.

MusA 492 Elective Half Recital (0 cr). For students who have passed MusA 490 or 491 and wish to do an elective half recital. Graded P/F. Prereq: audition and perm. Coreq: MusA 324 or 334.

MusA 493 Elective Recital (0 cr). For students who have passed MusA 490 or 491 and wish to do an elective full recital. Graded P/F. Prereq: audition and perm. Coreq: MusA 324 or 334.

MusA 499 (s) Directed Study (cr arr). Prereq: perm.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MusC 139</td>
<td>History of Rock and Roll</td>
<td>Musical culture, styles, and genres from J-3-d. Introduction to the art and nature of music: emphasis on aural skills, historical styles, musical forms, and the literature of music.</td>
</tr>
<tr>
<td>MusC 141</td>
<td>Theory of Music I (2 cr.)</td>
<td>Melodic and harmonic materials, part-writing skills, and analysis. Prereq: perm. (Fall only)</td>
</tr>
<tr>
<td>MusC 200</td>
<td>Seminar (cr arr)</td>
<td></td>
</tr>
</tbody>
</table>
Music

Mush 323 Music in Western Civilization III (3 cr). European and American musical cultures, styles, and genres, including jazz, from World War I to the present. Prereq: "C" or better in Mush 101 or 111. (Fall only)

Mush 330 History of Music Theatre (3 cr). A study of the development of American musical theatre. Students will analyze the forms and styles of representative works. May not be counted as a required music history elective for music majors. Prereq: Mush 101 or Mush 111, with a grade of C or better, or perm. (All yrs)

Mush 360 Music of the Americas (3 cr). May be used as core credit in J-3-d. A survey of musical styles from South, Central and North America. Includes Tango, Samba, Son, Klezmer, Cajun and others. May not be counted as a required music history elective for music majors.

Mush 400 (s) Seminar (cr arr). Prereq: perm.

Mush 403 (s) Workshop (cr arr). Prereq: perm.

Mush 404 (s) Special Topics (cr arr). Prereq: perm.

Mush 410/J510 (s) Studies in Jazz History (3 cr). May be used as core credit in J-3-d. Selected topics in jazz. Additional projects/assignments reqd for grad cr. Prereq: Mush 321-323 or perm. (Fall, All/odd yrs)

Mush 411 Music of Greece: Rembetika, Folk, and Art Music (3 cr). A chronological, geographical, and stylistic survey of Greek folk and art music, contemporary art, and popular music aimed for general education students. Content includes relationships between dance, history and Greek and Balkan culture. The course examines the development of Greek urban blues and offers the opportunity for active participation in Greek songs and dances. May be taken as an elective for credit by music majors. (Spring only)

Mush 417/J517 (s) Studies in Baroque Music (3 cr). Selected topics in Baroque music. Additional projects/assignments reqd for grad cr. Prereq: Mush 321-323 or perm. (Fall, All/odd yrs)

Mush 418/J518 (s) Studies in Classic/Romantic Music (3 cr). Selected topics in Classic/Romantic music. Additional projects/assignments reqd for grad cr. Prereq: Mush 321-323 or perm. (Fall, All/odd yrs)

Mush 419/J519 (s) Studies in 20th-Century Music (3 cr). May be used as core credit in J-3-d. Selected topics in 20th-century music. Additional projects/assignments reqd for grad cr. Prereq: Mush 321-323 or perm. (Spring, All/odd yrs)

Mush 440/J540 (s) Studies in American Music (3 cr). May be used as core credit in J-3-d. Selected topics in American music. Additional projects/assignments reqd for grad cr. Prereq: Mush 321-323 or perm. (Fall, All/odd yrs)

Mush 450/J550 Orchestral Literature (2 cr). Open to all students. Survey of standard orchestral literature. Additional assignments required for graduate credit. Prereq: Mush 322, 323, and Junior standing or perm. (Spring, Odd yrs)

Mush 451/J551 (s) Repertoire (2 cr, max. art). May be repeated for cr as content changes. Historical and analytical survey of literature available in all performing media. Additional projects/assignments reqd for grad cr. Prereq: Jr standing and perm.

Mush 452/J552 Solo Vocal Repertoire (2 cr). Historical and analytical survey of solo vocal literature. Additional projects/assignments reqd for grad cr. Prereq: Jr standing and perm. (Fall, All/odd yrs)

Mush 453/J553 Opera Repertoire (2 cr). Open to all students. Selected masterworks of opera literature. Additional projects/assignments reqd for grad cr. Prereq: Jr standing and perm. (Spring, All/odd yrs)

Mush 454/J554 Keyboard Repertoire I (2 cr). Content will cover the development of keyboard literature from J.S. Bach through Beethoven. Additional projects/assignments reqd for grad cr. Prereq: Jr standing and perm. (Fall, All/odd yrs)

Mush 455/J555 Keyboard Repertoire II (2 cr). Content will cover the development of keyboard literature from Schubert to present. Additional projects/assignments reqd for grad cr. Prereq: Jr standing and perm. (Spring, All/odd yrs)

Mush 459/J559 (s) Studies in Opera Literature (3 cr). Open to all students. Selected masterworks of opera literature. Additional projects/assignments reqd for grad cr. Prereq: perm. (Alt/ys)

Mush 480 Senior Thesis in Music History I (1 cr). Extended research paper, with documentation; subject to be determined in consultation with supervising faculty. Prereq: Mush 321, 322, 323, one 400 music history elective and perm. (Summer)

Mush 481 Senior Thesis in Music History II (1 cr). Continuation and completion of extended research paper, with documentation; subject to be determined in consultation with supervising faculty. Prereq: Mush 480.

Mush 499 (s) Directed Study (cr arr). Prereq: perm.

Mush 502 (s) Directed Study (cr arr). Prereq: perm.

Mush 503 (s) Workshop (cr arr). Prereq: perm.

Mush 504 (s) Special Topics (cr arr). Prereq: perm.

Mush 510 (s) Studies in Jazz History (3 cr). See Mush 410/J510.

Mush 519 (s) Studies in 20th-Century Music (3 cr). See Mush J419/J519.

Mush 551 (s) Repertoire (2 cr, max arr). See Mush J451/J551.

Mush 552 Solo Vocal Repertoire (2 cr). See Mush J452/J552.

Mush 559 (s) Studies in Opera Literature (3 cr). See Mush J459/J559.

Music Teaching

MusT 200 (s) Seminar (cr arr). Prereq: perm.

MusT 203 (s) Workshop (cr arr). Prereq: perm.

MusT 204 (s) Special Topics (cr arr). Prereq: perm.

MusT 251 String Instrument Techniques (1 cr). Group instruction. Problems of playing and teaching stringed instruments in elementary and secondary schools. Prereq: perm. (Fall only)

MusT 253 Brass Instrument Techniques (1 cr). Group instruction. Problems of playing and teaching brass instruments in elementary and secondary schools. Prereq: perm. (Spring only)

MusT 254 Percussion Techniques (1 cr). Group instruction. Problems of playing and teaching percussion instruments in elementary and secondary schools. Prereq: perm. (Spring only)

MusT 255 Woodwind Techniques (1 cr). Group instruction. Problems of playing and teaching clarinet, flute, and saxophone in elementary and secondary schools. Prereq: perm. (Spring only)

MusT 381 Elementary School Music Methods for Nonmajors (3 cr). Same as Edte 381. Curriculum, organization, and instructional materials for teaching general classroom music. This course is intended for elementary classroom teachers, nonmusic majors. One out-of-class field teaching experience may be scheduled. Prereq: perm.

MusT 382 Elementary School Music Methods for Music Majors (3 cr). Curriculum, organization, instructional materials, and strategies for teaching elementary general music. Must be taken before enrolling in MusT 432. Approximately three field teaching experiences must be scheduled in the elementary schools outside of class time. (Spring only)

MusT 383 Principles of Music Teaching (3 cr). Students in the School of Music take this course in lieu of ED 468. Philosophy, principles, curriculum, and organization of the school music program. Must be taken before enrolling in MusT 432. Prereq: MusC 142, and upper-division standing in studio or perm. (Fall only)

MusT 385 Choral Music in the Secondary School (2 cr). Methods, instructional materials, and techniques for teaching choral music in grades 7-12. Two lec and one lab a wk. Must be taken before enrolling in MusT 432. Prereq: 2 cr in MusA 316 or 317, and MusC 142. Prereq or coreq: Mush 383, Mush 387, or perm. (Fall, All/odd yrs)

MusT 386 Instrumental Music in the Secondary School (2 cr). Methods, instructional materials, and techniques for teaching instrumental music in grades 7-12. Two lec and one lab a wk. Must be taken before enrolling in MusT 432. Prereq: MusC 142. Prereq or coreq: Mush 383, Mush 387, or perm. (Spring only)

MusT 389 Orff, Kodaly, and Dalcroze (2 cr). Philosophies and teaching techniques attributed to Carl Orff, Emile Jacques Dalcroze, and Zoltan Kodaly; Orff emphasizes movement, improvisation, singing, and percussion instruments; Dalcroze emphasizes movement; Kodaly emphasizes solfege singing, folk songs, child development, and personal musicianship. Prereq: MusT/EdTE 381 or Mush 382 or perm. (Fall only)

MusT 400 (s) Seminar (cr arr). Prereq: perm.

MusT 403 (s) Workshop (cr arr). Prereq: perm.

MusT 404 (s) Special Topics (cr arr). Prereq: perm.

MusT 432 (s) Practicum: Music Teaching (7 or 14 cr). Supervised music teaching in public schools. Graded P/F. Prereq: ED 301 or 312, ED 302 or 314, Mush 490, successful completion of all required course work, cumulative GPA of 2.50, and perm of School of Music. Coreq: Mush T445. (Submission application via coordinator of music education to the director of clinical experiences in teacher education by December 1 of school yr before enrolling).

MusT J436/J536 Pedagogy and Materials: Keyboard I (2 cr). Objectives and goals of teaching the beginning piano student in regards to business aspects, literature and techniques. Additional projects/assignments reqd for grad cr. Prereq: Jr standing and perm. (Fall, All/odd yrs)
MusT 438 (s) Practicum (cr arr). Studio and classroom teaching of secondary music majors, minors, or electives. Prereq: perm.

MusT 445 Proseminar in Music Teaching (2 cr). Coreq: MusT 432.

MusT 465 Jazz Band Rehearsal Techniques (1 cr). Methods, materials, and literature for jazz bands in public schools. Coreq: MusT 406 and 467. (Fall only).

MusT 466 Marching Band Techniques (1 cr). Techniques of drilling; materials for field and street maneuvers; preparation of shows. Prereq: MusT 242. Coreq: MusT 465 and 467. (Fall only)

MusT 467 Band Literature and Rehearsal Techniques (1 cr). Music, materials and rehearsal techniques for bands in public schools. Coreq: MusT 465 and 466. (Fall only).

MusT 485 Choral Ensemble Rehearsal Techniques (1 cr, max arr). Various techniques of rehearsing singers in an ensemble. Coreq: MusT 385. (Fall, All levels) 232

MusT 499 (s) Directed Study (cr arr). Prereq: perm.

MusT 500 Master's Research and Thesis (cr arr).

MusT 501 (s) Seminar (cr arr). Prereq: perm.

MusT 502 (s) Directed Study (cr arr). Prereq: perm.

MusT 503 (s) Workshop (cr arr). Prereq: perm.

MusT 504 (s) Special Topics (cr arr). Prereq: perm.

MusT 537 Pedagogy and Materials: Keyboard II (2 cr). See MusT J437/J537.

MusT 538 (s) Practicum (cr arr). Studio and classroom teaching of secondary music majors, minors, or electives. Prereq: perm.

MusT 589 Offr, Kodaly, and Dalceze (3 cr). Overview of teaching philosophies developed by Zoltan Kodaly, Carl Orff, and Emile Jaques-Dalcroze, includes a laboratory component that applies pedagogy to children in elementary music classes.

MusT 597 (s) Practicum (cr arr). Prereq: perm.

MusT 598 (s) Internship (cr arr). Prereq: perm.

MusT 599 (s) Non-thesis Master's Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

GENERAL

MusX 101 Orientation for Music Majors (0 cr). An orientation to requirements, processes, and opportunities associated with the study of music as a discipline for new students in the School of Music; a foundation for success and survival in the study of music. Graded PiF. Two lec a week for first three weeks.

MusX 140 Convocation (0 cr). Required of all music majors for seven semesters and music minors for two semesters (minimum of 10 recitals a semester). Graded PiF.

MusX 200 (s) Seminar (cr arr). Prereq: perm.

MusX 203 (s) Workshop (cr arr). Prereq: perm.

MusX 204 (s) Special Topics (cr arr). Prereq: perm.

MusX 283-284 (s) Diction for Singers (2 cr). Two-semester sequence (English/Italian/Latin and Spanish/German/French) in study of language sounds as represented by International Phonetic Assoc.

MusX 299 (s) Directed Study (cr arr). Prereq: perm.

MusX 400 (s) Seminar (cr arr). Prereq: perm.

MusX 403 (s) Workshop (cr arr). Prereq: perm.

MusX 404 (s) Special Topics (cr arr). Prereq: perm.

MusX 498 (s) Internship (1-3 cr). Open only to majors in the School of Music. Graded PiF. Prereq: perm of School of Music Director.

MusX 499 (s) Directed Study (cr arr). Prereq: perm.

MusX 500 Master's Research and Thesis (cr arr).

MusX 501 (s) Seminar (cr arr). Prereq: perm.

MusX 502 (s) Directed Study (cr arr). Prereq: perm.

MusX 503 (s) Workshop (cr arr). Prereq: perm.

MusX 504 (s) Special Topics (cr arr). Prereq: perm.

MusX 511 Bibliography and Research (3 cr). Orientation to grad study; bibliography and research procedures. Prereq: admission to graduate program or perm.

MusX 599 (s) Non-thesis Master's Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

Natural Resources

Steven B. Daley Laursen, Dean, College of Natural Resources (202C CNR Bldg. 83844-1131; phone 208/885-2397).

MusT 299, 300 (s) Exploring Natural Resources (1 cr). Introduction to interdisciplinary fields and professions in natural resources. (Fall only)

MusT 301 Leadership for Natural Resource Management (1 cr). Principles and practices of leadership; topics include goal setting and reflection, interpersonal communication, group dynamics and cooperation, and basic leadership skills. One 16-hour retreat, six 2-hr class sessions, two oral presentations, and one leadership project that contributes to the College of Natural Resources, the University of Idaho, or the community.

MusT 401 (s) Practicum in Tutoring (1 cr, max 2). Tutorial services performed by advanced students under faculty supervision. Graded PiF. Prereq: perm.

MusT 402 GIS Applications in Natural Resources (1 cr). Application of GIS principles to natural resource problems. Topics include GIS/GPS integration, habitat inventory, site suitability studies, risk assessment, sources of spatial data, map accuracy, etc. ArcView software and extensions will be used in hands on exercises. Four hrs/week for six weeks.

MusT 496 Practicum in Leadership (1-4 cr) Supervised leadership development through on-campus or off-campus organizations, living groups, etc. Graded Pi F. Prereq: perm.

MusT 499 (s) Directed Study (cr arr). For the individual student; conferences, library, field, or lab work. Prereq: Sr standing in the College of Natural Resources, GPA 2.5, and perm.

MusT 501 (s) Seminar (cr arr). Major philosophy, management, and research problems of wildlife; presentation of individual studies on assigned topics. Prereq: perm.

MusT 503 (s) Workshop (cr arr). Selected topics in the conservation and management of natural resources. Prereq: perm.

MusT 504 (s) Special Topics (cr arr). Prereq: perm.

MusT 505 Advanced GIS Applications in Wildlife Sciences (1 cr). Advanced wildlife GIS applications focusing on spatial home range computations and habitat studies; accelerated. Prereq: GIS experience or perm.

MusT 506 Advanced GIS Applications in Fire Ecology and Management (1 cr) Advanced applications of GIS and Remote Sensing to fire ecology and management, including fire regimes, fire effects and fire behavior; includes independent study project, accelerated. GIS experience required. Prereq: GIS experience and perm. (Fall only)

MusT 510 Natural Resource Leadership (2 cr). Develops leadership skills to manage natural resource agencies and organizations. Jointly taught by the University of Idaho and the University of Montana in 2, one-week classes. Graded PiF. (Spring only)

MusT 597 (s) Practicum (cr arr). Prereq: perm.

MusT 598 (s) Internship (cr arr). Prereq: perm.

MusT 599 (s) Non-thesis Master’s Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

MusT 600 Doctoral Research and Dissertation (cr arr). Prereq: admission to the doctoral program in ‘natural resources’ and perm of dept.

Naval Science

NS ID100 Drill/Lab (0 cr). WSU N S 100. Reqd of all Navy-Marine Corps OEP students. Two 1-hr labs a wk.

NS ID101 Introduction to Naval Science (2 cr). WSU N S 101. Intro to the Navy: customs, structure, basic leadership, career paths, and ships and aircraft of the U.S. Fleet. (Fall only).
PART SIX
Courses

Philosophy

NS ID102 Ships Systems I (3 cr). WSU N S 102. Intro to Naval shipboard engineering systems; propulsion systems; nuclear, gas turbine, and conventional; auxiliary systems and shipboard damage control; basic concepts in ship design. (Spring only).

NS ID&W103 Introduction to Naval Science Laboratory (1 cr). WSU NS 103. Practical instruction for introduction to Naval Science. Graded P/F. Prereq: NS 101. (Fall only)

NS 200 (s) Seminar (cr ar). Prereq: perm.

NS ID201 Ships Systems II (3 cr). WSU N S 201. Naval weapons systems; theory and process of detection (radar and sonar), evaluation; weapons; delivery, guidance, and explosives; integration of weapons systems with command, control, and communications systems. (Fall only).

NS 299 (s) Directed Study (cr ar). Prereq: perm.

NS ID301 Navigation (3 cr). WSU NS 301. Theory, principles, and procedures of terrestrial and electronic navigation, and “rules of the nautical road.” (Fall only).

NS ID302 Naval Operations (3 cr). WSU N S 302. Naval operations and tactics, relative motion, and Maneuvering Boards. (Spring only).

NS ID401 Naval Leadership and Management (3 cr). WSU N S 401. Theories of management and management resources, motivational theories, and leadership. (Fall only).

NS ID402 Naval Leadership (2 cr). WSU N S 402. Ethical leadership and naval administration, emphasizing the U.C.M.J., human resource management, material management, and supply systems. Recommended preparation: NS 401. (Spring only).

NS ID412 Amphibious Operations (3 cr). WSU N S 412. Amphibious doctrine from Gallipoli to the Mayaguez. Recommended preparation: NS 311. (Fall only).

Philosophy

Neuroscience

Deborah L. Stenkamp, Program Director (104 Morrill Hall 83844-3017; phone 208/885-6242; neuro@uidaho.edu; www.grad.uidaho.edu/neuro).

Neur 501 (s) Seminar (cr ar). Prereq: perm.

Neur 502 (s) Directed Study (cr ar). Prereq: perm.

Neur 503 (s) Workshop (cr ar). Prereq: perm.

Neur 508 Topics in Neuroscience (1 cr, max arr). See Biol 508.

Neur WS509 Design and Analysis of Biomedical Experiments (4 cr). WSU VPH 505.

Neur ID521 Biological Signal Processing (3 cr). Introduction to computational neuroscience. Neurons and neuron models, basic signaling mechanisms of neurons, networks of neurons, learning models, learning model algorithms, weight-based memory models. The Hodgkin-Huxley model. A principal emphasis in this course is the development of quantitative models and analysis of neural systems. A term project is required.

Neur 526 Cognitive Neuroscience (3 cr). See Psy 526.

Neur WS540 Advanced Topics in Integrative Neuroscience (3 cr). WSU Neuro 540.

Neur WS541 Advanced Topics in Cellular and Molecular Neuroscience (3 cr). WSU Neuro 541.

Neur WS542 Advanced Topics in Disciplinary Neuroscience (3 cr). WSU Neuro 542.

Neur 600 Doctoral Research and Dissertation (cr ar).

Nuclear Engineering

Robert R. Stiger, Program Director (UI at Idaho Falls, P.O. Box 50778, Idaho Falls, ID 83401; phone 208/282-7937; e-mail bobs@uidaho.edu).

Related Fields: For other courses offered in the nuclear field, see Chem 513 and 516, Phsy 465, 565, 585, 586, and 587.

NE 404 (s) Special Topics (cr ar). Prereq: perm.

NE 500 Master’s Research and Thesis (cr ar).

NE 501 (s) Seminar (cr ar). Prereq: perm.

NE 502 (s) Directed Study (cr ar). Prereq: perm.

Philosophy

Douglas Lind, Chair, Dept. of Philosophy (407 Morrill Hall 83844-3016; phone 208/885-7107; http://www.class.uidaho.edu/phil).

Phil 102 Reason and Rhetoric (2 cr). May be used as core credit in J-3-d. Form and style of argumentative discourse; development of critical thinking and rhetorical skills as students prepare and deliver written and oral presentations; construction, evaluation, and presentation of arguments; identification of arguments and fallacies to improve abilities to organize thoughts, express them clearly and simply, and judge the suitability of material for the audience.

Phil 103 Ethics (3 cr). May be used as core credit in J-3-d. Introduction to philosophical reasoning through historical study of Western moral thought.

Phil 201 Critical Thinking (3 cr). May be used as core credit in J-3-d. Acquiring and improving important skills of thinking, reading, and writing critically; emphasis on avoiding fallacies and mastering forms of valid argument in ordinary language.

Phil 202 Introduction to Symbolic Logic (3 cr). May be used as core credit in J-3-d. Development of systematic techniques for assessing validity of arguments; includes categorical logic, propositional logic, and elementary quantification logic.

Phil 204 (s) Special Topics (cr ar). Prereq: perm.

Phil WS220 Aesthetics (3 cr). WSU Phil 220.

Phil WS221 Philosophy in Film (3 cr). WSU Phil 210.

Phil 240 Belief and Reality (3 cr). May be used as core credit in J-3-d. Introduction to epistemology (examination of grounds and limits of knowledge) and metaphysics (inquiry into the nature of reality) through historical and contemporary readings.

Phil 302 Biblical Judaism: Texts and Thought (3 cr). May be used as core credit in J-3-d. Same as RelS 302. Analysis of the Hebrew Bible (Old Testament) and related texts with an emphasis on hermeneutics and thought.

Phil 303 Early Christianity: Texts and Thought (3 cr). May be used as core credit in J-3-d. Same as RelS 303. Analysis of the New Testament and other early Christian texts of the first and second centuries C.E. with an emphasis on hermeneutics and thought.

Phil 305 Philosophy of Religion (3 cr). May be used as core credit in J-3-d. Philosophical investigation of such issues as the existence and attributes of God, problems of free will and evil, afterlife, miracles, and creation.

Phil 306 Hindu Thought (3 cr). May be used as core credit in J-3-d. Same as RelS 306. Analysis of the Vedas, the Upanishads, the Bhagavad-gita, Jainism, and later Hindu thought.

Phil 307 Buddhism (3 cr). May be used as core credit in J-3-d. Same as RelS 307. Philosophy and religion of Gautama Buddha as it developed in India, Tibet, China, and Japan.

Phil 308 Confucianism and Taoism (3 cr). May be used as core credit in J-3-d. Same as RelS 308. Analysis of writings of Lao-tzu, Confucius, Mencius, Chuang-tzu, and medieval Confucianism.

Phil 315 Existentialism (3 cr). Analysis of the writings of such figures as Kierkegaard, Nietzsche, Dostoyevsky, Hesse, Kafka, Buber, Camus, and Sartre.

Phil ID&W320 History of Ancient and Medieval Philosophy (3 cr). May be used as core credit in J-3-d. Same as WSU Phil 290. Philosophical thought from the early Greeks through the Middle Ages; concentration on metaphysics and theory of knowledge.

Phil ID&W321 History of Modern Philosophy (3 cr). May be used as core credit in J-3-d. WSU Phil 305. Critical evaluation of the thought of major figures in early modern philosophy, such as Descartes, Leibniz, Spinoza, Locke, Berkeley, Hume, and Kant; emphasis on metaphysics and epistemology.

Phil WS222 19th Century Philosophy (3 cr). WSU Phil 310.

Phil 330 Contemporary Moral Problems (3 cr). Philosophical case analysis in areas of current concern such as racism and sexism, sexual morality, professional responsibility, abortion, welfare of animals, and right to die.

Phil ID&W351 Philosophy of Science (3 cr). WSU Phil 350. Introduction to the critical analysis of the aims and methods of science, its principles, practices, and achievements. Prereq: 3 cr of philosophy or 3 cr of natural science.

Phil 365 Biomedical Ethics (3 cr). May be used as core credit in J-3-d. Ethical questions in the health professions and medical research, with emphasis on current dilemmas faced by physicians, nurses, medical technologists, and dentists; case analysis in context of modern ethical theory.

Phil WS402 Seminar in Symbolic Logic (3 cr). WSU Phil 401. (Althry)

Phil 404 (s) Special Topics (cr ar). Prereq: perm.

Phil 415 Phenomenology (3 cr). Survey of philosophy of Husserl, Heidegger, Merleau-Ponty, Sartre, and others in the phenomenological tradition.
Phil ID&WS420 Contemporary Continental Philosophy (3 cr). WSU Phil 420.

Phil ID&WS421 Philosophy of the Arts (3 cr). Chief conceptions of the nature of the arts and their interpretation.

Phil ID&WS425 Philosophy and Feminism (3 cr). May be used as core credit in J-3-d. Analysis of schools of feminist theory and impact of feminism on philosophy and other disciplines.

Phil ID&WS436 Philosophy of War and Peace (3 cr). May be used as core credit in J-3-d. Philosophical analysis of violent and nonviolent methods of political conflict resolution; may include just war theory, limited war theory, terrorism, institutionalized procedures for resolving political conflict, and pacifism.

Phil ID&WS442 Philosophy of Mind (3 cr). May be used as core credit in J-3-d. WSU Phil 442. Survey of current philosophical theories of the nature of minds and mental states, including forms of dualism, reductive physicalism, functionalism, and eliminative materialism. Recommended Preparation: Phil 202 and 240.

Phil ID&WS443 Philosophy of Language (3 cr). May be used as core credit in J-3-d. WSU Phil 443. Philosophical thinking about meaning, reference, and truth. Recommended Preparation: Phil 202 and 240.

Phil ID&WS446 Metaphysics (3 cr). (Phil 340) WSU Phil 446. Classical and contemporary readings on such items as realism versus nominalism, free will and determinism, the nature of causality, the existence of God, personal identity, modality. Recommended Preparation: Phil 202 and 240.

Phil ID&WS447 Theory of Knowledge (3 cr). (Phil 440) WSU Phil 447. Analysis of the nature of knowledge; survey of various philosophical positions on the sources and extent of what we know. Recommended Preparation: Phil 202 and 240.

Phil ID&WS450 Ethics and Reasoning in Scientific Research and Practice (3 cr). May be used as core credit in J-3-d. Principles of reasoning in experimental design and research, understanding and evaluating theoretical, statistical, and causal hypotheses; evaluating decisions based on scientific research; the role of values in scientific research; ethical issues involving fraud and deception, human experimentation, animal research, genetic engineering, biotechnology, and other areas. Prereq: Phil 103 or 201 or 202 or 240, or perm.

Phil J452/J455 Environmental Philosophy (3 cr). May be used as core credit in J-3-d. Phil 552 same as Env 552. Philosophical examination of various ethical, metaphysical, and legal issues concerning humans, nature, and the environment; issues covered may include biodiversity and species protection, animal rights, radical ecology, environmental racism, wilderness theory, population control, and property rights. Additional projects/assignments reqd for grad cr.

Phil ID&WS460 Ethical Theory (3 cr). (Phil 433) WSU Phil 460. Critical analysis of classical consequentialist and deontic views as well as one or more recent theories such as emotivism and prescriptivism, feminist ethics, communitarianism, or virtue ethics. Prereq: Phil 103.

Phil WS462 Women and Ethics (3 cr). WSU Phil 462.

Phil ID&WS470 Philosophy of Law (3 cr). May be used as core credit in J-3-d. WSU Phil 470. Analysis of fundamental philosophical issues in law and legal systems, including the nature of law, relation of law to morality, judicial method, and nature and ascension of rights. Recommended Preparation: Phil 103.

Phil ID&WS472 Social and Political Philosophy (3 cr). WSU Phil 472. Examination of basic issues of social justice and political organization, including theory of the state, liberty, equality, justification of rights, justice theory, and distributive justice.

Phil ID&WS480 INPC Seminar (3 cr). WSU Phil 480. Focused study of the topic of the annual Inland Northwest Philosophy Conference with guest instruction by scholars from the conference.

Phil 490 Senior Seminar (3 cr). Required of all philosophy majors; capstone course devoted to mastery of the philosophical essay; topics will vary. Prereq: Sr standing or completion of 24 credits in philosophy.

Phil 496 Teaching Methods in Philosophy (2 cr, max 4). Learn methods of teaching while assisting in an introductory-level philosophy course. Prereq: four upper-division courses in philosophy, the introductory course in which the student will participate, and perm of dept. Graded P/F.

Phil 499 (s) Directed Study (cr or arr). Prereq: perm.

Phil 500 Master's Research and Thesis (cr or arr). Prereq: perm.

Phil 501 (s) Seminar (cr or arr). Graded P/F. Prereq: perm.

Phil 502 (s) Directed Study (cr or arr). Prereq: perm.

Phil 504 (s) Special Topics (cr or arr). Prereq: perm.

Phil ID&WS510 Seminar in the History of Philosophy (3 cr, max 6). WSU Phil 510. Systematic exploration of the central works of an individual philosopher or philosophical movement.

Phil WS520 Seminar in Ethical Theory (3 cr). WSU Phil 520.

Phil ID&WS522 Seminar in Metaphysics (3 cr). WSU Phil 522. The nature of reality, through study of key concepts such as God, personhood, free will, causation, space, time, and identity.

Phil ID&WS524 Seminar in Epistemology (3 cr). WSU Phil 524. Classical problems, questions, and theories involving the concept of knowledge.

Phil WS532 Seminar in Business Ethics (3 cr). WSU Phil 532.

Phil WS535 Advanced Biomedical Ethics (3 cr). Phil 530. WSU Phil 530.

Phil 552 Environmental Philosophy (3 cr). See Phil J452/J552.

Phil 556 Religion and the Environment (3 cr). Explores concepts of the sacred, the human, nature, their inter-relationships from several religious traditions; relates these to ecology, environmental ethics. Specific religious traditions covered may vary. Recommended Preparation: At least one 300-400 level philosophy or religious studies course.

Phil 571 Ecological Jurisprudence (3 cr). Inquiry into the nature of law as a product of culture, emphasizing property, land tenure, and environmental rights and responsibilities. Recommended Preparation: Phil 103, 452, or 470.

Physical Education

ACTIVITY COURSES

Note: PEB 105, 106, 107, and 108 may be repeated for cr if the student engages in a different activity or level of the same activity. Practical tests may be given at the beginning of the semester to determine the student’s level of ability.

PEB 105 (s) Dance (1 cr, max arr). See Dan 105.

PEB 106 (s) Individual and Dual Sports (1 cr, max arr). Bowling, racket sports, fencing, golf, gymnastics, conditioning, backpacking, cycling, cross-country skiing, etc. Two days of field trips may be a part of the course requirements for such activities as backpacking, cycling, etc. Two hrs a wk. Graded P/F.

PEB 107 (s) Team Sports (1 cr, max arr). Field sports, volleyball, basketball, and softball. Two hrs a wk. Graded P/F.

PEB 108 (s) Swimming (1 cr, max arr). All levels of proficiency, including WSI, lifeguarding, diving, and scuba. Two hrs a wk. Graded P/F.

PROFESSIONAL COURSES

PEP 100 Introduction to Sport Sciences (1 cr). Introduction to career opportunities within the field of sport science; topics on professional development, advising issues, and guest lectures from professionals practicing in related fields. (Fall only)

PEP 101 Introduction to Athletic Training (1 cr). Introduction to career opportunities within the field of athletic training; topics on professional duties and activities performed by an athletic trainer, advising issues, and guest lectures. (Fall only)

PEP 107 Movement Fundamentals (1 cr). Skill development and teaching knowledge of the fundamentals and concepts of movement. Two-LEC labs a wk. (Fall, only)

PEP 132 Skill and Analysis of Tennis, Pickleball, and Badminton (1 cr). Skill development and knowledge of teaching progressions, techniques, strategies, and analysis and correction of skills in tennis, pickleball, and badminton. Two LEC labs a wk.

PEP 133 Skill and Analysis of Golf and Archery (1 cr). Skill development and knowledge of teaching progressions, techniques, strategies, and analysis and correction of skills in golf and archery. Two LEC labs a wk.

PEP 134 Skill and Analysis of Track and Field (1 cr). Skill development and knowledge of teaching progressions, techniques, strategies, and analysis and correction of skills in track and field. Two LEC labs a wk.

PEP 135 Skill and Analysis of Basketball and Volleyball (1 cr). Skill development and knowledge of teaching progressions, techniques, strategies, and analysis and correction of skills in basketball and volleyball. Two LEC labs a wk.

PEP 136 Skill and Analysis of Soccer and Speedball (1 cr). Skill development and knowledge of teaching progressions, techniques, strategies, and analysis and correction of skills in soccer and speedball. Two LEC labs a wk.

PEP 137 Skill and Analysis of Softball and Field Sports (1 cr). Skill development and knowledge of teaching progressions, techniques, strategies, and analysis and correction of skills in softball and field sports. Two LEC labs a wk.

PEP 138 Skill and Analysis of Outdoor Activities I (1 cr). Skill development and knowledge of teaching progressions, techniques, strategies, and analysis and correction of skills in orienteering, hiking, camping, biking, andblading. 8 week course. Meets once a week for two LEC lab hours, one or two field trips, and one weekend camping trip. Prereq: PE major or minor or perm.

PEP 139 Skill and Analysis of Outdoor Activities II (1 cr). Skill development and knowledge of teaching progressions, techniques, strategies, and analysis and correction of skills in cross-country skiing, ropes and wall climbing, and fishing. 8 week course. Meets once a week for two LEC lab hours, two field trips required, and one weekend camping trip. Prereq: PE major or minor or perm.

PEP 161 Introduction to Physical Education (1 cr). Introduction to the field of physical education teaching and coaching, professional and portfolio development, and national and state standards. (Fall only)
PEP 171 Athletic Training Clinical Experience I – Observation (1 cr). Introductory clinical experience and insight into the profession of Athletic Training. Students will receive supervised clinical education experience in UI’s Athletic Training Room. Students will complete the application process into the clinical experience portion of the Athletic Training major in this course. 40 hours/clinical observation. Graded P/F. Prereq: perm. (Spring only)

PEP 200 (s) Seminar (cr arr). Prereq: perm.

PEP 201 Fitness Activities and Concepts (2 cr). May be used as core credit in J-3-d. Topics related to individual fitness development; focus on development of personal skills in presenting and teaching fitness activities for public and private sector programs. Two hrs lec, 1 hr of lab a wk.

PEP 202 Skill and Analysis: Stunts and Tumbling (1 cr). Skill analysis, skill development, spotting, and teaching techniques in tumbling. Two lec-labs a wk. (Spring only)

PEP 203 (s) Workshop (cr arr). Prereq: perm.

PEP 204 (s) Special Topics (cr arr). Prereq: perm.

PEP 220 Coaching Youth Sports (1 cr). Practical, hands-on introduction to basics of youth sports coaching; basics of developing appropriate coaching philosophy; how such sports sciences as sport psychology, sport pedagogy, sport physiology, sport medicine, sport law, and sport management help to effectively implement athlete-centered approach to coaching; students participate in six-week practicum and receive feedback on how to improve their coaching. Two lec a wk.

PEP 243 Recreation Activities (2 cr). Experience in planning, organizing, leading, and evaluating a broad range of games, social recreation, music, drama, arts and crafts, and special events activities.

PEP 244 Lifeguarding (2 cr). Trains individuals to lifeguard at swimming pools and non-pool water activities; Standard First Aid and CPR Certification reqd to receive Red Cross Lifeguarding Certification. One field trip. Recommended Preparation: intermediate swimming.

PEP 250 Elementary Physical and Health Education (3 cr). Content, methods, and materials in elementary school physical and health for classroom teachers. Four hrs of lec-lab a wk.

PEP 266 Aquatic Instructor’s Course (2 cr). Methods. Students passing Red Cross standards will receive instructor’s certificate. Recommended Preparation: certificate in lifeguarding or emergency water safety and pass swimming skills pre-test.

PEP 272 Athletic Training Clinical Experience II (1 cr). Students participate in supervised clinical education experience in UI’s Athletic Training Room applying athletic training knowledge and skills learned in previous course work. Prereq: perm.

PEP 273 Athletic Training Clinical Experience III (1 cr). Students participate in supervised clinical education experience in UI’s Athletic Training Room applying athletic training knowledge and skills learned in previous course work. Prereq: PEP 171, 272, and perm.

PEP J275/J475 Moral Reasoning in Sport (2 cr). May be used as core credit in J-3-d. Current ethical issues in sport, such as performance-enhancing drugs, mechanism, cheating, eligibility; challenges students to creatively examine their beliefs. Additional projects/assignments reqd for cr in PEP 475.

PEP 299 (s) Directed Study (cr arr). Prereq: perm.

PEP 300 Applied Human Anatomy and Biomechanics (2-3 cr). This course is designed to provide students with the anatomical and biomechanical knowledge essential to conduct a systematic qualitative analysis of human movement in clinical, educational, performance, and wellness settings. Two hrs of lec, two hrs of lab per wk. Prereq: Biol 120, PEP 201 or perm.

PEP 305 Applied Sports Psychology (3 cr). Overview of key psychological issues in physical education and sport including competition, personality, anxiety, motivation, self-confidence, imagery, and stress management; practical applications of psychological concepts of youth sports and development of key psychological skills for competition.

PEP 310 Cultural and Philosophical Aspects of Sport (2 cr). May be used as core credit in J-3-d. Analysis of philosophical and sociological phenomenon in sport. (Fall only)

PEP WS311 Strength Training (3 cr). WSU Ath T 311.

PEP 322 Skills and Analysis of Individual Activities (2 cr). Skill development and knowledge of teaching progressions, techniques, and analysis of a variety of individual sports and activities. Three hrs of lec-labs a wk.

PEP 350 Elementary Health and Physical Education (3 cr). Specific methods, research, curricula, and media in teaching elementary health and physical education. Coreq: courses in the math/sciences portion of the education block.

PEP 360 Motor Behavior (3 cr). Overview of development, control, and learning throughout the lifespan. Four hrs of lec-lab a wk. Prereq or coreq: Biol 120.

PEP 371 Athletic Training Clinical Experience IV (1 cr). Students participate in supervised clinical education experience in UI’s Athletic Training Room applying athletic training knowledge and skills learned in previous course work. Prereq: PEP 273 and perm.

PEP 372 Athletic Training Clinical Experience V (1 cr). Students participate in supervised clinical education experience in UI’s Athletic Training Room applying athletic training knowledge and skills learned in previous course work. Prereq: PEP 371 and perm.

PEP 380 Measurement and Evaluation (2 cr). Construction, evaluation, and interpretation of tests used in evaluating physical and cognitive performance in physical education and sport science settings; basic statistical analysis. Accelerated class; three hrs of lec-lab a wk. Prereq: PEP 201.

PEP 400 (s) Seminar (cr arr). Prereq: perm.

PEP 403 (s) Workshop (cr arr). Prereq: perm.

PEP 404 (s) Special Topics (cr arr). Prereq: perm.

PEP 405/J505 (s) Professional Development (cr arr). Cr earned may not be applied toward grad degree programs but may be accepted for fifth-yr certification. Professional development in physical education and sport professional personnel. Additional projects/ assignments reqd for grad cr.

PEP WS411 Advanced Strength Training (3 cr). WSU Ath T 411.

PEP 412 Elementary Physical Education Methods (2 cr). Study and application of teaching methods and teaching behavior; structuring learning outcomes through performance objectives and lesson and unit planning. Includes a 16-hr required practicum at the elementary level. Prereq: acceptance into pedagogy sequence. Prereq: or coreq: ED 302.

PEP J414/J514 Proseminar in Physical Education (1 cr). Course content and materials designed to prepare students for entry into the physical education teaching internship, the physical education teaching profession, and for continuing professional development; should be taken the semester before the internship. Additional items including grant writing, writing for publication, and research review on professional and career development will be required for those registered for graduate credit.

PEP J417/J517 Advanced Human Biomechanics (3 cr). This course is designed to provide the student with an in-depth understanding of the fundamental aspects of biomechanical analyses, including kinematic, kinetic, energetic, and neuromuscular considerations. The student will become familiar with quantitative analysis procedures used to evaluate human movement in clinical, educational, performance, and wellness settings. Independent quantitative research project reqd for grad cr. Prereq: Math 143, Phys 111, and PEP 300.

PEP 418 Physiology of Exercise (3 cr). Effects of physical activity on the circulatory, respiratory, and other systems. Two lec and one 2-hr lab a wk. Prereq: Biol 120 and 121, PEP 201 or perm.

PEP 421 Secondary Physical Education Methods (2 cr). Study and application of teaching methods and teaching behavior; structuring learning outcomes through performance objectives and lesson and unit planning. Includes a 16-hr required practicum at the secondary level. Prereq: acceptance into pedagogy sequence. Prereq: or coreq: ED 302.

PEP 422 Physical Education for Special Populations (2 cr). Adapting physical education programs to meet individual needs. Lec and lab. 8-hour school practicum required. Prereq: PEP 360. Prereq or coreq: ED 302. (Spring only)

PEP 431 Practicum: Elementary and Secondary Student Teaching (7 or 14 cr). Cr earned may not be applied to total or needed for a PE teaching major. Supervised student teaching at elementary and secondary levels. Double majors select the 7-cr option; all other students select 14 cr divided between elementary and secondary level. Graded P/F. Prereq: admission to teacher education, PEP 420, ED 302, cumulative GPA of 2.5, and perm of dept. (Submit application to director of clinical experiences in the College of Education by December 1 of school year before enrolling.)

PEP 434 Professional Role and Development (2 cr). May be used as core credit in J-3-d. Professional role and development during the internship, into the physical education teaching profession, and for continuing professional development. Two lec and 1 hr of lab a wk. Coreq: PEP 412 or 421, or perm.

PEP 440 Physical Education and Sport Management (2 cr). Curriculum, programming, organization, and administration of school physical education and intramurals; field experiences. Prereq: or coreq: ED 302.

PEP 455 Design & Analysis of Research in HPERD (3 cr). Same as H&S 455 and Rec 455. This course is designed to survey the basic types of research methods often found in health, physical education, sport science, and recreation. A variety of research designs and computerized statistical analyses are studied to help students understand the systematic nature of problem solving. Various research problems as they relate to health, physical education, recreation, and human performance are discussed for the purpose of identifying the broad and diverse nature of research in the movement, leisure, and health professions. Prereq: Jr or Sr standing. (Spring only)

PEP 460 Competition and Social Values (3 cr). Competition as it is presently perceived in America today; what it should be and could be in the ethical domain.

PEP 471 Athletic Training Clinical Experience VI (2 cr). Students participate in supervised clinical education experience in UI’s Athletic Training Room applying athletic training knowledge and skills learned in previous course work. Prereq: PEP 372 and perm.

PEP 472 Athletic Training Clinical Experience VII (2 cr). Students participate in supervised clinical education experience in UI’s Athletic Training Room applying athletic training knowledge and skills learned in previous course work. Prereq: PEP 471 and perm.

PEP 480 Seminar in Sportmanship: Moral Development (3 cr). Philosophical and psychological study of moral development and resultant effect on moral value education in sport.

PEP 484 (s) Internship in Physical Education Teaching (1-15 cr). Guided observation, supervised instruction, and comprehensive team and independent teaching in school settings. Students will be following the school district full semester calendar. Graded P/F. Prereq: ED 302 and division approval. Coreq: ED 401.

PEP J493/ID-J593 Fitness Assessment and Prescription (3 cr). WSU Kin 588. Development of skills in exercise testing, data interpretation, and prescription for health related fitness. Cr earned in PEP 593 by completion of additional projects/assignments. Two lec and 2 hrs of lab a wk. Prereq: PEP 418 or perm. (Spring only)
Physics

Ruprecht Machleidt, Interim Dept. Chair of Physics (311A Engineering/Physics Bldg. 83844-0903; phone 208/885-6380.

- **PEP 495** (s) Practicum in Tutoring (1 cr. max arr). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm.
- **PEP 498** (s) Internship in Physical Education (cr arr). Supervised field work. Prereq: Jr standing and Rec 445.
- **PEP 499** (s) Directed Study (cr arr). Prereq: perm.
- **PEP 500** Master's Research and Thesis (cr arr). Supervised field work. Prereq: Jr standing and Rec 445.
- **PEP 501** (s) Seminar (cr arr). Prereq: perm.
- **PEP 502** (s) Directed Study (cr arr). Prereq: perm.
- **PEP 503** (s) Workshop (cr arr). Prereq: perm.
- **PEP 504** (s) Special Topics (cr arr). Prereq: perm.
- **PEP 505** Professional Development (cr arr). See PEP J045/J055.
- **PEP 508** Motor Development (3 cr). Study of changes in human movement associated with aging across the lifespan. Two lec and 2 hrs of lab a wk.
- **PEP 514** Proseminar in Physical Education (1 cr). See PEP J414/J514.
- **PEP 517** Advanced Human Biomechanics (3 cr). See PEP J417/J517.
- **PEP 518** Advanced Physiology of Exercise (3 cr). Principles and methods essential to the experimental approach to physiological performance problems. Two lec and one lab a wk.
- **PEP 519** Biomechanics of Sport (3 cr). Quantitative study of human movement examining internal and external forces acting on the body and the resultant limitations to performance, exercise adherence, injury rehabilitation, increasing enjoyment, designing motivated behavior; five major motivational enhancement strategies including goal setting, major achievement motivation theories and primary antecedents and consequences of exercise behavior. Two lec and one practicum-experiencia (3 cr). Also available online.
- **PEP 532** Pedagogy Applied to Health, Physical Education, Recreation, and Dance (3 cr). WSU Kin 552. Provides theoretical and practical skills in the study and analysis of the teaching and learning process in health, physical education, recreation, and dance.
- **PEP 544** Program Development (3 cr). Developing programs associated with physical education and sport science using current conceptual frameworks and models. Field-testing of programs may be required.
- **PEP 560** Sport Psychology (3 cr). Provides an understanding of how psychological factors influence performance and how simple and easy-to-use mental training techniques may be employed to enhance performance and enjoyment; using the Coaches' Guide to Sport Psychology and accompanying workbook, teachers/coaches will address such important psychological topics as peak performance, motivation, communication, leadership, self-confidence, concentration, stress management, imagery, goal setting, arousal control, and mental plans/performance routines; workbook exercises, case studies, and hands-on projects will teach mental training principles and help practitioners develop skills that they can successfully use to enhance performance with their students/athletes. (Fall only)
- **PEP 561** Motivation in Sport and Recreation (3 cr). Practical, hands-on course designed to teach basics of motivation to physical educators, coaches, and recreation professionals; major achievement motivation theories and primary antecedents and consequences of motivated behavior, five major motivational enhancement strategies including goal setting, personal science, competition, feedback, and reinforcement; guidelines for maximizing effectiveness; analysis of applied motivation questions such as dropouts/burnouts, peak performance, exercise adherence, injury rehabilitation, increasing enjoyment, designing reward systems, and positive parental involvement. (Spring only)
- **PEP 570** Ethics in Physical Education and Sport (3 cr). Problem solving approach to current ethical problems in leisure, physical education, and sport. (All/rys)
- **PEP 591** Philosophical Influences in Sport (3 cr). Use of the philosophical process in analyzing problems and issues in leisure and sport. (All/rys)
- **PEP 593** Fitness Assessment and Prescription (3 cr). See PEP J493/J593.
- **PEP 598** (s) Internship (cr arr). Supervised field experience in an appropriate public or private agency. Graded P/F. Prereq: perm.
- **PEP 599** (s) Non-thesis Master's Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.
- **PEP 600** Doctoral Research and Dissertation (cr arr).

Phys 103 General Astronomy (3 cr). May be used as core credit in J-3-b. Descriptive and physical astronomy; development of astronomical thought; properties and evolution of the solar system, stars, galaxies, and the universe. (Fall only)

Phys 104 Astronomy Lab (1 cr). May be used as core credit in J-3-b. Naked eye, telescopic, and photographic observations of constellations, stars, and planets. One 2-hr lab a wk; some evening meetings. Prereq or coreq: Phys 103.

Phys 111 General Physics I (4 cr). (C) May be used as core credit in J-3-b. Kinematics, forces and dynamics, conservation laws, thermodynamics, waves. Three lec, one recitation, and one 2-hr lab a wk. Prereq: Math 143.

Phys 112 General Physics II (4 cr). (C) May be used as core credit in J-3-b. Electricity, magnetism, optics, and modern physics. Three lec, one recitation, and one 2-hr lab a wk. Prereq: Phys 111.

Phys 200 (s) Physics Seminar (1 cr. max 8). Introductory-level discussion of topics in modern physics: introduction to physics research topics and scientific information search techniques; written and oral reports of a pertinent topic in current physics. (Fall only)

Phys 211 Engineering Physics I (4 cr. 5 cr Idaho Falls). May be used as core credit in J-3-b. Kinematics and dynamics, Newton's laws, work and energy, rotational dynamics, and simple harmonic motion. Three lec, one recitation, and one 2-hr lab a wk (5 cr course available only in Idaho Falls: four lec and one 2-hr lab a wk). Prereq or coreq: Math 170.

Phys 212 Engineering Physics II (4 cr. 5 cr Idaho Falls). May be used as core credit in J-3-b. Electric fields and potentials, magnetic fields, capacitance and inductance, DC and AC circuits, electromagnetic waves; 5-cr course also includes temperature, heat and thermodynamics, kinetic theory, geometric and physical optics. Three lec, one recitation, and one 2-hr lab a wk (5 cr course available only in Idaho Falls: four lec and one 2-hr lab a wk). Prereq: Phys 211. Prereq or coreq: Math 175.

Phys 213 Engineering Physics III (4 cr). Fluid dynamics, waves in elastic media, sound waves, temperature, heat and thermodynamics, kinetic theory, geometric and physical optics. Three lec, one recitation, and one 2-hr lab a wk. Prereq: Phys 211. Prereq or coreq: Math 175. (Spring only)

Phys 301 Junior Physics Lab (2 cr). Experimental techniques in modern physics, including optics, atomic, nuclear, and solid state physics; computer uses, error analysis, and scientific literature searches. One 1-hr lec and one 3-hr lab a wk. Prereq: Phys 213 or perm. (Spring only)

**Phys 305 Modern Physics (3 cr). Quantum and relativity theories with applications to atomic, solid state, nuclear, and elementary particle physics. Prereq: Phys 212, 213. Coreq: Math 275. (Spring only)

**Phys 400 (s) Seminar (cr arr). Prereq: perm.

**Phys 403 (s) Workshop (cr arr). Prereq: perm.

**Phys 404 (s) Special Topics (cr arr). Prereq: perm.

**Phys 411 Physical Instrumentation I (3 cr). Methods and instruments used in experimental physics; electronic techniques; design problems in electronic measurement of physical quantities encountered in research. Two lec and one 3-hr lab a wk. Prereq: Phys 212 or 213 and Math 275.

**Phys 412 Physical Instrumentation II (3 cr). Methods and instruments used in experimental physics; electronic techniques; design problems in electronic measurement of physical quantities encountered in research. Two lec and one 3-hr lab a wk. Prereq: Phys 411.

Phys 431 Thermodynamics and Kinetic Theory (3 cr). Laws of thermodynamics, kinetic theory, and their application to topics in physics. Coreq: Phys 305.
Plant Science

Jeffrey C. Stark, Division Chair, Horticultural Science (242 Irridings Wing, Ag. Sc. Bldg 83844-2339; phone 208/529-8376; jeffstark@uidaho.edu).

Dunn C. Thill, Division Chair, Crop and Weed Science (242 Irridings Wing, Ag. Sc. Bldg 83844-2339; phone 208/885-6214; dthill@uidaho.edu).

PlSc 102 The Science of Plants in Agriculture (3 cr). Prerequisites: structure, biology, and management of agronomic and horticultural crops; interaction of crop plants and cropping systems with environment; current issues related to plant science. Two lec and one 2-hr lab a wk.

PlSc 106 Introductory Arboretural Tree Climbing Techniques (1 cr). Same as Rec 106. Introduction to the techniques and skills required for arboricultural and recreational tree climbing. Course fee of $40.00 for equipment.

PlSc 201 Principles of Horticulture (3 cr). An introduction to the production and management of edible and ornamental horticultural crops and the maintenance of plants and turf in urban landscapes. Two lec and two hours of lab a wk; two field trips. Recommended Preparation: PrSc 102.

PlSc 205 General Botany (4 cr). PrSc 203) Growth, development and ecology of plants, fungi, and prokaryotes in relation to their environments. Recommended Preparation: Chem 101 and PrSc 102. Prereq: Biol 115. (Spring only)

PlSc 210 Plant Diseases (1-3 cr, max 3). May not be used for major credit by majors in plant science. Introduction to plant diseases and plant pathology for general audiences on and off campus; emphasis on the cause, development, diagnosis, and control of common diseases of field crop, garden, and woodland plants.

PlSc 212 Master Gardener (1-3 cr, max 3). Basic horticultural skills required for home gardeners and landscapers, including soil, water, and fertility management, composting, pest and disease identification and management, vegetable and fruit culture, ornamentals, plant propagation, and lawn care. Graded P/F. Field trips.

PlSc 300 Plant Propagation (3 cr). PrSc 202) Sexual and asexual propagation techniques of herbaceous and woody ornamental plants; propagation methods covered including seed, cuttings, layering, grafting, and cloning. Two lec and one 3-hr lab a wk. Recommended Preparation: PrSc 102, 201, or Biol 115. (Albyards)

PlSc WS301 Turfgrass Culture (3 cr). WSU CropS 301.

PlSc 302 Golf and Sports Turf Management (3 cr). Turfgrass science, cultivation and management for a wide variety of commercial applications. Recommended Preparation: Jr standing; majoring in Horticultural Sciences or Crop Sciences, or Professional Golf Management.

PlSc WS310 Pomology (3 cr). WSU Hort 310. Relationships between physiological processes in fruit trees and management decisions necessary for successful commercial production. One 2-day field trip. (Albyards)

PlSc WS311 Pomology Laboratory (1 cr). WSU Hort 311. Cultural practices and management of deciduous treefruit production.

PlSc WS313 Viticulture and Small Fruits (3 cr). WSU Hort 313.

PlSc WS320 Olicultural--Commercial Vegetable Crops (3 cr). WSU Hort 320.

PlSc WS321 Olicultural Lab--Commercial Vegetable Crops (1 cr). WSU Hort 321.

PlSc WS334 Controlled Environments for Horticultural Production (3 cr). WSU Hort 334.

PlSc 338 Weed Control (3 cr). Nature and scope of weed problems, identification and biology of weeds, principles, theory, and practice of mechanical, chemical, and biological control of weeds; legal considerations; integration of methods into functional management systems. Two lec and one 2-hr lab a wk. Recommended Preparation: PlSc 102 or equivalent.

PlSc ID340 Nursery Management (3 cr). WSU Hort 340. Management of commercial nurseries from plant propagation through sale of the plants. (Albyards)

PlSc ID341 Nursery Management Laboratory (1 cr). WSU Hort 341. Lab study related to PlSc 340. Experiments on and demonstrations of different practices used in nurseries. One 2-hr lab a wk; one 1-day field trip. Coreq: PlSc 340.

PlSc WS360 World Agricultural Systems (3 cr). WSU CropS and Soils 360. Study of agro-environmental characteristics of world agriculture; historical and contemporary features of world food production. Prereq: 2 semesters physical or biological sciences.

PlSc 398 Internship (1-6 cr, max 6). Graded P/F. Prereq: perm. of dept.

PlSc 399 (s) Directed Study (1-2 cr, max 2). Prereq: perm.

PlSc 400 (s) Seminar (1 cr). Prereq: perm.

PlSc 401 Plant Growth and Development (3 cr). Application of physiological principles to the management of plants in agronomic, horticultural and forest systems. Prereq: PlSc 205. (Spring only)

PlSc 404 (s) Special Topics (cr arr). Prereq: perm.

PlSc 407 Field Crop Production (3 cr). May be used as core credit in J-3-d. Management and use of crops in Idaho and the Northwest.

PSc 409 Scientific Photography and Data Presentation (1 cr). Principles and techniques for photographic documentation and presentation of data; seven technique areas: field photography, aquarium photography, museum photography, photcopy, microphotography, insect photography, and computer graphics. Recommended Preparation: Own or have access to a 35mm SLR camera. (Alt/By)

PSc ID-J410/ID-J510 Biology of Weeds (3 cr). WSU CropS 413/513. Biology, ecology, and physiology of weeds with emphasis on crop and weed interactions. Requirements for grad cr include comprehensive term paper and class presentation on weed-crop interaction. Two lec and one 3-hr lab a wk. Recommended Preparation: Biol 311. (Alt/By)

PSc WS-J412/WS-J512 Advanced Cropping Systems (3 cr). WSU CropS and P P 403/503. Modern cropping systems: concepts of crop health management within a cropping systems context; diagnosis and management of biotic and abiotic constraints to crop production; interactions of these constraints; concepts of biological control; integration of biological, physical, and chemical approaches to pests and disease control; role of technological innovations; impact of national and international statutes; agreements and treaties on sustainable growth of crop production. Additional projects/assignments reqd for grad cr.

PSc 415 Plant Pathology (3 cr). (PSc 405) Biology of diseases and disorders of crop, forest, and ornamental plants, with emphasis on plant-microbe interactions and on disease cause, development, diagnosis, and control. Three 1-hr lectures. Prereq: PSc 102, and MMBB 154, 155 or MMBB 250 (or perm). (Fall only)

PSc 416 Plant Pathology Laboratory (1 cr). Development of skill and techniques used for the diagnosis, isolation, identification, and characterization of plant pathogenic microorganisms. Recommended Preparation: Familiarity with plant physiology, biological structure of plants and animals, and general agriculture. Prereq or coreq: PSc 415 or perm of instructor.

PSc WS-J420/WS-J570 Potato Physiology and Production Technology (2 cr). WSU Hort 420/520. (Alt/By)

PSc WS-J422/WS-J522 Genetic and Molecular Aspects of Plant Reproduction (2-3 cr). WSU Hort 405/505. (Alt/By)

PSc ID-J433/ID-J533 Plant Tissue Culture Techniques (3 cr). WSU Hort/CropS 533. Laboratory-oriented course involving tissue culture techniques with an emphasis on regenerating herbaceous and woody plant species from organs or tissues. Requirements for grad cr include completion of a special project and report. One lec and 5 hrs of lab a wk. Recommended Preparation: Biol 311 and PSc 300. (Alt/By)

PSc 464 Landscape Maintenance (3 cr). Use and culture of landscape plants to enhance the environment. Two lec and one 2-hr lab a wk; one 1-day field trip. Recommended Preparation: Soil 205 and Arc 286. Prereq: PSc 102 or Biol 213 or perm. (Alt/By)

PSc WS469 Seed Production (3 cr). WSU CropS/Hort 469. Crops indigenous to the Northwest; seedhouse operations and seed regulation. Prereq: perm. (Alt/By)

PSc 470 Arboriculture (3 cr). Arboriculture addresses the science behind tree selection and maintenance practices. Laboratories in each section will provide "hands-on" experiences examining mechanisms of tree growth and survival and the arboricultural tools and practices used to enhance these traits in urban landscapes. Recommended preparation: PSc 464 and/or For 408.

PSc 480 Field Trip (1 cr, max 2). Three-day field trip to production areas. Prereq: perm.

PSc ID-J490/ID-J590 Potato Science (1-3 cr, max 3). WSU Hort 490/590. History, botanical characteristics, seed physiology and production, plant population, physiology of growth, and pest management; factors influencing maturation, harvest, yield, grade, bruise control, storage, and quality maintenance; economics of production and research on a global basis. Requirements for grad cr include comprehensive term paper and class presentation on selected topic.

PSc 499 (s) Directed Study (cr arr). Prereq: perm.

PSc 500 Master’s Research and Thesis (cr arr)

PSc 501 (s) Seminar (cr arr). Prereq: perm.

PSc 502 (s) Directed Study (cr arr). Prereq: perm.

PSc 504 (s) Special Topics (cr arr). Prereq: perm.

PSc WS506 Diseases of Plants (4 cr). WSU PI P 551.

PSc WS507 Plant Transmission Genetics (3 cr). WSU CropS 504.

PSc WS508 Advanced Crop Physiology (3 cr). WSU CropS 508. (Alt/By)

PSc ID510 Biology of Weeds (3 cr). See PSc J410/J510.

PSc WS511 Viruses and Virus Diseases of Plants (4 cr). WSU PI P 511. (Alt/By)

PSc WS514 Phytobacteriology (4 cr). WSU PI P 514. (Alt/By)

PSc WS515 Molecular Approaches for Improving Crop Quality and Adaptation (3 cr). WSU CropS 505. (Alt/By)

PSc WS518 Post-Harvest Biology and Technology (3 cr). See PSc J418/J518.

PSc ID520 Plant Cytogenetic Techniques (3 cr). WSU CropS 520. Techniques to study plant genes and chromosomes. Two lec and 4 hrs of lab a wk. Prereq: Gene 314 or equivalent. (Alt/By)

PSc WS530 Ornamental Plant Production I (3 cr). See PSc J430/J530.

PSc WS531 Ornamental Plant Production II (3 cr). See PSc J431/J531.

PSc ID&WS533 Plant Tissue Culture Techniques (3 cr). See PSc J433/J533.

PSc WS535 Molecular Genetics of Plant and Pathogen Interactions (2 cr). WSU PI P 535. (Alt/By)

PSc ID&WS539 Herbicide Fate and Mode of Action (4 cr). WSU CropS 539. Fate of herbicides in plants, soil, and water: physiological and biochemical mode of herbicide action; mechanisms of herbicide resistance. Prereq: PSc 338, Biol 311, and MMBB 300 or 380, or perm. (Alt/By)

PSc ID546 Plant Breeding (3 cr). WSU CropS 546. Application of genetic principles to improvement of crop plants. Grad students reqd to complete additional term paper. Prereq: Gene 314 or equiv. (Alt/By)

PSc ID547 Biometrics for Plant Scientists (3 cr). WSU CropS 547. Use of biometrical techniques in research with particular emphasis on designing, analyzing, and interpreting appropriate and biological experiments; application of statistical methods to biological experiments and problems that may be encountered when applying these techniques to biological systems. Prereq: PSc 102 and Stat 401 or equiv. (Alt/By)

PSc WS557 Herbicides: Toxicology and Mode of Action (1 cr). WSU CropS and Ent 557. Same as Ent 557. Herbicides in terms of historical perspective, classification, synthesis, toxicity, mode of action, and metabolism. Prereq: organic chemistry, biochemistry, and insect physiology. (Alt/By)

PSc WS558 Pesticide Topics (1 cr). WSU Entom 558. Same as Ent 558. (Alt/By)

PSc WS570 Potato Physiology and Production Technology (2 cr). See PSc J420/J570.

PSc WS571 Plant Molecular Genetics (3 cr). WSU MBios 530. (Alt/By)

PSc ID590 Potato Science (3 cr). See PSc J490/J590.

PSc WS592 (s) Advanced Topics in Cell Biology (1-3 cr, max 7). WSU MBios 526.

PSc 597 (s) Practicum (cr arr). Prereq: perm.

PSc 598 (s) Internship (cr arr). Prereq: perm.

PSc 599 (s) Non-thesis Master’s Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

PSc 600 Doctoral Research and Dissertation (cr arr).

Political Science

Donald W. Crowley, Chair, Dept. of Political Science and Public Affairs Research (205 Admin. Bldg. 83844-3165; phone 208/885-6328).

Note: Two-semester courses in this field may be taken in either order. Students may enroll in second-semester courses without having had the first.

PoS 101 Introduction to Political Science and American Government (3 cr). May be used as core credit in J-3-d. Introduction to the study of politics focusing on basic concepts, processes, and institutions; emphasis on government and politics of the U.S. examined in comparative perspective; probable topics include nature of constitutional democracy, ideology, parties and elections, and formation of public policy.

PoS C152 Politics and Pollution (1 cr). Political, government, and administrative aspects of overcoming air, water, and other types of pollution of our environment.

PoS 200 (s) Seminar (cr arr). Prereq: perm.

PoS 204 (s) Special Topics (cr arr). Prereq: perm.

PoS 205 Introduction to Comparative Politics (3 cr). Basic structures, patterns, and sociocultural environment of foreign political systems; includes case studies of the government and politics in selected countries.

PoS 235 Political Research Methods and Approaches (3 cr). Introduction to the study of politics, including scope of the discipline, principal fields, research design, and methods of political research and analysis.
PART SIX
Courses
Political Science

PoJ 237 International Politics (3 cr). May be used as core credit in J-3-d. Survey of approaches used to describe and explain conflict and cooperation among states in the international system; special emphasis on games of strategic interaction.

PoJ 275 American State and Local Government (3 cr). American state and local politics from a comparative perspective; focus on parties, interest groups, voting behavior, legislative and executive government, judiciary, intergovernmental relations, and public policies.

PoJ 299 (s) Directed Study (cr or arr). Graded P/F. Prereq: perm.

PoJ 304 (s) Special Topics (3 cr, max arr). Prereq: perm.

PoJ 332 American Congress (3 cr). (PoS 432) Roles and functions of Congress in the American political system, theories of representation, recruitment of legislators, Congress as an organization and behavior, power structure, relationship to the executive, courts, interest groups, and public.

PoJ 333 American Political Culture (3 cr). (PoS 433) Relation of public opinion and political action and affiliation to broad economic, social, religious, and intellectual developments.

PoJ 338 American Foreign Policy (3 cr). (PoS 438) Analysis of how key decision makers, such as the President and Congress, convert inputs from the international, national, and societal systems into foreign policy outputs.

PoJ 360 Law and Society (3 cr). (PoS 460) May be used as core credit in J-3-d. Overview of legal reasoning and functions of law in society; emphasis on capacity of law to affect social change as well as ways in which law responds to social change.

PoJ 364 Politics of the Environment (3 cr). (PoS 464) May be used as core credit in J-3-d. Political factors that influence formation, implementation, and impact of public policies aimed at protecting the environment.

PoJ 380 Canadian Political System (3 cr). General examination of Canadian cultural identity, constitutional principles, federalism, government, political process, and electoral behavior.

PoJ 381 Western European Politics (3 cr). May be used as core credit in J-3-d. Examination of political processes in Western European parliamentary systems; topics include parties and elections, coalition formation and dissolution, public policy, and the dynamics of European Union.

PoJ 383 Middle Eastern Politics (3 cr). May be used as core credit in J-3-d. Comparative analyses of political processes in Middle East and North Africa, Islam and politics, role of the military, and Arab-Israeli conflict.

PoJ 400 (s) Seminar (cr arr). Prereq: perm.

PoJ 403 (s) Workshop (cr arr). Prereq: perm.

PoJ 404 (s) Special Topics (cr arr). Prereq: perm.

PoJ 425/J525 History of Political Philosophy (3 cr). Perennial problems of politics examined through study of seminal authors of classical antiquity (Plato, Aristotle, Cicero); medieval confrontation of thought with classical political philosophy (Augustine, Aquinas, Marsilius). Additional projects/assignments reqd for grad cr.

PoJ 426/J526 History of Political Philosophy II (3 cr). Foundations and development of modern liberalism; analysis of its characteristic goals, and democratic, socialist, and communist critical theorists; study of authors including Hobbes, Locke, Rousseau, Marx, and contemporary theorists such as Rawls. Additional projects/assignments reqd for grad cr.

PoJ 428/J528 American Political Thought (3 cr). Major themes and debates in the American search for social self-understanding; topics include representative democracy, religion and politics, the frontier and its legacy, and individualism vs. communalist claims; study of original sources (Founding Fathers, Thoreau, Lincoln, Populists) and contemporary implications. Additional projects/assignments reqd for grad cr.

PoJ 430 Political Participation Internship (1-9 cr, max 9). Directed student internship as a participant-observer in the political process, work during a campaign with a candidate, party, or interest group. Graded P/F. Prereq: perm.

PoJ 437/J537 American Presidency (3 cr). Roles, power, and functions of the presidency; relationships with other structures and institutions in the U.S. political system. Additional projects/assignments reqd for grad cr. Prereq: Senior standing or perm.

PoJ 439/J539 Public Policy (3 cr). Processes by which domestic policies are formulated and administered; analysis of intentional and unintentional impact of these policies on society. Additional projects/assignments reqd for grad cr.

PoJ 440/J540 (s) International Organizations and International Law (3 cr). May be used as core credit in J-3-d. League of Nations, United Nations, and role of international law in international relations; the UN’s contribution to international security and economic and social development. Additional projects/assignments reqd for grad cr.

PoJ 444 Investigating International Relations (3 cr). Topics range from investigations into new sources of violence, human rights, drug use across nation-states, the containment of international diseases, international poverty, population growth rates, economic development, etc.; emphasis on theory development, appropriate research techniques, and techniques for drawing appropriate conclusions and policy recommendations.

PoJ 449/J549 World Politics and War (3 cr). May be used as core credit in J-3-d. A critical analysis of several competing theories that explain why wars occur; some focus on the attempts to control and eliminate warfare as a tool of international diplomacy. Additional projects/assignments reqd for grad cr.

PoJ 451 Public Administration (3 cr). Environment of public administration, politics of organizations, public decision making, public relations, leadership, personnel administration, financial administration, administration ethics; related topics.

PoJ 452/J552 Administrative Law and Regulation (3 cr). W.SU Pol S 552. Legal and judicial constraints on administration rule, making, adjudication, and other modes of administrative action. Additional projects/assignments reqd for grad cr.

PoJ 453/J553 Public Management Techniques (3 cr). Emphasizes management styles and the empirical basis for decision: focus on conflict management through control or participatory strategies, and the acquisition and analysis of management information. Additional projects/assignments reqd for grad cr.

PoJ 458 Management Internship (1-9 cr, max 9). Directed internship in an agency of federal, state, or local government or special projects involving federal, state, or local government. One cr for each week of internship work. Graded P/F. Prereq: perm.

PoJ 461 Western Environmental Legal History (3 cr). Examination of the role of the environment in history; focus on the West, its resources and the role of the law; content will vary depending on interests of instructor and students.

PoJ 462 Natural Resource Policy (3 cr). May be used as core credit in J-3-d. Carries no credit toward PolS 562. Political and institutional context for making natural resource policy; emphasis on interaction between private and public sectors and the federal, state, and tribal governments, including an examination of topical issues in natural resource politics.

PoJ 467/J567 Constitutional Law (3 cr). The Supreme Court as a constitutional policymaker; federal jurisdiction; constitutional principles concerning judicial review, federalism, implied powers, separation of powers, and due process. Additional projects/assignments reqd for grad cr.

PoJ 468/J568 Civil Liberties (3 cr). May be used as core credit in J-3-d. The Supreme Court and its role in protecting civil liberties; freedom of speech, press, and religion; due process, the Bill of Rights, and its application to the states; criminal justice. Additional projects/assignments reqd for grad cr.

PoJ 471/J571 Intergovernmental Relations (3 cr). Analysis of fiscal and administrative interdependencies among governmental units in the U.S., with an emphasis on public policies. Additional projects/assignments reqd for grad cr.

PoJ 472/J572 Local Government Politics and Administration (3 cr). Politics, structure, and problems of American cities and other local governments; focus on the urban political economy, the fiscal and social challenges, and the links between public and private sectors; changing social and political functions of American cities and metropolitan fragmentation. Additional projects/assignments reqd for grad cr.

PoJ 480/J580 Politics of Development (3 cr). Role of the state in development, political economy of change, transition to democracy in the Third World, problems of ethnic conflict, overpopulation, and poverty. Additional projects/assignments reqd for grad cr.

PoJ 487/J587 Political Violence and Revolution (3 cr). May be used as core credit in J-3-d. Survey of the dominant theories attempting to understand the conditions under which humans rebel against their government; from political demonstrations and riots to terrorism and revolution; special emphasis given to the revolutions in Iran and Vietnam. Additional projects/assignments reqd for grad cr.

PoJ 495 Senior Seminar in Political Science (3 cr). Capstone seminar required of all political science majors in their senior year. Focuses on developing and applying research and conceptual skills, oral and written presentation of research prospectus and final research paper. Prereq: PoJ 236 and 395.

PoJ 498 (s) Directed Study (cr arr). Graded P/F. Prereq: perm.

PoJ 500 Master’s Research and Thesis (cr arr). Graded P/F.

PoJ 502 (s) Directed Study (cr arr). Prereq: perm.

PoJ 503 (s) Workshop (cr arr). Prereq: perm.

PoJ 504 (s) Special Topics (cr arr). Prereq: perm.

PoJ 525 History of Political Philosophy II (3 cr). See PoJ 425/J525.
PTTE 101 Keyboarding & Document Preparation (2 cr). Skill development sufficient for personal use

PTTE 102 Advanced Keyboarding & Document Preparation (2 cr). Skill development to occupational competence levels.

PTTE 104 Keyboarding (1 cr). Microcomputer keyboarding skills development. Accelerated 8-wk course. Two lec and 2 hrs of lab a wk.

PTTE 111 Computer Skills (3 cr). Fundamentals of computing; modules on telecommunications, software, computer components, basic computer applications, and current computing trends.

PTTE 115 Operational Safety (3 cr). Fundamentals of industrial safety: fire protection, industrial hygiene, radiological safety, safety regulations.

PTTE 120 Basic Electronics (4 cr). For beginning students with no experience in electricity, properties of resistors, capacitors, and inductors in electrical circuits; basics of power distribution system and house wiring; use of meters and oscilloscopes in lab. Three 1-hr lec and one 2-hr lab a wk. Enrollment per section limited to lab stations available. Knowledge of algebra recommended.

PTTE 135 Electrical Systems (3 cr). Fundamentals of AC/DC circuits and components, motors, transformers, and switchgear, national electrical code wiring requirements.

PTTE 185 Business Computation Concepts (2 cr). The integration of business computational concepts for solving business financial problems with the use of electronic calculators and/or computers.

PTTE 200 (s) Seminar (cr arr) Prereq: perm.

PTTE 203 (s) Workshop (cr arr) Prereq: perm.

PTTE 204 (s) Special Topics (cr arr) Prereq: perm.

PTTE 211 Communication Skills for Workforce Development (2 cr). Development of workplace skills necessary for individuals to be successful in the work environment; projects and activities to enhance skills in accessing information, problem solving, customer/co-worker relations, leadership, organization, and basic workplace literacy and efficiency; critical thinking and teamwork infused with assignments focusing on quality, continuous improvement, and flexibility.

PTTE 298 (s) Internship (cr arr) Prereq: perm.

PTTE 299 (s) Directed Study (cr arr) Prereq: perm.

PTTE 306 Preservice for New Professional-Technical Teachers (3 cr). Fundamental skills necessary for new teachers in secondary and post-secondary schools to be successful in meeting the needs of their students.

PTTE 307 Inservice for New Professional-Technical Teachers (3 cr). Resolution of common problems faced by new teachers through seminars and evaluations/evaluations per UI preceptor; course meets state certification requirements for 30 hrs of inservice for vocational specialist certification. Prereq: perm.

PTTE 311 Introduction to Industrial Efficiency (3 cr). In-depth examination and implementation of techniques used by industrial engineers to optimize operations.

PTTE 312 Introduction to Quality Assurance in the Nuclear Industry (3 cr). In-depth examination and implementation of nuclear industry; planning, managing, conducting, and evaluating quality assurance program.

PTTE 313 Technical Sketching (2 cr). In-depth examination and implantation of sketching techniques applied to industrial drawing; emphasis on sketching or mechanical drawings, pictorials, and architectural forms. One lec and 1 hr of lab a wk.

PTTE 317 Principles of Dimensional Inspection (3 cr). In-depth examination and implementation of concepts, principles, classification, and control in dimensional inspection for quality assurance.

PTTE 331 Industrial Instrumentation II (3 cr). Methods of process control from digital and analog signals; investigation of computer control concepts.

PTTE 333 Computer Electronics (3 cr). Logic of circuits, basic circuits used in computers, and interfacing hardware for computer peripherals.

PTTE 340 Nondestructive Examination Techniques and Methods (3 cr). Intro to nondestructive testing, liquid penetrant exam, magnetic particle exam, and radiography in modern industry.

PTTE 350 Teaching and Learning Construction Systems (4 cr). Teaching techniques and methods of instruction for systems approach to construction technology including residential, commercial, and civil. Three lec and 4 hrs of lab a wk. Enrollment limited to lab stations available.

PTTE 351 Principles and Philosophy of Professional-Technical Education (3 cr). Same as AgEd 351. Overview and interpretation of history, aims, and purposes of public education and professional-technical education; issues and programs comprising professional-technical education in Idaho and in the nation.

PTTE 352 Manufacturing Technology Systems (4 cr). In-depth examination and implementation of manufacturing theory, applications, and processes including research and development, starting and organizing manufacturing companies, and product production and marketing. Two lec and 6 hrs of lab a wk.

PTTE 353 Teaching and Learning Advanced Manufacturing Systems Technology (4 cr). In-depth examination and implementation on industrial system manufacturing processing; manufacturing organization and management; address societal, environmental, and labor relations of manufacturing. Three lec and 3 hrs of lab a wk. Recommended Preparation: PTTE 352.
PTTE 362 Environmental Health (3 cr). Types, mechanisms, and magnitudes of toxicity and their relation to the human system as an industrial environmental problem; all types of metals, compounds, and reagents and their influence on human productivity; sampling and analysis of contaminants.

PTTE 363 Fire Protection Safety (3 cr). Basic industrial fire protection techniques; basic fire chemistry; basic fire suppression/sprinkler design.

PTTE 364 Hazardous Materials (3 cr). Handling, transportation, and storage of hazardous materials; toxicology to protect and suppress fires that occur in hazardous materials.

PTTE 365 Industrial Supervision (3 cr). Principles and practices; duties and responsibilities of plant supervisors; use of rating scales and other employee evaluation devices; supervisory methods used in the-in-the-job and in-plant training program; methods of conducting job analysis; preparation and use of job descriptions. (Alt/Alt)

PTTE 367 Teaching and Learning Computer Aided Drafting/Design (2 cr). In-depth examination and implementation of fundamental principles of computer aided drafting and design; theory of and skill development in file creation, digitizing, plotting, and computer assisted design. One lec and 2 hrs of lab a wk.

PTTE 368 Applied Structures and Concrete Design (3 cr). In-depth examination of columns and beams design and selection, use of steel construction handbook joint design; simple concrete slab and wall design. Note: Will not substitute for engineering degree requirement.

PTTE 398 (s) Internship (cr arr) Prereq: perm.

PTTE 400 (s) Seminar (cr arr) Prereq: perm.

PTTE 402 Teaching and Learning Principles of Technology (4 cr). In-depth examination and implementation of physical science in industrial situations; emphasizes principles rather than specifics of technology; illustrates application of mathematics associated with these principles. Three lec and 4 hours of lab a week.

PTTE 403 (s) Workshop (cr arr) Graded P/F. Prereq: perm.

PTTE 404 (s) Special Topics (cr arr) Prereq: perm.

PTTE 405/405 Professional Development (cr arr) Cr earned in this course will not be counted toward degree programs. Professional development and enrichment. Additional projects/assignments reqd for grad cr.

PTTE 410 Technology and Society (3 cr). In-depth examination and implementation of the relationship between technology and social change; previous course work in technology is not necessary.

PTTE 411 Web Graphics using Flash (3 cr). Create multi media animation through Flash and XML. Study of Network protocols and PHP server scripting, Sockets and SQL. Hands-on exercises and projects, problem solving, research, computer operation, and thinking skills to produce animations and interactive Web sites.

PTTE 412 Web Design using Dreamweaver (3 cr). Use HTML editors to create web pages. There are process-oriented tutorials that teach core principles, techniques and tips in a hands-on training format. You will be expected to work on hands-on exercises and projects, problem solving, research, and thinking skills to produce a Web site.

PTTE 413 Advanced Internet Scripting (3 cr). Study Java and Java Advanced Imaging, enterprise technologies, in-depth understanding of communication capabilities. Java 2D for graphics, text, and fundamental image manipulation; the Java Media Framework for components to play and control time-based media such as audio and video; Java Sound; and Java 3D.

PTTE 414 Teaching and Learning Visual Basic (3 cr). Teaching and Learning using Microsoft Visual Basic computer language.

PTTE 415 Microcomputer Applications (3 cr). Advanced computer applications course designed to be for primarily office administration and business teacher education students. Includes extensive hands-on experience using word processing, spreadsheet, and database programs used in both industry and business education programs; addresses methodology, curriculum development, and classroom management techniques; involves sizable curriculum development project. Three lec and 2 hrs of lab a wk. Recommended Preparation: PTTE 111.

PTTE 416 Designing Web Sites through HTML & FrontPage (3 cr). Creating Web pages with graphics, lists, pictures, hyperlinks, tables, shared borders, themes and controlling page layout with frames, advanced topics including cascading style sheets, multimedia, forms and publish a web site.

PTTE 418 Consumer Economic Methods (3 cr). In-depth examination and implementation of methods and materials for teaching consumer economics. Prereq: Econ 201 or 100 or equiv.

PTTE 419/519 Teaching and Learning Database Applications (3 cr). Teaching and training strategies for database applications. Includes database management principles and methods of information retrieval, processing, storage and distribution. Advanced project reqd for grad cr. Recommended Preparation: PTTE 111.

PTTE 420 Evaluation in Professional-Technical Education (3 cr). Methods and techniques; construction and use of objective tests, performance tests, rating scales, check lists.

PTTE 426 Occupational Analysis and Curriculum Development (3 cr). Instructional design systems and curriculum development as a systematic method of designing, carrying out, and evaluating the total process of teaching and learning; based on research in human learning and communication, employing a combination of human and non-human resources to bring about effective instruction. Focus on secondary and post-secondary professional/technical education.

PTTE 428 Teaching and Learning Computer Operating Systems for Technology (4 cr). In-depth examination and implementation of advanced DOS, multi-tasking and network operating systems, planning and maintenance of computer systems. Three lec and 4 hrs of lab a wk. Enrollment per section limited to computer stations available. Prereq: PTTE 111 or perm.

PTTE 430 Leadership and Student Organizations (2 cr). Development of leadership skills; instruction in planning, implementation and supervision of professional-technical student organizations; and participation in regional leadership conferences.

PTTE 431 Supervising PTTE Student Organizations (1 cr). Supervising PTTE Student Organizations involves active participation in Professional-Technical Student Organization’s programs; participation in competitive events program, as well as assisting in the administration and supervision of secondary regional and state Professional-Technical Student Organization conferences.

PTTE 432 Systems Safety Analysis (3 cr). In-depth examination and implementation of principles of system safety; defining a system; risk and consequences; introduction to hazards and risk analyses; systematic accident investigation.

PTTE 433 Quality Auditing (3 cr). Industrial value of audit as a management tool; audit methods and techniques; present practical examples related to real-life applications and benefits.

PTTE 434 Quality Assurance Organization and Management (3 cr). Industrial management principles applied to effective economic control of quality assurance activities.

PTTE 435 Industrial Transportation Safety (3 cr). Principles of safety in all aspects of industrial transportation; roads, railroads, air, water, pipeline.

PTTE 438 Digital Electronics (3 cr). In-depth examination and implementation of logic circuits used in digital device; included AND/OR gates, NAND, NOR, Exclusive-or gates, and application of the gates to construct flip-flops, counters, adders, and converters. Includes characteristics of logic families and memory devices. Enrollment per section limited to lab stations available.

PTTE 442 Concrete Design (3 cr). Structures and component selection and specification, stress calculations, hanger design, schedules and pressure rating. Recommended Preparation: PTTE 338.

PTTE 443 Government Contract Law (3 cr). Contract formation, and contract administration pertaining to government contracts.

PTTE 444 Telecommunications (3 cr). Same as ED 444. Advanced experimental telecommunications theory, telecommunications equipment, and data communications; applications of telecommunications theorems and principles at work, at school, and in personal endeavors. Three lec and 2 hrs of lab a wk.

PTTE 445 Orientation to Teaching (3 cr). Professional issues in education; orientation to practicum, career placement, and entry level teaching. Coreq: enrollment in senior practicum. Fall semester will require an additional 8-hr Saturday session for CPR and first aid training.

PTTE 446 Labor Law (3 cr). Practical legal considerations in employer/employee relationships, including union contracts.

PTTE 447 Diverse Populations and Individual Differences (2-3 cr). Examines the impact of individual differences on teaching and learning.

PTTE 448 Construction Safety Principles (3 cr). Major components of construction health and safety, including hazards, law, written programs, implementation, control and behavior.

PTTE 450 Industrial Safety (3 cr). Organization and administration of safety programs in industry and professional-technical education laboratories; materials, research literature, methods, and techniques for industrial safety education.

PTTE 451 School Lab Planning and Administration (3 cr). For those in or entering occupational education who seek a competency-based approach to planning, organizing, and managing a school teaching lab/shop.

PTTE 452 Fire Protection System Design (3 cr). Methods and practical design of fire protection systems (water, gas, chemicals); testing and maintenance of systems. Prereq: perm.

PTTE 453 Environmental Monitoring (3 cr). In-depth examination of advanced study of personal and area illumination, temperature, ventilation, gas/vapor, biological/organics, noise. Recommended Preparation: PTTE 362.

PTTE 454 Environmental Health II (3 cr). Intro of human system response and susceptibility to problems of occupation originating from air conditioning, air cleaning, ventilation, respiratory devices, air pressure, noise, lighting, temperature, and radiation; identification, documentation, and reporting of problems and results.

PTTE 457 Transitioning to Work (3 cr). Planning and managing cooperative, technical preparation, and other transitional programs.

PTTE 458 Permit Processing (3 cr). Preparing, processing, implementing, permit requirements, permitting authorities (local, state, federal).

PTTE 460 Desktop Publishing (3 cr). Advanced desktop publication techniques, concepts, and applications through use of computer technology; planning, layout, and design of publications are highlighted. Recommended Preparation: PTTE 111 and PTTE 415.

PTTE 461 Using Internet-Based Career Information in the Classroom (2-3 cr). Preparation of new teacher candidates to utilize the vast array of career information on the Internet for assisting students in career planning.
PTTE 462 Teaching and Learning Communication Technology Systems (4 cr). Teaching techniques and methods of instruction for study of communication technology including sub systems of interpersonal human communication and communication between humans and machines. Two lec and 6 hrs of lab a wk.

PTTE 464 Career Guidance and Transitioning to Work (3 cr). Same as CASP 464. Designed for career development counselors and facilitators; establishment of the three pillars of career guidance and how to implement the steps for developing a comprehensive individualized career plan.

PTTE 465 Environmental Regulations (3 cr). Survey of major environmental statutes and their implementing regulations; emphasis on practical applications.

PTTE 470 Technical Competence (1-32 cr, max 32) Technical competence is gained from obtaining credentials or passing of competency exams related to the bachelor of science degree in PTE education or technology. Grades for successful completion of PTTE 470 will be transcribed as P (pass) normally during the student’s last semester and completion of all degree requirements.

PTTE 473 Teaching and Learning Power, Energy, and Transportation Technology Systems (4 cr). In-depth examination and implementation of internal-external combustion engines; solar, wind, water, biomass, and nuclear energy; lab experience in generating, transporting, and converting energy forms. Enrollment per section limited to lab stations available. Three lec and 4 hrs of lab a week.

PTTE 475 LAN Technology (4 cr). Advanced LAN technologies emphasizing design and implementation of most LAN technology systems. Three lec and 4 hrs of lab a wk. Recommended Preparation: PTTE 428 or Bus 352.

PTTE 480 Technology Management Practicum (1-6 cr, max 6) Experiences to enable the individual to gain depth in technical competency beyond the basic certification requirements, and to maintain skills in harmony with current industrial practices. Prereq: perm.

PTTE 481 Computer Numerical Control Manufacturing (4 cr). In-depth examination and implementation of advanced computer aided drafting, computer aided manufacturing, computer numerical control, and robotics, with lab applications. Enrollment per section limited to lab stations available. Three lec and 3 hrs of lab a wk. Prereq: PTTE 367.

PTTE 482 Computer Hardware Technology (3 cr). Hardware and software knowledge and skills necessary to purchase, maintain, and repair personal computer systems; not a beginning computer class. Three lec and 3 hrs of lab a wk. Recommended preparation: knowledge of disk operating systems and multi-tasking systems.

PTTE 485 Waste Management Alternatives (3 cr). Basic introduction to waste management including regulatory, technical, and political implications of waste management.

PTTE 489 Records Management (3 cr). ARMA filing rules, organization and maintenance of paper files, using database management software.

PTTE 490 Advanced Technical Competence (1-30 cr, max 30) Supervised practicum or on-the-job experience designed to enable the student to gain further depth in technical competence as well as in current industrial technology. Graded P/F.

PTTE 491 Business, Marketing & Retailing Methods (2 cr). Effective methods and materials for teaching basic business subjects, marketing, and retail merchandising. Prereq: perm. (Fall only)

PTTE 492 Business and Marketing Education Methods (3 cr). Teaching pedagogy, instructional materials and student evaluation strategies in Business and Marketing Education. Prereq: perm.

PTTE 495 Administrative Office Management and Procedures (3 cr). Administrative office procedures, components, and responsibilities.

PTTE 496 Directed Work Experience (1-3 cr, max 9) Job analysis and descriptions; weekly work-experience reports and analysis coordinated with problems related to the student’s employment in an approved work station.

PTTE 497 (s) Practicum (1 cr, max 3) Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm.

PTTE 499 (s) Directed Study (cr arr) Prereq: perm.

PTTE 500 Master’s Research and Thesis (cr arr)

PTTE 501 (s) Seminar (cr arr) Prereq: perm.

PTTE 502 (s) Directed Study (cr arr) Prereq: perm.

PTTE 503 (s) Workshop (cr arr) Prereq: perm.

PTTE 504 (s) Special Topics (cr arr) Prereq: perm.

PTTE 505 Professional Development (cr arr) See PTTE J405/US05.

PTTE 507 The Future of Education and Work (3 cr). Proactive study of the potential futures in education and work; examination of futurist theory and the change process.

PTTE 510 (s) Professional Problems (1-3 cr, max 9) Prereq: perm.

PTTE 511 (s) Technical Problems (1-3 cr, max 6) Prereq: perm.

PTTE 515 Instructional Strategies and Learning Styles (3 cr). Design and application of teaching strategies for learning domains and learning styles appropriate for adult learners.

PTTE 517 Industrial Liability (3 cr). In-depth examination and implementation of worker’s compensation, second injury, insurance and self-insurance; third party responsibilities; product liability, personal liability, plant damage.

PTTE 518 Keyboarding and Technology Methods (3 cr). Advanced teaching methods and materials of keyboarding and computer technology, identified best practices will be emphasized as well as a review of research literature. This course will include a field experience as well as a unit on trouble shooting computer hardware.

PTTE 519 Teaching and Learning Database Applications (3 cr). See PTTE J419/JS19.

PTTE 520 Advanced Accounting, Personal Finance & Economics Methods (2-3 cr). Advanced methods and strategies of teaching accounting, personal finance and economics at the secondary or adult level. (Fall only)

PTTE 521 Advanced Business, Marketing & Retailing Methods (3 cr). Advanced methods and strategies for teaching general business, business math, entrepreneurship, business law, management, and marketing at the secondary or adult level; additional emphasis on teaching computerized and non-computerized accounting. (Fall only)

PTTE 523 Industrial Safety Applications (3 cr). Application of engineering science to safety problems; static and dynamic forces on structures, pressure systems; effects of temperature, chemicals, fatigue, and other agencies on strength of materials; use of vectors in engineering analysis.

PTTE 527 Occupational Health Hazards (3 cr). In-depth examination and implementation of the field of industrial hygiene practice; focus on recognition, evaluation, and control of occupational health hazards.

PTTE 528 Accident Investigation (3 cr). In-depth examination and implementation of system safety concepts, principles, and methods; development of skills in accident investigation, audit and appraisal, operational readiness, and system safety analysis and review. Recommended Preparation: PTTE 432.

PTTE 529 Risk Assessment (3 cr). In-depth evaluation and analysis techniques used to determine the risk of industrial, process, nuclear, and aviation industries; fault tree analysis; human reliability analysis; failure mode and effect analysis.

PTTE 531 National Board Certification I (3 cr). Support and development of exemplary teaching candidates seeking to complete the career and technical education portfolio required by the National Board for Professional Teaching Standards. Recommended Preparation: Meet NBPTS process minimum qualifications. (Fall only)

PTTE 532 National Board Certification II (3 cr). Support and development of exemplary teaching candidates seeking to complete the career and technical education portfolio required by the National Board for Professional Teaching Standards. Recommended Preparation: Meet NBPTS process minimum qualifications. (Spring only)

PTTE 543 Administration and Supervision of Learning Programs (3 cr). See AEdOL 543.

PTTE 551 Principles and Philosophy of Professional-Technical Education (3 cr). Overview and interpretation of history, aims, and purposes of public education and professional-technical education; issues and programs comprising professional-technical education in Idaho and the U.S.

PTTE 597 (s) Practicum (cr arr) Application of theories and techniques; supervised field experiences in selected settings. Graded P/F. Prereq: perm.

PTTE 598 (s) Internship (cr arr) Supervised experience in teacher education, administration, supervision, or ancillary services in professional-technical education. Graded P/F. Prereq: perm.

PTTE 599 (s) Non-thesis Master’s Research (cr arr) Research not directly related to a thesis or dissertation. Prereq: perm.

PTTE 600 Doctoral Research and Dissertation (cr arr)

Psychology

Richard Reardon, Chair, Dept. of Psychology and Communication Studies (206 Student Health Ctr. 83444-3043; phone 208/885-6324).

Prerequisite: Unless otherwise stated, Psy 101 is a prerequisite to all other courses in this field. Unless a prerequisite is specifically stated, the prerequisite to all graduate courses is permission of department and instructor.

Psy 101 Introduction to Psychology (3 cr). May be used as core credit in J-3 class. Intro to psychology topics, including sensation and perception, learning and thinking, motivation, personality and adjustment, social processes, psychological testing; emphasis on fundamental principles.

Psy 200 (s) Seminar (cr arr). Prereq: perm.

Psy 203 (s) Workshop (cr arr). Prereq: perm.

Psy 204 (s) Special Topics (cr arr). Prereq: perm.
Psychology

PART SIX

Courses

Psyc 299 (s) Directed Study (cr arr). Prereq: perm.

Psyc 305 Developmental Psychology (3 cr). May be used as core credit in J-3-d. Conception through late adolescence; genetics, anatomy, physiology, biological changes during development, learning, socialization, cognition, and personality. Prereq: Psyc 101 or Ed 301.

Psyc 310 Psychology of Personality (3 cr). Theories of personality, basic concepts, techniques of measurement, and experimental methods; the normal personality.

Psyc 311 Abnormal Psychology (3 cr). Nature, causes, treatment, and prevention of patterns of emotional disturbances and personality disorders, including neuroses and psychoses.

Psyc 320 Introduction to Social Psychology (3 cr). May be used as core credit in J-3-d. Theories, concepts, and research on the social bases of behavior and social interaction; topics of personal and social relevance, aggression, prejudice, altruism and helping behavior, interpersonal attraction, behavior in groups, conformity, attitudes, authoritarianism, and obedience to authority.

Psyc J325/J525 Cognitive Psychology (3 cr). May be used as core credit in J-3-d. Survey and analysis of major topics in field; emphasis on contemporary research and theory; related topics in perception, memory, and information processing and translation. Additional projects/assignments reqd for grad cr. No prerequisite.

Psyc 390 Psychology of Learning (3 cr). Experimental literature of the nature and conditions of classical and operant conditioning, verbal learning, and cognition. Prereq: Psyc 218.

Psyc 400 (s) Seminar (cr arr). Prereq: perm.

Psyc 403 (s) Workshop (cr arr). Prereq: perm.

Psyc 404 (s) Special Topics (cr arr). Prereq: perm.

Psyc 411 Clinical Psychology (3 cr). Survey of the field of clinical psychology including history, models, interviewing skills, diagnostic testing, psychotherapy methods, and professional issues.

Psyc 415 History and Systems of Psychology (3 cr). History of psychology as a field of scientific inquiry; overview of development of schools of thought, prominent figures, and key theories. Recommended Preparation: Two upper-division psychology courses.

Psyc J416/J516 Industrial/Organizational Psychology (3 cr). (Psyc 316) Application of psychological principles to the study of work behavior; includes topics such as personnel selection, performance appraisal, training, work motivation, teams, leadership, and job attitudes. Additional work required for graduate credit.

Psyc 419 Adult Development and Aging (3 cr). Analysis of change from early adulthood through old age, looking at the areas of social, cognitive, and physical development; examination of theories, concepts, and research in the area of lifespan development; study of the problems of aging, plasticity of functioning, and ingredients of successful aging.

Psyc 420 Personality and Social Development (3 cr). Personality and social development from birth through adolescence, including such topics as attachment, aggression, impulse control, sex differences, self-concept, moral development, and effects of parental childrearing styles. Prereq: Psyc 101 and 305, or perm.

Psyc 421 Cognitive Development (3 cr). Intellectual development of child from birth to maturity, mechanisms of intellectual growth, relationship between language and cognitive development. Prereq: Psyc 101 and 305, or perm.

Psyc 422 Disorders of Childhood and Adolescence (3 cr). Overview of psychological disorders that affect children and adolescents; emphasis on how childhood mental illness is defined, diagnosed, and treated within multiple theoretical perspectives. Examines how multiple, interacting events shape both adaptive and maladaptive developmental outcomes. Prereq: Psyc 101 and 305, or perm.

Psyc 430 Tests and Measurements (3 cr). Review of the major principles of test development including test construction and methods for determining test validity and reliability, some of the currently used scales, and study of scaling methods such as Thurstone scales, Likert scales, and semantic differentials. Recommended Preparation: Psyc 101 and Stat 251.

Psyc 435 Personnel Psychology (3 cr). Review of theory and methods related to personnel issues; includes topics such as individual differences, selection, psychometrics, compensation, training programs, and performance appraisal. Prereq: Psyc 416.

Psyc 444 Sensation and Perception (3 cr). May be used as core credit in J-3-d. Fundamental processes and variables in sensory, perceptual, and cognitive experiences of humans. Prereq: Psyc 218.

Psyc 446 Engineering Psychology (3 cr). Application of principles of experimental psychology to analysis of interaction of the human operator with machine systems and work environments; emphasis on psychological aspects of human performance. Prereq: Psyc 218 or Stat 301 or perm.

Psyc 448 Psycholinguistics (3 cr). See Engl 448.

Psyc J450/J550 Training and Performance Support (3 cr). Review of applicable theory and various methods for developing programs and systems; emphasis on developing skills for front-end analysis, training program and performance support design, and program evaluation. Additional projects/assignments reqd for grad cr. Recommended Preparation: Psyc 325.

Psyc J452/J552 Ergonomics and Biomechanics (3 cr). Principles of anthropometry, biomechanics, and work physiology applied to workplace. Additional projects/assignments reqd for grad cr.

Psyc 456 Psychology of Emotion (3 cr). Theories of emotion; biological and social variables influencing the activation of emotion.

Psyc J461/J561 Human-Computer Interaction (3 cr). May be used as core credit in J-3-d. Overview of human-computer interaction (HCI) topics, including user modeling, dialog design, display usability, software development, groupware, and multimedia. Additional projects/assignments reqd for grad cr. Recommended Preparation: Psyc 446.

Psyc J470/J570 Introduction to Chemical Addictions (3 cr). May be used as core credit in J-3-d. Understanding how individuals develop an addiction to psychoactive chemicals and how to recover from such an addiction; recognition, assessment, and treatment of various chemical addictions and how to do interventions for addicted individuals and their families; topics include drugs of abuse, symptoms and warning signs of chemical addiction, assessment, co-dependency, interventions, treatment, and recovery. Additional projects/assignments reqd for grad cr.

Psyc J471/J571 Theories of Chemical Addictions (3 cr). Comprehensive overview of all chemical addictions theories and related implications for diagnosis and treatment.

Psyc J472/J572 Introduction to the Pharmacology of Psychoactive Drugs (3 cr). Overview of neural mechanisms, behavioral effects, and addictive properties of psychoactive drugs. Additional projects/assignments reqd for grad cr.

Psyc J473/J573 Blood and Airborne Pathogens: HIV/STDs/Hepatitis (3 cr). Overview of HIV/AIDS, TB, and other STDs; preparing counselors to work with clients to prevent these diseases or counsel clients who have acquired these diseases; making counselors examine issues related to human sexuality and biases about sexually related topics. Additional projects/assignments reqd for grad cr. Prereq: Psyc 101.

Psyc J474/J574 Record Keeping and Case Management in Chemical Addictions Counseling (3 cr). Exploration and examination of the sequence of events and services that clients encounter as they begin and move through the treatment process in a typical addictions treatment setting, as outlined in the Twelve Core Functions and Global Criteria of the International Certification Reciprocity Consortium (ICRC); study of the Twelve Core Functions and the Addiction Counseling Competencies relevant to each area. Additional projects/assignments reqd for grad cr.

Psyc J475/J581 Professional Ethics in Addictions Counseling (3 cr). Overview of ethical issues and decision making related to addictions counseling; ethics related to harm reduction models and other issues. Additional projects/assignments reqd for grad cr.

Psyc J476/J576 Relapse Prevention in Chemical Addictions Counseling (3 cr). Overview of addictions relapse, issues and triggers related to relapse, prevention of relapse, and issues related to addictions relapse in general. Additional projects/assignments reqd for grad cr.

Psyc J477/J577 Chemical Dependency and the Family (3 cr). Overview of how chemical dependency impacts the family unit; intervention techniques to assist the family. Additional projects/assignments reqd for grad cr.

Psyc J478/J578 Individual Therapy Techniques in Chemical Addictions Counseling (3 cr). Techniques related to counseling individual chemical addictions clients; helping skills such as active listening, problem solving, paraphrasing; numerous role plays and other practical exercises. Additional projects/assignments reqd for grad cr.

Psyc J479/J579 Group Therapy Techniques in Chemical Addictions Counseling (3 cr). Theoretical and practical understanding of the group therapy process with individuals from chemical addictions counseling; information about group therapy with actual experience of being part of a group. Additional projects/assignments reqd for grad cr.

Psyc J480/J580 HIV Prevention Counseling (3 cr). Techniques related to counseling individuals who engage in high risk behaviors; primary focus on harm reduction models and how to reduce high-risk behaviors. Additional projects/assignments reqd for grad cr.

Psyc J482/J582 Addictions Screening and Assessment (3 cr). This course is designed to provide a comprehensive overview of substance abuse screening and assessment. This includes information related to interviewing techniques, substance abuse diagnosis, testing instruments, and issues or problems that influence the assessment environment. Additional projects/assignments reqd for grad cr. Prereq for 482: Psyc 478. Prereq for 582: Psyc 578.

Psyc J483/J583 Substance Abuse Prevention Theory and Applications I (3 cr). This course provides a comprehensive overview of substance abuse prevention theories, prevention programming applications. Upon completion, students should understand current prevention models, CSAP prevention strategies and applications, be familiar with the IOM Continuum of Care, and be familiar with state and federal prevention resources. Additional projects/assignments reqd for grad cr.

Psyc J484/J584 Facilitation Skills and Group Management for Prevention Providers (3 cr). This course provides a comprehensive overview of theories and methods related to group small and large group behavior. Upon completion, students will understand the three major types of groups, how gender, ethnicity, work roles, communication styles, etc. impact group interactions, and methods to increase participation. It is expected students will practice facilitation and conflict resolution techniques in these groups. Additional projects/assignments reqd for grad cr. Prereq for 484: Psyc 305 and 472. Prereq for 584: Psyc 305 and 572.
Psyc J485/J591 Presentation - Instruction Skills for Helping Professionals (3 cr). This course provides an overview of presentation methods/training for audiences of various sizes and demographics. The course will include knowledge of group types, group dynamics, presentation techniques (including PowerPoint), conflict resolution, and learning techniques. Students will be expected to develop and present these techniques in front of small and large groups with a focus on substance abuse prevention populations. Additional projects/assignments reqd for grad cr. Prereq for 485: Psyc 305, 483, and 484. Prereq for 591: Psyc 305, 583, and 584.

Psyc J486/J592 Community Coalition Development (3 cr). This course is designed to provide skills to develop community coalitions. Upon completion students will understand community organization processes, how to measure community readiness, the strategic planning process, decision and prioritizing methodologies, interagency dynamics, and the importance of networking. It is expected students will participate in or develop a community coalition during the course. Additional projects/assignments reqd for grad cr. Prereq for 486: Psyc 472, 483, and 485. Prereq for 592: Psyc 572, 583, and 591.

Psyc J487/U587 Substance Abuse Program Planning and Evaluation (3 cr). This class provides an overview of program planning and evaluation with a focus on substance abuse prevention. Upon completion students will understand research related to ATOD prevention, program design and evaluation models, how to use the Idaho LOGIC model, indicators of program effectiveness. Students will also be presented with information regarding local, state, and federal resources. Additional projects/assignments reqd for grad cr. Prereq: Psyc 483.

Psyc J488/U588 Ethics in Substance Abuse Prevention (1 cr). This course will provide an overview of ethical issues encountered by substance abuse prevention specialists. Upon completion students will understand boundary issues between prevention and conducting treatment, state and federal mandatory reporting requirements, confidentiality and other legal issues, and professional codes of conduct. Additional projects/assignments reqd for grad cr.

Psyc J489/U589 Substance Abuse Prevention Theory and Applications II (4 cr). This capstone prevention course consolidates all material within the substance abuse prevention curriculum. Students will be expected to understand and apply material such as the LOGIC model, coalition development, use fundraising techniques, and be knowledgeable in topics such as social marketing, program development and evaluation, etc. Additional projects/assignments reqd for grad cr.

Psyc J490/U590 Psychopharmacology (3 cr). This course provides a solid overview of neurobiology, neurophysiology, and pharmacologic treatment for individuals having psychopathological/psychiatric disorders. It will also examine evidence supporting the use of such interventions. Additional projects/assignments reqd for grad cr. Recommended Preparation: Psyc 311 and 372. Prereq: Psyc 101.

Psyc 496 Applied Behavior Analysis (3 cr). Analysis and assessment of behavior in real-life settings, e.g., home, business, community, and institutions such as prisons and psychiatric hospitals; structured programs of intervention and assessment of behavior change; special emphasis on self-management of behavior. Prereq: Psyc 218 and 390.

Psyc 497 (s) Practicum in Instruction (1-3 cr, max 6). Tutoring and/or instructional services performed by advanced students under faculty supervision. Prereq: perm.

Psyc 498 (s) Internship (1-6 cr, max 6). Directed internship in an approved setting that features psychological applications. Prereq: perm.

Psyc 501 (s) Seminar (cr arr). Prereq: perm.

Psyc 502 (s) Directed Study (cr arr). Prereq: perm.

Psyc 503 (s) Workshop (cr arr). Prereq: perm.

Psyc 504 (s) Special Topics (cr arr). Prereq: perm.

Psyc 512 Research Methods (3 cr). (Psyc 585) Philosophy of research, types of design, data analysis, research report. Prereq: Psyc 218 or equiv, or perm.

Psyc 513 Advanced Research Methods (3 cr). (Psyc 586) Types of research designs and data analyses; use of mainframe computer packages for data analysis. Prereq: perm.

Psyc 516 Industrial/Organizational Psychology (3 cr). See Psyc J416/J516.

Psyc 517 Performance Evaluation (3 cr). Major issues in performance evaluation; topics may include evaluation methodology, job analysis, and legal issues in performance appraisal. Prereq: perm.

Psyc S525 Cognitive Psychology (3 cr). See Psyc J325/J525.

Psyc S526 Cognitive Neuroscience (3 cr). Same as Neur S526. Examine research in human and animal cognition and its neurological basis. Material covered will include the study of normal cognitive processes in humans with noninvasive behavioral and physiological techniques (e.g., reaction times, fMRI, EEG), the study of brain-injured patients, behavioral and neurophysiological research in animals, and the comparative analyses of cognitive processes across organisms. Computational approaches towards cognitive and neural processing will also be addressed. A selection of the following topics will be covered: perception, object recognition, attention, memory, spatial cognition, motor control, language, executive control, and development. Recommended Preparation: Psyc 325.

Psyc S528 Psychopathology (3 cr). Review of symptoms, causes, and treatments in adult psychopathology; training in use of DSM-IV for differential diagnosis; may include practicum experience. Prereq: perm.

Psyc W533 Psychopathology (3 cr). (Psyc 575) WSU Psych 533.

Psyc 541 Social Psychology in the Workplace (3 cr). Overview of the general theory and methods of organizational psychology, focus on how individual or group behavior is affected by the organizational environment, includes topics such as work motivation, leadership, teams, culture, climate, and job attitudes. Prereq: perm.

Psyc 552 Ergonomics and Biomechanics (3 cr). See Psyc J452/J552.

Psyc 562 Advanced Human Factors (3 cr). Review of topics and theories germane to human factors such as performance measurement systems, design specifications, research issues, controls and displays, human reliability, and illumination. Prereq: ME 409, Psyc 440, and Psyc 586 or Stat 401; or perm.

Psyc 570 Introduction to Chemical Addictions (3 cr). See Psyc J470/J570.

Psyc 571 Theories of Chemical Addictions (3 cr). See Psyc J471/J571.

Psyc 572 Introduction to the Pharmacology of Psychoactive Drugs (3 cr). See Psyc J472/J572.

Psyc 574 Record Keeping and Case Management in Chemical Addictions Counseling (3 cr). See Psyc J474/J574.

Psyc 577 Chemical Dependency and the Family (3 cr). See Psyc J477/J577.

Psyc 578 Individual Therapy Techniques in Chemical Addictions Counseling (3 cr). See Psyc J478/J578.

Psyc 579 Group Therapy Techniques in Chemical Addictions Counseling (3 cr). See Psyc J479/J579.

Psyc 581 Professional Ethics in Addictions Counseling (3 cr). See Psyc J475/J581.

Psyc 582 Addictions Screening and Assessment (3 cr). See Psyc J482/J582.

Psyc 584 Facilitation Skills and Group Management for Prevention Providers (3 cr). See Psyc J484/J584.

Psyc 586 Advanced Research Methods (3 cr). Types of research designs and data analyses; use of mainframe computer packages for data analysis. Prereq: perm.

Psyc 587 Substance Abuse Program Planning and Evaluation (3 cr). See Psyc J487/J587.

Psyc 588 Ethics in Substance Abuse Prevention (1 cr). See Psyc J488/J588.

Psyc 590 Psychopharmacology (3 cr). See Psyc J490/J590.

Psyc 592 Community Coalition Development (3 cr). See Psyc J492/J592.

Psyc 598 (s) Internship (cr arr). Prereq: perm.

Rangeland Ecology and Management

Prerequisite: Courses in this subject field that are numbered above 299 are not open to undergraduate students on academic probation.

Rnge 102 Opportunities in Rangeland Ecology and Management (1 cr). Basic principles, contemporary issues, and professional opportunities in rangeland management. Introduction to careers with ranches, land management agencies, consulting firms, and environmental organizations.

Rnge 200 (s) Seminar (cr arr). Prereq: perm.

Rnge 203 (s) Workshop (cr arr). Prereq: perm.

Rnge 204 (s) Special Topics (cr arr). Prereq: perm.

Rnge 221 Natural Resources Ecology (3 cr). Same as For 221. (Fall only).

Rnge 251 Principles of Range Resources Management (2 cr). Development of range use and range resource management, rangeland vegetation types, current management issues, relationship of grazing use with other land uses and values. (Fall only)

Rnge 299 (s) Directed Study (cr arr). Prereq: perm.
Recreation

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rnge 353</td>
<td>Rangeland Plant Identification and Ecology</td>
<td>3</td>
<td>Rnge 213, Rnge 221, or perm.</td>
</tr>
<tr>
<td>Rnge 354</td>
<td>Wildland Vegetation Management and Restoration</td>
<td>3</td>
<td>Rnge 213, Rnge 221, or perm.</td>
</tr>
<tr>
<td>Rnge 400</td>
<td>Seminar</td>
<td>cr</td>
<td>perm.</td>
</tr>
<tr>
<td>Rnge 401</td>
<td>Practicum in Tutoring</td>
<td>cr</td>
<td>perm.</td>
</tr>
<tr>
<td>Rnge 402</td>
<td>Workshop</td>
<td>cr</td>
<td>perm.</td>
</tr>
<tr>
<td>Rnge 403</td>
<td>Special Topics</td>
<td>cr</td>
<td>perm.</td>
</tr>
<tr>
<td>Rnge 429</td>
<td>Landscape Ecology</td>
<td>2</td>
<td>See 429</td>
</tr>
<tr>
<td>Rnge 430</td>
<td>Riparian Ecology and Management</td>
<td>2</td>
<td>Same as Fish 430.</td>
</tr>
<tr>
<td>Rnge 435</td>
<td>Wetland Ecology and Management</td>
<td>3</td>
<td>Same as Fish 435.</td>
</tr>
<tr>
<td>Rnge 440</td>
<td>Wildland Restorative Ecology</td>
<td>3</td>
<td>Rnge 213, 314, Rnge 221, or perm.</td>
</tr>
<tr>
<td>Rnge 454</td>
<td>Rangeland Weed Management</td>
<td>3</td>
<td>Ecological principles and management practices involved in restoring and rehabilitating wildland ecosystems after disturbance or alteration to return damaged ecosystems to a productive and stable state. Recommended Preparation: a course in general ecology. (Alt/ys; spring only)</td>
</tr>
<tr>
<td>Rnge 456</td>
<td>Integrated Rangeland Management</td>
<td>3</td>
<td>Management strategies for integrating grazing with other natural resource values such as wildlife, water, timber, recreation, and aesthetics; emphasis on herbivore ecology including ecological impacts of grazing, ways to manage grazing, and nutritional relationships between plants and free-ranging ungulates on rangeland, pastureland, and forest ecosystems. One 5-day field trip. Recommended Preparation: Rnge 251. (Spring only)</td>
</tr>
<tr>
<td>Rnge 459</td>
<td>Rangeland Ecology</td>
<td>3</td>
<td>WSU NATRS 459.</td>
</tr>
<tr>
<td>Rnge 470</td>
<td>Interdisciplinary Natural Resource Planning</td>
<td>3</td>
<td>Same as Fish/WLF 470.</td>
</tr>
<tr>
<td>Rnge 483</td>
<td>Senior Project Presentation</td>
<td>1</td>
<td>See 483</td>
</tr>
<tr>
<td>Rnge 485</td>
<td>Ecology and Conservation Biology Senior Project</td>
<td>3</td>
<td>Same as CSS/ Fish/ForNATRS 485.</td>
</tr>
<tr>
<td>Rnge 493</td>
<td>Environmental Law</td>
<td>2</td>
<td>See WLF 493.</td>
</tr>
<tr>
<td>Rnge 497</td>
<td>Senior Research and Thesis</td>
<td>cr</td>
<td>perm.</td>
</tr>
<tr>
<td>Rnge 498</td>
<td>Directed Study</td>
<td>cr</td>
<td>perm.</td>
</tr>
<tr>
<td>Rnge 500</td>
<td>Master’s Research and Thesis</td>
<td>cr</td>
<td>perm.</td>
</tr>
<tr>
<td>Rnge 501</td>
<td>Seminar</td>
<td>cr</td>
<td>perm.</td>
</tr>
<tr>
<td>Rnge 502</td>
<td>Directed Study</td>
<td>cr</td>
<td>perm.</td>
</tr>
</tbody>
</table>

Directed Studies

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rnge 503</td>
<td>Workshop</td>
<td>cr</td>
</tr>
<tr>
<td>Rnge 504</td>
<td>Special Topics</td>
<td>cr</td>
</tr>
<tr>
<td>Rnge 505</td>
<td>Experimental Plant Ecology</td>
<td>cr</td>
</tr>
<tr>
<td>Rnge 527</td>
<td>Landscape Ecology of Forests and Rangelands</td>
<td>2-3</td>
</tr>
<tr>
<td>Rnge 530</td>
<td>Stream Ecology</td>
<td>3</td>
</tr>
</tbody>
</table>

Directed Study Requirements

- Selected topics in the conservation and management of natural resources. Prereq: perm.
- Recommended Preparation: basic interpretation with respect to ecological health, watershed protection, and value as livestock utilization of vegetation for management purposes; evaluation of plant communities will be analyzed using the structure and function of biomes. Prereq: Biol 213, Rnge 213, or equivalent course in plant ecology, or WSU NATRS 213. (Fall only)
Rec 150 Golf Professional Training Program, Level I (1 cr) Specific work experience activities required of Professional Golf Management students who are preparing for a PGA checkpoint for Level I. Professional presentations and completed internship portfolios will be necessary for completion of this course. Prereq: PGM student or REC 103 and perm. (Spring only)

Rec WS181 Introduction to Hospitality Services Industries (3 cr) WSU H A 181.

Rec 200 (s) Seminar (cr arr). Prereq: perm.

Rec 203 (s) Workshop (cr arr). Prereq: perm.

Rec 204 (s) Special Topics (cr arr). Prereq: perm.

Rec 205 Teaching Golf (II 2 cr) Basic fundamentals of how the golf swing works. Students will learn how to analyze swing motion and observe ball flight characteristics to help them improve their golf game. Students will also examine ways to generate business using marketing and promotional techniques. Prereq: PGM student or REC 103 and perm. (Fall only)

Rec 211 Fly Tying (1 cr) Introduction to tying flies (dry, nymph, streamer, and terrier) for Northwest fish species. Hatches and their patterns, and basic fly fishing techniques will be discussed. Additional fees may be required.

Rec 212 Beginning Fly Fishing (1 cr) Introduction to tying flies, equipment, fly casting, and fly fishing techniques for Northwest fish species. One, 1 day field trip. Rec 211 recommended. Additional fees may be required.

Rec 213 Advanced Fly Fishing (2 cr) Advanced fly tying, equipment, casting, and fly fishing techniques for Northwest fish species. Focus will be on Steelhead and trout. Two, 1 day field trips. Prereq: Rec 212 or perm. Additional fees may be required. (Fall only)

Rec 214 Western Angling (2 cr) Introduction to Salmon, Trout, and Steelhead fishing in the Northwest. Techniques, equipment, regulations, species identification, and fishing areas will be discussed. Two, 1 day field trips. Additional fees may be required.

Rec 215 River Reading and Whitewater Safety (1 cr) River reading knowledge, whitewater safety, and rescue instruction; wild and scienic river legislation and requirements for backcountry travel along river corridors.

Rec 217 Wild Game Calling/Viewing (1 cr) Introduction to species identification, habitat, mating and calling seasons, safety, and viewing wild game. Emphasis will be on Elk, Turkey, Deer, and Predators. One, 1 day field trip. Additional fees may be required. (Fall only)

Rec 219 Archery (1 cr) Introduction to shooting archery. Fundamentals including shooting techniques, bow tuning, equipment and repair, and safety will be discussed. One, 1 day field trip.

Rec 220 Rock Climbing (1 cr) Intro to fundamentals of basic rock climbing including equipment, climbing techniques, knots, belaying, and rappelling; emphasis on skill development, risk management, and leadership. Three off-campus field sessions.

Recommended Preparation: Two courses from Rec 125, 320, 420, CSS 287, 387, 487, 490. (Alt/rys)

Rec 221 Mountaineering (2 cr) Intro to fundamentals of mountaineering including equipment; fundamentals; rock, snow, and ice techniques; climbing equipment; navigation; expedition planning and safety; emphasis on skill development and safety. One 3-day field trip. Recommended Preparation: Rec 220 and two courses from Rec 125, 320, 420, CSS 287, 387, 487, 490. (Alt/rys)

Rec 222 Cross Country Skiing (1 cr) Intro to skills of cross country skiing including equipment, waxing, climbing techniques, turns, downhill, and diagonal glides. One 1-day field trip. Recommended Preparation: Two courses from Rec 125, 320, 420, CSS 287, 387, 487, 490. (Alt/rys)

Rec 223 Winter Skills (2 cr) Intro to fundamental skills reqd to successfully travel in winter environment, including equipment, trip planning, avalanche awareness, snow showers, travel techniques, and safety including psychological and physiological aspects of cold weather. One 1-day and one 2-day field trips. Recommended Preparation: Rec 222 and two courses from Rec 125, 320, 420, CSS 287, 387, 487, 490, or perm. (Alt/rys)

Rec 224 Whitewater Rafting (1 cr) Intro to skills of whitewater rafting including equipment, trip planning, permits, techniques, and river impact. One or two field trips. Prereq: Rec 215; two courses from Rec 125, 320, 420, CSS 287, 387, 487, 490, or perm. (Alt/rys)

Rec 225 Kayaking (1 cr) Intro to skills of whitewater kayaking including equipment, eskimo rolls, eddy turns, ferrying, and rapid maneuvering. One 2-day field trip. Prereq: Rec 215; two courses from Rec 125, 320, 420, CSS 287, 387, 487, 490, or perm. (Alt/rys)

Rec 226 Whitewater Canoeing (1 cr) Intro to fundamentals of tandem canoe paddling on whitewater rivers; equipment, trip planning, and paddling technique will be examined and practiced. Onelec and 2 hrs of lab a wk; one 4- to 7-day field trip. Prereq: Rec 215.

Rec 212 Principles of Recreational Therapy (3 cr) WSU RLS 230. Philosophy, design, and development of recreation programs for persons with disabling conditions, as well as theory and rationale of recreational therapy. Field experience reqd. Recommended Preparation: Biol 120 and 121.

Rec 250 Golf Professional Training Program, Level II (1 cr) Specific work experience activities required of Professional Golf Management students who are preparing for a PGA checkpoint for Level II. Professional presentations and completed internship portfolios will be necessary for completion of this course. Prereq: PGM student or Rec 103 and perm. (Spring only)

Rec 254 Camp Leadership (2-3 cr, max 3). Objectives, program, and philosophy of private, organizational, and school camp programs. One 3-4 day field trip. (Alt/rys)

Rec 256 Camp Counseling Practicum (2-3 cr, max 3). For camp counselors who are employed by or assigned to approved camps. Cr granted on the basis of one cr for each two wks of camping. Student conducts with instructor for written work. Prereq: perm.

Rec 258 Survival Skills (3 cr) Instruction and practice of short term survival skills; developing students understanding, attitudes, and skills. Field trip reqd.

Rec 260 Leisure and Society (3 cr). May be used as core credit in J-3-3d. Expanding role of leisure in U.S. life; emphasis on factors influencing leisure; analysis of leisure values as related to the individual and society. (Fall only)

Rec 275 Computer Applications in Leisure Services (3 cr) Introduction to computer software applicable to the recreation and leisure profession; software used to produce presentation graphics, desktop publishing, spreadsheets, web page creation, and print material for the leisure profession; Internet access for electronic mail, and Web searches through web search engines; intro to SSRS statistical software.

Rec 280 Recreation Practicum (1 cr, max 2). Practical experience in agency recreation and leisure services. Forty clock hrs reqd a cr. Graded F/D. Prereq: perm of advisor.

Rec 290 Wilderness First Responder (3 cr). Wilderness First Responder is the accepted standard in wilderness medical training for guides, trip leaders, and outdoor professionals. This course covers the knowledge and skills needed to respond to back country medical and trauma situations. Over night field trip required. (Spring only)

Rec 299 (s) Directed Study (cr arr). Prereq: perm.

Rec 320 Outdoor Recreation Leadership (2 cr). Consideration and evaluation of successful outdoor recreation leaders; contemporary issues, effective trip planning, and evaluation of outdoor trips. (Alt/rys)

Rec 321 Wilderness Medicine and Evacuation (1 cr) Fundamentals of handling wilderness emergencies; instruction including prevention, recognition, evaluation, treatment, and evacuation of injured people in remote situations. One 2-day field trip. (Alt/rys)

Rec 329 Leadership in Recreation (3 cr). Intro to theories, methods, and styles of effective leadership; includes motivation, group dynamics, leadership skills, and abilities in the recreation and leisure setting. (Alt/rys)

Rec ID330 Recreational Therapy Programming for People with Disabilities (3 cr). WSU RLS 330. Preventable disabling conditions (including etiology, symptomatology, and characteristics) and their implications for programming intervention in clinical settings. Field trips reqd. (Alt/rys)

Rec 340 Hospitality, Leisure, and Recreation Enterprises (3 cr). Introduction to hospitality and commercial leisure enterprises. The course will include food and beverage service operation, profit and cost accounting, techniques, marketing, advertising schemes and the relationship between business and leisure programs, services, and products. Field trips reqd. (Alt/rys)

Rec ID341 Assessment and Evaluation in Recreational Therapy (2 cr). WSU RLS 344. Standardized assessment and evaluation tools currently used in recreational therapy services; integration of assessment practices into recreational therapy programs and how to choose standardized tools appropriate to both client and professional setting; practical assessment situations. (Alt/rys)

Rec ID342 Recreational Therapy in Psychiatric Settings (3 cr). WSU RLS 342. Recreational therapy delivery in psychiatric settings, including long-term settings such as state hospitals, acute inpatient psychiatric settings, and community mental health centers; major psychiatric disorders; how to work as a part of an interdisciplinary team, and the viable role of recreation in the treatment process. Ten hrs of outside experience reqd. (Alt/rys)

Rec 345 Hospitality, Leisure, and Recreation Enterprises Lab (1 cr) Provide students with “hands-on” experience that will expose them to the daily operations of food and beverage management within the hospitality industry. Coreq: Rec 340. Prereq: PGM student. (Spring only)

Rec 349 Facility Planning and Management (2 cr). Principles and procedures of planning, design, development, and management of recreation, park, and leisure facilities. Three 1-day field trips. (Alt/rys)

Rec ID365 Leisure and the Aging Process (3 cr). WSU RLS 365. Recreation programing for the elderly based on aging process, cultural influences, and psychological and sociological aspects; visitation and field experience reqd. (Alt/rys)

Rec 400 (s) Seminar (cr arr). Prereq: perm.

Rec 403 (s) Workshop (cr arr). Prereq: perm.

Rec 404 (s) Special Topics (cr arr). Prereq: perm.

Rec J405/J505 Professional Development (cr arr). Cr earned may not be applied toward grad degree program. Professional development and enrichment of recreational professionals. Additional projects.Assignments reqd for grad cr.

Rec 410 Trends and Issues in Leisure Services (3 cr). Current trends and issues in recreation and parks field; group discussion; background and experience in solving recreation problems through selected topics of current importance in recreation/parks field.

Rec 420 Experiential Education (2 cr). May be used as core credit in J-3-3d. Philosophy and administration of adventure activities, initiative games, ropes courses, and their application to individual and group development; program development and staff development. Field trips reqd. (Alt/rys)

Rec 425 Leisure Education (2 cr). Historical and philosophical basis of leisure education and leisure counseling; emphasis on identification of individual interests and attitudes
in relationship to recreation and leisure needs; review of existing programs, description of methods, techniques, instruments utilized; methods for developing individual leisure profiles. (Alt/ylls)

Rec ID-J431/J531 Medical Terminology (2 cr). WSU RLS 431. Intro to basic concepts of medical terminology and symbols related to working with people with disabilities. Additional projects/assignments reqd for grad cr. (Alt/ylls)

Rec ID-J433/ID-J535 Clinical Aspects of Recreational Therapy (3 cr). WSU RLS 433. Orientation to the practice of recreational therapy as a clinical modality; conceptual framework for understanding importance of using activities in the helping process using RT profession in clinical settings. Cr earned in Rec 530 by completion of additional projects/assignments. Field trip reqd. Recommended Preparation: Rec 280. (Alt/ylls)

Rec 445 Professional Seminar (1 cr). Orientation to rec internship, professionalism, and employment techniques including development of a vita and interviewing skills. Graded P/F.

Rec 455 Design & Analysis of Research in HPERD (3 cr). Same as H&S 455 and PEP 455. This course is designed to survey the basic types of research methods often found in health, physical education, sport science, and recreation. A variety of research designs and computerized statistical analyses are studied to help students understand the systematic nature of problem solving. Various research problems as they relate to health, physical education, recreation, and human performance are discussed for the purpose of identifying the broad and diverse nature of research in the movement, leisure, and health professions. Prereq: Jr or Sr standing. (Spring only)

Rec 460 History and Philosophy of Recreation and Leisure (2 cr). Development of recreation movement and its cultural, social, and economic background; philosophies of significant leaders in the field; students develop a personal philosophy of recreation. (Alt/ylls)

Rec ID-J467/ID-J567 Recreational Therapy for People with Developmental Disabilities (3 cr). WSU RLS 467. Programming models for people with developmental disabilities; RT intervention from developmental sequencing to community reintegration; assessment and treatment planning incorporated into lab experience. Cr earned in Rec 567 by completion of additional projects/assignments. Field trip reqd. (Alt/ylls)

Rec 486 Recreation Program Planning and Marketing I (2 cr). Planning and development of recreation programs and implementation of marketing techniques: theoretical emphasis with recreation special event programmed at end of semester. (Alt/ylls)

Rec 487 Recreation Program Planning and Marketing II (2 cr). Planning and development of recreation programs and implementation of marketing techniques; practical application emphasis. Prereq: Rec 486 or perm. (Alt/ylls)

Rec J493/J593 Management of Leisure Services (3 cr). Management and leadership, facilities, finances, services, and public relations. Cr earned in Rec 593 by completion of additional projects/assignments. (Alt/ylls)

Rec 494 Golf Program, Planning and Management (3 cr). Planning and development, leadership, services, finance, events and overall management of golf course programs and operations. Students will understand how to promote, organize, and evaluate golf programs including relationship between service and cost. Prereq: PGM student or perm.

Rec 495 (s) Practicum in Tutoring (1 cr, max arr). Tutoring services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm.

Rec 498 (s) Internship in Recreation (cr arr). Supervised field work with a professional recreation agency. Prereq: Rec 280, 445, and Sr standing.

Rec 499 (s) Directed Study (cr arr). Prereq: perm.

Rec 505 Professional Development (cr arr). See Rec J405/J505.

Rec WS522 Administrative Perspectives (3 cr). WSU RLS 522.

Rec ID567 Therapeutic Recreation for People with Developmental Disabilities (3 cr). See Rec J467/J567.

Rec WS582 Recreation Law and Risk Management (3 cr). WSU RLS 582.

Rec 585 Historical and Philosophical Concepts of Leisure (3 cr). The development of the recreation/leisure movement and its cultural, social, and economic backgrounds; philosophies of significant leaders and key events in the field; students develop a personal philosophy of recreation and leisure. (Spring only)

Rec 593 Management of Leisure Services (3 cr). See Rec J493/J593.

Rec ID594 Sport and Recreation Budget and Finance (3 cr). WSU RLS 594. Policies and practices involved in acquisition, control, and financial management in sport and recreation agencies. (Spring only)

Rec 595 Sport and Recreation Facility Management (3 cr). Management techniques and philosophies applied to recreation and sport facilities; includes operation, marketing, legislation and legal issues, personnel and technical design and planning. Field trips. (Fall only)

Rec 596 Recreation and Sport Management Behavior (3 cr). Management behavior and strategies related to recreation and sport agencies, including leadership, supervision, and a variety of administrative issues. (Spring only)

Rec ID597 Computer Applications in Recreation and Leisure Studies (3 cr). WSU RLS 597. Identifying different computer applications in recreation and leisure fields; acquiring specific computer skills in use of specialized software packages for registration, scheduling, budgeting, and league operations; production of schedules and registration forms. (Fall only)

Rec 598 (s) Internship (cr arr). Supervised field experience in an appropriate leisure agency. Graded P/F. Prereq: perm.

Rec 599 (s) Non-thesis Master’s Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

Religious Studies

Janice Capel Anderson, Coordinator (403 Morrill Hall 83844-3016; phone 208/885-6284).

ReIS 101 Introduction to Religious Studies (3 cr). May be used as core credit in J-3-d. Intro to academic study of religion by analyzing history and development of Judaism, Christianity, and Islam. Prereq: upper-division standing. (Alt/ylls)

ReIS 204 (s) Special Topics (cr arr). Prereq: Rec 280.

ReIS 302 Biblical Judaism: Texts and Thought (3 cr). See Phil 302.

ReIS 303 Early Christianity: Texts and Thought (3 cr). See Phil 303.

ReIS 306 Hindu Thought (3 cr). See Phil 306.

ReIS 307 Buddhism (3 cr). See Phil 307.

ReIS 308 Confucianism and Taoism (3 cr). See Phil 308.

ReIS 327 Belief Systems (3 cr). See Anth 327.

ReIS 375 The Bible as Literature (3 cr). See Eng 375.

ReIS 404 (s) Special Topics (cr arr). Prereq: Rec 280.

ReIS 414 Development of Social Theory (3 cr). See Soc 414.

Sociology

Donald E. Tyler, Chair, Dept. of Sociology/Anthropology/Justice Studies (101 Pinney Hall 83844-1110; phone 208/885-6751).

Prerequisite: The successful completion of Soc 101 is required for enrollment in upper-division sociology courses; exceptions by permission.

Soc 101 Introduction to Sociology (3 cr) May be used as core credit in J-3-d. Basic theories, concepts, and processes involved in scientific study of society; includes socialization process, social inequality, the family, religion, deviance, population, the environment, and social change. (Alt/ylls)

Soc 200 (s) Seminar (cr arr). Prereq: perm.

Soc 204 (s) Special Topics (cr arr). Prereq: perm.

Soc 209 Alternatives to Violence (ATV) Training (2 cr). Participation in the training for ATV advocates that includes background information on domestic violence and sexual assault (30 hours) and entry-level techniques of working with victims; requires service in the agency for the duration of the year. Graded P/F. Limited enrollment. Prereq: perm.

Soc 230 Social Problems (3 cr) May be used as core credit in J-3-d. Contemporary social issues and personal deviations; crime and delinquency, poverty and wealth, drugs, sexual variations, racism, sexism, and the environment.

Soc 240 Introduction to Social Services (3 cr). Survey of the field of social welfare and contemporary social services. Prereq: Soc 101 and 240. (Alt/ylls)

Soc 299 (s) Directed Study (cr arr). Prereq: perm.

Soc 301 Introduction to Diversity and Stratification (3 cr). Same as Anth 301. An interdisciplinary and historical study of diversity and stratification in a cross-cultural global context. The course examines multiple forms of diversity and stratification including, but not limited to, culture, class, race/ethnic, gender/sexuality, religious diversity, and political ideology in an effort to raise students' ability to interact with and understand others in our increasingly multicultural world.

Soc 313 Collective Behavior (3 cr). Analysis of such episodes of behavior as riots, demonstrations, panics, hysteria, as well as interaction of sociological, political, and communication processes involved in public acceptance of fashion, fads, and ideology in a mass society.

Soc 314 Society and Self (3 cr). May be used as core credit in J-3-d. Examination of the relationship between society and the self with a focus on the construction, maintenance, and performance of identities in America; exploration of sociological theories of the self, stigma, and social roles. Prereq: upper-division status and Soc 101 or equivalent.
Soc 431 Racial and Ethnic Relations (3 cr). May be used as core credit in J-3-6. Lab study relevant to Soil 205. Experiments and demonstrations on basic and applied aspects of soil science. One 3-hr lab a wk. Coreq: Soil 205.

Soil 206 The Soil Ecosystem Lab (1 cr). May be used as core credit in J-3-6. Lab study relevant to Soil 205. Experiments and demonstrations on basic and applied aspects of soil science. One 3-hr lab a wk. Coreq: Soil 205.

Soil ID/WSS 345 Sustainable Agriculture (3 cr). Prereq: Soil WSIS 345. Environmental issues in sustainable agriculture including human, land, air, water, and energy resources; recycling, pollution, biotechnology, and risk-benefit assessment. Available only in video format. Prereq: 2 semesters of college-level physical or biological science or perm.

Soil 398 Internship (1-6 cr, max 6). Graded P/F. Prereq: perm of dept.

Soil 404 (s) Special Topics (cr arr). Prereq: perm.

Soil 415 Soil and Environmental Physics (3 cr). Physical properties of soils and their relationships to moisture, aeration, and temperature; plant-soil-atmospheric relationships; solute transport and soil salinity. Two lec and one 3-hr lab a wk. Recommended Preparation: Soil 200, and Phys 111. (All yrs, Fall).

Soil 422 Environmental Soil Chemistry (3 cr). Chemical processes in soil environment. Recommended Preparation: Soil 205, 206, and Chem 112 or 113. (All yrs)

Soil 437 Soil Biology (3 cr). Introduction to soil organisms including bacteria, fungi, and macroinvertebrates and the influence of their activities on soil processes. Two lec and one 3-hr lab a wk. Recommended Preparation: Soil 205 and MMBB 205. (All yrs)

Soil 438 Pesticides in the Environment (3 cr). Same as Ent and PlSc 438. Principles of pesticide fate in soil, water, and air; pesticide metabolism in plants; pesticide toxocology, and pesticide mode-mechanism of action; pest resistance to pesticides; biotechnology in pest control; regulations and liability; equipment application technology; pesticide transport, storage, and disposal; and social and ethical considerations. Recommended Preparation: Chem 275.

Soil ID/WSS 442 Environmental Research Methods (3 cr). WSU Soils 442. Field and laboratory characterization of soil, plant, and water samples in relation to plant growth and environmental problem solving; includes independent or team projects. Prereq. Soils 200 and 422.

Soil 446 (s) Soil Fertility (1-3 cr, max 3). Principles of soil fertility management; availability of plant nutrients and their relationship to plant growth and fertilization practices. Recommended Preparation: Soil 205 and 206.

Soil J 447/JD-J547 (s) Soil Fertility Management (1-3 cr, max 3). WSU Soils 547. Philosophy of fertilizer recommendations based on soil and plant tissue testing; principles of fertilizer manufacture, placement, and use for improving plant growth. Project reqd for grad cr. Recommended Preparation: Soil 446.

Soil 454 Soil Development and Classification (3 cr). Relationship of soil development to soil properties; soil profile descriptions and classification. Two lec and one 2-hr lab a wk; two 1-day or one 2-day field trips. Recommended Preparation: Soil 205 and 206.

Soil 455 Forest Soils: Morphology, Function, and Spatial Dynamics (3 cr). Soils as fundamental components of forested ecosystems; relation of soil properties to forest productivity and management; soil processes within ecosystems; soil-landscape interactions and inventory. Two lec and one 3-hr lab a wk; one 2-day field trip may be required. Recommended Preparation: Soil 205.

Soil 456 North Idaho Field Trip (1 cr). Soils and land use in northern Idaho ecosystems; emphasis on soil parent materials, soil formation and morphology, and soil-plant community relationships. Graded P/F. One 3-day field trip; additional class meetings and assignments before and after field trip. Prereq: Soil 205 or perm.

Soil 458 Soil and Site Evaluation (1-2 cr, max 8). Duration and evaluation of soils; emphasis on morphologic Features and properties that influence land use. Graded P/F. Two-four hrs of lab a wk; one 3-day or one 6-day field trip. Recommended Preparation: Soil 205.

Soil 499 (s) Directed Study (cr arr). Prereq: perm.

Soil 500 Master’s Research and Thesis (cr arr).

Soil 501 (s) Seminar (cr arr). Prereq: perm.

Soil 502 (s) Directed Study (cr arr). Prereq: perm.

Soil 504 (s) Special Topics (cr arr). Prereq: perm.

Soil WS 521 Environmental Soil Chemistry (3 cr). WSU Soils 521.

Soil 5D 526 Soil Mineralogy (3 cr). WSU Soils 526. Distribution and significance of common soil minerals; weathering and general reactivity as related to mineral structures; techniques of mineral identification including x-ray diffraction, chemical dissolution procedures, optical and electron microscopy. One lec and one 3-hr lab a wk. Prereq: Soil 422, 454 or perm. (All yrs)

Soil 528 Advanced Chemistry of Soil Environment (3 cr). Practical treatment of physical and chemical processes affecting ion retention and bioavailability in soils and sediments including speciation, adsorption, precipitation, dissolution and redox reactions. Prereq: Soil 422 or perm.

Soil 5D 537 Soil Biochemistry (3 cr). WSU Soils 537. Same as MMBB 537. Origin, chemical structure, and significance of soil biochemical compounds. Prereq: Soil 422, MMBB 380, MMBB 250 or perm. (All yrs)

Soil WS 541 Soil-Plant-Microbial Interaction (3 cr). WSU Soils 541. (All yrs)

Soil 5D 547 (s) Soil Fertility Management (1-3 cr, max 3). See Soil J447/J547.
PART SIX

Courses

Special Education

Jennifer Olson, Coordinator of Special Education (405-A Educ. Bldg. 83844-3082; phone 208/895-5237 or 208/895-3567).

EDSP 102 Inquiry Project: Special Education (1-2 cr) Students research topics related to careers in Special Education. Prereq: At least 16 years of age or have approval signature from a parent/guardian; have a GPA of at least 3.0; have signed permission from parent/guardian.

EDSP 200 (s) Seminar (cr ar). Prereq: perm.

EDSP 204 (s) Special Topics (cr ar).

EDSP 299 (s) Directed Study (cr ar). Prereq: perm.

EDSP 325 Classroom Applications of Learning Theories (2 cr) Emphasis on behavioral principles and their relationship to instructional strategies; completion of a project in an applied setting. Recommended Preparation: ED 201.

EDSP 350 Language and Communication Development and Disorders (3 cr). Overview of language, communication, and sociocultural development and their interaction with cognitive and learning disabilities; legal and cultural issues; informal assessments and teaching strategies; models for collaboration with speech and language professionals. Prereq: ED 201. (Fall only)

EDSP 351 Family and Community Involvement (2 cr) Orientation to theory and practice for working with parents and families in the education of persons with disabilities; school and community systems and resources; parent-teacher communication; skills in collaborating with other professionals, particularly paraprofessionals and volunteers in the classroom. Prereq: EDSP 252 and 301 or perm. (Spring only)

EDSP 390 (s) Special Education/Field Experience (1-3 cr max. 3). Supervised observation and/or instruction with students with disabilities; group discussion sessions. Graded P/F.

EDSP 400 (s) Seminar (cr ar). Prereq: perm.

EDSP 403 (s) Workshop (cr ar). Prereq: perm.

EDSP 404 (s) Special Topics (cr ar).

EDSP 405/505 (s) Professional Development (cr ar). Professional development and enrichment of certified school personnel. Cr earned will not be accepted toward graduate degree programs, but may be used in a fifth-yr program. Additional projects/assignments reqd for grad cr.

EDSP 424 Students with Behavioral and Emotional Issues (2 cr). Strategies for developing and implementing educational programs for students with various behavioral and emotional issues, including those who qualify as seriously emotionally disturbed; discussion of assessment, programming, legal, and cultural issues. Prereq: EDSP 325 or perm. (Spring only)

EDSP 425 Evaluation of Children and Youth (2 cr). Assessment procedures for determining eligibility and identifying educational needs of students with disabilities, including legal issues and current trends. Prereq: EDSP 325 or perm. Coreq: EDSP 390, 426. (Fall only)

EDSP 426 Developing Instructional Programs (2 cr). Overview of assumptions, current trends, legal and cultural issues; application of learning principles and strategies for curriculum development; collaborative development of Individual Education, Instruction, and Transition Plans; methods for evaluating student progress and instructional effectiveness. Recommended Preparation: EDSP 325, 351, 390, 425. (Fall only)

EDSP 427 Curriculum Development and Adaptation (3 cr). Orientation to philosophies of curriculum development; advantages and disadvantages of curricular approaches; selection, evaluation, and adaptations of curricula and materials; implementation and evaluation of an IEP and lessons in a school setting; models of collaboration and staffing strategies; legal and cultural issues. Prereq: EDSP 426. Coreq: EDSP 390. (Spring only)

EDSP 428 Issues in Secondary Special Education (2 cr). Examination of various programs and curricula available for secondary students with disabilities; the process of making and implementing transition plans through case-based instruction; emphasis on interagency connections and the use of community resources. Coreq: EDSP 390, 427. (Fall only)

EDSP 460 Early Childhood Assessment (3 cr) Overview of the assessment process, link between assessment and curriculum planning, cultural responsiveness in assessment, legal issues and family partnerships. Review and experience with various types of strategies and tools for screening and assessing infants and young children ages birth through 8 across all developmental domains. Recommended Preparation: FCS 235 and 235. (Fall and Summer only)

EDSP 461 Early Childhood SPED CURRICULUM (3 cr) Overview of typical and atypical infant and child development; instructional strategies for working with infants, toddlers and young children through third grade, linking assessment to curriculum, designing instructional programming for natural settings and formal settings; involving families, collaboration among professionals, working with volunteers and paraprofessionals. Recommended Preparation: FCS 234 and 235, EDSP 460. (Spring only)

EDSP 480 Practicum (7 or 14 cr). Dual majors enroll for 7 cr; single majors for 14 cr. Supervised classroom experience with students with disabilities. Graded P/F. Prereq: admission to teacher education, 2.5 GPA, and perm of dept. (Submit application to director of clinical experiences in teacher education by December 1 of school year before enrolling.)

EDSP 484 (s) Special Education Internship (1-15 cr). Guided observation, supervised instruction, and comprehensive team and independent teaching in school settings. Prereq: perm of division. Coreq: integrated course work and ED 401.

EDSP 490 Infant Practicum (7-10 cr) Direct practical experience in settings serving typically and atypically developing infants: ages birth to 24 months. Demonstration of screening, assessment, development of IFSP programming in natural environments, working closely with parents to increase their roles as partners and collaboration among service providers. Prereq: EDSP 460, 461 or perm.

EDSP 499 (s) Directed Study (cr ar). Prereq: perm.

EDSP 500 Master’s Research and Thesis (cr ar).

EDSP 501 (s) Seminar (cr ar). Prereq: perm.

EDSP 502 (s) Directed Study (cr ar). Prereq: perm.

EDSP 503 (s) Workshop (cr ar). Prereq: perm.

EDSP 504 (s) Special Topics (cr ar). Prereq: perm.

EDSP 505 (s) Professional Development (cr ar). See EDSP J405/J505.

EDSP 520 Education of People with Disabilities (3 cr). Introduction to the education of people with disabilities, primarily in the school setting. History and foundation of special education; areas of exceptionality, instructional practices, issues and trends and law and legislation as it applies to persons with disabilities. (Fall and Summer only)

EDSP 521 Introduction of Evaluation of Children and Youth (2 cr). EDSP 521 carries no credit. After EDSP 425. This course provides special educators with the skills necessary to plan, conduct, and use assessment information to assist in determining eligibility of students for special education services and planning services for students with disabilities. Prereq: EDSP 501. Coreq: EDSP 597 (1 cr).

EDSP 522 Advanced Evaluation Techniques (2 cr) Implementation of evaluation tools, practices, and processes that extend beyond eligibility decisions to alternative assessments for early childhood, elementary, and secondary students with disabilities; integration of assessment and curriculum; legal, cultural, and ethical issues. Prereq: EDSP 425 or 521.

EDSP 540 Behavioral Analysis for Children and Youth (3 cr) Application of learning theory to instruction; principles of behavior analysis with application to teaching; applied research techniques, ethical, legal, and cultural issues. Completion of field work in applied setting required. (Fall only)

EDSP 542 Families: Issues of Disability and Culture (3 cr). Issues of families and individuals with disabilities; theories and strategies for forming partnerships with families across cultures, assessment, vocational, residential, and related areas; strategies for working with various cultural perspectives; legal issues. Completion of field work in applied setting required. (Spring only)

EDSP 548 Special Education Curriculum (3 cr). Theories of curriculum; models of teaching, instructional strategies, evaluation of student progress and service delivery; issues and trends in special education. (Spring only)

EDSP 549 Language, Communication, and Social/Emotional Enhancement (3 cr). Overview of theory and research findings; discussion of current issues, rationales, intervention programs and strategies with an emphasis on social relations and interactions, legal mandates, and cultural issues. Includes a field component and project. (Spring only)

EDSP 561 Early Childhood Special Education Instruction (3 cr) Overview of instructional strategies and methods for teaching young children with disabilities in natural settings with age appropriate peers; emphasis on strategies for adapting the environment, schedule, and teaching methods to promote inclusion for young children; the link between curriculum and assessment is reviewed and expanded.

EDSP 562 Collaboration and Teaming (3 cr) Overview and specific application of teaching practices that promote collaboration among disciplines and across agencies and settings serving persons with disabilities; interagency agreements, strategic planning for system change to promote collaboration, and methods for evaluating success.

EDSP 580 Consulting Teacher (3 cr). Emphasis on models of consultation; role and responsibility of position; skills necessary to establish productive, collaborative relationships with school personnel; systems change theory. (Alt/yr)

EDSP 582 Administration of Special Education (3 cr). Overview of administration of special education including legal issues, leadership skills, systems change theory, management of personnel, budget, and effective use of human and fiscal resources. (Alt/yr)

EDSP 597 (s) Practicum (cr ar). Graded P/F. Prereq: perm.

EDSP 598 (s) Internship (cr ar). Supervised field experience in an appropriate public or private agency. Graded P/F. Prereq: perm.
Statistics

Rick L. Edgeman, Chair, Department of Statistics (415 Carol Ryrie Brink Hall 83844-1104; phone 208/885-4410).

Credit Limitations: Credit is not given for both Stat 251 and 301 or for both Stat 251 and 271.

Stat 150 Introduction to Statistics (3 cr). May be used as core credit in J-3. Intro to statistical reasoning with emphasis on examples and case studies; topics include design of experiments, descriptive statistics, measurement error, correlation and regression, probability, expectation, normal approximation, sample surveys, tests of significance.

Stat 251 Statistical Methods (3 cr). May be used as core credit in J-3. Cr is not given for Stat 251 after Stat 271 or Stat 301. Intro to statistical methods including design of statistical studies, basic sampling methods, descriptive statistics, probability and sampling distributions; inference in surveys and experiments, regression, and analysis of variance. Prereq: Math 137, 143, 160, 170, or 2 yrs of high school algebra and perm.

Stat 262 Decision Analysis (1 cr). May be used as core credit in J-3. May not be taken for credit after Stat 271. An overview of basic components of decision theory, conditional probability, and Bayesian analysis. Prereq or coreq: Stat 251.

Stat 271 Statistical Inference and Decision Analysis (4 cr). May be used as core credit in J-3. Credit not allowed for both Stat 271 and 251 or for both Stat 271 and 301. Introduction to statistical methods including probability, decision theory, confidence intervals, hypothesis testing, correlation, regression, and nonparametric techniques. May involve evening exams. Prereq: Math 160 or 170.

Stat ID&W 301 Probability and Statistics (3 cr). WSU Math and Stat 360. Intended for engineers, mathematicians, and physical scientists. Cr not given for both Stat 251 and 301 or for both Stat 271 and 301. Intro to sample spaces, random variables, statistical distributions, hypothesis testing, basic experimental design, regression, and correlation. Prereq: Math 175.

Stat ID&W 422 Sample Survey Methods (3 cr). WSU Stat 422. Simple random, systematic, stratified random, one and two stage cluster sampling; introduction to variable probability sampling and estimation of population size. Two lecs and one 1-hr lab wk. Prereq: Stat 251, 271, or 301.

Stat 423 Beginning SAS Programming (1 cr). Coverage of a variety of methods for data manipulation, data management, and programming in the SAS language. DATA step programming methods including data transformation, functions for numeric and character data, input of complicated data files, and do loop usage. Data management topics include concatenating data files, sorting and merging data files and ARRAY statement usage. Prereq: Stat 251, 271, or 301.

Stat 424 Intermediate SAS Programming (1 cr). SAS programming with several SAS modules such as SAS/Graph, SAS/IML, and SAS/Macro language. Prereq: Stat 251, 271, or 301 and Stat 423 or equivalent experience.

Stat 425 Topics in SAS Programming (1 cr). Topics in SAS programming, such as covering particular SAS modules in depth. Prereq: Stat 251, 271, or 301.

Stat ID 428 Geostatistics (3 cr). See Geod 428.

Stat 433 Econometrics (3 cr). See Econ 453.

Stat ID&W 452 Mathematical Statistics (3 cr). See Math 452.

Stat 456 Quality Management (3 cr). See Bus 456.

Stat 499 (s) Directed Study (cr arr). Prereq: perm.

Stat 502 (s) Directed Study (cr arr). Prereq: perm.

Stat 504 (s) Special Topics (cr arr). Prereq: perm.

Stat ID 507 Experimental Design (3 cr). WSU Stat 507. Methods of constructing and analyzing designs for experimental investigations; analysis of designs with unequal subclass numbers; concepts of blocking randomization and replication; confounding in factorial experiments; incomplete block designs; response surface methodology. Prereq: Stat 401.

Stat 525 Econometrics (3 cr). See AgEc 525.

Stat ID&W 571 Reliability Theory (3 cr). WSU Math 573. Statistical concepts; stochastic models, strengths and lifetimes; strength versus safety analysis; reliability of coherent systems; maintenance models; complex systems. Prereq: Math 451. (Alt/lyrs)

Stat 594 Analysis of Correlated Data (3 cr). See For 594.

Stat 597 (s) Practicum (cr arr). Prereq: perm.

Stat 598 (s) Internship (cr arr). Prereq: perm.

Systems Engineering

Ralph S. Budwig, Chair, Dept. of Mechanical Engineering (3241 Engineering/Physics Bldg. 83844-0902; phone 208/885-6579).

SysE 510 Introduction to Systems Engineering (3 cr). Overview of topics of systems engineering; system specification, design, development and implementation; mathematical tools used in design and evaluation of systems, as they pertain to reliability, maintainability, and feasibility;

SysE 511 Applied Systems Engineering (3 cr). Moves beyond a philosophical discussion of what systems engineering is and begins to address how systems engineering can be applied; 12 instructional modules, each addressing a different aspect of the systems engineering process; provides students with basic concepts and skill necessary for successful systems engineering application.

SysE 513 Systems Requirements (3 cr). Requirements identification, analysis, and management essential to successful product development in complex, real world environments; advance planning, stakeholder inquiry, and system analysis that leads to technical business, and management requirements, which then drive system design and subsequent test and validation. Prereq: SysE 511.

SysE 515 Systems Design and Decision Analysis (3 cr). Systems synthesis and design that are driven by requirements derived from mission analysis and customer needs; functional, decomposition, and allocation to system components that provide the basis for selection of design alternatives; design selection using trade studies and decisions made under uncertainty and risk. Prereq: SysE 511.

SysE 520 Probability and Statistics for Systems Engineers I (3 cr). Applications of probability and statistics for univariate and multivariate distributions, including statistical testing and design of experiments: statistical requirements statements and verification methods; reliability, availability, and maintainability analyses, systems effectiveness; statistical requirements allocations and error budgets; introduction to system modeling and simulation. Prereq: Stat 401 or perm.

SysE 521 Probability and Statistics for Systems Engineers II (3 cr). Theoretical system modeling and simulation including system model development; applications of orthonormal series modeling, least squares, linearized least squares, sequential filters, Kalman Filters, Extended Kalman Filters, Square Root Filters, Maximum Likelihood Estimators, Maximum Entropy Filters, and tracking filters to design and analysis of broad, multidisciplinary systems problems. Prereq: SysE 520.

SysE 523 Applied Systems Optimization (3 cr). Systems modeling and optimization techniques and decision making for deterministic and probabilistic systems; applications to problems taken from government, business, engineering, economics, and the natural and social sciences that are characterized by the need to allocate limited resources. Prereq: Math 275 or
Teacher Education

Prerequisite: For registration in upper-division courses in education, students must be admitted to the teacher-education program and have a minimum GPA of 2.75, unless a higher average is stated as a prerequisite in the course description.

Related Fields: For other offerings in education, see adult, counselor, and technology education; agricultural education; art; business education; counseling; curriculum education; educational administration; family and consumer sciences; music; physical education; professional-technical education; and special education.

EDTE 102 Inquiry Project: Teacher Education (1-2 cr). Students research topics related to careers in general education. Prereq: Be at least 16 years of age or have approval from a parent/guardian; have a GPA of at least 3.0; have signed permission from parent/guardian.

EDTE 200 (s) Seminar (cr arr). Prereq: perm.

EDTE 203 (s) Workshop (cr arr). Prereq: perm.

EDTE 204 (s) Special Topics (cr arr). Prereq: perm.

EDTE 299 (s) Directed Study (cr arr). Graded P/F. Prereq: perm.

EDTE 320 Foundations of Literacy Development (4 cr). Research-based principles and techniques for teaching literacy; emphasis on content, methods, and materials. Prereq: ED 201.

EDTE 322 Integrated Language and Literacy (2 cr). Approaches to the integration of reading, writing, speaking, and listening across the curriculum in diverse, collaborative, learner-centered communities. Recommended Preparation: courses in the social studies/literacy/arts education block. Prereq: EDTE 320.

EDTE 325 Elementary Art Education (2 cr). Specific methods, research, curriculum, and media in teaching elementary art. Recommended Preparation: courses in the social studies/literacy/arts education block.

EDTE 328 Elementary Social Studies Education (2 cr). Specific methods, research, curriculum, and media in teaching elementary social studies. Recommended Preparation: courses in the social studies/literacy/arts education block.

EDTE 329 Elementary Science Education (2 cr). Specific methods, research, curriculum, and media in teaching elementary science. Recommended Preparation: courses in the mathematics/science/physical education block.

EDTE 381 Elementary School Music Methods for Nonmajors (3 cr). See MusT 381.

EDTE 400 (s) Seminar (cr arr). Prereq: perm.

EDTE 402 Practicum (cr arr). Prereq: perm.

EDTE 403 (s) Workshop (cr arr). Prereq: perm.

EDTE 404 (s) Special Topics (cr arr). Prereq: perm.

EDTE 405(J)/505 (s) Professional Development (cr arr). Professional development and enrichment of certificated school personnel. Cr earned will not be accepted toward grad degree programs, but may be used in a 5-yr program. Additional projects/assignments reqd for grad cr.

EDTE 407 Elementary Foreign Language Methods (3 cr). Observational experiences for preservice teachers combined with a classroom teaching practicum; discussion of teaching strategies for bilingual students, combining current research with valuable field experiences on which to base relevant/meaningful questions during the methods course. Prereq: students must be native-language speakers and/or have a teaching major or minor in foreign language.

EDTE 412 Multicultural/Bilingual Methods and Materials (3 cr). Basic understanding of the multicultural movement in today's school systems; introduction to a variety of different instructional programs designed to teach literacy skills to students from diverse cultural and linguistic backgrounds; particular emphasis on the historical, political, and multicultural perspectives of diverse learners in the classroom. This course does not replace methods courses in education or ESL.

EDTE J414/J514 Creativity and Critical Thinking Skills for Gifted and Talented Students (3 cr). This course is designed to develop the knowledge of critical thinking and creativity; awareness of cognitive and affective characteristics of creativity and critical thinking skills and how to foster and assess those skills with the Gifted/Talented population. Additional research project reqd for grad cr. (Fall only)

EDTE J415/J515 Social and Emotional Needs of Gifted/Talented Students (3 cr). This course is designed to examine the social-emotional characteristics of G/T students and to explore the relationship between the intellect and emotions of this special population. Additional research project reqd for grad cr. (Spring only)

EDTE 418 Identifying and Correcting Mathematics Deficiencies (3 cr). Study of teaching arithmetic including appropriate diagnostic-prescriptive strategies for correcting arithmetic deficiencies; microcomputers and calculators as instructional tools; consumer mathematics as an area of application.

EDTE J419/J519 Foundations of Gifted/Talented Education (3 cr). This course is designed to develop knowledge of the philosophy, rationale, and historical perspectives of Gifted and Talented education. Additional research project reqd for grad cr. (Spring only)

EDTE J422/J522 Early Childhood and Kindergarten Education (3 cr). Historical development, theoretical and practical applications in early childhood and kindergarten education. Additional projects/assignments reqd for grad cr. Two lab or 3-4 hrs of lab a week.

EDTE 423 Integrated Literacy in the Classroom (1 cr). Facilitate intern teachers' understanding of literacy development and inappropriate literacy materials and materials. Interns will be expected to implement various approaches to the integration of reading, writing, speaking and listening, and the selection of appropriate literature to support the content. Prereq: EDTE 328 and 352. Coreq: EDTE 483.

EDTE 428 Elementary Social Studies in the Classroom (1 cr). Implementation of methods, research, curriculum, and media in teaching elementary social studies. Students will teach social studies to elementary students 2-3 hrs a wk as part of the internship experience. Prereq: EDTE 328. Coreq: EDTE 483.

EDTE 429 Elementary Science in the Classroom (1 cr). Implementation of methods, research, curriculum, and media in teaching elementary science. Recommended Preparation: EDTE 329 and 484.

EDTE 466 Literacy Assessment and Intervention (3 cr). Various assessment issues and procedures appropriate for monitoring student progress in reading and writing in the classroom; instructional methods for assisting readers at-risk. Recommended Preparation: EDTE 320 or 463.

EDTE 499 (s) Directed Study (cr arr). Prereq: perm.

EDTE 501 (s) Seminar (cr arr). Prereq: perm.

EDTE 502 (s) Directed Study (cr arr). Prereq: perm.

EDTE 503 (s) Workshop (cr arr). Prereq: perm.

EDTE 504 (s) Special Topics (cr arr). Prereq: perm.

EDTE 505 (s) Professional Development (cr arr). See EDTE J405/J505.

EDTE 507 Supervision of Instruction (3 cr). Preparation of supervisors to aid teachers in the improvement of instruction.

EDTE 508 Standards-Based Curriculum in Science (3 cr). Preparation of practicing teachers to implement standards-based curriculum and assessment; focus on teacher's discipline area of certification; examination and development of curriculum; inquiry strategies, assessment strategies, and teaching strategies aligned with the science standards.

EDTE 510 Educational Perspectives: Theories, Policies, and Practices (3 cr). Overview of educational issues historically grounded and currently relevant to policies and practices in school settings; examination of how beliefs and practices are constructed and challenged from various philosophical frameworks applied to knowledge bases, administrative models, and developmental theories of learning.

EDTE 511 Planning and Administering the Curriculum (3 cr). Management skills, concepts, and information needed to administer a district-wide curriculum; audits and other evaluations as part of the curriculum or program development cycle; duties and responsibilities of curriculum developers from a standpoint of several possible roles and assignments; criteria and basic concepts for an audit, including essential curriculum management components, alignment, quality control, standards, and data sources.

EDTE 512 Standards Assessment and Accountability (3 cr). Examines the application of standards and data analysis as factors that influence school and district performance.

EDTE 513 History of Educational Thought (3 cr). Writings that have influenced educational theory and practice. (Fall only)

EDTE 514 Creativity and Critical Thinking Skills for Gifted and Talented Students (3 cr). See EDTE J414/J514.

EDTE 516 (s) College Teaching (1-2 cr, max 2). Techniques for effective teaching at college level. (Fall only)

EDTE 517 Curriculum and Instruction for Gifted and Talented Education (3 cr). See EDTE J417/J517.

EDTE 519 Foundations of Gifted/Talented Education (3 cr). See EDTE J419/J519.

EDTE 521 Advanced Language Arts (3 cr). Current research in instruction of the language arts, the reading/writing/listening/speaking connection, and teaching/learning; integrated language arts curriculum; assessment/evaluation strategies. Prereq: EDTE 322 or equiv or perm.

EDTE 524 Models of Teaching (3 cr). Examination of information processing, social interaction, personal, and behavioral models of teaching; emphasis on practical implementation of these models in teaching situations.

EDTE 526 Advanced Educational Psychology (3 cr). Examination of selected psychological theories as applied to classroom management, values education, instructional and motivational strategies, learning and cognitive styles, gender differences, and related educational research. (Spring only)

EDTE 527 Instructional Theory into Practice (3 cr). Applications of instructional theory to the areas: teaching to an objective; diagnostic and prescriptive teaching; teaching to enhance motivation; reinforcement, transfer, retention, and rate and degree of learning; enhancement of pupil self-concept; and critical decisions underlying such techniques. (Fall only)

EDTE 528 Seminar in Middle School/High School I (2 cr). This course will develop the students knowledge of the organizational structure, history, research and philosophy of the American Middle School and High School. Coreq: EDTE 485.

EDTE 529 Seminar in Middle School/High School II (2 cr). This course will further develop the students knowledge, dispositions and performances of the teacher in the Middle School and High School settings. Prereq: EDTE 528; Coreq: EDTE 485.

EDTE 530 Ethical Leadership and Law in Education (3 cr). Ethical and legal principles undergirding schools in the U.S.; statutory and case laws focusing on Idaho and surrounding states.

EDTE 551 Children’s Literature and Literacy Strategies Across the Curriculum (3 cr). The course will examine various genres of literature appropriate for children and methods of increasing literacy skills through the use of these books. Identification and integration of tradebooks in content areas with multiple strategies to increase reading comprehension will be a focus of the course. Prereq: EDTE 320 and 338.

EDTE 552 Idaho Comprehensive Literacy Course (3 cr). May not receive credit for both EDTE 552 and EDTE 553-555. The three core literacy standards required under Idaho law for teachers and administrators K-8: certification: language learning and literacy development, reading comprehension, instruction, reading assessment, and instructional intervention.

EDTE 553 Idaho Comprehensive Literacy Course: Language Learning and Literacy Development (1 cr). May not receive credit for both EDTE 553 and 552. Requirement of teachers' knowledge of both the content and approaches for teaching decoding, morphology, and fluency as a part of a comprehensive, balanced reading program.

EDTE 554 Idaho Comprehensive Literacy Course: Reading Comprehension Assessment and Best Practices (1 cr). May not receive credit for both EDTE 554 and 552. Review of the research base supporting reading comprehension instruction.

EDTE 555 Idaho Comprehensive Literacy Course: Reading Assessment Diagnosis and Remediation (1 cr). May not receive credit for both EDTE 555 and 552. Enhancement of teachers' knowledge of reading assessment procedures and methods for remediating students' reading difficulties.

EDTE IDAWS5555 Writing Institute: NW Inland Writing Project (8 cr). WSU Engl 592-593. Theory, research, and practice of kindergarten through college writing instruction including prewriting, drafting, revising, editing, publishing, grammar, mechanics, writing across the curriculum, error analysis, writing to learn; focus on writing for a variety of audiences and purposes (transactional, poetic, expressive); develops participant's own writing ability and ability to present in-service workshops for school districts. Fourlec and four hrs oflab a wk. Prereq: Engl 401 or EDTE 322 or equiv or perm.

EDTE 560 Reading with a Second Language Learner (3 cr). Participants examine the specific needs of second language learners in relation to reading instruction. A general foundation ofL2 acquisition will be included in the course. Prereq: EDTE 322 or equivalent.

EDTE 562 Orchestrating the Classroom Literacy Program (3 cr). Course examines the basics for establishing and operating classroom/literacy programs (reading, writing, spelling, listening and speaking). Numerous organizational models are presented and critiqued.

EDTE 563 Literacy Methods for Content Learning (3 cr). See EDTE J463/J563.

EDTE 564 Advanced Children's Literature (3 cr). Contemporary issues in children's literature; theoretical and research bases for current practice; reading children's literature from multiple perspectives; advanced study ofgenres, resources, strategies, and critical thinking for using books to better understand our multicultural society. Prereq: EDTE 321.

EDTE 565 Linguistics, Literacy, and Brain Function (3 cr). Course examines the psycholinguistic processes of literacy acquisition and learning in conjunction with recent physiological brain research. Prereq: EDTE 320 and 466.

EDTE 566 Analysis and Correction of Reading Difficulties (3 cr). Course examines causes of reading and writing difficulties and various methods for remediating these difficulties. Students administer a variety of literacy assessments, norm referenced, criterion referenced and informal. The emphasis is on learning and administer and interpret the results from these assessments in order to plan and then implement an effective intervention program for students having difficulty learning to read and write fluently.

EDTE 572 Measurement and Evaluation (3 cr). Improvement of testing, examination, and evaluation in schools; practice in making, giving, scoring, and interpreting tests; use of results in counseling.

EDTE 581 Systematic and Objective Analysis of Instruction (4 cr). Supervision as a change process and analysis of supervisory cycle; application of supervisory cycle in K-12 classroom situations; designed to improve individual skill in analysis of instruction and to relate theory to practice. Graded P/F.

EDTE 597 (s) Practicum (cr arr). Graded P/F. Prereq: perm.

EDTE 599 (s) Non-thesis Master's Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

EDTE 600 Doctoral Research and Dissertation (cr arr).
Theatre and Film

TheF 100 Freshman Theatre Seminar (3 cr). May be used as core credit in J-3-d. Course explores collaborative theatrical processes and the roles and responsibilities of theatre practitioners. Focus is also given to discipline-based research and writing methods. Prereq: Theatre majors and minors only.

TheF 101 Introduction to the Theatre (3 cr). May be used as core credit in J-3-d. For nonmajors. Building an appreciation for theatre as an art form through understanding the creative process of the playwright, the director, the designer, and the actor. Attendance at theatre productions reqd.

TheF 103 Theatre Technology I (4 cr). Intro to theatre production spaces, shop tools, construction materials, and stage equipment; theories and methods used in lighting and in the construction of scenery. Three lec and six hrs of lab a wk.

TheF 104 Theatre Technology II (4 cr). Methods of costume construction techniques; intro to masks, sewing, millinery, and costume craft skills. Three lec and six hrs of lab a wk.

TheF 105-106 Basics of Performance (3 cr). TheF 105: May be used as core credit in J-3-d. Intro to performance: techniques of relaxation, observation, and justification; work in improvisation, sensory exploration, image-making, and beginning textual analysis; initial monologue and scene performance. One lec and 2 hrs of lab a wk. Prereq: for 106: TheF 105 or perm.

TheF 125 Summer Theatre I (2-4 cr; max 4). Theatre production, including public presentation of several plays. Max 10 cr in TheF 125 and 395 combined. Prereq: perm of dept.

TheF 200 (s) Seminar (cr ar). Prereq: perm.

TheF 201 Scene Design I (3 cr). May be used as core credit in J-3-d. Development of basic skills in visualization, period research, graphic techniques, and script interpretation in scenery.

TheF 202 Costume Design I (3 cr). Costume design skills including script/character analysis, fabric choices, design process, period research, and drawing/painting skills.

TheF 204 (s) Special Topics (cr ar). Prereq: perm.

TheF 205 Lighting Design I (3 cr). Basic equipment, lighting methods, and theory for theatrical productions; basic drafting of realized and hypothetical productions.

TheF 207 Theatrical Make-up (2 cr). Creation of the make-up mask through sculpting with paint. Limited to 20 students. Two lec and 2 hrs of lab a wk. Prereq: perm.

TheF 220 History of World Cinema (3 cr) May be used as core credit in J-3-d. A comprehensive survey of the major film movements; introduction to film history and techniques. (Spring only)

TheF 288 Introduction to Film Studies (3 cr) May be used as core credit in J-3-d. Introduction to the study of film; survey of film aesthetics, form, theory, style, and analysis.

TheF 299 (s) Directed Study (cr ar). Prereq: perm.

TheF 305 Intermediate Acting (3 cr). Exploration of Stanislavskian System focused in work on sense and emotional memory, inner monologue, and imagery techniques; emphasis on group improvisation and theatre games; work in action and scene study; performances of selected scenes and monodramas. One lec and 3 hrs of lab a wk. Prereq: TheF 105-106.

TheF 306 Intermediate Acting (3 cr). Studies in American method acting as exemplified by its leading practitioners (Strasberg, Hagen, and Meisner); textual analysis and individual acting problems; continuing emphasis in scene preparation. One lec and 3 hrs of lab a wk. Registration, Individual Preparation: TheF 305.

TheF 311 Tailoring Techniques (3 cr). Men’s and women’s contemporary & traditional tailoring techniques for costume, stage & apparel. Recommended Preparation: TheF 104 and FCS 224.

TheF 315 (s) National Cinemas (3 cr; max 9). An examination of selected national cinemas in terms of major periods, themes, styles, and forms, and in relation to both national and international cultural histories.

TheF 320 Theatre Management (2 cr). Exploration of stage management and standard management practices relating to theatre production and business, funding, and public relations.

TheF 330 (s) Literature and Film (3 cr; max 6). See Engl 330.

TheF 350 Performance Lab III (cr ar). Continuation of TheF 151; advanced techniques in voice, speech, and movement for the stage. Two hrs of lab a wk. Prereq: perm.

TheF 361 Technical Direction (3 cr). Technical direction and planning for single and multiple set theatre productions; includes shop and personnel management techniques, drafting, budgets, scheduling, and organization.

TheF 371 Play Analysis (3 cr). Critical intro to plays as drama and theatre; an approach to tragic and comic genres; major dramatists of the 20th century culminating in an analysis of contemporary theatre styles.

TheF 383 (s) Film Genres (3 cr; max 9). An in-depth study of a film genre, including historical, stylistic, theoretical, and social issues.

TheF 386 Documentary Film (3 cr). An examination of the historical development of the documentary film. Study of documentary style and form; a consideration of social issues raised by documentary, and a survey of significant practitioners and theorists of documentary film.

TheF 390 (s) Theatre Practice (cr ar). Open to nonmajors. Practical experience in all aspects of theatre production and performance.

TheF 392 Contemporary European Fiction Film (3 cr). See FLEN 392.

TheF 395 Summer Theatre II (2-8 cr; max 8). Continuation of TheF 125. Max 10 cr in TheF 125 and 395 combined. Prereq: perm of dept.

TheF 400 (s) Seminar (cr ar). Prereq: perm.

TheF 403 (s) Workshop (cr ar). Prereq: perm.

TheF 404 (s) Special Topics (cr ar). Prereq: perm.

TheF 405 Individual Instruction in Performance (cr ar). Individualized coaching in performance. One hr of lab a wk per cr. Prereq: perm of dept.

TheF 408/J508 Film as a Controversial Medium (3 cr). A historical survey of film as a controversial medium in the West; an analysis of the role of film as a cultural products; and each film is situated in its socioeconomic, political, and historical contexts. Additional projects/assignments reqd for grad cr. Recommended Preparation: any college-level film course.

TheF 410/J510 Costume Design II (3 cr; max 12). Emphasis on developing characterization, stylization, and fabric choice; explore advanced rendering techniques; continuation of portfolio development. Additional projects/assignments reqd for grad cr. Three lec and 1 hr of lab a wk. Prereq: TheF 202 or perm.

TheF 411 Theatre Methods (1 cr). Students learn ways of introducing drama to the classroom in a variety of unique teaching methodologies, including improvisation, role-playing, theatre games and scripted materials.

TheF 415 (s) Film Directors (3 cr; max 9). An in-depth study of the films of a filmmaker of international stature and significance.

TheF 417/J517 Movement for the Actor (1 cr; max 6). Provides the actor with a necessary awareness of physicality and how it applies directly to shaping performance. Students are encouraged to explore the creative boundaries of their body and discover the body’s effectiveness as a primary expressive tool in performance. Prereq: Acceptance into B.F.A./M.F.A. prog. or perm.

TheF 418/J518 Voice for the Stage (1-3 cr; max 3). Provides the actor with knowledge of techniques of vocal production which are tailored to the specific needs of the student. Students are exposed to a variety of vocal warm ups and exercises in relaxation, proper breathing, and how to apply these concepts to speaking verse and prose texts. Prereq: Acceptance into B.F.A./M.F.A. prog. or perm.

TheF 419/J519 U.S. Independent Film (3 cr). This historical survey examines U.S. independent film from SALT OF THE EARTH (1953) to the present. Recommended Preparation: Any college-level film course. Additional projects/assignments reqd for grad cr.

TheF 420 (s) International Cinema and National Literatures (3 cr; max 9). See FLEN 420.

TheF 425 BFA Acting Studio (3 cr; max ar). Rigorous study and practice in performance. Areas of specialization may include: Shakespeare, DeViering, Commedia dell’arte, Period Styles, Asian Theatre, Animals, Realism, Comedy. The course will be repeated each semester by BFA candidates. Prereq: Acceptance into BFA prog.

TheF 430 Perspectives in Film (3 cr). See Engl 430.

TheF 441 Foundations of Screenwriting (3 cr). See Engl 441.

TheF 464 Scenographic Techniques (3 cr). Practical survey of graphics used in design and execution of scenery for the stage, including drafting, perspective, front and rear elevations, painters elevations, and properties design and drafting. Four hrs of lab a wk. Prereq: TheF 202.

TheF 467/J567 Asian Theatre History (3 cr). This historical survey examines the structure and form of traditional Asian theatre, viewed within the religious, sociological and aesthetic contexts of the culture. Theatre, dance, puppetry and mask performance of India, Indonesia, China and Japan will form the basis of our examination. Additional projects/assignments reqd for grad cr. (Alt yrs)

TheF 468/J568 Theatre History I (3 cr). May be used as core credit in J-3d. The comprehensive survey of the major theatrical trends, theorists, and practitioners from the Golden Age of Greece until the early 19th Century. Additional projects/assignments reqd for grad cr. Prereq: TheF 371 or perm of dept.

TheF 469/J569 Theatre History II (3 cr). The comprehensive survey of the major theatrical trends, theorists, and practitioners from 1875 to the present contemporary theatre scene. Additional projects/assignments reqd for grad cr. Recommended Preparation: TheF 371.

TheF 474/J574 Advanced Stage Lighting (3 cr). Advanced lighting design theories and practice through design of assorted productions in realistic drama, dance, arena, thrust, and musical theatre. Additional projects/assignments reqd for grad cr. Recommended Preparation: TheF 205.

TheF 498 (s) Internship (cr arr). Prereq: perm.

TheF 499 (s) Directed Study (cr arr). Prereq: perm.

TheF 504 (s) Special Topics (cr arr). Prereq: perm.

TheF 508 Film as a Controversial Medium (3 cr). See TheF J460/J560.

TheF 509 Summer Theatre III (3-9 cr). Theatre production, including public presentation of several plays; emphasis on responsibilities of the grad student including assisting the director, serving as crewhead, and acting. Prereq: 20 cr in the theatre arts and perm of dept.

TheF 511 (s) MFA Acting Studio (2 cr, max 18). Advanced individual study in performance.

TheF 512 (s) MFA Directing Studio (2 cr, max 18). Advanced individual study in directing, including work in staging, styles, and interpretation.

TheF 513 (s) MFA Design Studio (2 cr, max 18). Advanced individual study in all areas of theatrical design with emphasis on portfolio development. One lec and 2 hrs of lab a wk.

TheF 514 (s) MFA Production Studio (2 cr, max 18). Advanced individual study in all areas of technical theatre production and management with emphasis on portfolio development. One lec and 2 hrs of lab a wk.

TheF 516 MFA Graduate Seminar (2 cr, max 12). An in-depth, rigorous, exploration of theatrical research and collaboration pedagogy and methodologies within the larger context of the artistic, creative process. Two semesters required; course may be repeated. Prereq: Acceptance into MFA prog.

TheF 517 Movement for the Actor (1 cr, max 6). See TheF J417/J517.

TheF 518 Voice for the Stage (1-3 cr, max 3). See TheF J418/J518.

TheF 520 Advanced Directing (3 cr). Techniques and styles of major 20th-century directors; work in directing genres of tragedy, drama, melodrama, comedy, and the absurd.

TheF 525 MFA Acting Studio (3 cr, max 12). Rigorous study and practice in performance. Areas of specialization may include: Shakespeare, Devising, Commedia dell’arte, Period Styles, Asian Theatre, Animals, Realism, Comedy. The course will be repeated each semester by MFA candidates. Prereq: Acceptance into MFA prog.

TheF 526 MFA Writers Studio (3 cr). The primary goal of the MFA Writers Studio is to help the writers develop their unique voice and vision; understand the role of the writer within a historical, cultural and political context; and to expose them to a variety of styles and approaches to creating new work for both stage and screen. Toward that end, the Writer’s Studio fosters a safe but challenging creative environment, in which writers are presented with assignments designed to help them identify that set of aesthetic concerns which will form the foundation of their Voice and Style as a writer.

TheF 535 Production Design (3 cr, max 12). Design responsibility for a mainstage production. Prereq: perm of dept.

TheF 584 Advanced Stage Lighting (3 cr). See TheF J484/J584.

TheF 596 MFA Exit Project (3 cr). Culminating creative project for MFA candidates. Prereq: perm of dept.

TheF 597 (s) Practicum (cr arr). Prereq: perm.

TheF 598 (s) Internship (cr arr). Prereq: perm.

Veterinary Science

Richard A. Battaglia, Head, Dept. of Animal and Veterinary Science (213 Ag. Sc. Bldg. 83844-2330; phone 208/885-6345; susanf@uidaho.edu).

Note: Courses in this subject field that have a VS prefix are open only to students who have veterinary science graduate student status or by permission of the director of the Idaho faculty of the WOI Regional Program in Veterinary Medical Education.

VS 499 (s) Directed Study (cr arr). Prereq: perm.

VS 500 Master’s Research and Thesis (cr arr).

VS 501 (s) Seminar (cr arr). Prereq: perm.

VS 502 (s) Directed Study (cr arr). Prereq: perm.

VS 504 (s) Special Topics (cr arr). Prereq: perm.

VS 598 (s) Internship (cr arr). Prereq: perm.

Virtual Technology and Design

Brian F. Sumption, Coordinator (120 Art and Architecture North; phone 208/885-2753; sumption@uidaho.edu).

Note: On registering for a studio or capstone course offered in this program, the student agrees that the program may retain work completed by the student.

Vtd 200 (s) Seminar (cr arr). Prereq: perm.

Vtd 204 (s) Special Topics (cr arr). Prereq: perm.

Vtd 244 Introduction to 3D Modeling (3 cr). Introduction to the application of current 3D digital modeling techniques in virtual design, two 1-1/2 hr lecture/lab a wk and associated work.

Vtd 299 (s) Directed Study (cr arr). Prereq: perm.

Vtd 344 Computer-Aided Design (2 cr). Exploration of computer technologies used to investigate, verify, and present design decisions; emphasis directed toward topics relevant to the representation of built forms and design knowledge.

Vtd 345 Advanced Modeling (3 cr). Exploration of methods for creating virtual environments including visualization techniques and efficient geometry, lighting and material development. Two 1-1/2 hr lecture/lab a wk and associated work. Recommended Preparation: Vtd 244.

Vtd 355 Virtual Design Studio I (4 cr). Introduction to virtual design & relationship to human needs; focus on design process & expansion of vocabulary associated with virtual environments; experimentation & creativity encouraged. Three 3-hr Studios a wk and assigned work. Prereq: Perm.

Vtd 356 Virtual Design Studio II (4 cr). Design development of conceptual & technical aspects of virtual environments; exploration of design issues from conception to delivery. Three 3-hr studios a wk and assigned work. Recommended Preparation: Vtd 355.

Vtd 366 Animation (3 cr). Introduction to computer-generated animation from concept to postproduction; focus includes 3D methods, time/motion scripting, scene development and rendering processes; examines methods for wide range of applications. Two 1-1/2 hr lecture/lab a wk and associated work. Recommended Preparation: Vtd 244.

Vtd 371 Interactive Technologies (3 cr). Exploration of technologies to create and deliver interactive and immersive applications. Focus on navigation, way-finding and behavior issues associated with virtual environments. Two 1-1/2 hr lecture/lab a wk and associated work. Recommended Preparation: Vtd 244.

Vtd 400 (s) Seminar (cr arr). Prereq: perm.

Vtd 404 (s) Special Topics (cr arr). Prereq: perm.
Wildlife Resources

Kerry Paul Reese, Head, Dept. of Fish and Wildlife Resources (104 CNR Bldg. 83844-1136; phone 208/885-6434).

Prerequisites: Courses in this subject field that are numbered above 299 are not open to undergraduate students on academic probation.

WLF 102 The Wildlife Profession (1 cr). Overview of the field of wildlife conservation including kinds of professional positions, duties of wildlife, employment opportunities, and educational preparation. (Fall only)

WLF 200 (s) Seminar (cr ar). Prereq: perm.

WLF 203 (s) Workshop (cr ar). Prereq: perm.

WLF 204 (s) Special Topics (cr ar). Prereq: perm.

WLF 290 Fish and Wildlife Ecology, Management, and Conservation (3 cr). Same as Fish 290. Open to non-majors only. Application of biological ecological principles and concepts to conservation and management of fish and wildlife populations and their habitats. (Fall only)

WLF 299 (s) Directed Study (cr ar). Prereq: perm.

WLF 314 Wildlife Ecology I (3 cr). Ecology and natural history of birds, mammals, reptiles, and amphibians. Prereq: Fish/For/Rnge 221 or Biol 314. (Fall only)

WLF 315 Wildlife Ecology I Laboratory (1 cr). Techniques associated with wildlife research and local habitats and areas where wildlife species are present. Three hrs of lab a wk. Prereq: or coreq: WLF 314. (Fall only)

WLF 316 Wildlife Ecology II (4 cr). Application of principles of ecology to conservation and management of wildlife in natural and altered habitats. Three lec and one lab a wk; three days of field trips. Prereq: WLF 314 and 315 or coreq. (Spring only)

WLF 396 Wilderness Research Internship (3 cr). Nine-week summer internship at UI Wilderness Field Station, located at Tower Ranch in the heart of the Frank Church River of No Return Wilderness of central Idaho; research honorarium awarded; lodging and transportation to field station provided. Enrollment limited to 2-3 students based on available funding; competitive selection process by faculty committee based on research proposal, GPA, and resume. Prereq: Junior standing. (Summer only)

WLF 398 (s) Renewable Natural Resources Internship (cr ar). Same as Fish/For/Rnge 398. Supervised field experience with an appropriate public or private agency. Req'd for cooperative education students. Graded P/F. Prereq: perm of dept.

WLF 401 (s) Practicum in Tutoring (1 cr, max. 2). Tutorial services performed by advanced students under faculty supervision. Graded P/F. Prereq: perm.

WLF 403 (s) Workshop (cr ar). Prereq. perm.

WLF 404 (s) Special Topics (cr ar). Prereq. perm.

WLF 38419 (s) Topics in Natural Resource Sciences (1-3 cr, max 9). WSU NATRS 419.

WLF WSJ431WSJS31 Wildlife Nutrition (3 cr). WSU NATRS 431/531. Nutritional requirements and interactions of wildlife populations. (Spring only)

WLF 440 Conservation Biology (3 cr). Patterns of biological diversity; factors producing changes in diversity; values of diversity; management principles applied to small populations, protected areas, landscape linkages, biotic integrity, restoration, legal issues, and funding sources. Prereq: For/Rnge 221 or Biol 314 or perm. (Fall only)

WLF ID445 Nongame Management (2 cr). WSU Biol 445. Review of principles, methodology, and concepts applied to management and conservation of nongame wildlife in relation to current land-use practices. Prereq: For/Rnge 221 and Jr. standing, or perm. (Irregular offering)

WLF 448 Fish and Wildlife Population Ecology (4 cr). Dynamics of animal populations resulting from balance between birth, death, and movement processes; quantitative methods for measuring distribution, abundance, survival and population growth; competition, predation, and self-regulation; viability and management of fish and wildlife populations. Three lec and one lab a wk. Prereq: Stat 251; and Fish 316, WLF 316, or course in vertebrate ecology. (Fall only)

WLF 470 Interdisciplinary Natural Resource Planning (3 cr). May be used as core credit in J-3-0. Same as CSS/Fish/For/For/Rnge 470. Examines how ecological and social sciences are interrelated and how they influence natural resource decisions; students learn how to work effectively in teams to make sound management decisions and communicate those decisions to a variety of constituents. Three hrs of lec and three hrs of recitation a wk; one 2-day field trip. Recommended Preparation: For/CSS 235, For/For/Rnge/For/Psych/ WLF/Fish 302 or CSS 306. Prereq: Sr standing, For/Rnge 221, or perm.

WLF 482 Ornithology (4 cr). Evolution, systematics, distribution, identification, and biology of birds, including current conservation efforts. Requires two days of field trips. Prereq: Biol 213. (Spring only)

WLF 483 Senior Project Presentation (1 cr). See For 483.

WLF 485 Ecology and Conservation Biology Senior Project (3 cr). Same as CSS/Fish/For/For/Rnge 485. Professional work experience in natural resources ecology and conservation biology; learning objectives and a specific plan for the internship experience must be developed in For 480 before starting the internship; after completing the internship, students will prepare oral and written presentation of their work experience in For 483.

WLF 492 Wildlife Management (4 cr). Review of social and biological context for current practice of wildlife management. Three lec and one lab a wk; two days of field trips. Prereq: WLF 316 and WLF 448. Prereq or coreq: WLF 482, Biol 481, Biol 483, or Biol 484. (Spring only)

WLF 493 Environmental Law (2 cr). Same as Ringe 493. Laws governing resource administration and environmental impacts. Prereq. Sr standing. (Irregular offering)

WLF 495 (s) Wildlife Seminar (1-2 cr). Discusses integrating biological, social, political, economic, and philosophic aspects of wildlife problems. Prereq. Sr. standing. (Fall only)

WLF 497 Senior Thesis (1-3 cr, max 6). Preparation of thesis, exhibition, video, computer program, multimedia program, or other creative presentation based on research conducted under the guidance of a faculty mentor. Three hrs of lab a wk. Prereq: completion of at least 90 credits, and permission of a faculty mentor.

WLF 499 (s) Directed Study (cr ar). For the individual student; conferences, library, field, or lab work. Prereq: Sr standing, GPA 2.5, and perm.

WLF 500 Master’s Research and Thesis (3 cr). Major research, management, and research problems of wildlife; presentation of individual studies on assigned topics. Graded P (pass)/F (fail). Prereq: perm.

WLF 502 (s) Directed Study (cr ar). Prereq. perm.

WLF 503 (s) Workshop (cr ar). Selected topics in the conservation and management of natural resources. Prereq. perm.

WLF 504 (s) Special Topics (cr ar). Prereq. perm.

WLF 515 Advanced Topics in Conservation Biology (2 cr). Development of a depth of understanding of the basic principles of conservation biology through study of case histories of endangered species recovery efforts; political as well as biological and economic aspect of recovery efforts through a series of lectures and discussions with exposure to new developments in the fast evolving field of conservation biology; emphasis on issues with which professors or visiting lecturers have personal research and experience. (All yrs; Spring only)

WLF WS519 (s) Advanced Topics in Natural Resources (1-3 cr, max 6). WSU NATRS 519.

WLF ID520 Human Dimensions of Wildlife Management (2 cr). WSU NATRS 521. Exploration of elements involved in the management of wildlife for recreational activities, impacts of such activities on wildlife, the role of national parks and protected areas in providing wildlife viewing opportunities, and public attitudes toward wildlife species. (All yrs; Spring only)

WLF ID540 Conservation Genetics (3 cr). Basic principles of population genetics and phylogenetics and their applications to the field of conservation genetics and natural resource management; case studies and examples from current literature; topics include genetic diversity, inbreeding, population structure, gene flow, genetic drift, molecular phylogenetics, and hybridization. (Fall, All yrs)

WLF 541 Advanced Population Biology (3 cr). Readings and discussion of current theories of population control, their biological basis, and applications to animal populations. Prereq: WLF 448 or perm. (Fall, All yrs)

WLF 542 Waterfowl Management (3 cr). Ecology and management of species using wetland habitats. Lecture-discussion periods, field labs; three days of field trips. Prereq: ecology, population dynamics, and aquatic plants; or perm. (Irregular offering)

WLF 543 Fish and Wildlife Population Analysis (4 cr). Quantitative analysis of fish and wildlife habitat, diet, harvest, population density, survival, and natality data; development and application of population models in fish and wildlife management. Three lec and 3 hrs of lab a wk. Prereq: WLF 448, Stat 401 or perm. (Fall, All yrs)

WLF 544 Large Mammal Ecology (3 cr). Readings and discussion on large mammal management and ecology. One 3-hr lab a wk; two days of field trips. Prereq: WLF 492 or perm. (Spring, All yrs)

WLF 545 Wildlife Habitat Ecology (2-3 cr). Reading and discussion on synchronological relationships of wildlife habitats. Two days of field trips. Prereq: WLF 492 or perm, and animal and plant ecology. (Spring, All yrs)

WLF 652 Ecological Modeling (3 cr) Linear and nonlinear dynamical models of biological systems; computer-intensive introduction to concepts of stability, attractors, bifurcations, chaos, model identification, estimation, and evaluation; applications in aquatic and terrestrial ecological communities. Prereq: Math 175 and For/Rnge 221 or perm. (Spring only, All yrs)
WLF ID555 Statistical Ecology (3 cr). Same as Stat 555. WSU Stat 555. Stochastic models in ecological work; discrete and continuous statistical distributions, birth-death processes, diffusion processes; applications in population dynamics, population genetics, ecological sampling, spatial analysis, and conservation biology. Prereq: Math 451 or perm. (All yrs; spring only)

WLF WS588 (s) Advanced Topics in Wildlife (1-3 cr, max 10). WSU NATRS 588.

WLF 597 (s) Practicum (cr arr). Prereq: perm.

WLF 598 (s) Internship (cr arr). Prereq: perm.

WLF 599 (s) Non-thesis Master’s Research (cr arr). Research not directly related to a thesis or dissertation. Prereq: perm.

WLF 600 Doctoral Research and Dissertation (cr arr). Prereq: admission to the doctoral program in “natural resources” and perm of dept.

Women’s Studies

Debbie Storrs, Coordinator (113 Admin. Bldg. 83844-3154; phone 208/885-6426).

WmSt 201 Women, Culture, and Society: Introduction to Women’s Studies (3 cr). Survey of and introduction to the study of women’s lives; thematic examination of the diversity of women’s experiences in families, at work, with the law, in health care, in literature, in the media, in language; exploration of differences and similarities, including ethnicity, sexuality, class, and age.
PART SEVEN

Faculty

Timothy P. White, President; Linda Morris, Provost; Jeffrey J. Bailey, Chair of the Faculty Council (2004-05); Douglas Q. Adams, Secretary of the Faculty.

SPECIAL DESIGNATIONS

The date following a name indicates the beginning of service at the university. Graduate faculty members are identified with a pound sign (#).

ABBOTT, Richard D.; 1991; Affiliate Assistant Professor of Chemical Engineering; Ph.D.; 1983; University Of Idaho.

ABDEL-RAHIM, Ahmed S.; 2002; Assistant Professor of Civil Engineering (P.E.); Ph.D.; 1998; Michigan State University.

ABO, Barbara B.; 1976; Extension Professor and Ada County Extension Educator (4-H/Youth Development); M.S.; 1975; Iowa State University.

ABRAMAH, Terry P.; 1984; Head, Special Collections and Archives; M.L.S.; 1970; University of Oregon.

ABSHIER, James D.; 2003; Affiliate Professor of Conservation Social Sciences; Ph.D.; 1979; University of California Berkeley.

ADAMS, Douglas Q.; 1972; Professor of English; Ph.D.; 1972; University of Chicago.

ADMASSU, Wudneh; 1992; Professor of Chemical Engineering; Department Chair; Ph.D.; 1984; University Of Idaho.

AFFLECK, Stephen B.; 1988; Affiliate Associate Professor of Chemical Engineering; Ph.D.; 1980; Iowa State University.

AHMADZAEHNEH, Amin; 2000; Assistant Professor of Dairy Management; Ph.D.; 1998; Virginia Polytechnic Institute.

AIKEN, Katherine G.; 1984; Professor of History; Department Chair; Ph.D.; 1980; Washington State University.

AIZEN, Elena M.; 2001; Adjunct Associate Professor of Geography; Ph.D.; 1986; Russian Academy of Sciences.

AIZEN, Vladimir; 2001; Search Professor of Geography; Adjunct Professor of Environmental Science; Ph.D.; 1988; Russian Academy of Sciences.

AKUJUOBI, Cajetan; 1998; Affiliate Associate Professor of Electrical Engineering; Ph.D.; 1995; George Mason University.

ALBANO, Richard K.; 1991; Affiliate Assistant Professor of Physics; Ph.D.; 1989; University of California Los Angeles.

ALBRECHT, Carol Padgamm; 1989; Associate Professor of Music (oboe, music history); M.Mus.; 1980; North Texas State University.

ALEKSANDER, Adam K.; 2000; Affiliate Associate Professor of Mechanical Engineering; Ph.D.; 1999; Texas A&M University.

ALESSI, R. Samuel; 2001; Affiliate Assistant Professor of Mechanical Engineering; Ph.D.; 1989; North Dakota State University.

ALEXANDER, Gary C.; 1992; Professor of Educational Administration; Ph.D.; 1991; University of Minnesota.

ALLEN, Charles A.; 1986; Affiliate Professor of Chemistry; Ph.D.; 1969; Oregon State University.

ALLEN, Richard G.; 1998; Professor of Biological and Agricultural Engineering and of Civil Engineering (P.E.); Ph.D.; 1984; University of Idaho.

ALLEN, Stewart D.; 1987; Affiliate Assistant Professor of Conservation Social Sciences; Ph.D.; 1989; University of Montana.

ALLEN, Theresa M.; 1999; Lecturer in Mathematics; Ph.D.; 1993; University of Washington.

ALLISON, Chris M.; 1992; Affiliate Assistant Professor of Mechanical Engineering; Ph.D.; 1987; University of Idaho.

ALVAREZ, Juan M.; 2001; Assistant Professor of Entomology; Ph.D.; 2000; University of Florida.

ALVES-FOSS, James; 1991; Associate Professor of Computer Science; Ph.D.; 1991; University of California Davis.

ANDERS, Paul J.; 2003; Affiliate Assistant Professor of Fish and Wildlife Resources; Ph.D.; 2002; University of Idaho.

ANDERSEN, Barbara J.; 2002; Assistant Professor of Landscape Architecture; M.L.A.; 1990; University of Minnesota.

ANDERSON, Bruce C.; 1978; Professor of Pathology; Ph.D.; 1977; University of California Davis.

ANDERSON, Cort L.; 2002; Adjunct Assistant Professor of Fish and Wildlife Resources; Ph.D.; 1991; Yale University.

ANDERSON, Erik T.; 1987; Associate Extension Professor of Agricultural Information; Director of Agricultural Communication; M.A.; 1985; University of Wisconsin.

ANDERSON, James L.; 1998; Affiliate Assistant Professor of Nuclear Engineering; M.S.; 1974; Oregon State University.

ANDERSON, Janice Capel; 1985; Professor of Philosophy and Religious Studies; Ph.D.; 1985; University of Chicago.

ANDERSON, Mark D.; 1982; Professor of Law; J.D.; 1977; University of Chicago.

ANDERSON, Michael J.; 1989; #Professor of Mechanical Engineering; Ph.D.; 1989; Washington State University.

ANDERSON, Trudy J.; 2003; Adjunct Professor of Adult, Counselor, and Technology Education; Interim Dean, University of Idaho Center, Boise; Ph.D.; 1988; Ohio State University.

ANDREASSON, Karl-Erik; 1997; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1992; Temple University.

APEL, William A.; 1993; Affiliate Professor of Microbiology, Molecular Biology and Biochemistry; Ph.D.; 1978; Ohio State University.

ARAJI, Ahmed A.; 1968; Professor of Agricultural Economics; Ph.D.; 1968; University of Missouri.

ARION, Teri A.; 2001; Catalog Librarian with rank of Assistant Professor; M.L.S.; 1999; University of Wisconsin.

ARMPIREST, Diane E.; 2001; #Assistant Professor of Architecture; M.Arch.; 1997; University of Oregon.

ARNETT, Ronald C.; 1996; Affiliate Assistant Professor of Geology; M.S.; 1986; University of Washington.

ARNOLD, Reenie L.; 1998; Lecturer in English; M.A.; 1998; University of Idaho.

ARRIZABALAGA, Gustavo; 2004; Assistant Professor of Microbiology, Molecular Biology, and Biochemistry; Ph.D.; 1999; Massachusetts Institute of Technology (MIT).

ASSEFI, Touraj; 1995; #Professor of Electrical Engineering; Adjunct Assistant Professor of Material Science and Engineering; Director of the Microelectronics Research and Communication Institute; Ph.D.; 1973; University of Southern California.

ASTON, J. Eric; 2001; Assistant Professor of Chemical Engineering; Adjunct Assistant Professor of Materials Science and Engineering and Metallurgical Engineering; Ph.D.; 2001; University of Washington.

ASTON, Eric D.; 1994; #Associate Professor of Electrical Engineering; Adjunct Assistant Professor of Materials Science and Engineering and Metallurgical Engineering; Ph.D.; 1994; University of Washington.

ATKINSON, David A.; 1996; #Professor of Chemistry; Ph.D.; 1992; Washington State University.

ATKINSON, David H.; 1989; #Professor of Electrical Engineering; Ph.D.; 1989; Washington State University.

AUSTIN, Gary; 1991; #Associate Professor of Landscape Architecture; M.L.A.; 1981; California State Polytechnic.

AUSTIN, James H.; 1998; Affiliate Professor of Philosophy; M.D.; 1948; Harvard Medical School.

AWWAD-RAFFERTY, Rula Z.; 1998; #Associate Professor of Interior Design; Adjunct Associate Professor of Environmental Science; Interior Design Program Coordinator; Ph.D.; 1995; Washington State University.

BABCOOK, Girri M.; 1994; #Associate Professor of Sociology; Ph.D.; 1995; Washington State University.

BABOVIC, Veldan; 1997; Affiliate Assistant Professor of Civil Engineering; Ph.D.; 1995; International Institute for Infrastructure.

BADGER, William L.; 2003; Assistant Research Professor of Teaching, Learning, and Leadership; Ph.D.; 1997; Oklahoma State University.

BAILEY, J. Franklin; 1984; Adjunct Instructor in Materials Science and Engineering and Metallurgical Engineering; Supervisor, Electron Microscopy Center; M.S.; 1971; Texas A&M University.

BAILEY, Jeffrey J.; 1991; #Associate Professor of Business; Adjunct Associate Professor of ETHICS, Center for ETHICS; Ph.D.; 1991; University of Akron.

BALLY, Everett M.; 1978; Affiliate Professor of Electrical Engineering; Ph.D.; 1968; Stanford University.

BAIRD, Dennis W.; 1974; Social Science Librarian with rank of Professor; M.L.S.; 1970; University of Michigan.

BAIRD, Lynn N.; 1974; Head, Access Services, University Library, with rank of Professor; M.P.A.; 1975; University of Idaho.

BAKER, Leslie L.; 2000; Affiliate Assistant Professor of Geological Sciences; Ph.D.; 1996; Brown University.

BAKER, R. Jacob; 1993; Affiliate Assistant Professor of Electrical Engineering; Ph.D.; 1993; University of Nevada Reno.

BAKER-EVELTHE, Lori; 2003; Assistant Professor of Information Systems; Ph.D.; 2003; Washington State University.

BALLEY, Elizabeth; 1998; Professor of Chemistry; Ph.D.; 1994; Colorado School of Mines.

BARKEY, Eugene M.; 1971; Affiliate Clinical Professor of Medical Science; M.D.; 1959; University of Washington.

BARTLETT, Michael; 1996; Affiliate Professor of Geography; Ph.D.; 1996; University of Idaho.

BARTLETT, Michael; 1996; Affiliate Professor of Geography; Ph.D.; 1996; University of Idaho.
BOTTRELL, Conine P.; 1998; Affiliate Associate Professor of Adult, Counselor, and Technology Education; Ed.Sp.; 1967; University of Idaho.

BOUGHTON, Janice M.; 1996; Affiliate Clinical Professor of Medical Science; M.D.; 1986; Johns Hopkins University.

BOUGHTON, Janice M.; 1996; Affiliate Clinical Professor of Medical Science; M.D.; 1986; Johns Hopkins University.

BOWLER, William B. Jr.; 1978; #Associate Professor of Architecture; M.Arch.; 1984; University of California Berkeley.

BOYD, Raymond J. Jr.; 1963; Affiliate Professor of Forest Resources; M.F.; 1950; Colorado State University.

BRAATNE, Jeffrey H.; 2002; Assistant Professor of Fishery Resources and Rangeland Ecology and Management; Adjunct Assistant Professor of Environmental Science; Ph.D.; 1989; University of Washington.

BRADY, Patricia A.; 1983; Affiliate Clinical Professor of Medical Science; M.D.; 1976; Ohio State University.

BRANDAL, Willy; 1980; #Professor of Mathematics; Ph.D.; 1972; Northwestern University.

BRANDT, Elizabeth B.; 1988; Professor of Law; J.D.; 1982; Case Western Reserve University.

BRANEN, A. Larry; 1983; #Professor of Food Science; Adjunct Professor of Family and Consumer Sciences; Vice President for University Outreach; Ph.D.; 1970; Purdue University.

BRANEN, Laurel J.; 1990; #Professor of Family and Consumer Sciences; Adjunct Associate Professor of Food Science and Toxicology; Ph.D.; 1989; University of Idaho.

BRATSPIES, Rebecca M.; 2001; Associate Professor of Law; J.D.; 1992; University of Pennsylvania.

BRAUN, Curt C.; 1994; #Associate Professor of Psychology; Ph.D.; 1993; University of Central Florida.

BRECKENRIDGE, Robert P.; 1994; Affiliate Professor of Adult, Counselor, and Technology Education; M.S.; 1979; Penn State University.

BRECKENRIDGE, Roy M.; 1978; Adjunct Professor of Geology; Supervisory Geologist, Idaho Geological Survey; Ph.D.; 1974; University of Wyoming.

BREGITZER, Phillip; 1990; Affiliate Assistant Professor of Plant Science; Ph.D.; 1989; University of Minnesota.

BRIGHAM, Donald H. II; 1991; Affiliate Assistant Professor of Landscape Architecture; B.L.A.; 1979; University of Idaho.

BRILL, Stephen H.; 2002; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1998; University of Vermont.

BROOKS, Randall H.; 1991; Associate Extension Professor and Extension Educator (Forestry and Agriculture); Ph.D.; 1991; Michigan Technological University.

BROWDER, Kathy D.; 2001; #Associate Professor of Sport Science and Physical Education; Ph.D.; 1992; Texas Woman’s University.

BROWER, Lance L.; 1988; Assistant Extension Professor and Fremont County Extension Educator (Farm Management); M.Ed.; 1986; North Dakota State University.

BROWN, Angela P.; 1998; Lecturer in Biological Sciences; Ph.D.; 1985; University of Edinburgh.

BROWN, Bradford D.; 1975; Associate Extension Professor of Soil Science and Crop Management; Ph.D.; 1985; Utah State University.

BROWN, Brian R.; 1998; Affiliate Instructor in Adult, Counselor, and Technology Education; M.Ed.; 1994; University of Idaho.

BROWN, Celeste J.; 2003; #Adjunct Associate Professor of Biological Sciences; Ph.D.; 1989; University of Georgia.

BROWN, Jack; 1992; #Professor of Plant Breeding and Genetics; Ph.D.; 1988; St Andrews.

BROWN, John B. III; 1999; Affiliate Clinical Professor of Medical Science; M.D.; 1991; Southern California School of Medicine.

BROWN, Peter M.; 2004; Affiliate Assistant Professor of Forest Resource; Ph.D.; 2004; Colorado State University.

BRUCK, Hugh A.; 1995; Affiliate Assistant Professor of Materials Science and Engineering and Metallurgical Engineering; Ph.D.; 1994; California Institute of Technology.

BRUMLEY, Debra L.; 1992; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1991; University of Idaho.

BRUNSFIELD, Steven J.; 1976; #Professor of Forest Resources; Adjunct Professor of Biological Sciences and of Environmental Science and of Neuroscience; Ph.D.; 1990; Washington State University.

BRYANT, Amy E.; 2000; #Affiliate Assistant Professor of Microbiology, Molecular Biology and Biochemistry; Ph.D.; 1999; University of Idaho.

BRYANT, Ben S.; 1999; Affiliate Professor of Forest Products; D.Forr.; 1951; Yale University.

BRYANT, Patrick S.; 1991; Affiliate Assistant Professor of Chemical Engineering; Ph.D.; 1993; University of Idaho.

BUDWIG, Ralph S.; 1985; #Professor of Mechanical Engineering; Department Chair; Ph.D.; 1985; Johns Hopkins University.

BUETTNER, Claudeen R.; 1994; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ed.D.; 1990; University of Idaho.

BUFFENBARGER, James R.; 2000; Affiliate Associate Professor of Computer Science; Ph.D.; 1990; University of California Davis.

BUFFINGTON, John M.; 2004; Affiliate Assistant Professor of Civil Engineering; Ph.D.; 1998; University of Washington.

BUKICH, Daniel J.; 1978; #Professor of Music (percussion, music theory, jazz choirs); M.Mus.; 1978; University of Idaho.

BULGIN, Marie S.; 1977; Professor of Veterinary Medicine; D.V.M.; 1967; University of California Davis.

BULLOCK, Milton G.; 1981; Affiliate Professor of Adult, Counselor, and Technology Education; B.S.M.E.; 1970; Idaho State University.

BUNTING, Stephen C.; 1978; #Professor of Range Resources; Adjunct Professor of Environmental Science; Acting Department Head; Ph.D.; 1978; Texas Tech University.

BURKHARDT, J. Wayne; 1995; Affiliate Professor of Range Resources; Ph.D.; 1969; University of Idaho.

BURNETT, Donald L.; 2002; Professor of Law; Dean, College of Law; LL.M.; 1990; University of Virginia.

BURNS-MCCOY, Nancie; 2004; Lecturer in English; Ph.D.; 1998; University of Idaho.

BURRATO, Gregory J.; 1977; #Affiliate Clinical Professor of Medical Science; M.D.; 1966; Creighton University.

BURTON, Damon D.; 1983; #Professor of Physical Education; Ph.D.; 1983; University of Illinois.

BYERS, John A.; 1980; #Professor of Zoology; Adjunct Professor of Neuroscience; Ph.D.; 1960; University of Colorado.

CAIN, Kenneth D.; 1999; #Affiliate Professor of Fishery Resources; Ph.D.; 1997; Washington State University.

CAISLEY, Robert C.; 2001; Assistant Professor of Theatre and Film; M.F.A.; 1993; Illinois State University.

CALDWELL, Kaye M.; 2001; Affiliate Instructor of Teaching, Learning, and Leadership; Ph.D.; 1994; University of Idaho.

CAMERON, Kelly; 1989; Affiliate Assistant Professor of Electrical Engineering; Ph.D.; 1989; University of Idaho.

CAMPBELL, Alton G.; 1983; #Professor of Forest Products; Associate Dean, College of Natural Resources; Ph.D.; 1983; University of North Carolina.

CAMPBELL, Steven V.; 2001; #Associate Professor of Accounting; Ph.D.; 1993; University of Oregon.

CANNEY, George F.; 1978; #Professor of Education; Ph.D.; 1974; University of Minnesota.

CANTRELL, Michael A.; 2001; #Associate Research Professor of Biological Sciences; Ph.D.; 1977; University of Wisconsin.

CAPLAN, Allan B.; 1992; Associate Professor of Molecular Biology and Biochemistry; Adjunct Associate Professor of Environmental Science; Ph.D.; 1980; University of Iowa.

CARLESON, Thomas E.; 1982; #Affiliate Professor of Chemical Engineering; Ph.D.; 1982; University of Washington.

CARLEY, Caroline D.; 2004; Affiliate Instructor of Anthropology; M.A.; 1979; University of Idaho.

CARLSON, Lisa J.; 1993; #Associate Professor of Political Science; Ph.D.; 1993; Rice University.

CARLSON, Ronald D.; 1986; Affiliate Professor of Biological and Agricultural Engineering; M.S.; 1974; University of Idaho.

CARNIE, Kevin P.; 1995; Affiliate Assistant Professor of Chemistry; Ph.D.; 1987; University of Vermont.

CARR, Joanne B.; 1998; Adjunct Associate Professor of Political Science and of Teacher Education; Vice President for University Advancement; Ph.D.; 1996; University of Colorado.

CARRON, Wayne M.; 1998; Affiliate Associate Professor of Teacher Education; Ph.D.; 1992; University of Illinois.

CARTER, Andrew; 2004; Lecturer in English; M.A.; 1993; University of California Davis.

CARTWRIGHT, Charles E.; 1985; Affiliate Assistant Professor of Mechanical Engineering; Ph.D.; 1970; University of Arizona.

CASETTI, James M.; 1976; #Affiliate Professor of Industrial Technology Education; M.S.Ed.; 1973; University of Idaho.

CASTANEDA, Ivan E.; 2001; #Associate Professor of Art and Design; Ph.D.; 2000; University of Virginia.

CASTLEROCK, Peter M.; 2000; Affiliate Professor of Chemistry; Ph.D.; 1969; Purdue University.
PART SEVEN

CROSBY, Gerald; 1979: Affiliate Professor of Chemical Engineering; Ph.D.; 1973; University of Washington.
CROWLEY, Donald W.; 1983: #Professor of Political Science; Chair, Department of Political Science and Public Affairs Research; Ph.D.; 1979; University of California Riverside.
CRUISE, Sandra A.; 1998: Affiliate Assistant Professor of Adult, Counselor, and Technology Education; M.A.; 1979; University of Northern Colorado.
CSESZKO, Ferenc P.; 2003: #Assistant Professor of Music; D.Mus.; 2000; University of Wisconsin.
CULBERTSON, Jeffrey D.; 2000: #Professor of Family and Consumer Sciences and of Food Science and Toxicology; Ph.D.; 1984; Washington State University.
CULICCHI, Paolo; 1990: Affiliate Professor of Chemical Engineering; Ph.D.; 1957; University of Genoa.
CZUCHAJOWSKI, Leszek; 1986; #Professor of Chemistry; D.Sc.; 1961; Tech University of AGH.
DACEY, Jill; 1984; #Professor of Art and Design; M.F.A.; 1982; University of Oklahoma.
DACEY, Raymond; 1984; #Professor of Business and of Statistics; Adjunct Professor of Philosophy; Ph.D.; 1970; Purdue University.
DAHLKE, Hans J.; 1993: Affiliate Professor of Civil Engineering; Ph.D.; 1964; Stanford University.
DAKINS, Maxine E.; 1994: #Associate Professor of Environmental Science; Ph.D.; 1994; SUNY at Syracuse.
DALEY LAURSEN, Steven B.; 2002: Professor of Forest Resources and Conservation Social Sciences; Dean, College of Natural Resources; Ph.D.; 1984; University of Idaho.
DANDURAND, Louise-Marie C.; 1990; #Adjunct Assistant Professor of Plant Pathology; Research Scientist; Ph.D.; 1990; University of California Riverside.
DANEHY, Robert J.; 2002: Affiliate Assistant Professor of Forest Resources; Ph.D.; 1994; State University of New York (SUNY).
DANGERFIELD, Byron J.; 1981: #Associate Professor of Management Information Systems; Dean, College of Business and Economics; Ph.D.; 1985; University of Washington.
DAUGHRILL, Cary W.; 2000: #Assistant Professor of Microbiology, Molecular Biology and Biochemistry; Adjunct Assistant Professor of Bioinformatics and Computational Biology; Ph.D.; 1977; University of Oregon.
DAVICO, Gustavo E.; 2000: #Assistant Professor of Chemistry; Ph.D.; 1992; National University of Cordoba.
DAVIS, Edward L.; 1987; Affiliate Assistant Professor of Education; Ph.D.; 1983; University of Idaho.
DAVIS, Howard P.; 1995; #Assistant Professor of Physical Education; Ph.D.; 1993; University of Oregon.
DAVIS, John C.; 1993: #Associate Professor of Teacher Education; Adjunct Associate Professor of Geological Sciences; Ph.D.; 1993; Utah State University.
DAVIS, Margaret A.; 2003: Adjunct Assistant Professor of Microbiology, Molecular Biology and Biochemistry; Ph.D.; 2002; Washington State University.
DAWSON, Jack L.; 1982; #Associate Professor of Education; Dean, University of Idaho Center, Coeur d’Alene; Ph.D.; 1982; University of Idaho.
DAWSON, Paul J.; 1989; Affiliate Assistant Professor of Mechanical Engineering; Ph.D.; 1987; Washington State University.
DAY, E. Wayne; 1992; Affiliate Clinical Professor of Medical Science; M.D.; 1975; University of Oklahoma.

DESE AR L TIE DM AN, Christine A.; 1995: Catalog Librarian with rank of Assistant Professor; M.A.; 1994; University of Iowa.
DEVADOSS, Stephen; 1992; #Professor of Agricultural Economics; Ph.D.; 1985; Iowa State University.
DEYOUN G, Edwin J.; 2004; Adjunct Instructor of Geography; M.S.; 1996; Montana State University.
DEZZANI, Raymond J.; 2004; Affiliate Professor of Geography; Adjunct Professor of Statistics; Ph.D.; 1990; University of California Riverside.
DICKOW, Robert H.; 1984: #Associate Professor of Musical Theory and Composition; Ph.D.; 1979; University of California Berkeley.
DIEBEL, Penelope L.; 1999: Affiliate Associate Professor of Agricultural Economics; Ph.D.; 1990; Virginia Polytechnic Institute.
DIXON, Joann; 1993: Affiliate Professor of Teacher Education; Ph.D.; 1987; Gonzaga University.
DIXON, Michael P.; 2000; #Assistant Professor of Civil Engineering; Ph.D.; 2000; Texas A&M University.
DOLNY, Dennis G.; 1984; #Professor of Physical Education; Interim Director, Division of Health, Physical Education, Recreation, and Dance; Ph.D.; 1985; Kent State University.
DONATI, Richard B.; 1989; Affiliate Clinical Professor of Medical Science; M.D.; 1974; State University of New York (SUNY).
DONELICK, Margaret Burke; 1998: Affiliate Assistant Professor of Geology and Geological Engineering; Ph.D.; 1991; Dalhousie University.
DONELICK, Raymond; 1998: Affiliate Assistant Professor of Geology and Geological Engineering; Ph.D.; 1988; Rensselaer Polytechnic.
DONOHOE, Gregory W.; 2002; Research Associate Professor of Electrical and Computer Engineering; Affiliate of the University of Idaho Center for Advanced Microelectronic and Biomolecular Research; Ph.D.; 1989; University of New Mexico.
DORMAN, Patricia M.; 1989; Affiliate Professor of Educational Administration; Ph.D.; 1971; University of Utah.
DRAKE, Thomas A.; 1994; Instructor in English; M.A.; 1994; University of Idaho.
DROWN, David C.; 1980; #Associate Professor of Chemical Engineering; Ph.D.; 1975; University of Idaho.
DROWN, Stephen R.; 1994: #Professor of Landscape Architecture; Adjunct Professor of Architecture and Environmental Science; Chair, Department of Landscape Architecture; M.A.; 1974; State University of New York (SUNY).
DRUKER, E. Philip; 1982; Senior Instructor of English; Adjunct Senior Instructor of Environmental Science; Assistant Director of Writing; M.A.; 1993, University of Idaho.
DUMROESE, Kasten R.; 2002; Affiliate Assistant Professor of Forest Resources; Ph.D.; 1996; University of Idaho.
DUPONT, Ronald J.; 1989; Affiliate Clinical Professor of Medical Science; M.D.; 1964; University of Wisconsin.
DUPREE, Mary H.; 1971; #Professor of Music (history and literature, musicology); Ph.D.; 1980; University of Colorado.
DURRANT, Sue M.; 1993; Affiliate Associate Professor of Physical Education; Ph.D.; 1976; Ohio State University.
DYAR, Melinda D.; 2000; Affiliate Assistant Professor of Geological Sciences; Ph.D.; 1985; Massachusetts Institute of Technology (MIT).
DYE, Lorie; 1994; Associate Extension Professor and Jefferson County Extension Educator (Family Relations); M.S.; 1991; Brigham Young University.
DYLE, Brian P.; 1998; #Associate Professor of Psychology; Adjunct Associate Professor of Neuroscience; Ph.D.; 1993; University of Illinois.

EBERLEIN, Charlotte V.; 1989; #Professor of Weed Science; Associate Dean, College of Agricultural and Life Sciences; Director, Cooperative Extension; Ph.D.; 1981; University of Minnesota.
EBORN, Benjamin M.; 2003; Assistant Extension Professor and Extension Educator (Agriculture and Community Development); M.S.; 2002; University of Idaho.
ECKWRIGHT, Gail Z.; 1978; Humanities Librarian with rank of Professor; M.L.S.; 1976; University of Wisconsin.
EDGEMAN, Rick L.; 2004; #Professor of Statistics; Chair, Department of Statistics; Ph.D.; 1983; University of Wyoming.
EDWARDS, Dean B.; 1986; #Professor of Mechanical Engineering; Adjunct Professor of Electrical and Computer Engineering; Ph.D.; 1977; California Institute of Technology.
EDWARDS, Louis L. Jr.; 1981; #Professor of Chemical Engineering; Adjunct Professor of Forest Products; Ph.D.; 1986; University of Idaho.
EDWARDS, W. Daniel; 1987; #Associate Professor of Chemistry; Ph.D.; 1976; University of Missouri.
EGGLESTON, Richard J.; 1992; Affiliate Clinical Professor of Medical Science; M.D.; 1967; University of Kansas.
EGOLF, David P.; 1994; #Professor of Electrical Engineering; Ph.D.; 1976; Purdue University.
EIGENBRODE, Sanford D.; 1995; #Associate Professor of Entomology; Adjunct Associate Professor of Environmental Science; Ph.D.; 1990; Cornell University.

EISENBERTH, Christopher A.; 2003; #Assistant Professor of Community Health; Ph.D.; 2003; Oregon State University.

EISLEY, Mark E.; 1992; #Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1990; Brigham Young University.

ELGER, Donald F.; 1987; #Professor of Mechanical Engineering; Ph.D.; 1986; Oregon State University.

ELIAS, Thomas J.; 1992; Affiliate Professor of Mechanical Engineering; Ph.D.; 1980; University of Minnesota.

ELLIOI, William J.; 2003; Affiliate Professor of Biological and Agricultural Engineering, and of Geography; Ph.D.; 1988; Iowa State University.

ELLSWORTH, Jason W.; 2001; #Assistant Extension Professor of Soil Science; Ph.D.; 2000; Iowa State University.

EMLEN, John; 1996; Affiliate Associate Professor of Entomology; Ph.D.; 1966; University of Washington.

EMMETT, William W.; 2000; #Affiliate Professor of Civil Engineering; Ph.D.; 1968; Johns Hopkins University.

EMTMAN, Richard A.; 1989; Affiliate Clinical Professor of Medical Science; M.D.; 1981; University of Washington.

ENGEL, Cheryl; 1998; Instructor in Adult, Counselor, and Technology Education.

ENGELHARDT, Maxwell; 1992; Affiliate Professor of Statistics; Ph.D.; 1969; University of Missouri.

ENGLAND, James J.; 1995; #Professor of Veterinary Medicine; Director, Caine Veterinary Teaching Center; D.V.M.; 1981; Colorado State University.

ENTRY, James A.; 2003; Affiliate Professor of Plant, Soil and Entomological Sciences; Ph.D.; 1989; Oregon State University.

ESHELBY, Donald; 1986; Affiliate Associate Professor of Adult, Counselor, and Technology Education; Ed.D.; 1972; University of North Dakota.

ESTERMAN, Marcus; 2002; Affiliate Assistant Professor of Mechanical Engineering; M.S.; 1990; Massachusetts Institute of Technology (MIT).

EVANS, Dennis R.; 1980; Affiliate Professor of Chemical Engineering; Ph.D.; 1965; Iowa State University.

EVELETH, Daniel M.; 1997; #Associate Professor of Human Resource Management; Ph.D.; 1996; Washington State University.

EVENSEN, Sandra; 1994; # Associate Professor of Family and Consumer Sciences; Ph.D.; 1994; University of Minnesota.

EVERETT, Richard L.; 1997; Affiliate Associate Professor of Range Resources; Ph.D.; 1984; Oregon State University.

EWERS, Timothy G.; 2003; #Assistant Research Professor of Teaching, Learning, and Leadership; Adjunct Assistant Professor of Environmental Science; Ph.D.; 2001; University of Idaho.

EXON, Jerry H.; 1984; #Professor of Food Science and Toxicology; Director of Food Quality Assurance Program; Ph.D.; 1984; University of Idaho.

FAIRCILD, Thomas N.; 1974; #Professor of Counseling and School Psychology; Coordinator, School Psychology Program; Ph.D.; 1974; University of Iowa.

FAIRLEY, Jerry P.; 2000; #Assistant Professor of Hydrogeology; Adjunct Assistant Professor of Environmental Science; Ph.D.; 2000; University of California Berkeley.

FALK, Dennis G.; 1974; Senior Instructor in Animal Science; M.S.; 1981; University of Idaho.

FALLAH, Esmaeil; 1990; #Professor of Plant Science; Ph.D.; 1983; Oregon State University.

FANCY, Steven G.; 1996; Affiliate Associate Professor of Fish and Wildlife Resources; Ph.D.; 1986; University of Alaska.

FAZIO, James R.; 1974; #Professor of Conservation Social Sciences; Ph.D.; 1974; Colorado State University.

FEHRENBACHER, Richard W.; 1992; #Associate Professor of English; Ph.D.; 1992; Duke University.

FELLMAN, John K.; 1977; #Affiliate Associate Professor of Plant Science; Ph.D.; 1982; University of Idaho.

FERENS, Wilotd A.; 2001; Adjunct Assistant Professor of Microbiology, Molecular Biology & Biochemistry; Ph.D.; 1990; University of Calgary.

FERGUSON, Kenneth D.; 1980; Affiliate Professor of Forest Resources; Ph.D.; 1991; University of Idaho.

FERGUSON, Roger; 2000; Senior Instructor in Civil Engineering (P.E.); M.S.; 1972; University of Connecticut.

FERRANTI, Luigi; 1996; Affiliate Assistant Professor of Geology; Ph.D.; 1995; University of Naples.

FIEDLER, Fritz R.; 2000; #Assistant Professor of Civil Engineering (P.E.); Ph.D.; 1997; Colorado State University.

FILLER, Jeff R.; 2000; Affiliate Assistant Professor of Materials Science and Engineering and Metallurgical Engineering; Ph.D.; 1989; Washington State University.

FILLMORE, Denzel; 1995; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1971; Brigham Young University.

FINCKE, James R.; 1991; Affiliate Assistant Professor of Mechanical Engineering; Ph.D.; 1983; University of Idaho.

FINDLAY, J. Reed; 1994; Associate Extension Professor and Extension Educator (Crops/Urban Horticulture); M.S.; 1993; Brigham Young University.

FINEGAN, Bryan G.; 2002; Affiliate Assistant Professor of Forest Resources; Dr.Scient.; 1985; University of Helsinki.

FINNEY, Mark A.; 2004; Affiliate Assistant Professor of Forest Resources; Ph.D.; 1991; University of California Berkeley.

FINS, Lauren; 1979; #Professor of Forest Genetics; Director of the Inland Empire Tree Improvement Cooperative; Ph.D.; 1979; University of California Berkeley.

FISCHER, Jerome M.; 1993; #Professor of Rehabilitation Counseling; Ph.D.; 1992; Southern Illinois University.

FISHER, James E.; 1992; Affiliate Assistant Professor of Educational Administration; Ed.D.; 1989; University of Idaho.

FLECHINGER, Gerald N.; 1990; Affiliate Assistant Professor of Biological and Agricultural Engineering; Ph.D.; 1987; Washington State University.

FLETCHER, Janice W.; 1979; #Professor of Family and Consumer Sciences; Ed.D.; 1978; Auburn University.

FLETCHER, T. Rick; 1989; #Associate Professor of Chemistry; Ph.D.; 1986; University of California Davis.

FLINN, John E.; 1988; #Associate Professor of Materials Science and Engineering and Metallurgical Engineering; Ph.D.; 1972; Washington State University.

FLORENCHE-FRANKS, Ginger; 2004; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Dr.P.H.; 1996; Loma Linda University.

FLORES, Stephan P.; 1987; #Associate Professor of English; Director, Honors Program; Ph.D.; 1988; University of Michigan.

FODOR, Julie A.; 1993; #Associate Professor of Education; Interim Director of the Idaho Center on Disabilities and Human Development; Ph.D.; 1993; University of Utah.

FOLTZ, John C.; 1991; #Professor of Agricultural Economics and Rural Sociology; Interim Associate Dean, College of Agricultural and Life Sciences; Ph.D.; 1991; Purdue University.

FOLTZ, Randy B.; 2000; #Assistant Professor of Forest Resources; Ph.D.; 1993; University of Idaho.

FOWELL, Annette L.; 2000; #Assistant Professor of Communication; Ph.D.; 1997; University of Oklahoma.

FONNESBECK, Jacqueline E.; 2003; Affiliate Professor of Chemistry; Ph.D.; 1997; Montana State University.

FOOTE, Roy; 1978; Affiliate Professor of Electrical Engineering; M.S.E.E.; 1976; University of Idaho.

FORAKER-THOMPSON, Jane; 1988; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1985; Stanford University.

FORCE, Jo Ellen; 1979; #Professor of Forest Resources; Adjunct Professor of Environmental Science; Department Head; Ph.D.; 1978; Ohio State University.

FORCE, Ronald W.; 1982; Dean of Library Services with rank of Associate Professor; M.S.; 1975; Ohio State University.

FORNEY, Larry J.; 2000; #Professor of Biology; Adjunct Professor of Bioinformatics and Computational Biology; Chair, Department of Biological Sciences; Ph.D.; 1982; Michigan State University.

FORSNELL, Gary C.G.; 1992; Associate Extension Professor and Multi-county Extension Educator (Aquaculture); M.S.; 1986; Auburn University.

FORTUNATO, Elizabeth Lee; 2000; #Associate Professor of Microbiology, Molecular Biology and Biochemistry; Ph.D.; 1994; University of California San Diego.

FOSTER, James A.; 1990; #Professor of Computer Science; Adjunct Professor of Biological Sciences and of Philosophy and of Bioinformatics and Computational Biology; Director, Bioinformatics and Computational Biology; Ph.D.; 1990; Illinois Institute of Technology.

FOSTER, Richard; 1899; Affiliate Professor of Educational Administration; Ph.D.; 1974; University of Nebraska.

FRANCIS, Susan C.; 1999; Adjunct Assistant Professor of Teacher Education and North Idaho Regional Special Education Consultant; Ph.D.; 1993; University of Idaho.

FRANK, Steven M.; 1999; Affiliate Assistant Professor of Chemistry; Ph.D.; 1989; Washington State University.

FRANZ, James A.; 2002; Affiliate Professor of Forest Resources; Ph.D.; 1993; University of Idaho.

FREMUTH, John; 1992; Affiliate Professor of Forest Resources; Ph.D.; 1985; Colorado State University.

FRENCH, H. Graeme; 1992; Affiliate Clinical Professor of Medical Science; M.D.; 1985; Tulane University.
<table>
<thead>
<tr>
<th>Name</th>
<th>Title or Role</th>
<th>Years</th>
<th>Institutions/Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAHN, Gary S.</td>
<td>#Associate Professor of Chemistry; Ph.D.; 1983; University of Nebraska</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROENWOLD, Gary S.</td>
<td>#Associate Professor of Chemistry; Ph.D.; 1983; University of Arizona</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRUBBS, Michael C.</td>
<td>Affiliate Assistant Professor of Teaching; Learning and Leadership; J.D.; 1972; University of Arizona</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUNNINGER, Fred S.</td>
<td>#Professor of Mechanical Engineering; Director of the INEEL Education and Research Initiatives; Ph.D.; 1979; University of New Mexico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUNDER, Mickey E.</td>
<td>#Professor of Geology; Adjunct Professor of Materials Engineering and Environmental Science; Ph.D.; 1987; Virginia Polytechnic Institute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUSTIN, Kurt E.</td>
<td>#Assistant Professor of Microbiology; Molecular Biology & Biochemistry; Ph.D.; 1998; University of Michigan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUY, Stephen O.</td>
<td>#Extension Professor and Crop Management Specialist; Ph.D.; 1988; University of Wisconsin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAGENSEN, H. Lynne</td>
<td>#Professor of Art and Design; M.F.A.; 1975; Ohio State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAAS, Sandra L.</td>
<td>#Professor of Journalism and Mass Media; Associate Dean, College of Letters, Arts and Social Sciences; Ph.D.; 1990; Washington State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAFEL, Saad L.</td>
<td>#Professor of Nematology; Interim Superintendent, Parma Research and Extension Center; Ph.D.; 1980; University of California Davis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAGEDORN, Donald J.</td>
<td>#Associate Professor of Plant Pathology; Ph.D.; 1948; University of Wisconsin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAGERTY, Robert J.</td>
<td>Adjunct Assistant Professor of Agricultural and Extension Education and of Food Science and Toxicology; Interim Director for International Programs, College of Agricultural and Life Sciences; Ph.D.; 1997; University of Idaho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAGLUND, Bruce T.</td>
<td>#Professor of Architecture; Adjunct Professor of Environmental Science; Acting Chair, Department of Architecture; M.Arch.; 1982; University of Oregon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAGRAMAN, Donald L.</td>
<td>#Professor of Physics; Ph.D.; 1970; University of Utah</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAHN, Te-Whan</td>
<td>Assistant Professor of Finance; Ph.D.; 2000; University of Alabama</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAINES, Douglas C.</td>
<td>Assistant Professor of Marketing; Ph.D.; 1996; University of Oregon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HALL, Troy E.</td>
<td>#Associate Professor of Protected Area Visitor Studies; Ph.D.; 1996; Oregon State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HALLETT, Norman N.</td>
<td>Affiliate Associate Professor of Educational Administration; Ed.D.; 1982; University of Idaho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HALLGREN, Karen</td>
<td>Lecturer of English; M.A.; 1994; University of Idaho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HALLORAN, Gregory J.</td>
<td>#Assistant Professor of Dance; M.F.A.; 1996; Ohio State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAM, Bruce L.</td>
<td>#Professor of Clinical Medical Science; M.D.; 1974; Loma Linda University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAM, Sam H.</td>
<td>#Professor of Communication Psychology; Ph.D.; 1982; University of Idaho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAMILTON, David A.</td>
<td>Affiliate Professor of Forest Resources; Ph.D.; 1970; Iowa State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAMMEL, John E.</td>
<td>#Professor of Soil Science and Soil Physics; Interim Dean, College of Agricultural and Life Sciences; Ph.D.; 1979; Washington State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAMMOND, Darrel L.</td>
<td>Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1995; University of Idaho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAMMOND, Lawrence A.</td>
<td>Affiliate Clinical Professor of Medical Science; M.D.; 1984; Harvard University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAMPTON, Carol D.</td>
<td>Assistant Extension Professor and Boundary County Extension Educator (Food Safety/Parenting); M.A.; 2003; Colorado State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAMPTON, Richard</td>
<td>Affiliate Professor of Plant Pathology; Ph.D.; 1957; Iowa State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAMPTON, Stephanie E.</td>
<td>#Assistant Professor of Fish and Wildlife Resources; Adjunct Associate Professor of Bioinformatics and Computational Biology; Ph.D.; 2001; Dartmouth College</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAN, Han-Sup</td>
<td>Assistant Professor of Timber Harvesting and Forest Engineering; Ph.D.; 1997; Oregon State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HANG, An</td>
<td>Affiliate Assistant Professor of Plant Science; Ph.D.; 1981; University of Colorado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HANLON, Heather</td>
<td>Affiliate Professor of Education; Ed.D.; 1974; University of Oregon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HANN, Wendel J.</td>
<td>Affiliate Associate Professor of Range Resources; Ph.D.; 1982; University of Idaho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HANSEN-MOLLER, Jette</td>
<td>#Associate Professor of Conservation Social Sciences; Ph.D.; 1995; Nordic Institute for Societal Planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HANSON, Clayton L.</td>
<td>Affiliate Professor of Civil Engineering; Ph.D.; 1967; Utah State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARDING, Jerry L.</td>
<td>Affiliate Assistant Professor of Psychology; Ph.D.; 1988; Oklahoma State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARDY, Ronald W.</td>
<td>#Professor of Animal Science; Adjunct Professor of Fishery Resources; Director, Aquaculture Research Institute; Ph.D.; 1978; University of Washington</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARRISON, Steven N.</td>
<td>Extension Professor and Caribou County Extension Educator (Farming Management); M.S.; 1992; Brigham Young University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARRISON, W. Scott</td>
<td>#Assistant Professor of Computer Science; Ph.D.; 1999; Tulane University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HART, Cheryl Turocy</td>
<td>Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 2000; University of Idaho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HART, Kenneth N.</td>
<td>#Associate Extension Professor and Lewis County Extension Educator (Farming/Crop Management); M.S.; 1992; University of Idaho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HART, Patricia S.</td>
<td>#Associate Professor of Journalism and Mass Media; Ph.D.; 1997; Washington State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARTVIKSEN, M. Kip</td>
<td>#Associate Professor of Adult, Counselor, and Technology Education; Ph.D.; 1980; Washington State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARRISON, Carolyn</td>
<td>Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1995; University of Idaho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARRISON, Steven N.</td>
<td>Extension Professor and Caribou County Extension Educator (Farming Management); M.S.; 1992; Brigham Young University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARRIS, John</td>
<td>Affiliate Clinical Professor of Medical Science; M.D.; 1988; Michigan State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARELLE, Jack</td>
<td>Affiliate Professor of Animal Science; Ph.D.; 1988; University of Michigan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARISSON, Carolyn</td>
<td>Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1995; University of Idaho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARRIS, John</td>
<td>Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1980; Washington State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARTZELL, Patricia L.</td>
<td>#Associate Professor of Microbiology; Department Chair; Ph.D.; 1996; University of Illinois</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARVEY, Alan E.</td>
<td>Affiliate Professor of Forest Resources; Ph.D.; 1968; Washington State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARVEY, Caleb A.</td>
<td>Affiliate Assistant Professor of Forest Resources; Ph.D.; 1999; Cornell University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HATFIELD, Patrick G.</td>
<td>Affiliate Assistant Professor of Animal Science; Ph.D.; 1988; University of Nebraska</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HATHAWAY DIAL, Karin D.</td>
<td>Instructor of Accounting; M.Acc.; 1999; University of Idaho</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HAUFLER, Jonathan B.; 2000; Affiliate Professor of Fish and Wildlife Resources; Ph.D.; 1978; Colorado State University.

HAWKINS, James N.; 1970; Extension Professor and Custer County Extension Educator (Range Management/Beef); M.S.; 1979; University of Idaho.

HAYES, Steven L.; 1999; Affiliate Assistant Professor of Mechanical Engineering; Ph.D.; 1992; Texas A&M University.

HAYMAN, Warren J.; 1998; Lecturer in English; M.F.A.; 1990; Virginia Commonwealth University.

HAYNES, James B.; 1989; Affiliate Assistant Professor of Chemical Engineering; Ph.D.; 1988; University of Idaho.

HAZEN, William F.; 1970; Extension Professor and Gooding County Extension Educator (Alternative Forages/Beef); M.S.; 1985; University of Idaho.

HE, Brian (Bingjun); 2001; Assistant Professor of Agricultural Engineering; Adjunct Assistant Professor of Food Science and Toxicology; Ph.D.; 2000; University of Illinois.

HEALY, Beverly A.; 1969; Extension Professor and Ada County Extension Educator (Family Resource Management); M.Ed.; 1983; Northwest Nazarene University.

HECKENDORN, Robert B.; 1999; Assistant Professor of Computer Science; Adjunct Assistant Professor of Bioinformatics and Computational Biology; M.S.; 1979; University of Arizona.

HEGLUND, Patricia J.; 2003; Affiliate Assistant Professor of Biological Sciences; Ph.D.; 1992; University of Missouri.

HEIDELBERGER, James; 1988; Affiliate Instructor in Special Education; Ed.Sp.; 1981; University of Idaho.

HEIMGARTNER, Candi K.; 2003; Lecturer in Biological Sciences; M.S.; 1999; University of Idaho.

HEIMSCH, Richard C.; 1972; Professor of Microbiology; Associate Vice President for Research and Graduate Studies; Ph.D.; 1973; University of Wisconsin.

HENAGER, Charles H. Jr.; 1995; Affiliate Professor of Materials Science and Engineering and Metallurgical Engineering; Ph.D.; 1993; University of Washington.

HENDERSON, Joann P.; 1975; Professor of Law; J.D.; 1973; University of Idaho.

HENDRICKSON, John R.; 2003; Affiliate Assistant Professor of Rangeland Ecology and Management; Ph.D.; 1996; Texas A&M University.

HERTEL, Karen F.; 2000; Reference Librarian with rank of Assistant Professor; M.L.S.; 1994; University of Washington.

HESFORD, Walter A.; 1979; Associate Professor of English; Director, Undergraduate Studies; Ph.D.; 1975; Harvard University.

HES, Herbert L.; 1993; Associate Professor of Electrical Engineering; Ph.D.; 1993; University of Wisconsin.

HES, Susan M.; 1994; Assistant Professor of Music (bassoon); Assistant Director, Hampton School of Music; D.M.A.; 1996; University of Colorado.

HES, Thomas F.; 1994; Associate Professor of Biological and Agricultural Engineering (Environmental Engineering); Adjunct Associate Professor of Environmental Science; Director, Environmental Engineering; Ph.D.; 1990; University of Colorado.

HEYERDAHL, Emily K.; 2004; Assistant Professor of Forest Resources; Ph.D.; 1997; University of Washington.

HIGGINS, Lorie L.; 2002; Assistant Professor of Rural Sociology and Rural Community Development; Adjunct Assistant Professor of Environmental Science; Ph.D.; 2001; Washington State University.

HILJE, Luko; 2003; Affiliate Professor of Plant, Soil and Entomological Sciences; Ph.D.; 1983; University of California Riverside.

HILL, Elizabeth K.; 2004; Reference Librarian with rank of Assistant Professor; M.L.S.; 2001; University of Arizona.

HILL, Jannette R.; 1998; Affiliate Associate Professor of Teacher Education; Ph.D.; 1990; Washington State University.

HILL, John M.; 1997; Affiliate Professor of Educational Administration; Ph.D.; 1977; US Washington State University.

HILL, Rod; 2002; Assistant Professor of Growth Biology; Ph.D.; 1995; Central Michigan University.

HILL, Susan G.; 1992; Affiliate Assistant Professor of Psychology; Ph.D.; 1988; Virginia Polytechnic Institute.

HINCHEE, Robert E.; 1996; Affiliate Associate Professor of Civil Engineering; Ph.D.; 1983; Utah State University.

HINES, Steven L.; 2000; Assistant Extension Professor and Lincoln County Extension Educator (Community Development/Crops); M.S.; 1996; University of Idaho.

HINZ, Harriet L.; 2003; Affiliate Assistant Professor of Plant, Soil and Entomological Sciences; Ph.D.; 1999; University of Idaho.

HINZ, Susan C.; 2003; Lecturer in Journalism and Mass Media; M.S.; 2003; Iowa State University.

HINRYCK, Ronda E.; 2003; Associate Extension Professor and Extension Educator (Pesticide); M.S.; 1983; University of Nebraska.

HIROMOTO, Robert E.; 2002; Professor of Computer Science; Chair, Department of Computer Science; Ph.D.; 1978; California State University Long Beach.

HODGIN, A. D'Wayne; 1980; Lecturer in English; M.A.; 1982; University of Idaho.

HOERGER, Carl; 1990; Affiliate Professor of Mechanical Engineering; Ph.D.; 1983; Utah State University.

HOFF, Raymond J.; 1962; Affiliate Professor of Forest Resources; Ph.D.; 1966; Washington State University.

HOFFMAN, David L.; 1987; Affiliate Assistant Professor of Plant Science; Ph.D.; 1985; Washington State University.

HOFFMAN, Marfa; 2002; Affiliate Senior Instructor of Dance; B.S.; 1995; Southern Utah University.

HOLLANDS, Justin G.; 1994; Affiliate Assistant Professor of Psychology; Ph.D.; 1993; University of Toronto.

HOLLENHORST, Steven J.; 1999; Professor of Protected Area Policy; Adjunct Professor of Environmental Science; Head, Department of Conservation Social Sciences; Ph.D.; 1987; Ohio State University.

HOLMES, Donna J.; 2001; Associate Research Professor of Biological Sciences; Ph.D.; 1987; Bowling Green State University.

HOLMES, Robert G.G.; 1996; Affiliate Professor of Materials Science and Engineering and Metallurgical Engineering; Ph.D.; 1978; University of Manchester.

HOLTZCLAW, V. Neil; 1995; Affiliate Instructor in Adult, Counselor, and Technology Education; M.S.; 1991; Montana College of Science and Technology.

HOLYOKA, Laura B.; 2004; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 2004; Gonzaga University.

HONG, Yang Ki; 1998; Professor of Materials Science and Engineering and Metallurgical Engineering; Adjunct Professor of Electrical and Computer Engineering; P.M.D.; 1992; Harvard University.

HOOK, Robert D.; 1968; Reference Librarian with rank of Professor; Ph.D.; 1980; University of Southern California.

HOPKINS, Bryan G.; 2001; Assistant Extension Professor of Crop Management; Ph.D.; 1995; Kansas State University.

HOPPER, Biran C.; 2003; Psychologist, Counseling and Testing Center, with rank of Assistant Professor; Psy.D.; 2002; George Fox University.

HOUFF, Bonnie L.; 1989; Affiliate Clinical Professor of Medical Science; M.D.; University of Miami.

HOUGHTON, Madeline Dellwo; 1995; Associate Professor of Dietetics; Ph.D.; 1989; University of Tennessee.

HOVEY, Sue Y.; 2000; Affiliate Instructor in Teacher Education; M.A.; 1978; University of Idaho.

HOWE, Sarah J.; 2001; Assistant Extension Professor and Extension Educator (Agriculture/Community Development); M.S.; 2000; University of Idaho.

HRISTOV, Alexander; 1999; Associate Professor of Dairy Nutrition; Ph.D.; 1992; Academy of Ag Sciences.

HUBER, Kerry C.; 1998; Associate Professor of Food Science and Toxicology; Ph.D.; 1998; Purdue University.

HUDAK, Andrew T.; 2004; Affiliate Assistant Professor of Forest Resources, Rangeland Ecology and Management, and Geography; Ph.D.; 1999; University of Colorado.

HUFF, Roy B.; 2003; Affiliate Professor of Adult, Counselor, and Technology Education; Ph.D.; 2001; University of Idaho.

HUGHES, Edward D.; 1992; Affiliate Professor of Mechanical Engineering; Ph.D.; 1969; North Carolina State University.

HUGHES, Robert M.; 2001; Affiliate Associate Professor of Fish and Wildlife Resources; Ph.D.; 1979; Oregon State University.

HUMES, Karen S.; 1999; Associate Professor of Geography; Adjunct Associate Professor of Environmental Science; Ph.D.; 1992; University of Arizona.

HUNT, Cari W.; 1985; Professor of Animal Science; Ph.D.; 1984; University of Missouri.

HUNT, Kristin DeNure; 1997; Affiliate Instructor in Adult, Counselor, and Technology Education; M.S.; 1994; University of Idaho.

HUNT, Lieutenant Colonel Kenneth A.; 2004; Professor of Military Science; M.S.; 2000; Central Michigan University.

HUNT, Martha K.; 1989; Affiliate Clinical Professor of Medical Science; M.D.; Southern Illinois University.

HUNTER, David L.; 1992; Affiliate Associate Professor of Animal and Veterinary Science; D.V.M.; 1976; Washington State University.

HUNTER, Jay A.; 1980; Affiliate Clinical Professor of Medical Science; M.D.; 1977; University of Washington.

HUPP, Jerry W.; 2004; Affiliate Associate Professor of Fish and Wildlife Resources; Ph.D.; 1987; Colorado State University.

HURA, Gurdeep S.; 1998; Associate Professor of Computer Science; Adjunct Associate Professor of Electrical and Computer Engineering; Ph.D.; 1984; Roorkee.

HUTCHINSO, Pamela J.; 1999; Associate Professor of Weed Science; Ph.D.; 1991; University of Nebraska.

HUTCHISON, Sharron J.; 1984; Senior Instructor in Chemistry; Ph.D.; 1983; University of Idaho.
JOHNSON, Jill L.; 2002; Assistant Professor of Microbiology, Molecular Biology and Biochemistry; Ph.D.; 1994; Mayo Graduate School.

JOHNSON, Georgia; 1992; Associate Professor of Educational Administration; Ph.D.; 1990; University of Idaho.

JOHNSON, Kip J.; 2002; Affiliate Assistant Professor of Chemical Engineering; Ph.D.; 1998; University of California Berkeley.

JOHNSON, James B.; 1981; Professor of Entomology; Interim Head, Department of Plant, Engineering; Ph.D.; 1991; University of Idaho.

JOHNSON, Cheryl; 1988; Senior Instructor in English; M.A.; 1990; University of Idaho.

JOHNSON, Leonard R.; 1974; Professor of Forest Products; Ph.D.; 1975; Oregon State University.

JOHNSON, Keith A.; 2001; Affiliate Professor of Fish and Wildlife Resources; Ph.D.; 1975; Oregon State University.

JOHNSON, LaMar J.; 1980; Affiliate Instructor in Physics; Ph.D.; 1969; Colorado State University.

JOHNSON, Leonard R.; 1974; Assistant Professor of Forest Products; Ph.D.; 1984; West Virginia University.

JOHNSON, Lynn F.; 1976; Affiliate Professor of Biological and Agricultural Engineering; M.S.Ag.E.; 1958; University of Idaho.

JOHNSON, Richard W.; 1999; Affiliate Associate Professor of Mechanical Engineering; Ph.D.; 1984; UMIST.

JOHNSON, Russ; 1975; Assistant Professor of Agricultural Engineering; Ph.D.; 1978; University of Idaho.

JOHNSON, Gary; 1992; Affiliate Professor of Forest Resources; Ph.D.; 1980; University of Idaho.

JOHNSON, Jodi; 2000; Assistant Professor of Rangeland Ecology and Management; Ph.D.; 1998; University of Idaho.

JOHNSON-MAYNARD, Jodi; 2000; Assistant Professor of Soil and Water Management; Adjunct Assistant Professor of Environmental Science; Ph.D.; 1999; University of California Riverside.

JOHNSON, Leonard R.; 1974; Assistant Professor of Forest Products; Ph.D.; 1975; Oregon State University.

JOHNSON, James B.; 1981; Professor of Entomology; Interim Head, Department of Plant, Engineering; Ph.D.; 1991; University of Idaho.

JOHNSON, Gregory L.; 1994; Affiliate Assistant Professor of Biological and Agricultural Engineering; Ph.D.; 1991; North Carolina State University.

JOHNSON, James B.; 1981; Professor of Entomology; Interim Head, Department of Plant, Soil and Entomological Sciences; Ph.D.; 1982; University of California Berkeley.

JOHNSON, Jon; 2004; Affiliate Assistant Professor of Fish and Wildlife Resources; Ph.D.; 2001; University of Wyoming.

JOHNSON, Jill L.; 2002; Affiliate Assistant Professor of Microbiology, Molecular Biology and Biochemistry; Ph.D.; 1994; Mayo Graduate School.

JOHNSON, James B.; 1981; Professor of Entomology; Interim Head, Department of Plant, Engineering; Ph.D.; 1991; University of Idaho.

JOHNSON, Gregory L.; 1994; Affiliate Assistant Professor of Biological and Agricultural Engineering; Ph.D.; 1991; North Carolina State University.

JOHNSON, James B.; 1981; Professor of Entomology; Interim Head, Department of Plant, Soil and Entomological Sciences; Ph.D.; 1982; University of California Berkeley.

JOHNSON, Jon; 2004; Affiliate Assistant Professor of Fish and Wildlife Resources; Ph.D.; 2001; University of Wyoming.

JOHNSON, Jill L.; 2002; Affiliate Assistant Professor of Microbiology, Molecular Biology and Biochemistry; Ph.D.; 1994; Mayo Graduate School.

JOHNSON, James B.; 1981; Professor of Entomology; Interim Head, Department of Plant, Engineering; Ph.D.; 1991; University of Idaho.

JOHNSON, Gregory L.; 1994; Affiliate Assistant Professor of Biological and Agricultural Engineering; Ph.D.; 1991; North Carolina State University.

JOHNSON, James B.; 1981; Professor of Entomology; Interim Head, Department of Plant, Soil and Entomological Sciences; Ph.D.; 1982; University of California Berkeley.

JOHNSON, Jon; 2004; Affiliate Assistant Professor of Fish and Wildlife Resources; Ph.D.; 2001; University of Wyoming.

JOHNSON, Jill L.; 2002; Affiliate Assistant Professor of Microbiology, Molecular Biology and Biochemistry; Ph.D.; 1994; Mayo Graduate School.

JOHNSON, James B.; 1981; Professor of Entomology; Interim Head, Department of Plant, Engineering; Ph.D.; 1991; University of Idaho.

JOHNSON, Gregory L.; 1994; Affiliate Assistant Professor of Biological and Agricultural Engineering; Ph.D.; 1991; North Carolina State University.

JOHNSON, James B.; 1981; Professor of Entomology; Interim Head, Department of Plant, Soil and Entomological Sciences; Ph.D.; 1982; University of California Berkeley.

JOHNSON, Jon; 2004; Affiliate Assistant Professor of Fish and Wildlife Resources; Ph.D.; 2001; University of Wyoming.

JOHNSON, Jill L.; 2002; Affiliate Assistant Professor of Microbiology, Molecular Biology and Biochemistry; Ph.D.; 1994; Mayo Graduate School.
KENDRED, Teresa J.; 1999; Affiliate Associate Professor of Teaching, Learning & Leadership; Director, Center for Educational Research and Public Service; Ph.D.; 1998; University of Idaho.

KETCHUM, Robert G.; 1994; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1985; Washington State University.

KRISTOFOROVA, Nadezda K.; 2000; Affiliate Professor of Environmental Sciences; D.Sc.; 1985; Institute of Evolutionary Morphology & Ecology of Animals.

KIE, John G.; 2001; Affiliate Professor of Fish and Wildlife Resources; Ph.D.; 1977; University of California Berkeley.

KIM, Doyoung; 2003; Assistant Professor of Economics; Ph.D.; 2002; University of Washington.

KINCAID, Dennis C.; 1981; #Affiliate Professor of Biological and Agricultural Engineering; Ph.D.; 1970; Colorado State University.

KINDER, Cynthia A.; 1999; Assistant Extension Professor and Camas County Extension Educator (4-H/Alalfa); M.S.; 1999; University of Idaho.

KING, Bradley A.; 1983; Associate Research Professor of Agricultural Engineering; Ph.D.; 1990; University of Idaho.

KINGERY, James L.; 1977; #Associate Professor of Range Resources; Adjunct Associate Professor of Environmental Science; Ph.D.; 1985; University of Idaho.

KINLOCH, Bohun; 2001; Affiliate Professor of Forest Resources; Ph.D.; 1968; North Carolina State University.

KINZIGER, Michael L.; 1993; #Associate Professor of Recreation; Ph.D.; 1992; University of New Mexico.

KIRCHMEIER, Robert L.; 1987; #Research Professor of Chemistry; Ph.D.; 1975; University of Idaho.

KITCHEL, K. Allen; 1998; Instructor in Business/Marketing Education; M.S.; 1993; University of Idaho.

KITTLE, Ellen E.; 1993; #Associate Professor of History; Ph.D.; 1983; University of Illinois.

KITZROW, Martha A.; 1989; Professor of Adult, Counselor, and Technology Education; Adjunct Professor of Psychology; Licensed Psychologist, Counseling and Testing Center, with rank of Professor; Ph.D.; 1990; Oregon State University.

KLEINKOPF, Gale E.; 1975; #Research Professor of Plant Physiology; Ph.D.; 1970; University of California Davis.

KLETT, Mitchell D.; 2003; #Assistant Research Professor of Teaching, Learning, and Leadership; Ph.D.; 1997; University of Idaho.

KLOPENSTEIN, Ned B.; 1999; Affiliate Assistant Professor of Forest Resources; Ph.D.; 1985; Iowa State University.

KLOWDEN, Marc J.; 1981; #Professor of Entomology; Adjunct Professor of Neuroscience; Ph.D.; 1976; University of Illinois.

KNOLL, Dana A.; 1993; Affiliate Professor of Mechanical Engineering; Ph.D.; 1991; University of New Mexico.

KNOWLTON, William B.; 2004; Affiliate Assistant Professor of Materials Science and Engineering and Metallurgical Engineering; Ph.D.; 1988; University of California Berkeley.

KNUDSEN, Guy R.; 1987; #Professor of Plant Pathology; Adjunct Professor of Microbiology, Molecular Biology and Biochemistry; Ph.D.; 1984; Cornell University.

KNUDSON-FIELDS, Barbara S.; 1988; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1988; University of Idaho.

KOLODY, Rita C.; 2003; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ed.D.; 1997; Montana State University.

KONEN, Nicole M.; 2000; Instructor of Counseling and School Psychology; Ed.S.; 1997; University of Idaho.

KORUS, Roger A.; 1978; #Professor of Chemical Engineering; Adjunct Professor of Civil Engineering; Ph.D.; 1974; University of Waterloo.

KORZYK, Alexander; 2001; Assistant Professor of Information Systems; M.S.; 1991; US Naval Academy.

KRAUSE, Jerry V.; 2003; Affiliate Professor of Health, Physical Education, Recreation, and Dance; Ed.D.; 1967; University of Northern Colorado.

KRAUT, Maria A.; 1991; #Associate Professor of Accounting; Ph.D.; 1991; University of Arizona.

KREUTZER, Natalie J.; 1997; #Associate Professor of Music (music education); Ph.D.; 1977; Indiana University.

KRINGS, Axel W.; 1995; #Associate Professor of Computer Science; Ph.D.; 1993; University of Nebraska.

KIRSHNAPPAN, Bommanna G.; 2001; Affiliate Associate Professor of Civil Engineering; Ph.D.; 1972; Queens University.

KORNE, Stephen M.; 1995; #Associate Professor of Mathematics; Adjunct Associate Professor of Bioinformatics and Computational Biology; Ph.D.; 1990; University of Massachusetts.

KROTH, Michael; 2005; Assistant Professor of Adult and Organizational Learning; Ph.D.; 1997; University of New Mexico.

KRUMPE, Edwin E.; 1976; #Professor of Wilderness Management; Director, Wilderness Research Center; Ph.D.; 1979; Colorado State University.

KUBIC, William L. Jr.; 1993; Affiliate Assistant Professor of Chemical Engineering; Ph.D.; 1986; Lehigh University.

KUHLMAN, Kimberly R.; 2002; Affiliate Assistant Professor of Geological Sciences; Ph.D.; 1998; University of Wisconsin.

KYLE, Patricia B.; 2001; #Associate Professor of Counseling and School Psychology; Ed.S.; 1996; University of Idaho.

KYTE, Michael D.; 1988; #Professor of Civil Engineering (P.E.); Director, National Institute for Advanced Transportation Technology; Ph.D.; 1986; University of Iowa.

LACAVA, Gerald J.; 1995; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1971; University of Kansas.

LACHONDO, David; 1987; Affiliate Assistant Professor of Education; Ph.D.; 1985; University of Idaho.

LACHMAN, Mark F.; 1999; Affiliate Assistant Professor of Electrical Engineering; Ph.D.; 1997; University of Greenwich.

LAFLIN, Maureen E.; 1991; Affiliate Professor of Law; J.D.; 1982; St Louis University.

LAMOREY, Gregg W.; 2002; Affiliate Assistant Professor of Geological Sciences; Ph.D.; 1994; University of Nevada Reno.

LANDALE, April G.; 2003; Affiliate Assistant Professor of Conservation Social Sciences; M.S.; 1993; Antioch New England Graduate School.

LANG, Jerome P.; 1991; Affiliate Clinical Professor of Medical Science; M.D.; 1982; Case Western Reserve University.

LANTING, Rhea K.; 1994; Associate Extension Professor and Twin Falls County Extension Educator (4-H/Nutrition); B.S.; 1971; University of Idaho.

LAPATRA, Scott E.; 1997; Affiliate Associate Professor of Fish and Wildlife Resources; Ph.D.; 1989; Oregon State University.

LARIVIERE, Sara; 1995; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ed.D.; 1989; University of La Verne.

LARKINS, John A.; 1998; Affiliate Assistant Professor of Art and Design; B.F.A.; 1984; University of Idaho.

LARSON, Howard A.; 1986; Affiliate Professor of Nuclear Engineering; Ph.D.; 1970; University of Washington.

LARSON, James M.; 1995; Affiliate Associate Professor of Electrical Engineering; M.S.; 1969; University of Idaho.

LASKOWSKI, Michael B.; 1988; #Professor of Physiology; Adjunct Professor of Neuroscience and of Bioinformatics and Computational Biology; Ph.D.; 1970; Oklahoma School of Medicine.

LASSAHN, Gordon D.; 1992; Affiliate Associate Professor of Physics; Ph.D.; 1970; Iowa State University.

LAUGHLIN, Kevin M.; 1990; Associate Extension Professor and Ada County Extension Educator (Small Acreage-4-H/Youth); Adjunct Associate Professor of Adult, Counselor, and Technology Education; M.S.; 1989; North Dakota State University.

LAUMATIA, Laura A.; 2004; Extension Instructor and Extension; Indian Reservation Program Extension Educator-Coeur d’Alene; B.S.; 1996; Cornell University.

Reservation (Ag and Natural Resources).

LAUNCHBAUGH, Karen L.; 1996; #Associate Professor of Range Resources; Ph.D.; 1992; Utah State University.

LAW, Joseph D.; 1989; #Associate Professor of Electrical Engineering; Ph.D.; 1991; University of Wisconsin.

LAWRENCE, John J.; 1993; #Associate Professor of Production/Operations Management and of Statistics; Ph.D.; 1993; Penn State University.

LAWRENCE, Torrey E.; 1998; #Professor of Music (tuba, euphonium, bands); M.Mus.; 1996; Northwestern University.

LAZZARINI, Donald F.; 2002; Adjunct Senior Instructor of Health; M.Ed.; 2002; University of Idaho.

LEACH, David B.; 2002; Affiliate Clinical Professor of Medical Science; M.D.; 1997; University of Kentucky.

LEE, Stephen S.; 1993; #Associate Professor of Statistics; Adjunct Associate Professor of Neuroscience and of Bioinformatics and Computational Biology; Ph.D.; 1991; Florida State University.

LEE-PAINTER, J. David; 1995; Affiliate Assistant Professor of Theatre and Film; Department Chair; M.F.A.; 1991; Illinois State University.

LEFF, Wenzel A.; 1989; Affiliate Clinical Professor of Medical Science; M.D.; 1957; South Dakota State University.

LEHRSCHEI, Gary A.; 1989; Affiliate Professor of Soil Science; Ph.D.; 1985; Mississippi State University.

LEHTO, Wayne K.; 1998; Affiliate Professor of Nuclear Engineering; Ph.D.; 1967; University of Michigan.

LEMIDON, E. Clark; 1985; #Professor of Mechanical Engineering; Ph.D.; 1973; Brigham Young University.
LENTZ, Rodrick D.; 1997; Affiliate Assistant Professor of Soils; Ph.D.; 1991; University of Minnesota.

LEWIS, D. Craig; 1975; Professor of Law; J.D.; 1969; Yale University.

LEWIS, Gregory S.; 2002; Adjunct Associate Professor of Animal and Veterinary Science; Ph.D.; 1978; West Virginia University.

LEWIS, Leroy C.; 1982; Affiliate Instructor in Chemistry; Ph.D.; 1968; Oregon State University.

LEWIS, Margaret J.; 2002; Affiliate Assistant Professor of Psychology; Ph.D.; 1998; Ohio State University.

LEWIS, Rand C.; 1997; Adjunct Assistant Professor of History; Director, Martin Institute for Peace Studies and Conflict Resolution; Ph.D.; 1990; University of Idaho.

LEWIS, Reed S.; 1995; Adjunct Associate Professor of Geology; Ph.D.; 1990; Oregon State University.

LEWIS, Todd F.; 1996; Affiliate Instructor in Adult, Counselor, and Technology Education; M.S.; 1983; Murray State University.

LEYTEM, April B.; 2004; Affiliate Assistant Professor of Plant, Soil and Entomological Sciences; Ph.D.; 1999; North Carolina State University.

Li, Shelly X.; 1987; Affiliate Assistant Professor of Materials Science and Engineering and Metallurgical Engineering; Ph.D.; 1991; University of Minnesota.

LIDDIL, Audrey C.; 1988; Extension Professor and Extension Educator (EFNEP/ENP); M.S.; 1987; Utah State University.

LILLARD, Monique C.; 1987; Professor of Law; J.D.; 1983; University of California Los Angeles.

LINAREZ-ROYCE, Nancy J.; 2000; Affiliate Assistant Professor of Materials Science and Engineering and Metallurgical Engineering; Ph.D.; 2000; University of Idaho.

LIND, Douglas; 1991; #Professor of Philosophy; Adjunct Professor of Environmental Science; Chair, Department of Philosophy; Ph.D.; 1991; University of Pennsylvania.

LINEHAN, John C.; 2002; Affiliate Associate Professor of Chemistry; Ph.D.; 1986; University of California Davis.

LINK, Timothy E.; 2001; Assistant Professor of Forest Resources; Adjunct Assistant Professor of Rangeland Ecology and Management and Environmental Science; Ph.D.; 2001; Oregon State University.

LIOU, Chyr Pyng; 1986; #Professor of Civil Engineering (P.E.); Adjunct Professor of Mechanical Engineering; Ph.D.; 1976; University of Michigan.

LLOYD, John E. Jr.; 2001; #Assistant Professor of Arboriculture; Ph.D.; 2001; Ohio State University.

LOCKARD, Marsha A.; 2000; Assistant Extension Professor and Owyhee County Extension Educator (Nutrition and Health); M.S.; 1989; University of Idaho.

LOCKE, Kenneth D.; 1996; #Professor of Psychology; Ph.D.; 1989; Stanford University.

LOHMAN, L. Kirk; 1993; Affiliate Associate Professor of Fish and Wildlife Resources; Ph.D.; 1988; University of Missouri.

LONERGAN, Wallace G.; 1992; Affiliate Assistant Professor of Educational Administration; Ph.D.; 1990; University of Chicago.

LONG, Elaine M.; 1992; Affiliate Associate Professor of Family and Consumer Sciences; Ph.D.; 1991; University of Idaho.

LORENTZEN, Robin M.; 1994; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1989; Loyola University Chicago.

LORENZEN, James H.; 2001; #Associate Professor of Plant Science; Adjunct Associate Professor of Bioinformatics and Computational Biology; Ph.D.; 1988; Cornell University.

LOVE, Dennis A.; 1996; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; J.D.; 1985; University of Idaho.

LOVE, Stephen L.; 1985; #Professor of Potato Plant Breeding; Ph.D.; 1984; Clemson University.

LOVELAND, Thomas R.; 2004; Affiliate Professor of Fish and Wildlife Resources; Ph.D.; 1998; University of California Santa Barbara.

LU, Li; 2001; Affiliate Professor of Materials Science and Engineering and Metallurgical Engineering; Ph.D.; 1989; Katholieke Universiteit Leu.

LUCE, Charles H.; 2004; Affiliate Assistant Professor of Civil Engineering; Ph.D.; 2000; Utah State University.

LUCKEY, Brian P.; 2003; Assistant Extension Professor and Canyon County Extension Educator (4-H/Youth); M.S.; 2003; Oregon State University.

LUND, William R.; 1988; #Professor of Political Science; Ph.D.; 1983; University of Washington.

LYMAN, R. Ashley; 1976; Associate Professor of Economics and of Statistics; Ph.D.; 1972; Northwestern University.

LYSOHIR, Marilyn; 1991; Affiliate Assistant Professor of Art and Design; M.F.A.; 1979; Washington State University.

MACBETH, David M.; 2003; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1996; Utah State University.

MACDONALD, James S.; 1975; Professor of Law; J.D.; 1969; University of California Berkeley.

MACFARLAND, Craig G.; 1987; Affiliate Professor of Conservation Social Sciences; M.A.; 1969; University of Wisconsin.

MACHLEDIT, Ruprecht; 1988; #Professor of Physics; Interim Chair, Department of Physics; Ph.D.; 1973; University of Bonn.

MACHLIS, Gary E.; 1979; #Professor of Forest Resources; Adjunct Professor of Conservation Social Sciences and of Sociology; Unit Leader, National Park Service Cooperative Park Studies Unit; Ph.D.; 1979; Yale University.

MACHLIS, Sally G.; 1993; #Associate Professor of Art and Design and of Art Education; M.F.A.; 1986; University of Idaho.

MACK-CANTY, Colleen; 2004; Assistant Professor of Political Science; Ph.D.; 1995; University of Oregon.

MAGNUSSON, Kathy R.; 2002; Affiliate Professor of Biology; Adjunct Associate Professor of Neuroscience; Ph.D.; 1989; University of Minnesota.

MAIGURE, Todd D.; 2004; Affiliate Assistant Professor of Environmental Science; M.S.; 1995; Kansas State University.

MAHALOVICH, Mary F.; 1997; Affiliate Assistant Professor of Forest Resources; Ph.D.; 1990; North Carolina State University.

MAHLER, Robert L.; 1980; #Professor of Soil Fertility; Adjunct Professor of Forest Resources and Environmental Science; Ph.D.; 1980; North Carolina State University.

MAHONEY, Ronald L.; 1983; #Extension Professor of Forestry; Extension Forester; Ph.D.; 1981; University of Idaho.

MAJOR, Cherie R.; 1998; #Professor of Teacher Education; Ed.D.; 1983; Utah State University.

MAKI, Gary K.; 1969; #Professor of Electrical and Computer Engineering; Director of the Center for Advanced Microelectronic and Biomolecular Research; Ph.D.; 1969; University of Missouri.

MAKI, Wusi C.; 2002; #Research Assistant Professor of Microbiology, Molecular Biology and Biochemistry; Ph.D.; 1990; University of Cape Town.

MAKUS, Larry D.; 1986; #Professor of Agricultural Economics; Ph.D.; 1983; Texas A&M University.

MANDZAK, John M.; 1995; Affiliate Associate Professor of Forest Resources; Ph.D.; 1987; University of Washington.

MARKS, Danny; 2003; Affiliate Professor of Civil Engineering; Ph.D.; 1988; University of California Santa Barbara.

MARSHALL, Alan G.; 1978; Affiliate Professor of Anthropology; Ph.D.; 1976; Washington State University.

MARSHALL, Ann Lawson; 1996; #Associate Professor of Architecture; M.Arch.; 1989; University of California Berkeley.

MARSHALL, John D.; 1990; #Professor of Forest Resources; Adjunct Professor of Environmental Science; Ph.D.; 1985; Oregon State University.

MARSHALL, Linnea D.; 1998; Catalog Librarian with rank of Associate Professor; M.A.L.S.; 1984; University of Denver.

MARTIN, Robert G.; 1990; Senior Instructor in Sociology; M.A.; 1972; Mississippi College.

MARTIN, Spencer H.; 2003; Lecturer in Music; M.Mus.; 2002; University of Idaho.

MARTINEZ, Fredy E.; 1989; Affiliate Clinical Professor of Medical Science; M.D.; National Institute of El Salvador.

MARTINEZ, Peter; 1988; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1970; University of Maryland.

MARTIN, Earl S.; 1994; Affiliate Professor of Mathematics and Statistics; Ph.D.; 1978; Cornell University.

MATTHEW, Gretchen E.; 1994; Affiliate Professor of Chemical Engineering; Ph.D.; 1987; University of Virginia.

MAUCHLEY, G. Jay; 1978; #Professor of Music (piano, accompanying); D.Mus.; 1982; Indiana University.

MAYLAND, Henry F.; 1969; Affiliate Professor of Soil Science; Ph.D.; 1965; University of Arizona.

MAYTON, Gary B.; 1998; Affiliate Associate Professor of Teacher Education; Ph.D.; 1990; Ohio State University.

MCCAFFREY, Joseph P.; 1981; Professor of Entomology; Adjunct Professor of Environmental Science; Ph.D.; 1981; Virginia Polytechnic Institute.

MCCALLUM, Larry A.; 1999; Reference Librarian with rank of Assistant Professor; M.L.I.S.; 1997; University of British Columbia.

MCCARROLL, David R.; 2004; Lecturer in Geography; Ph.D.; 1978; University of Tennessee.

MCCARTHY, Jeremiah J.; 2001; Affiliate Assistant Professor of Systems Engineering; Ph.D.; 1974; Southern Methodist University.

MCCASLIN, Mark L.; 1998; #Associate Professor of Adult, Counselor, and Technology Education; Ph.D.; 1993; University of Nebraska.

MCCAWLEY, Paul F.; 1999; Extension Professor (Range); Associate Dean and Associate Director, Cooperative Extension System; Ph.D.; 1983; University of Arizona.
MCALLELLAND, William C.; 1997; #Associate Professor of Geology; Ph.D.; 1990; University of Arizona.

MCCLEUR, John A.; 1991; Affiliate Associate Professor of Physics; Ph.D.; 1962; Virginia Polytechnic Institute.

MCCLEUR, Wendy R.; 1987; #Professor of Architecture; Department Chair; M.Arch.; 1977; University of Washington.

MCOLLOUGH, Michael A.; 1995; #Associate Professor of Marketing; Ph.D.; 1995; Texas A&M University.

MCQUO, Donald K.; 1974; #Affiliate Professor of Biological and Agricultural Engineering; Ph.D.; 1985; Oklahoma State University.

MCORMICK, Paul G.; 1996; Affiliate Professor of Materials Science and Engineering and Metallurgical Engineering; Ph.D.; 1968; Cornell University.

MCCOY, Nance E.; 1990; Lecturer in English; Ph.D.; 1998; University of Idaho.

MCCURDY, Robert T.; 1982; Professor of Music (trumpet, jazz studies); M.Mus.; 1982; University of Wisconsin.

MCCURDY, Sandra M.; 1999; #Assistant Extension Professor of Family and Consumer Sciences and Extension Specialist (Food Safety); Ph.D.; 1976; Washington State University.

MC DANIEL, Paul A.; 1990; #Professor of Soil Genesis/Morphology; Adjunct Professor of Environmental Science; Ph.D.; 1988; University of North Carolina.

MCDONALD, Armando G.; 2001; #Associate Professor of Forest Products; Ph.D.; 1993; York University.

MCDONALD, Gerald I.; 1966; #Associate Professor of Forest Resources; Ph.D.; 1969; Washington State University.

MCDUFF, George G.; 1991; #Associate Professor of Physics; Ph.D.; 1988; St Andrews.

MCFARLAND, Ronald E.; 1970; #Professor of English; Ph.D.; 1970; University of Illinois.

MCGARRY, Stephen D.; 1998; Affiliate Professor of Agricultural Economics; Ph.D.; 1984; Washington State University.

MCGEEHAN, Steven L.; 2000; Adjunct Assistant Professor of Food Science and Toxicology; Chief Chemist, Analytical Sciences Lab; Ph.D.; 1992; University of Idaho.

MCGOWN, Mary G.; 1995; #Associate Professor of Conservation Social Sciences; Ph.D.; 1994; University of Idaho.

MCGUIRE, Mark A.; 1995; #Associate Professor of Lactation Physiology; Ph.D.; 1994; Cornell University.

MC HALE, Jeanne L.; 1980; #Professor of Chemistry; Ph.D.; 1979; University of Utah.

MCHARGUE, Jack M.; 1977; Senior Instructor in Agricultural Mechanization; M.S.; 1977; University of Idaho.

MCILROY, David N.; 1996; #Associate Professor of Agricultural Engineering; Ph.D.; 1993; University of Idaho.

MCINTOSH, Christopher S.; 1999; #Professor of Agricultural Economics; Ph.D.; 1987; Texas A&M University.

MCKEAN, James A.; 2004; #Associate Professor Civil Engineering; Ph.D.; 1993; University of California Berkeley.

MCKENDRICK, Jay D.; 1976; #Associate Professor of Range Resources; Ph.D.; 1971; Kansas State University.

MCKENDRY, Jean E.; 1999; Adjunct Assistant Professor of Forest Resources; Research Support Scientist; Ph.D.; 1998; Clark University.

MCKIBBEN, Sherry; 2002; #Assistant Professor of Architecture; M.Arch.; 1981; Yale University.

MCKNIGHT, Mary G.; 1995; #Associate Professor of Chemical Engineering; J.D.; 1984; Creighton University.

MCLEN, Brian; 2004; #Assistant Extension Professor; M.S.; 1990; Utah State University.

MC LAUGHLIN, William J.; 1977; #Professor of Human Environmental Sciences and Conservation Planning; Ph.D.; 1977; Colorado State University.

MC MULKIN, Mark L.; 1998; #Associate Professor of Psychology and of Mechanical Engineering; Ph.D.; 1996; Virginia Polytechnic Institute.

MCMURTRY, Jerry R.; 1995; #Associate Professor of Adult, Counselor, and Technology Education; Ph.D.; 1993; Colorado State University.

MCNEIL, Barbara J.; 2002; Affiliate Professor of Medical Science; Ph.D.; 1989; University of Idaho.

MC QUEEN, Miles A.; 1997; Affiliate Instructor in Computer Science; M.S.; 1983; California State University Northridge.

MEAD, Phillip G.; 2002; Affiliate Professor of Architecture; M.A.; 1991; University of Texas.

MEGANCK, Richard A.; 1989; Affiliate Professor of Conservation Social Sciences; Ph.D.; 1975; Oregon State University.

MEIER, Steven E.; 1987; #Associate Professor of Psychology; Adjunct Associate Professor of Neuroscience; Ph.D.; 1991; Washington State University.

MELOQUIST, Wayne E.; 2004; Research Associate Professor of Fish and Wildlife Resources; Ph.D.; 1981; University of Idaho.

METLEN, Scott K.; 2001; Assistant Professor of Operations Management; M.B.A.; 1996; California State University.

MEYER, LeRoy C.; 1992; #Associate Professor of Electrical Engineering; Ph.D.; 1965; University of New Mexico.

MICKELSEN, J. Carl; 2004; Lecturer of Philosophy; J.D.; 1992; University of Idaho.

MIHELICH, John A.; 1997; #Associate Professor of Sociology and Anthropology; Ph.D.; 1999; Washington State University.

MILLER, Bruce L.; 1986; #Professor of Molecular Biology and Biochemistry; Ph.D.; 1981; University of California Davis.

MILLER, Carol; 2004; #Associate Professor of Forest Resources; Ph.D.; 1998; Colorado State University.

MILLER, Daniel L.; 1994; #Associate Professor of Forest Resources; Ph.D.; 1974; University of Idaho.

MILLER, Elizabeth; 2001; Senior Instructor of Physical Education; M.S.; 1996; University of Wyoming.

MILLER, Elizabeth E.; 2003; Affiliate Professor of Health, Physical Education, Recreation, and Dance; Ed.D.; 2001; University of Idaho.

MILLER, Jeffrey S.; 2001; #Associate Professor of Potato Pathology; Ph.D.; 1998; Washington State University.

MILLER, John A.; 1988; Professor of Law; L.L.M.; 1987; University of Florida.

MILLER, John C.; 1970; Professor of Animal Science; Ph.D.; 1968; Penn State University.

MILLER, Jon R.; 1989; #Professor of Economics; Ph.D.; 1974; Washington University.

MILLER, Lance D.; 1994; #Associate Professor of Geology; Ph.D.; 1994; University of Arizona.

MILLER, Linda Wise; 1988; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1994; University of Idaho.

MILLER, Reid C.; 1992; #Associate Professor of Chemical Engineering; Ph.D.; 1968; University of California Berkeley.

MILLER, Stephen S.; 2001; #Associate Professor of Theatre and Film; M.F.A.; 1995; University of Idaho.

MILLS, James J.; 2000; #Associate Professor of Systems Engineering; Ph.D.; 1972; University of Oklahoma.

MINNER, Bruce J.; 1997; #Associate Professor of Chemistry; Ph.D.; 1997; University of Idaho.

MINNICH, Scott A.; 1989; #Associate Professor of Microbiology; Ph.D.; 1981; Iowa State University.

MIRALIS, Yiannis C.; 2002; Assistant Professor of Music (saxophone, music education); Ph.D.; 2002; Michigan State University.

MOBIN, S.M.A.; 2003; #Associate Professor of Fish and Wildlife Resources; Ph.D.; 2000; Nagasaki University.

MOEUR, Melinda; 1999; Affiliate Professor of Forest Resources; Ph.D.; 1991; University of Washington.

MOFFITT, Christine M.; 1981; #Professor of Fishery Resources; Adjunct Professor of Environmental Science; Assistant Leader of Idaho Cooperative Fish and Wildlife Research Unit; Ph.D.; 1979; University of Massachusetts.

MOHAN, S. Krishna; 1985; #Extension Professor of Plant Pathology; Ph.D.; 1971; Indian Agricultural Research Institute.

MOLL, Amy J.; 2004; #Associate Professor of Materials Science and Engineering and Metallurgical Engineering; Ph.D.; 1994; University of California Berkeley.

MÖLLER, Gregory; 1990; #Associate Professor of Food Science and Toxicology; Adjunct Associate Professor of Chemical Engineering and Environmental Science; Technical Director of UI Analytical Sciences Laboratory; Ph.D.; 1985; University of California Davis.

MOMONT, Patrick A.; 1990; #Extension Professor; Director, Cooperative Extension District II; Ph.D.; 1990; South Dakota State University.

MONK, Kim M.; 1995; Lecturer in Theatre and Film; M.S.; 1996; University of Idaho.

MONSERUD, Robert A.; 1977; Affiliate Professor of Forest Resources; Ph.D.; 1975; University of Wisconsin.

MONTOTO, Román; 2004; #Associate Professor of Architecture; M.Arch.; 1999; University of Wisconsin.

MOODY, Michael W.; 1972; #Professor of Foreign Languages and Literatures (Spanish); Ph.D.; 1969; University of New Mexico.

MOORE, Kevin L.; 1996; #Associate Professor of Electrical Engineering; Ph.D.; 1989; Texas A&M University.

MOORE, Lori L.; 2003; #Assistant Professor of Agricultural and Extension Education; Ph.D.; 2001; University of Idaho.
MOORE, Rager H. II; 2003; #Associate Professor of Music; Director of Choral Activities; D.Mus.; 1995; University of Missouri.

MOREHEAD, Mark D.; 2002; #Adjunct Assistant Professor of Biological and Agricultural Engineering; Ph.D.; 1999; University of Colorado.

MORGAN, Penelope; 1986; #Professor of Fire Ecology and Forest Ecology; Ph.D.; 1984; University of Idaho.

MORISHITA, Don W.; 1990; #Extension Professor of Weed Science; Superintendent, Kimberly Research and Extension Center; Ph.D.; 1986; University of Idaho.

MORRA, Matthew J.; 1986; #Professor of Soil Science (soil biochemistry); Adjunct Professor of Microbiology, Molecular Biology and Biochemistry and Environmental Science; Chair of Soil Science; Ph.D.; 1986; Ohio State University.

MORRIS, James D.; 1965; Professor of Adult, Counselor, and Technology Education; Adjunct Professor of Psychology; Licensed Psychologist, Counseling and Testing Center, with rank of Professor; Ed.D.; 1971; Indiana University.

MORRIS, John S.; 1973; #Professor of Management; Adjunct Professor of Forest Products; Associate Dean, College of Business and Economics; Ph.D.; 1988; University of Oklahoma.

MORRIS, Linda J.; 1973; #Professor of Marketing; Interim Provost; Ph.D.; 1985; University of Idaho.

MORRISON, Charles R.; 1987; Professor of Adult, Counselor, and Technology Education; Adjunct Professor of Psychology; Licensed Psychologist, Counseling and Testing Center, with rank of Professor; Ph.D.; 1987; University of Wisconsin.

MORRISON, John L.; 1996; #Affiliate Assistant Professor of Electrical Engineering; Ph.D.; 1992; University of Idaho.

MORTON, D. Keith; 1982; Affiliate Instructor in Mechanical Engineering; M.E.; 1979; University of Idaho.

MOSLEY, Glenn; 1999; Lecturer in Journalism and Mass Media; M.A.; 1985; University of Maryland.

MOWRY, Thomas M.; 1989; #Associate Professor of Entomology; Ph.D.; 1986; Michigan State University.

MOXSON, Vladimir S.; 1999; Affiliate Associate Professor of Materials Science and Engineering and Metallurgical Engineering; Ph.D.; 1979; Moscow Institute of Steel and Alloys.

MUEHLBAUER, Frederick J.; 1976; #Affiliate Professor of Plant Breeding and Genetics; Ph.D.; 1969; Penn State University.

MUELLER, Susan M.; 2004; Head, Technical Services with rank of Associate Professor; M.L.; 1975; Emporia State University.

MULLIN, Daniel K.; 1998; #Associate Professor of Architecture; M.B.A.; 1993; City College Of San Francisco.

MUNSON, John C.; 1994; #Professor of Computer Science; Ph.D.; 1970; New Mexico State University.

MURPHY, C. Michael; 1989; Affiliate Clinical Professor of Medical Science; M.D.; 1968; University of Kentucky.

MURPHY, James L.; 1999; #Professor of Music (theory); Director, Hampton School of Music; Ph.D.; 1980; Texas Technology University.

NAGLER, James J.; 1996; #Associate Professor of Zoology; Ph.D.; 1991; Memorial University of Newfoundland.

NAIDU, Subbaram; 1996; #Affiliate Assistant Professor of Electrical Engineering; Ph.D.; 1977; Indian Institute of Technology.

NASH, Douglas R.; 2003; #Associate Professor of Law; J.D.; 1971; University of New Mexico.

NASH, Scott A.; 1995; Associate Extension Professor and Bingham County Extension Educator (4-H/Youth); M.S.; 1994; Texas A&M University.

NATALE, Nicholas R.; 1981; #Professor of Chemistry; Adjunct Professor of Neuroscience; Ph.D.; 1979; Drexel University.

NAUMAN, Arinda K.; 1988; #Extension Professor and Director of State 4-H Education Programs; Adjunct Professor of Family and Consumer Sciences; Ed.D.; 1977; Oklahoma State University.

NEIBLING, W. Howard; 1992; #Associate Extension Professor of Agricultural Engineering and Extension Specialist (Irrigation Management); Ph.D.; 1984; Purdue University.

NELSON, Robert M. Jr.; 1994; #Affiliate Professor of Materials Science and Engineering and Metallurgy; M.S.; 1979; SUNY at Stony Brook.

NELSON, Alvin J.; 1987; #Affiliate Assistant Professor of Mathematics; M.S.; 1964; Stanford University.

NELSON, Carol J.; 1987; #Affiliate Assistant Professor of Education; Ed.D.; 1990; University of Idaho.

NELSON, James R.; 1974; #Professor of Rural Development and Natural Resource Economics; Ph.D.; 1974; Oklahoma State University.

NELSON, Michael P.; 2004; Assistant Professor of Philosophy; Ph.D.; 1998; Lancaster University.

NELSON, Nora Lynn Olsen; 1998; #Assistant Extension Professor of Plant Science; Ph.D.; 1998; Washington State University.

NELSON, Sarah M.; 1999; Assistant Professor of Foreign Languages and Literatures (French); Ph.D.; 1997; University of Wisconsin.

NEUFELD, Jerold D.; 1999; Associate Extension Professor and Canyon County Extension Educator (Crops/Irrigation Management); M.S.; 1988; Kansas State University.

NEUHAUS, Ralph J.; 1967; #Associate Professor of Mathematics; Ph.D.; 1967; University of Iowa.

NEWCOMBE, A. George; 1999; #Associate Professor of Forest Resources; Adjunct Associate Professor of Soil Sciences; Ph.D.; 1988; University of Guelph.

NEWMAN, Meredith E.; 1995; Affiliate Assistant Professor of Chemistry; Ph.D.; 1990; Clemson University.

NICHOLSON, James A.; 1988; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1974; University of Missouri.

NIELSEN, Mark J.; 1990; #Professor of Mathematics; Ph.D.; 1990; University of Idaho.

NIELSEN, Richard J.; 1986; #Associate Professor of Civil Engineering (P.E.); Ph.D.; 1986; Stanford University.

NILES, Marcia S.; 1991; #Associate Professor of Accounting; Department Head; Ph.D.; 1984; University of Washington.

NILSON, Douglas C. Jr.; 1992; #Associate Professor of Educational Administration; Ph.D.; 1976; University of Wisconsin.

NIMS, Debra K.; 1996; Affiliate Instructor in Adult, Counselor, and Technology Education; M.S.; 1989; University of Michigan.

NOLTE, Phillip; 1991; #Extension Professor and Seed Potato Specialist; Ph.D.; 1991; North Dakota State University.

NONE, John A.; 1996; #Affiliate Professor of Civil Engineering; M.S.; 1969; University of Missouri.

NORELL, Richard J.; 1982; Extension Professor and Extension Dairy Specialist; Ph.D.; 1983; University of Minnesota.

NOREN, Kenneth V.; 1992; #Associate Professor of Electrical Engineering; Adjunct Associate Professor of Materials Engineering; Ph.D.; 1992; Michigan State University.

NORUM, Karen E.; 2001; #Associate Professor in Adult Education and Human Resource Development; Ph.D.; 1997; University of Colorado.

NOURSE, Mary Ellen; 1996; #Affiliate Assistant Professor of English; Ed.D.; 1990; Memphis State University.

NOVY, Richard G.; 2000; #Affiliate Assistant Professor of Plant Science; Ph.D.; 1992; University of Wisconsin.

NUISMER, Scott L.; 2003; Assistant Professor of Biology; Adjunct Assistant Professor of Bioinformatics and Computational Biology; Ph.D.; 2000; Washington State University.

OBER, Donald; 2003; Affiliate Assistant Professor of Plant, Soil and Entomological Sciences; Ph.D.; 1998; Kansas State University.

O'BRIEN, James E.; 1995; Affiliate Professor of Mechanical Engineering; Ph.D.; 1981; University of Minnesota.

O'BRIEN, Michael H.; 1993; Affiliate Professor of Materials Science and Engineering and Metallurgical Engineering; Ph.D.; 1987; Iowa State University.

O'BRIEN, Sheila; 1987; Associate Professor of English; Ph.D.; 1987; Indiana University.

OCHS, Jon; 1993; #Affiliate Assistant Professor of Art and Design; Ph.D.; 1974; Washington State University.

ODELL, Michael R.L.; 1993; #Associate Professor of Science Education; Adjunct Associate Professor of Environmental Science; Interim Director, Division of Teaching, Learning and Leadership; Ph.D.; 1993; Indiana University.

O'DOM, Edwin M.; 1991; #Professor of Mechanical Engineering; Ph.D.; 1991; University of Wyoming.

OH, Chang H.; 1990; #Affiliate Assistant Professor of Chemical Engineering; Ph.D.; 1985; Washington State University.

OHLENSEHLEN, Robert M.; 1978; Extension Professor and Twin Falls County Extension Educator (Nutrient Management/Water Quality); M.S.; 1986; University of Idaho.

O'LAUGHLIN, Jay; 1990; #Professor of Forest Resources; Adjunct Professor of Forest Products; Director, Policy Analysis Group, Idaho Forest, Wildlife and Range Experiment Station; Ph.D.; 1980; University of Minnesota.

OLDOW, John S.; 1995; Professor of Geology; Ph.D.; 1978; Northwestern University.

OLSON, Mary R.; 1995; Affiliate Professor of Adult, Counselor, and Technology Education; Ph.D.; 1995; University of Idaho.

OLSON, Philip D.; 1973; #Professor of Business; Ph.D.; 1972; University of Oregon.

OLSON, Robert L.; 1982; Affiliate Professor of Materials Science; Ph.D.; 1987; University of Idaho.

OLSON, Robert L.; 1975; Extension Professor and Extension Dairy Specialist; Ph.D.; 1975; University of Idaho.
OMAN, Paul W. Jr.; 1984; #Professor of Computer Science; Ph.D.; 1989; Oregon State University.

O’NEILL, Michelle; 2001; Associate Professor of Finance; Ph.D.; 1996; Penn State University.

O’ROURKE, Michael; 1996; #Associate Professor of Philosophy; Adjunct Associate Professor of Neuroscience; Ph.D.; 1994; Stanford University.

OROZCO, Daniel; 2004; #Assistant Professor of English; M.F.A.; 1994; University of Washington.

OSIENSKY, James L.; 1986; #Professor of Hydrogeology; Adjunct Professor of Environmental Science; Ph.D.; 1983; University of Idaho.

OSTERGREN, David M.; 2003; Affiliate Assistant Professor of Conservation Social Sciences; Ph.D.; 1997; West Virginia University.

OSTROM, Lee T.; 2000; #Associate Professor of Business Education; Ph.D.; 1988; Texas Technology University.

O’SULLIVAN, Paul B.; 2003; #Assistant Professor of Geological Sciences; Ph.D.; 1993; La Trobe University.

OTAWA, Toru; 1985; Associate Professor of Landscape Architecture; Ph.D.; 1996; University of Queensland.

O’THIEL, Kurt L.; 1980; #Adjunct Associate Professor of Geology; Research Geologist, Idaho Geological Survey; Ph.D.; 1991; University of Idaho.

OTIS, Mark D.; 1991; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1983; Colorado State University.

OTOOLE, Patrick J.; 1998; #Adjunct Instructor in Adult, Counselor, and Technology Education; Program Counselor, Student Support Services; Ph.D.; 1997; Washington State University.

OTT, Troy L.; 1998; #Associate Professor of Animal Science; Adjunct Associate Professor of Microbiology, Molecular Biology, and Biochemistry; Ph.D.; 1992; University of Florida.

OTTWITTE, Eric H.; 1988; #Assistant Professor of Nuclear Engineering; Ph.D.; 1973; University of California Los Angeles.

OUGOJAU, Adobrema M.; 1994; #Associate Professor of Nuclear Engineering; Ph.D.; 1984; University of Illinois.

OWSLEY, Patrick A.; 1984; #Assistant Professor of Electrical Engineering; Ph.D.; 1989; University of Idaho.

OXFORD, Julia T.; 2003; #Assistant Associate Professor of Microbiology, Molecular Biology and Biochemistry; Ph.D.; 1986; Washington State University.

OZERAN, Steven E.; 1996; #Clinical Associate Professor of Medical Surgery; M.D.; 1988; University of Chicago.

PACKHAM, Joel H.; 1988; #Extension Professor and Bear Lake County Extension Educator (Dairy); M.S.; 1990; University of Idaho.

PAGE-DUMROESE, Deborah; 1968; #Assistant Professor of Forest Resources and Soil Science; Ph.D.; 1988; University of Idaho.

PANTING, Raun R.; 1978; Associate Extension Professor and Oneida County Extension Educator (Beef); M.S.; 1978; Utah State University.

PANTTJA, Dean L.; 1986; #Professor of Theatre and Film; Ph.D.; 1995; University of Idaho.

PANTTJA, Micki L.; 1996; #Associate Senior Instructor in Dance; Program Director, Festival Dance and Performing Arts Association; M.A.; 1986; Humboldt State University.

PAPIC, Milorad; 1996; #Assistant Professor of Electrical Engineering; Ph.D.; 1980; University of Sarajevo.

PAPONE, Gerardo; 1996; #Assistant Professor of Geology; Ph.D.; 1990; University of Naples.

PARK, Jin Y.; 1979; #Professor of Chemical Engineering; Ph.D.; 1976; Oregon State University.

PARK, Yong Ho; 2000; #Assistant Professor of Microbiology, Molecular Biology and Biochemistry; Ph.D.; 1991; Washington State University.

PARKER, Richard O.; 1989; #Assistant Professor of Adult, Counselor, and Technology Education and of Animal and Veterinary Sciences; Ph.D.; 1977; Iowa State University.

PARKER, Robert D.; 1998; #Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1975; University of Minnesota.

PARKER-CLARK, Vickie J.; 1983; #Extension Professor; Director, Cooperative Extension District I; Ph.D.; 1997; University of Idaho.

PARKINSON, Stuart C.; 1991; Extension Professor and Franklin County Extension Educator (Crops/Horticulture); M.S.; 1989; Utah State University.

PARKS, Donald J.; 1991; #Associate Professor of Mechanical Engineering; Ph.D.; 1973; University of Minnesota.

PARKS, Matthew; 2002; #Lecturer in Biological Sciences; M.S.; 2001; University of Idaho.

PARRISH, Judith Tolman; 2003; #Professor of Psychological Sciences; Dean, College of Science; Ph.D.; 1979; University of California Santa Cruz.

PASAMEHMETOGLU, Kemal O.; 1994; #Assistant Professor of Mechanical Engineering; Ph.D.; 1988; University of Central Florida.

PASSANANTE, Joy; 1977; Senior Instructor of English; Assistant Director of Creative Writing; M.A.T.; 1971; Cornell University.

PASZCZYNSKI, Andrzej; 1987; #Associate Professor of Microbiology, Molecular Biology and Biochemistry; Adjunct Associate Professor of Environmental Science; Associate Director, Environmental Biotechnology Institute; Ph.D.; 1980; M Curie-Skłodowska.

PATSAKOS, George; 1970; #Associate Professor of Physics; Ph.D.; 1969; Stanford University.

PATTERSON, Paul E.; 1981; Extension Professor of Agricultural Economics and Extension Specialist (Economics/Crops); M.S.; 1981; University of Idaho.

PAYNE, Anne; 1992; #Assistant Professor of Adult, Counselor, and Technology Education; Ed.D.; 1982; University of Tulsa.

PEAVY, Howard S.; 1993; #Professor of Civil Engineering (P.E.); #Associate Dean, College of Engineering; Ph.D.; 1974; Oklahoma State University.

PEDRAS, Melvin J.; 1985; #Professor of Education; Ed.D.; 1982; University of Nevada Las Vegas.

PEDRONI, Lucio; 2003; #Assistant Professor of Forest Resources; Ph.D.; 2000; Lesgaft Institute.

PEERY, Christopher A.; 2004; #Assistant Research Professor of Fish and Wildlife Resources; Adjunct Assistant Professor of Environmental Science; Ph.D.; 1995; University of Idaho.

PELLMRY, N. Olof; 2002; #Associate Professor of Biology; D.Phi.; 1985; Uppsala University.

PENDEGRAFT, Norman; 1983; #Associate Professor of Management Information Systems; Adjunct Associate Professor of Physical Education; Ph.D.; 1978; University of California Los Angeles.

PENONCELLO, Steven G.; 1986; #Professor of Mechanical Engineering; Associate Dean, College of Engineering; Ph.D.; 1986; University of Idaho.

PERINO, Lloyd E.; 1989; Affiliate Clinical Professor of Medical Science; M.D.; 1981; University of Chicago.

PERRAUD, Louis A.; 1982; #Professor of Foreign Languages and Literatures (classics); Ph.D.; 1980; Indiana University.

PERRIGUEY, Anne M.; 2000; Lecturer in Foreign Languages; M.A.; 1991; University of Nebraska.

PERSON, Lorraine E.; 2002; #Assistant Professor of Dance; M.A.; 1969; University of California Los Angeles.

PESIC, Batric; 1983; #Professor of Materials Science and Engineering and Metallurgical Engineering; Adjunct Professor of Environmental Science; Ph.D.; 1981; University of Utah.

PETERSON, Charles L.; 1973; Professor of Agricultural Engineering; Interim Dean; Ph.D.; 1973; Washington State University.

PETERSON, Charles R.; 1997; #Associate Professor of Fish and Wildlife Resources; Ph.D.; 1982; Washington State University.

PETERSON, Dennis L.; 1983; Affiliate Clinical Professor of Medical Science; M.D.; 1978; University of Nebraska.

PETERSON, Eric S.; 1991; #Associate Professor of Chemistry; Ph.D.; 1987; Montana State University.

PETERSON, Nancy R.; 1994; Affiliate Instructor in Teacher Education; Ph.D.; 1991; University of Idaho.

PETRICH, Christian R.; 1994; Adjunct Assistant Professor of Geology; Ph.D.; 1995; University of Idaho.

PETTI, David A.; 1992; #Associate Professor of Nuclear Engineering; Sc.D.; 1988; Massachusetts Institute of Technology (MIT).

PETTY, Barbara D.; 1999; #Associate Extension Professor and Bonneville County Extension Educator (Family Relations/FCS); M.S.; 1984; University of Nebraska.

PEUTZ, Joey D.; 1999; #Assistant Extension Professor and Canyon County Extension Educator (Food Safety/Nutrition); M.S.; 1995; University of Idaho.

PFIEFFER, William W.; 1988; #Assistant Professor of Educational Administration; Ph.D.; 1986; University of Idaho.

PFISTER, James A.; 2000; #Assistant Professor of Range Land Ecology and Management; Ph.D.; 1983; Utah State University.

PHARR, Steven; 1990; #Associate Professor of Marketing; Ph.D.; 1987; University of Nebraska.

PHILLEY, Michael Q.; 2002; #Assistant Professor of Conservation Social Sciences; M.S.; 1976; University of California Davis.

PHILLIPS, James R.; 1994; #Associate Professor of Adult, Counselor, and Technology Education; Ph.D.; 1994; University of Idaho.

PHILLIPS, John M.; 2004; Adjunct Assistant Professor of English; Academic Coordinator, Student Support Services; Ph.D.; 1994; University of Idaho.

PHILLIPS, James R.; 1997; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1992; University of Florida.

PHILLIPS, John M.; 2004; Adjunct Assistant Professor of English; Academic Coordinator, Student Support Services; Ph.D.; 1994; University of Idaho.

PHILLIPS, James R.; 1997; #Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1994; University of Idaho.

PHILLIPS, John M.; 2004; Adjunct Assistant Professor of English; Academic Coordinator, Student Support Services; Ph.D.; 1994; University of Idaho.
ROBBINS, JoAnn; 1991; Extension Professor and Jerome County Extension Educator (Horticulture/4-H/Small Farms); Ph.D.; 1987; Washington State University.

ROBERTO, Francesco F.; 1993; Affiliate Professor of Microbiology, Molecular Biology and Biochemistry, and of Plant, Soil and Entomological Sciences; Ph.D.; 1985; University of California Riverside.

ROBERTS, Brooks K.; 1998; #Affiliate Assistant Professor of Mathematics; Ph.D.; 1992; University of Chicago.

ROBERTS, Dar A.; 2004; Affiliate Professor of Geography; Ph.D.; 1991; University of Washington.

ROBERTS, Jeff; 1990; Affiliate Assistant Professor of Mechanical Engineering; M.S.M.E.; 1981; Kansas State University.

ROBERTS, Jeffrey B.; 2002; Affiliate Associate Professor of Electrical and Computer Engineering; B.S.E.E.; 1985; Washington State University.

ROBERTSON, Blaine P.; 2003; Affiliate Assistant Professor of Adult Education; Ed.D.; 1999; Idaho State University.

ROBERTSON, Larry D.; 1986; #Professor of Plant Genetics; Ph.D.; 1966; Colorado State University.

ROBICHAUD, Peter R.; 1994; Affiliate Assistant Professor of Biological and Agricultural Engineering; Ph.D.; 1996; University of Idaho.

ROBINSON, Andrew P.; 1998; #Associate Professor of Forest Mensuration and Forest Biometrics; Adjunct Assistant Professor of Statistics and of Bioinformatics and Computational Biology; Ph.D.; 1998; University of Minnesota.

ROBISON, Barrie D.; 2003; Assistant Professor of Biology; Adjunct Assistant Professor of Bioinformatics and Computational Biology; Ph.D.; 1999; Washington State University.

ROCK, Ron B.; 1992; Affiliate Assistant Professor of Educational Administration; J.D.; 1965; University of Idaho.

ROCKWOOD, Melissa; 1998; Affiliate Assistant Professor of Art and Design; B.F.A.; 1980; University of Idaho.

ROGERS, Robert D.; 1993; Affiliate Professor of Microbiology, Molecular Biology and Biochemistry; Ph.D.; 1974; North Carolina State University.

ROMERO, Henry A.; 1992; Affiliate Professor of Adult, Counselor, and Technology Education; M.S.; 1990; Texas Technological.

ROONEY, Michael T.; 1989; Affiliate Clinical Professor of Medical Science; M.D.; 1979; Indiana University.

ROSE, Cathy L.; 2002; Affiliate Assistant Professor of Forest Resources; Ph.D.; 1991; Oregon State University.

ROSENWINKEL, Hans; 2000; Assistant Professor of Journalism and Mass Media; M.F.A.; 1999; American Film Inst.

ROSENZWEIG, R. Francis; 1992; #Associate Professor of Biology; Ph.D.; 1991; University of Pennsylvania.

ROSS, Jeanette R.; 1972; Affiliate Professor of Adult, Counselor, and Technology Education; Ed.D.; 1976; University of Idaho.

ROTTINGHAUS, Brandon; 2004; Assistant Professor of Political Science; Ph.D.; 2004; Northeastern University.

ROWAN, Craig; 1978; Affiliate Professor of Veterinary Medicine; V.M.D.; 1948; University of Pennsylvania.

RUBY, Wayne L.; 1987; Affiliate Clinical Professor of Medical Science; M.D.; 1982; University of Colorado.

RUDDITIS, Gundars; 1983; #Professor of Geography; Adjunct Professor of Environmental Science; Ph.D.; 1977; University of Chicago.

RUMMLER, Roy E.; 1990; Affiliate Assistant Professor of Educational Administration; Ed.D.; 1976; University of Wyoming.

RUSH, Michael G.; 2003; Affiliate Assistant Professor of Agricultural and Extension Education; Ed.D.; 1984; Virginia Polytechnic Institute.

RUSSELL, Charles E.; 1995; Affiliate Assistant Professor of Range Resources; Ph.D.; 1983; University of Georgia.

RUSSELL, Keith C.; 2003; Affiliate Assistant Professor of Conservation Social Sciences; Ph.D.; 1999; University of Idaho.

RUSSELL, Michael D.; 1996; Assistant Professor of Music; M.Mus.; 1988; University of Arizona.

RUSSO, Valerie A.; 1985; Adjunct Senior Instructor in Health and Safety; Women’s Resource Specialist; M.S.; 1991; Antioch University Santa Barba.

RUST, Michael B.; 2003; Affiliate Assistant Professor of Fish and Wildlife Resources; Ph.D.; 1996; University of Washington.

RYCH, G. David; 1987; Affiliate Clinical Professor of Medical Science; M.D.; 1979; Medical College of Ohio.

RYSKAMP, John M.; 1991; Affiliate Professor of Nuclear Engineering; Ph.D.; 1979; Rensselaer Polytechnic.

SAAB, Victoria A.; 2000; Affiliate Assistant Professor of Fish and Wildlife Resources; Ph.D.; 1996; University of Colorado.
SCHWARZLAENDER, Mark; 2000; Assistant Professor of Entomology; Adjunct Assistant Professor of Environmental Science; Ph.D.; 1999; Christian Albrechts University.

SCHWIEBERT, Penny; 1994; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1990; University of Idaho.

SCOLES, Glen A.; 2004; Affiliate Associate Professor of Plant, Soils and Entomological Sciences; Ph.D.; 1997; University of Notre Dame.

SCOTT, J. Michael; 1986; Professor of Fish and Wildlife Resources; Adjunct Professor of Forest Resources and Environmental Science; Leader, Idaho Cooperative Fish and Wildlife Research Unit; Ph.D.; 1973; Oregon State University.

SEAMON, Richard; 2004; Associate Professor of Law; J.D.; 1986; Duke University.

SECRIST, Mark; 1982; Associate Professor of Journalism and Mass Media; M.B.A.; 1972; University of Utah.

SEEFELDT, Steven S.; 2002; Affiliate Assistant Professor of Rangeland Ecology and Management; Ph.D.; 1995; Washington State University.

SEEGMILLER, D. Scott; 1992; Affiliate Assistant Professor of Mechanical Engineering; Ph.D.; 1992; University of Idaho.

SEILER, Ronald J.; 1993; Adjunct Instructor in Special Education; Developmental Specialist, Idaho Center on Disabilities and Human Development; B.S.; 1989; University of Idaho.

SELF, Rebecca; 2004; Assistant Professor of Journalism and Mass Media; Ph.D.; 1999; University of Colorado.

SEYEDBAGHERI, Mi-Mohammed; 1984; Extension Professor and Elmore County Extension Educator (Crops/Horticulture); M.S.; 1984; Utah State University.

SEYFRIED, Mark S.; 1990; Affiliate Assistant Professor of Biological and Agricultural Engineering; Ph.D.; 1986; University of Florida.

SHAFII, Bahman; 1986; Professor of Plant Science; Adjunct Professor of Statistics; Director, Statistics Programs/AES Statistician; Ph.D.; 1988; University of Idaho.

SHAKLEE, Harriet L.; 1999; Associate Extension Professor of Family and Consumer Sciences and Extension Family Economics Specialist; Ph.D.; 1976; University of Oregon.

SHAPIRO, Pamela J.; 1991; Professor of Chemistry; Ph.D.; 1991; California Institute of Technology.

SHARMA, Sunil; 1986; Professor of Civil Engineering (P.E.); Chair, Department of Civil Engineering; Ph.D.; 1986; Purdue University.

SHASKA, Tanush; 2003; Assistant Professor of Mathematics; Ph.D.; 2001; University of Florida.

SHAW, Nancy L.; 1997; Affiliate Associate Professor of Range Resources; Ph.D.; 1992; Oregon State University.

SHEFFIELD, Ronald E.; 2002; Assistant Professor/Extension Wastes Management Engineer; Ph.D.; 2001; North Carolina State University.

SHELLIE, Krista C.; 2001; Affiliate Associate Professor of Plant Science; Ph.D.; 1990; Michigan State University.

SHEWMAKER, Glenn E.; 1999; Assistant Professor of Plant Science; Ph.D.; 1998; Utah State University.

SHIPLEY, Lisa A.; 2004; Affiliate Associate Professor Fish and Wildlife Resources; Ph.D.; 1993; Texas A&M University.

SHOOK, Steven R.; 1998; Associate Professor of Forest Products and Marketing; Adjunct Associate Professor of Business; Ph.D.; 1997; University of Washington.

SHOVIC, John C.; 1995; Affiliate Assistant Professor of Electrical Engineering; Ph.D.; 1988; University of Idaho.

SHREEVE, Jeanne M.; 1996; Affiliate Assistant Professor of Chemistry; Ph.D.; 1996; University of Michigan.

SMITH, Yoshio; 2001; Professor of Aerospace Studies; Department Head; M.S.; 1979; University of Illinois.

SMITH, Daniel L.; 2001; Affiliate Assistant Professor of Chemical Engineering; Ph.D.; 1999; University of Idaho.

SMITH, Lisa D.; 2003; Lecturer in Music; M.A.; 2002; University of Idaho.

SMITH, John R.; 1999; Affiliate Assistant Professor of Biological and Agricultural Engineering; Ph.D.; 2003; Iowa State University.

SMITH, Dev S.; 2004; Assistant Professor of Biological and Agricultural Engineering; Ph.D.; 2003; Iowa State University.

SMITH, Dev Sagar; 2004; Assistant Professor Biological and Agricultural Engineering; Ph.D.; 2003; Iowa State University.

SMITH, Paul; 1991; Professor of Subsurface Science; Adjunct Professor of Geological Sciences and Environmental Science; Ph.D.; 1984; New Mexico Mining & Technology.

SMITH, Richard D.; 1993; Affiliate Assistant Professor of Chemistry; Ph.D.; 1975; University of Utah.

SNEVILY, Hunter S.; 1993; Associate Professor of Mathematics; Ph.D.; 1991; University of Illinois.

SNYDER, Stuart C.; 1993; Affiliate Assistant Professor of Physics; Ph.D.; 1992; University of Idaho.

SOJKA, Robert E.; 1987; Affiliate Professor of Soil Science; Ph.D.; 1974; University of California Riverside.

SOLOVOY, Irina; 2004; Assistant Professor of Architecture; Ph.D.; 2004; Texas A&M University.

SOMARRIBA, Eduardo J.; 2002; Affiliate Assistant Professor of Forest Resources; Ph.D.; 1993; University of Michigan.

SOUTHWORTH, Finis H.; 1976; Affiliate Professor of Electrical Engineering; Ph.D.; 1975; Washington State University.

SPE, Ronald J.; 1998; Affiliate Instructor in Crime and Justice Studies; M.S.; 1994; University of Idaho.

SRI, Nathan O.; 1993; Affiliate Associate Professor of Nuclear Engineering; Ph.D.; 1984; University of California Los Angeles.

SHEFFIELD, Ronald; 2002; Affiliate Assistant Professor of Food Processing and Engineering; Ph.D.; 2003; University of Southern California.

SHEFFIELD, Ronald; 2002; Affiliate Assistant Professor of Forest Resources; Ph.D.; 2003; University of Southern California.

SMITH, Daniel B.; 1996; Affiliate Assistant Professor of Chemical Engineering; Ph.D.; 1991; University of Idaho.

SHEFFIELD, Ronald; 2002; Affiliate Assistant Professor of Forest Resources; Ph.D.; 2003; University of Southern California.

SIMMONS, Vickie J.; 2001; Affiliate Assistant Professor of Teaching, Learning, and Leadership; J.D.; 1987; University of Oregon.
THOMAS, David A.; 2002; #Professor of Mathematics Education; Ed.D.; 1983; Montana State University.
THOMAS, Gordon P.; 1984; #Associate Professor of English; Director of Writing; Ph.D.; 1985; University of Minnesota.
THOMAS, Ivan R.; 1989; Affiliate Assistant Professor of Mathematics; Ph.D.; 1980; University of Wyoming.
THOMAS, John C.; 2002; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1995; Indiana University.
THOMASHOW, Linda S.; 1986; Affiliate Professor of Plant Pathology; Ph.D.; 1979; University of California Los Angeles.
THOMPSON, David E.; 1999; Professor of Mechanical Engineering and of Computer Science; Ph.D.; 1970; Purdue University.
THOMPSON, Kristen R.; 2000; Affiliate Assistant Professor of Environmental Science; J.D.; 1989; University of Idaho.
THOMPSON, Mark A.; 1993; Affiliate Assistant Professor of Chemistry; Ph.D.; 1990; University of Florida.
THOMPSON, W. Mack; 2001; Assistant Professor of Plant Science; Ph.D.; 2000; Colorado State University.
THORGAARD, Gary H.; 1983; Affiliate Professor of Fish and Wildlife Resources; Ph.D.; 1977; University of Washington.
THORNTON, Michael K.; 1987; #Associate Professor of Plant Science; S.W. Research & Extension Center; Ph.D.; 1990; University of Idaho.
THORSTEINSON, Todd J.; 1998; #Associate Professor of Psychology; Ph.D.; 1998; Bowling Green State University.
TIFT, Kathleen J.; 2001; Assistant Extension Professor and Nez Perce County Extension Educator (Aging Issues/Community Development); M.S.; 2001; University of Idaho.
TING, Robert M.; 1999; Affiliate Clinical Professor of Medical Science; M.D.; 1995; Medical College of Ohio.
TOMLIN, Michael E.; 1992; #Professor of Adult and Educational Administration; Ed.D.; 1988; University of Wyoming.
TONN, Jonalea R.; 1980; Affiliate Professor of Forest Resources; M.F.; 1976; University of Idaho.
TOP, Eva M.; 2001; Associate Research Professor of Biological Sciences; Adjunct Associate Research Professor of Microbiology, Molecular Biology, and Biochemistry and of Bioinformatics and Computational Biology; Ph.D.; 1993; Ghent University (Belgium).
TOPP, James E.; 1986; Affiliate Assistant Professor of Special Education; Ph.D.; 1975; Ohio University.
TORELL, Kurt; 1998; Affiliate Associate Professor of Philosophy; Ph.D.; 1992; Duquesne University.
TORQUATO, John L.; 2000; Affiliate Clinical Professor of Medical Science; M.D.; 1995; Loma Linda University.
TOTEMEIER, Terry C.; 1999; Affiliate Assistant Professor of Materials Science and Engineering and Metallurgical Engineering; Ph.D.; 1994; University of Cambridge.
TOWEILL, Dale E.; 1990; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1987; Oregon State University.
TRACEY, Michael; 2000; #Associate Professor of Production/Operations Management; Ph.D.; 1999; University of Toledo.
TRACY, John C.; 2004; Professor of Civil Engineering; Director, Idaho Water Resources Research Institute; Ph.D.; 1989; University of California Davis.
TRAVER, Susan J.; 2001; Assistant Extension Professor and Bonner County Extension Educator-Family and Consumer Sciences; M.S.; 2000; University of Idaho.
TRIGSTED, Kirk C.; 1994; Senior Instructor in Mathematics; Director, Polya Math Learning Center; M.S.; 1996; University of Idaho.
TRIPEPI, Robert R.; 1984; #Professor of Physiology and Horticulture; Ph.D.; 1984; Purdue University.
TROTTER, Thomas V.; 1990; #Professor of Counseling and School Psychology; Coordinator, Counseling and Human Services Program; Ph.D.; 1981; University of Idaho.
TUCHISCHERER, Jerry L.; 1982; #Associate Professor of Adult, Counselor, and Technology Education; Associate Dean, College of Education; Ph.D.; 1978; Colorado State University.
TULIN, Robert W.; 1989; Affiliate Clinical Professor of Medical Science; M.D.; 1965; University of Washington.
TULLER, Markus; 2001; #Assistant Professor of Soil Physics; Adjunct Assistant Professor of Biological and Agricultural Engineering and Environmental Science; Ph.D.; 1997; University of Agricultural Sciences.
TURGEON, O. Abe Jr.; 2003; #Associate Professor of Animal and Veterinary Science; Ph.D.; 1984; University of Nebraska.
TURK, Blossom; 1992; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ed.D.; 1978; University of Idaho.
TURNER, Andrew; 2002; Director, Joint UI/WSU WWAMI Medical Education Program; Ph.D.; 1981; University of Missouri.
TURNER-RAHMAN, Gregory; 2004; #Assistant Professor of Art and Design; Ph.D.; 2004; Washington State University.
TWAMELEY, Brendan; 2002; Adjunct Assistant Professor of Geological Sciences; Ph.D.; 1994; Trinity College.
TYLER, Donald E.; 1988; #Professor of Anthropology; Chair, Department of Sociology, Anthropology and Justice Studies; Ph.D.; 1987; Washington State University.
ULMER, Philip C.; 1978; Affiliate Professor of Veterinary Medicine; D.V.M.; 1970; Oklahoma State University.
UNAL, Cetin; 1994; Affiliate Assistant Professor of Mechanical Engineering; Ph.D.; 1986; Lehigh University.
UTGIKAR, Vivek; 2001; #Assistant Professor of Chemical Engineering; Adjunct Assistant Professor of Environmental Science; Ph.D.; 1993; University of Cincinnati.
UTZMAN, Glen G.; 1974; Associate Professor of Accounting; L.L.M.; 1994; New York University.
VAN CLIEF, Elizabeth W.; 1998; Affiliate Professor of Teacher Education; P.E.D.; 1982; Indiana University.
VAN GERPEN, Jon; 2004; Professor of Biological and Agricultural Engineering; Department Head; Ph.D.; 1984; University of Wisconsin.
VAN HORN, Beatrice; 2004; Affiliate Professor Fish and Wildlife Resources; Ph.D.; 1981; University of New Mexico.
VAN TASSEL, Larry W.; 1999; #Professor of Agricultural Economics; Head, Department of Agricultural Economics and Rural Sociology; Ph.D.; 1967, Texas A&M University.
VANDERWALL, Dirk K.; 1999; #Assistant Professor of Equine Reproduction; Ph.D.; 1992; University of Idaho.
VASEK, Cheri D.; 2000; #Assistant Professor of Theatre and Film; M.F.A.; 1993; Virginia Polytechnic Institute.
VELTRI, Pamela J.; 2003; Affiliate Assistant Professor of Teaching, Learning and Leadership; Ph.D.; 2001; University of Idaho.
VENKATESWARAN, Kashundi; 2003; Affiliate Associate Professor of Microbiology, Molecular Biology and Biochemistry; D.A.G.; 1990; Hiroshima University.
VIERLING, Kerri T.; 2004; #Assistant Professor of Fish and Wildlife Resources; Ph.D.; 1998; University of Colorado.
VIERLING, Lee A.; 1999; #Assistant Professor of Rangeland Ecology & Management; Adjunct Assistant Professor of Forest Resources; Adjunct Assistant Professor of Environmental Science; Ph.D.; 1999; University of Colorado.
VINCENT, Jack E.; 1994; #Borah Professor of International Relations; Ph.D.; 1964; University of Oregon.
VON ALTEN, Jeanette R.; 1972; #Associate Professor of Adult, Counselor, and Technology Education; Ed.D.; 1976; University of Idaho.
VON BRAUN, Margrit; 1980; #Professor of Chemical Engineering; Associate Dean, Graduate Studies; Ph.D.; 1989; Washington State University.
VON LINDERN, Ian H.; 1981; Affiliate Professor of Chemical Engineering; Ph.D.; 1980; Yale University.
VON WANDRUSZKA, Ray; 1987; #Professor of Chemistry; Adjunct Professor of Environmental Science; Ph.D.; 1977; University of Wyoming.
WACHOB, Douglas G.; 2000; Affiliate Assistant Professor of Conservation Social Sciences; Ph.D.; 1997; University of Wyoming.
WAGNER, Francis G.; 1992; #Professor of Forest Products; Ph.D.; 1982; Mississippi State University.
WAGSTAFF, Robert B.; 1998; Affiliate Assistant Professor of Materials Science and Engineering and Metallurgical Engineering; B.S.; 1987; University of Idaho.
WAI, Chien M.; 1969; #Professor of Chemistry; Adjunct Professor of Environmental Science; Ph.D.; 1967; University of California Irvine.
WAI, Lily C.; 1970; Documents Librarian with rank of Professor; M.A.; 1979; University of Idaho.
WAITS, Lisette P.; 1997; #Associate Professor of Wildlife Resources; Adjunct Associate Professor of Environmental Science and of Bioinformatics and Computational Biology; Ph.D.; 1996; University of Utah.
WALDEN, Von P.; 2001; Assistant Professor of Geography; Adjunct Assistant Professor of Environmental Science; Ph.D.; 1995; University of Washington.
WALKER, Deward E. Jr.; 1967; Affiliate Professor of Anthropology; Ph.D.; 1964; University of Oregon.
WALKER, Jack R.; 1978; Affiliate Professor of Veterinary Medicine; D.V.M.; 1974; Colorado State University.
WALKER, John W.; 1992; Affiliate Assistant Professor of Range Resources; Ph.D.; 1988; Texas A&M University.
WALKER, W. Rand; 1996; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1990; University of Idaho.
WALKER, W. Rand; 1996; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1990; University of Idaho.
WALLACE, George N.; 1991; Affiliate Associate Professor of Conservation Social Sciences; Ph.D.; 1987; Colorado State University.

WALNTNER, Scott S.; 2003; Assistant Professor, Dairy Production Medicine Veterinarian; D.V.M.; 1996; University of Washington.

WANAMAKER, Nancy J.; 1976; #Professor of Family and Consumer Sciences; Director, School of Family and Consumer Sciences; Ph.D.; 1986; Virginia Polytechnic Institute.

WANG, Hong; 1997; #Associate Professor of Mathematics; Ph.D.; 1992; University of Calgary.

WARD, April; 2001; Assistant Extension Professor and Bannock County Extension Educator (4-H/Youth); M.S.; 2001; Utah State University.

WARD, Thomas E.; 1988; Affiliate Assistant Professor of Microbiology, Molecular Biology and Biochemistry; Ph.D.; 1976; Harvard University.

WARD-CLOSE, Malcolm; 1992; Affiliate Professor of Materials Science and Engineering and Metallurgy; Ph.D.; 1977; University of Birmingham.

WARTHEN, Keith I.; 2004; Affiliate Assistant Professor of Fish and Wildlife Resources; Ph.D.; 1990; University of California Berkeley.

WARNER, Mark S.; 1998; #Associate Professor of Anthropology; Associate Director Honors Program; Ph.D.; 1998; University of Virginia.

WATSON, Lawrence; 1990; Affiliate Assistant Professor of Educational Administration; Ph.D.; 1990; University of Idaho.

WATTS, Barry A.; 1988; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1988; Columbia Pacific.

WEAVER, Elizabeth A.; 2002; Affiliate Associate Professor of Health, Physical Education, Recreation and Dance; M.Ed.; Texas A&M University.

WEAVER, Thomas J.; 2003; Assistant Professor of Civil Engineering (P.E.); Ph.D.; 2003; University of California San Diego.

WEBB, Linda I.; 1980; Extension Professor and Extension Specialist (4-H/Youth); M.Ed.; 1980; Albertson College Of Idaho.

WEGARS, Priscilla S.; 1993; Affiliate Assistant Professor of Anthropology; Ph.D.; 1991; University of Idaho.

WEGMAN, Jerry L.; 1977; #Associate Professor of Business Law; J.D.; 1970; Columbia University.

WEILER, Betty; 1999; Affiliate Associate Professor of Conservation Social Sciences; Ph.D.;

WEISER, Glen C.; 2003; Adjunct Assistant Professor of Animal and Veterinary Science; Ph.D.; 1980; University of Florida.

WEISS, Michael J.; 1998; #Professor of Entomology; Associate Director, Extension/Research; Ph.D.; 1983; University of Nebraska.

WELCH, Julia R.; 2001; Extension Instructor and Idaho County Extension Educator (Family and Consumer Sciences); B.S.; 1997; Idaho State University.

WELHAN, John A.; 1990; Adjunct Professor of Geology; Hydrogeologist/Environmental Geologist; Ph.D.; 1981; University of California San Diego.

WELLS, Richard B.; 1981; #Associate Professor of Electrical Engineering; Adjunct Associate Professor of Materials Engineering and of Neuroscience; Ph.D.; 1985; University of Idaho.

WELLSCH, Walter M.; 2002; Affiliate Professor of Geological Sciences; Dr-ing; 1969; Technical University.

WENCLEWIUK, Bernd W.; 1998; Affiliate Professor of Chemistry; Drexel; 1978; Munich.

WENNY, David L.; 1979; #Professor of Forest Regeneration; Forest Nursery Manager; Ph.D.; 1981; University of Idaho.

WERNER, Steffen; 2000; #Associate Professor of Psychology; Adjunct Associate Professor of Neuroscience; Ph.D.; 1994; University of Gottingen.

WESENBERG, Darrell; 1969; Affiliate Professor of Agronomy; Ph.D.; 1968; University of Wisconsin.

WEST, Dennis D.; 1979; #Professor of Foreign Languages and Literatures (Spanish); Ph.D.; 1971; University of Illinois.

WEST, Joan M.; 1981; Associate Professor of Foreign Languages and Literatures (French); Ph.D.; 1981; Indiana University.

WEST, Robert C.; 1991; Affiliate Assistant Professor of Special Education; Ph.D.; 1988; University of Idaho.

WESTERMANN, Dale T.; 1970; Affiliate Professor of Soil Science; Ph.D.; 1968; Oregon State University.

WHARTON, William C.; 1975; #Professor of Music (cello, bass, theory); D.M.A.; 1970; University of Arizona.

WHEELER, Lee; 1983; Affiliate Professor of Chemical Engineering; B.S.; 1970; University of Idaho.

WHITAKER, Sterling R.; 1985; #Research Professor of Electrical Engineering; Ph.D.; 1988; University of Idaho.

WHITE, Timothy; 2004; Professor of Biological Sciences; President, University of Idaho.

WHITEMAN, Michael R.; 1986; #Adjunct Assistant Professor of Conservation Social Sciences and of Forest Resources and of Environmental Science; Director of International Programs; Associate Vice Provost, Enrollment Management; Ph.D.; 1993; University of Idaho.

WHITLOCK, Alan J.; 1994; Lecturer of Psychology; Ph.D.; 1994; University of Utah.

WHITNEY, Tyler T.; 2003; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 2001; Forest Institute of Professional Psychology.

WHITWORTH, Jonathan L.; 1997; Affiliate Assistant Professor of Plant Science; Ph.D.; 1993; Oregon State University.

WHICHMAN, Holly A.; 1988; #Professor of Zoology; Adjunct Professor of Bioinformatics and Computational Biology; Ph.D.; 1983; Westelayan University.

WILDE, Glenn R.; 1997; Adjunct Professor of Teacher Education; Vice Provost, Libraries and Information Technology; Chief Information Officer; Ph.D.; 1976; University of Utah.

WILLARD, Miles; 1996; Affiliate Professor of Food Science and Toxicology; D.Sc.; 1994; Drexel University.

WILLIAMS, Barbara Cooke; 1998; #Associate Professor of Biological and Agricultural Engineering; Adjunct Assistant Professor of Geology and Environmental Science; Ph.D.; 1992; University of Idaho.

WILLIAMS, Christopher J.; 1992; #Professor of Statistics; Adjunct Professor of Bioinformatics and Computational Biology; Ph.D.; 1988; University of Georgia.

WILLIAMS, J. Gary; 1973; #Professor of English; Director, MA-English; Ph.D.; 1973; Cornell University.

WILLIAMS, Jacqueline M.; 2000; Senior Instructor in Athletic Training; M.S.; 1993; Central Washington University.

WILLIAMS, Richard V.; 1989; #Professor of Chemistry; Ph.D.; 1978; University of Cambridge.

WILLIAMS, Shannon K.; 2003; Assistant Extension Professor and Lemhi County Extension Educator (Beef/Ranch); M.S.; 1995; Utah State University.

WILLIAMS, Thomas J.; 2002; Adjunct Assistant Professor of Geological Sciences; Ph.D.; 1995; University of Maryland.

WILLIAMSON, Richard L.; 1994; #Affiliate Professor of Mechanical Engineering; Ph.D.; 1989; University of Idaho.

WILLS, Barry; 1993; #Professor of Education; Associate Vice President, Educational Outreach; Associate Dean, College of engineering; Ed.D.; 1981; Indiana University.

WILSON, Gregory L.; 1997; #Affiliate Assistant Professor of Psychology; Ph.D.; 1986; University of Montana.

WILSON, James B.; 1984; Extension Professor and Kootenai County Extension Educator (4-H/Youth Development); M.S.; 1982; University of Nebraska.

WILSON, Linda M.; 2003; #Affiliate Assistant Professor of Rangeland Ecology and Management, and of Plant, Soil, and Entomological Sciences, and of Environmental Science; Ph.D.; 1999; University of Idaho.

WILSON, Patrick R.; 1999; #Associate Professor of Political Science; Adjunct Assistant Professor of Environmental Science; Ph.D.; 1996; University of Alberta.

WILSON, Robert C.; 2000; Assistant Extension Professor and Bonner County Extension Educator (Beef/Ranch); M.S.; 1995; Utah State University.

WILSON, Robert E.; 1988; Affiliate Assistant Professor of Mechanical Engineering; Ph.D.; 1974; University of Washington.

WINDES, Juliet M.; 2004; #Assistant Professor of Crop Management; Ph.D.; 1992; University of Illinois.

WINDLEY, Charla A.; 1993; Lecturer in Psychology and Communication Studies; M.A.; 1992; Kansas State University.

WINDLEY, Paul G.; 1992; #Professor of Architecture; Adjunct Professor of Landscape Architecture; D.Arch.; 1972; University of Michigan.

WINTER, Malcolm; 1992; Affiliate Clinical Professor of Medical Science; M.D.; 1981; University of Washington School of Medicine.

WINTERS, Kel; 1993; Affiliate Assistant Professor of Electrical Engineering; Ph.D.; 1993; University of Idaho.

WINWARD, Alma H.; 1982; Affiliate Professor of Range Resources; Ph.D.; 1970; University of Idaho.

WITHAM, James H.; 2001; Affiliate Assistant Professor of Fish and Wildlife Resources; Ph.D.; 1993; Colorado State University.

WIXON, James R.; 2002; Affiliate Instructor of Industrial Technology; M.B.A.; 1986; University of Phoenix.

WOFFINDEN, Sharlene; 1984; Extension Professor and Bear Lake County Extension Educator (Youth Development); M.S.; 1983; Utah State University.

WILCOTT, Michael P.; 2003; Affiliate Associate Professor of Forest Products; Ph.D.; 1989; Virginia Polytechnic Institute.

WOLF, James B.; 1984; Professor of Motherhood and of Neuroscience; Ph.D.; 1989; University of New Hampshire.

WOLF-SPENCER, Richard C.; 1998; #Professor of Economics; Adjunct Professor of Bioinformatics and Computational Biology; Ph.D.; 1988; University of Georgia.

WOLFRAM, James H.; 1993; Affiliate Professor of Microbiology, Molecular Biology and of Genetics; Ph.D.; 1985; University of California Berkeley.

WOLCOTT, Michael P.; 2003; Affiliate Associate Professor of Forest Products; Ph.D.; 1989; Colorado State University.

WONDER, Richard; 1992; Affiliate Assistant Professor of Materials Science and Engineering; Ph.D.; 2003; University of Idaho.

WOOD, Mary A.; 1993; Affiliate Assistant Professor of Agriculture and of Business Law; Ph.D.; 1993; University of Idaho.

WOLSMAN, Rosemary; 1992; #Professor of Environmental Science; Ph.D.; 1992; University of Idaho.
WOOD, Brenda K.; 1997; Affiliate Associate Professor of Psychology; Ph.D.; 1996; University of South Florida.

WOOD, Scott A.; 1992; Professor of Geochemistry; Adjunct Professor of Environmental Science; Ph.D.; 1985; Princeton University.

WOOD, Thomas R.; 1995; Affiliate Professor of Geology; M.S.; 1987; Washington State University.

WOODBURN, Carl R. Jr.; 1985; Affiliate Professor of Veterinary Medicine; D.V.M.; 1981; Washington State University.

WOODS, Gordon L.; 1987; Professor of Veterinary Science; Adjunct Professor of Zoology; Ph.D.; 1983; University of Wisconsin.

WOODS, Marianne L.; 1995; Associate Professor of Physical Education; Ph.D.; 1995; University of Northern Colorado.

WOODY, Carol A.; 2004; Affiliate Assistant Professor of Fish and Wildlife Resources; Ph.D.; 1998; University of Washington.

WOOLSTON, William P.; 1973; Professor of Art and Design; Department Chair; M.F.A.; 1973; School of the Art Institute - Chicago.

WRIGHT, James L.; 1969; Affiliate Professor of Soil Science; Ph.D.; 1964; Cornell University.

WRIGHT, Nigel G.; 2001; Affiliate Associate Professor of Civil Engineering; Ph.D.; 1988; University of Leeds.

WRIGHT, R. Gerald; 1980; Professor of Fish and Wildlife Resources; Assistant Leader of Idaho Cooperative Fish and Wildlife Research Unit; Ph.D.; 1972; Colorado State University.

WRIGHT, Richard N.; 1993; Affiliate Professor of Metallurgy; Ph.D.; 1982; Michigan Technology University.

WRIGLEY, Robert A.; 1999; Professor of English; Director of Creative Writing; M.F.A.; 1976; University of Montana.

WULFHORST, J.D.; 2000; Assistant Professor of Agricultural Economics; Adjunct Assistant Professor of Environmental Science; Ph.D.; 1997; Utah State University.

WYATT, Stephen D.; 1997; Affiliate Associate Professor of Plant Pathology; Ph.D.; 1974; University of Kentucky.

WAYKOFF, William R.; 1977; Affiliate Professor of Forest Resources; M.S.; 1975; Washington State University.

WYLIE, Allan H.; 2002; Adjunct Professor of Geological Sciences; Ph.D.; 2001; University of Idaho.

WYLIE, E. Benjamin; 2001; Affiliate Professor of Civil Engineering; Ph.D.; 1964; University of Michigan.

YAMA, Mark F.; 1987; Associate Professor of Psychology; Adjunct Associate Professor of Neuroscience; Ph.D.; 1979; Indiana University.

YE, Hengchun; 1998; Associate Associate Professor of Geography; Ph.D.; 1995; University of Delaware.

YEH, Wei Jiang; 1990; Professor of Physics; Ph.D.; 1984; SUNY at Stony Brook.

YENSER, Pamela A.; 2004; Lecturer in English; M.F.A.; 2003; University of Idaho.

YONKER, Clement R.; 1994; Affiliate Assistant Professor of Chemistry; Ph.D.; 1982; University of Arizona.

YOPP, Martha C.; 1986; Professor of Business Education; Ed.D.; 1982; George Washington University.

YOUNG, Harold W.; 1985; Affiliate Professor of Biological and Agricultural Engineering; B.A.; 1986; Fresno State University.

YOUNG, Jeffrey L.; 1991; Professor of Electrical Engineering; Ph.D.; 1989; University of Arizona.

YOUNG, Nancy J.; 1998; Reference Librarian with rank of Associate Professor; J.D.; 1981; University of California Berkeley.

YOUNG, Norman C.; 1995; Affiliate Professor of Biological and Agricultural Engineering; M.S.; 1969; University of Idaho.

YOUNG, William P.; 2003; Affiliate Assistant Professor of Biological Sciences; Ph.D.; 1996; Washington State University.

ÖZERÇELİK, Gülnahar Ünsal; 2000; Assistant Professor of Food Science and Technology; M.S.; 1998; University of Wisconsin.

ZACK, Arthur C.; 2000; Affiliate Assistant Professor of Forest Resources; Ph.D.; 1994; University of Idaho.

ZAGHER, Peter; 1984; Affiliate Professor of Fish and Wildlife Resources; Ph.D.; 1980; University of Montana.

ZALTZMAN, Arthur; 1989; Affiliate Professor of Biological and Agricultural Engineering; D.Sc.; 1967; Byelorussian Academy of Science.

ZAMPICH, Christina; 1991; Affiliate Assistant Professor of Adult, Counselor, and Technology Education; Ph.D.; 1980; Rosemead School of Psych.

ZELLER, Joseph R.; 2002; Professor of Art and Design; Dean, College of Letters, Arts and Social Sciences; M.F.A.; 1970; New York University.

ZEMETRA, Robert S.; 1984; Professor of Plant Breeding and Genetics; Ph.D.; 1983; Colorado State University.

ZHU, Pingchao; 1996; Assistant Professor of History; Ph.D.; 1996; Miami University.

ZIMMER, Martin J.; 1990; Affiliate Associate Professor of Range Management; M.Ed.; 1988; University of Idaho.

ZUPPERO, Anthony C.; 1993; Affiliate Assistant Professor of Physics; Ph.D.; 1970; Case Western Reserve University.

ZANG, Jianwei; 2004; Affiliate Assistant Professor of Forest Resources; Ph.D.; 1994; University of Idaho.

YÜKSEL, Gülhan Ünlü; 2000; Assistant Professor of Food Science and Toxicology; Ph.D.; 2000; University of Delaware.

ZUGER, Barry A.; 1974; Associate Professor of Pediatrics; M.D.; 1974; University of Pennsylvania.

ZUPPERO, Anthony C.; 1993; Affiliate Assistant Professor of Physics; Ph.D.; 1970; Case Western Reserve University.

EMERITI FACULTY

Timothy P. White, President; Linda Morris, Provost; Jeffrey J. Bailey, Chair of the Faculty Council (2004-05); Douglas Q. Adams, Secretary of the Faculty.

ABLES, Ernest D.; 1973-1996; Professor Emeritus of Wildlife Resources.

ADAMS, David L.; 1971-1998; Professor Emeritus of Forest Resources.

ADELE, Gail H.; 1974-2003; Professor Emerita of Mathematics.

ANDEREGG, Doyle E.; 1967-1999; Professor of Biology and Associate Dean Emeritus.

ANDERSON, Clifton E.; 1972-1997; Extension Professor of Agricultural Information.

ANDERSON, Guy R.; 1948-1984; Professor of Bacteriology and Director of the WAMI Medical Education Program Emeritus.

ARMSTRONG, Terry R.; 1969-1995; Professor of Education and Adjunct Professor of Resource Recreation and Tourism Emeritus.

BAIRD, Craig R.; 1974-2001; Extension Professor Emeritus of Entomology.

BALDRIDGE, Donald C.; 1969-1987; Professor Emeritus of History.

BALDRIDGE, John A.; 1972-1991; Associate Registrar Emerita.

BARBUT, Erol; 1967-1999; Professor Emeritus of Mathematics.

BARR, William F.; 1947-1982; Professor of Entomology and Department Head Emeritus.

BARTON, Elbert M.; 1980-1981; Professor of Naval Science and Director of Personnel Services Emeritus.

BECK, Richard J.; 1957-1988; Associate Dean Emeritus of Library Services with rank of Professor.

BEESON, Richard W.; 1972-1994; Professor Emeritus of Sociology.

BELL, Roy A.; 1950-1972; Professor Emeritus of Photography.

BELL, Thomas O.; 1966-1994; Professor of Education and Provost Emeritus.

BELT, George H.; Jr.; 1965-1998; Professor Emeritus of Forest Resources.

BENNERT, Earl H. II; 1977-2003; Professor of Geology and Dean Emeritus.

BETTS, Edith; 1951-1983; Professor Emerita of Physical Education.

BIGGAM, William R.; 1959-1984; Professor and Chair of Industrial Education Emeritus.

BIKKIE, James A.; 1973-1995; Professor Emeritus of Vocational Teacher Education.

BISHOP, Guy W.; 1957-1987; Professor Emeritus of Entomology.

BIZEAU, Elwood C.; 1967-1985; Professor Emeritus of Wildlife Resources.

BLACK, James E.; 1966-1984; Professor Emeritus of Adult Education.

BLANTON, Paul L.; 1958-1990; Professor of Architecture and Dean Emeritus.

BOBECK, Gene E.; 1967-1995; Professor Emeritus of Metallurgy.

BORNING, Bernard C.; 1949-1978; Professor Emeritus of Political Science.

BRAMWELL, Keith A.; 1979-2002; Extension Professor Emeritus.

BRIDGES, George; 1985-2001; Professor Emeritus of Foreign Languages and Literatures.

BROOKWAY, Charles E.; 1965-1998; Professor Emeritus of Agricultural Engineering and Civil Engineering.

BROWNE, Michael E.; 1967-1995; Professor Emeritus of Physics.

BRUSVEN, Merlyn A.; 1965-1988; Professor Emeritus of Entomology.
BUNDERSON, Marlene M.; 1957-1990; Extension Professor Emerita of Home Economics.
BURCAW, G. Ellis; 1966-1988; Professor Emeritus of Anthropology.
BYERS, Roland O.; 1954-1981; Professor of General Engineering and Chair Emeritus.
CALNON, Mark B.; 1945-1973; Extension Professor Emeritus.
CALVERT, James E. Jr.; 1967-2001; Professor of Mathematics and Department Chair Emeritus.
CARLSON, John E.; 1970-1999; Professor Emeritus of Rural Sociology.
CARPENTER, Gene P.; 1966-1997; Research and Extension Professor Emeritus of Entomology.
CARVER, Robert D.; 1991-2001; Extension Professor Emeritus of Agricultural Economics.
CHAMBERLAIN, Valerie E.; 1986-2003; Professor Emerita of Geochemistry.
CHAN, Samuel S. M.; 1963-1989; Professor Emeritus of Mining Engineering.
CHAPIN, Zane; 1968-1987; Professor Emerita of Sociology.
CHAPMAN, Frederick L.; 1977-1993; Professor Emeritus of Theatre Arts.
CHAVEZ, Edmund M.; 1951-1987; Professor of Communication and Manager of W. H. Kibbs/ASUI Activity Center Emeritus.
CHELDLIN, Kathleen C.; 1982-2002; Extension Professor Emerita of Home Economics.
CHRISTENSON, Charles O.; 1964-1999; Professor Emeritus of Mathematics.
CHRISTIANSON, Oscar O.; 1949-1970; Professor Emeritus of Bacteriology.
CHRYSLER, Russell L.; 1959-1974; Professor of Marketing and Department Chair Emeritus.
CONDITT, Paul C.; 1961-1994; Gifts Librarian Emeritus with rank of Professor.
COOLEY, James H.; 1957-1992; Professor Emeritus of Chemistry.
CROSS, Bert C.; 1962-1985; Professor of Journalism and Department Chair Emeritus.
CROSS, Virgil S.; 1940-1967; Extension Professor Emeritus.
CROWLEY, H. Ward; 1956-1973; Professor Emeritus of Mathematics.
CURTIS, Mary Lee; 1984-2003; Extension Professor Emerita.
DAHL, Becky L.; 1971-2002; Extension Professor Emerita.
DAVIS, Richard C.; 1987-2002; Manuscripts-Archives Librarian Emeritus with rank of Professor.
DEAN, Leslie L.; 1950-1975; Research Professor Emeritus of Plant Science.
DEL MAR, Donald; 1971-1990; Professor Emeritus of Production/Operations Management.
DEMUTH, Howard B.; 1985-1997; Professor Emeritus of Electrical Engineering.
DESHAZER, James A.; 1991-2001; Professor of Agricultural Engineering and Department Head Emeritus.
DEUTCHMAN, Philip A.; 1968-2002; Professor Emeritus of Physics.
DICKINSON, John W.; 1973-2002; Professor of Computer Science and Department Chair Emeritus.
DIERKER, Paul F.; 1966-1998; Professor Emeritus of Mathematics.
DINOTO, Michael J.; 1970-2003; Professor Emeritus of Economics.
DIXON, John E.; 1954-1990; Professor Emeritus of Agricultural Engineering.
DOERR, Judith; 1975-1998; Professor Emerita of Educational Administration and of Statistics.
DWELLE, Robert B.; 1976-2003; Research Professor Emeritus of Plant Physiology.
DYER, Ruth G.; 1964-1982; Extension Professor Emerita.
EDER, Sid; 1984-1998; Professor of Education and Director of Summer Programs and Extended Learning Emeritus.
EDMISON, Glenn A.; 1984-1998; Professor Emeritus of Adult, Counselor, and Technology Education.
EDMISON, Fred L.; 1967-1998; Extension Professor Emeritus.
EHRENREICH, John H.; 1971-1999; Professor Emeritus of International Forest and Range Resources.
EVERSON, Dale O.; 1962-1996; Professor Emeritus of Statistics.
FALK, Dean E.; 1974-2002; Extension Professor Emeritus.
FALTER, C. Michael; 1969-2002; Professor Emeritus of Fishery Resources.
FARLEY, Melvin W.; 1953-1980; Professor of Education and Director of Clinical Experiences in Teacher Education Emeritus.
FASOLINO, Rosario P.; 1977-1986; Professor of Architecture and Department Chair Emeritus.
FINN, Calvin L.; 1980-2001; Professor Emeritus of Electrical Engineering.
FINNIGAN, Brian F.; 1980-2002; Extension Professor Emeritus.
FITZSIMMONS, Delbert W.; 1959-1991; Professor of Agricultural Engineering and Department Chair Emeritus.
FLETCHER, Max E.; 1958-1984; Professor of Economics and Department Head Emeritus.
FORBES, Rose L.; 1965-1999; Professor Emerita of Family and Consumer Sciences.
FORYES, Tina; 1967-2002; Professor Emerita of English.
FORSTER, Robert L.; 1975-2002; Extension Professor Emeritus.
FOSTER, Zeph H.; 1963-1989; Professor Emeritus of Education.
GARDNER, George F.; 1965-1995; Extension Professor Emeritus.
GARDNER, Max A.; 1961-1999; Extension Professor Emeritus.
GARRARO, Verl G.; 1946-1986; Professor Emeritus of Chemistry.
GENTRY, N. Dale; 1977-2002; Professor of Special Education and Dean Emeritus.
GHAZANFAR, Shaikh M.; 1968-2002; Professor of Economics and Department Chair Emeritus.
GIBSON, Chad C.; 1968-1999; Extension Professor Emeritus.
GIBSON, Gene W.; 1966-2002; Extension Professor Emeritus.
GIER, Nicholas F.; 1972-2003; Professor Emeritus of Philosophy.
GREENER, William S.; 1949-1982; Professor of History and Department Head Emeritus.
GRIEB, Marlene M.; 1957-1990; Extension Professor Emeritus.
HAN, Richard R.; 1967-1999; Professor of Music and Director Emeritus.

HALL, Forrest H.; 1946-1978; Professor Emeritus of Civil Engineering.

HALL, Grant B.; 1950-1981; Extension Professor Emeritus.

HALL, William B.; 1965-1991; Professor Emeritus of Geology.

HAMILTON, George; 1968-2002; Extension Professor Emeritus.

HAMILTON, Lee W.; 1952-1979; Extension Professor Emeritus.

HANSON, D. Jay; 1968-2001; Extension Professor Emeritus.

HANSON, Donna M.; 1981-2001; Science Librarian Emerita.

HARDCASTLE, James H.; 1975-2002; Professor Emeritus of Civil Engineering and Geological Engineering.

HARDCASTLE, Peggy J.; 1968-2000; Professor Emerita of Family and Consumer Sciences.

HARPER, Roger W.; 1947-1982; Professor Emeritus of Soil Science.

HARRIS, Robert D.; 1959-1986; Professor Emeritus of History.

HARTER, Donald A.; 1974-1996; Extension Professor Emeritus.

HATHAWAY, Cecil W.; 1955-1991; Professor Civil Engineering and Director of Engineering Outreach Emeritus.

HAUTALA, Robert; 1983-1999; Professor of Mining Engineering and Associate Dean Emeritus.

HAYNES, Robert C.; 1955-1979; Extension Professor Emeritus of Agricultural Education and Agricultural Engineering.

HELTON, Audus W.; 1951-1986; Professor Emeritus of Plant Science.

HENDEE, John C.; 1985-2002; Professor of Wilderness Management and Director, Wilderness Research Center Emeritus.

HESPELT, George G.; 1957-1991; Professor Emeritus of Electrical Engineering.

HINMAN, Dan D.; 1974-2003; Professor Emeritus of Nutrition.

HIRONAKA, Minoru; 1954-1992; Professor Emeritus of Range Resources.

HOAG, Kenneth; 1935-1967; Professor Emeritus of English.

HOFSTRAND, Arland D.; 1959-1986; Professor Emeritus of Forest Products.

HOLE, Dorothy S.; 1957-1979; Extension Professor Emerita.

HOLUP, John P. Jr.; 1971-1995; Professor Emeritus of Marketing Education.

HOSKINS, John R.; 1967-1989; Professor of Mining Engineering and Department Head Emeritus.

HOVEY, Bette A.; 1968-1999; Extension Professor Emerita.

HULTSTRAND, Bonnie J.; 1975-1999; Professor Emerita of Wildlife Resources.

HUNGERFORD, Kenneth E.; 1942-1978; Professor Emeritus of Wildlife Resources.

HUNTER, Larry O.; 1975-1999; Director of Institutional Research Emeritus.

JACKSON, Lowell D.; 1984-1997; Professor Emeritus of Education.

JENNINGS, Tom E.; 1966-1999; Professor Emeritus of Communication.

JENSEN, Alfred W.; 1969-1999; Professor Emeritus of Foreign Languages and Literatures.

JOHNSON, Donald R.; 1968-1995; Professor Emeritus of Zoology.

JOHNSON, Kendall L.; 1968-2002; Professor of Range Resources and Department Head Emeritus.

JOHNSON, Maurice E.; 1958-1994; Extension Professor and Adjunct Professor of Family and Consumer Sciences Emeritus.

JOKISAARI, Allan; 1984-2002; Senior Instructor Emeritus of Cartography; Manager, Cart-O-Graphics Lab.

JONAS, Arlene T.; 1971-1987; Professor Emerita of Home Economics.

JONES, James R.; 1975-2003; Professor Emeritus of Agricultural Economics; Agricultural Economist.

JONES, Robert W.; 1958-1990; Professor Emeritus of Geology.

KAMBI, J. T.; 1946-1979; Extension Professor Emeritus.

KEARNY, Robert J.; 1964-1998; Professor Emeritus of Physics.

KEENAN, Richard M.; 1980-2003; Professor of Foreign Languages and Literatures and Director Chair Emeritus.

KEES, Donald J.; 1954-1987; Counseling Psychologist Emeritus with rank of Professor and Director Emeritus of the Counseling and Testing Center.

KELLY, Edward L.; 1962-1990; Professor Emeritus of Education.

KELLY, Gwendolyn N.; 1972-2001; Professor Emerita of Education.

KELLY, Joseph T.; 1970-1997; Professor Emeritus of Education.

KESSEL, Elizabeth M.; 1965-1987; Professor Emerita of Home Economics.

KESSEL, Robert M.; 1957-1986; Professor Emeritus of Business Education.

KIEHN, Shirley O.; 1968-1986; Professor Emerita of Home Economics.

KINDSCHY, Dwight L.; 1947-1977; Professor of Agricultural Education and Department Head Emeritus.

KLEINKOPF, Gale E.; 1975-2003; Research Professor Emeritus of Plant Physiology.

KNODEN, John W.; 1972-1998; Professor Emeritus of Economics.

KOESTER, Edward F.; 1950-1983; Extension Professor Emeritus.

KOHL, Fred E.; 1950-1983; Extension Professor Emeritus.

KOLAR, John J.; 1956-1986; Research Professor Emeritus of Agronomy.

KUSKA, James J.; 1973-2002; Professor Emeritus of Landscape Architecture.

LABAR, George W.; 1995-2004; Professor Emeritus of Fishery Resources.

LAPEYRE, Elisabeth; 1975-1999; Professor Emerita of Foreign Languages and Literatures.

LARSEN, Dorrell C.; 1956-1990; Professor Emeritus of Agriculture.

LASSEY, Marie L.; 1975-1996; Professor Emerita of Sociology.

LATHEN, Calvin W.; 1967-2003; Professor of Recreation and Director Emeritus.

LAW, John; 1975-1995; Professor Emeritus of Electrical Engineering.

LAWYER, Mary A.; 1965-1998; Extension Professor Emerita.

LEONARD, Robert R.; 1966-1990; University Physician and Director of the Student Health Service Emeritus.

LETOURNEAU, Duane J.; 1953-1961; Professor of Biochemistry and Chemistry and Secretary of the Faculty Emeritus.

LINGG, Al J.; 1969-1998; Professor Emeritus of Microbiology and Associate Dean and Director Emeritus.

LIU, Chia-Tsang; 1976-1999; Extension Professor Emeritus of Crop Science.

LOCKERY, Elisabeth; 1947-1981; Professor Emeritus of Music.

LOEVENSTEIN, Howard; 1958-1987; Professor Emeritus of Forest Resources.

LONG, Roger B.; 1966-1997; Professor Emeritus of Agricultural Economics.

LOTTMAN, Robert P.; 1966-1991; Professor Emeritus of Civil Engineering.

LUFTH, LeRoy D.; 1969-2001; Professor Emeritus of Agricultural Economics.
PART SEVEN

Faculty

LUSCHNIG, Cecelia E.; 1975-2003; Professor Emerita of Foreign Languages and Literatures.

LYLE, Corrine M.; 1973-1998; Extension Professor Emerita of Rural Sociology.

MACPHEE, Craig; 1957-1981; Professor Emeritus of Fishery Resources.

MARLER, Frankie L.; 1974-1999; Extension Professor Emerita.

MARousek, Gerald E.; 1962-1999; Professor Emeritus of Agricultural Economics.

Marten, Dwayne J.; 1964-1994; Professor Emeritus of Physical Education.

McCandless, Carol M.; 1955-1990; Extension Professor Emerita of Home Economics.

McKetta, Charles W.; 1977-2002; Research Professor Emeritus of Forest Resources.

McMaster, Gale M.; 1955-1987; Research Professor of Agricultural Engineering & Superintendent of the Aberdeen Research & Extension Center Emeritus.

Medema, E. Lee; 1977-1998; Professor Emeritus of Forest Resources.

Medsker, Shirley R.; 1967-1993; Professor Emerita of Home Economics.

Meldrum, Barbara R.; 1965-1996; Professor Emerita of English.

MerK, Lawrence H.; 1967-2001; Professor of Business and Director Emeritus Emeritus Center for Business Development and Research.

MichaLson, Edgar L.; 1969-1995; Professor Emeritus of Agricultural Economics.

Michel, Eliner L.; 1967-2003; Professor Emerita of Education.

Mih, Dora H.; 1972-1996; Reference Librarian Emerita with rank of Professor.

Miles, Paul L.; 1965-1995; Professor Emeritus of Communication.

Miller, Laura J.; 1970-1990; Professor Emerita of Home Economics.

Miller, Maynard M.; 1975-1997; Professor of Geology and Dean Emeritus.

Miller, Robert W.; 1986-2001; Professor Emeritus of Music.

MILLiGAN, James H.; 1972-2001; Professor Emeritus of Civil Engineering.

Mink, Leandan L.; 1978-2002; Professor of Geology and Director, Idaho Water Resources Research Institute Emeritus.

MOHAN, Philip J.; 1971-1999; Professor Emeritus of Psychology.

Molnau, Myron P.; 1969-1999; Professor Emeritus of Agricultural Engineering.

MontouRE, John E.; 1961-1998; Extension Professor Emeritus of Food Science.

Moore, James A.; 1974-2002; Professor Emeritus of Forest Resources.

Morin, Bernice M.; 1944-1983; Director of Food Services and Adjunct Professor of Home Economics Emerita.

Mundt, John P.; 1985-2002; Professor Emeritus of Agricultural Education.

Muneta, Glen A.; 1966-1996; Professor Emeritus of Food Science.

Murray, Glen A.; 1967-1999; Professor Emeritus of Agronomy and Crop Physiology.

Naskali, Richard J.; 1967-2003; Arboriculture Director with rank of Professor Emeritus.

Neuenschwander, Leon F.; 1970-2002; Professor Emeritus of Forest Resources.

Newcomb, Shirley A.; 1949-1988; Professor Emerita of Home Economics.

Nielsen, Ralph; 1964-1994; Special Projects, Librarian Emeritus with rank of Professor.

Nystrom, Esther A.; 1944-1969; Extension Professor Emerita.

O’keeffe, lAWrence E.; 1965-1998; Professor of Entomology and Department Head Emeritus.

OlsOn, Norman C.; 1971-1989; Professor of Management, Department Head, and Dean Emeritus.

Osborne, Harold L.; 1972-2003; Extension Professor Emeritus of Forest Resources and Forest Manager.

Owen, Glenn B.; 1964-1977; Director of Institutional Services Emeritus.

Owens, Connie; 1982-2002; Lecturer Emerita in Communication.

Owens, Warren S.; 1968-1987; Dean Emeritus of Library Services with rank of Professor.

Pace, Lois W.; 1972-1981; Extension Professor Emerita.

Pals, Douglas A.; 1977-2003; Professor Emeritus of Agricultural Education.

Parks, A. Lee; 1975-1999; Professor Emeritus of Special Education.

Parr, Joan K.; 1971-2004; Extension Professor Emerita.

Parton, Robert R.; 1967-1988; Director of Housing and Food Service Emeritus.

Partridge, Arthur D.; 1960-1997; Professor Emeritus of Forest Resources.

Peek, James M.; 1973-1999; Professor Emeritus of Wildlife Resources.

PeterSon, Charles L.; 1973-2004; Professor Emeritus of Agricultural Engineering.

PeterSon, Floyd H.; 1969-1989; Professor of Music and Director Emeritus.

PeterSon, Hazel C.; 1971-1987; Professor Emerita of Physical Education.

PeterSon, James N.; 1975-2000; Professor Emeritus of Electrical Engineering.

Place, T. Alan; 1970-2002; Professor Emeritus of Mechanical Engineering.

Potratz, Clarence J.; 1966-1994; Professor of Mathematics and Statistics and Department Chair Emeritus.

Potter, Gretchen L.; 1966-1976; Professor Emerita of Home Economics.

Pigg, G. Raymond; 1975-1999; Extension Professor Emeritus of Agriculture.

Prichett, Jane; 1981-2002; Lecturer Emerita in Communication.

PYLE, Jan M.; 1972-1997; Catalog Librarian Emeritus with rank of Professor.

Rabe, Fred W.; 1965-1992; Professor Emeritus of Zoology.

Reid, Rolland R.; 1955-1994; Professor of Geography, Department Head, and Dean Emeritus.

Renfrew, Malcolm M.; 1959-1976; Professor of Chemistry and Department Head Emeritus.

Reynoldson, Roger L.; 1985-1998; Professor of Educational Administration and Director of the University of Idaho Boise Center Emeritus.

Rigas, Anthony L.; 1966-1993; Professor of Electrical Engineering and Director of Engineering Outreach Emeritus.

Robertson, Larry D.; 1986-2003; Professor Emeritus of Plant Genetics.

Romanko, R. Robert; 1957-1998; Extension Professor Emeritus.

Rose, Alan; 1969-1999; Professor Emeritus of Foreign Languages and Literatures.

Rourke, Arthur W.; 1972-1999; Professor of Zoology and Department Chair Emeritus.

Ruby, Mary Lou; 1960-1999; Extension Professor Emerita.

Russell, George R.; 1947-1985; Professor of Civil Engineering and Associate Dean of Engineering Emeritus.

Samuelson, Everett V.; 1963-1989; Distinguished Professor of Educational Administration and Dean Emeritus.

SCHELDORF, Jay J.; 1966-1999; Professor Emeritus of Chemical Engineering.
SCHOLL, Stewart C.; 1949-1977; Professor and Chair of Zoology Emeritus.
SCHENK, John A.; 1961-1988; Professor Emeritus of Forest Resources.
SCHERMERHORN, Richard W.; 1971-1989; Professor of Agricultural Economics and Department Head Emeritus.
SCOTT, Donald R.; 1956-1984; Professor Emeritus of Entomology.
SCRIPTER, Sam M. W.; 1971-2002; Professor Emeritus of Geography.
SEALE, Robert H.; 1949-1975; Professor Emeritus of Forestry.
SEARS, Forrest E.; 1966-1997; Professor Emeritus of Theatre Arts.
SHARP, D. Wayne; 1963-1999; Extension Professor Emeritus.
SHOWELL, Jean C.; 1980-1990; Extension Professor Emerita.
SIEMS, Peter L.; 1985-1997; Professor Emeritus of Geology.
SIMMONS, George M.; 1975-1998; Professor Emeritus of Chemical Engineering.
SINGLETON, Cara Z. Newman; 1948-1984; Extension Professor Emerita.
SIPAHIGIL, Teoman; 1970-2002; Professor Emeritus of English.
SLADE, H. Eugene; 1942-1974; Business Manager Emeritus.
SMITH, LaMont; 1955-1983; Extension Professor Emeritus.
SMITH, Lewis B.; 1967-1992; Professor Emeritus of Education.
SMITH, Rosa L.; 1961-2002; Extension Professor Emerita.
SNYDER, William H.; 1956-1985; Professor of Landscape Architecture and Department Chair Emeritus.
SOUTH, Peter J.; 1976-1990; Professor Emeritus of Veterinary Science.
SPOMER, George G.; 1972-1999; Professor Emeritus of Botany.
SPRAGUE, Roderick; 1967-1997; Professor Emeritus of Anthropology.
STEIGER, Monte L.; 1982-2002; Library Associate Dean Emeritus with rank of Professor.
STELMON, M. William; 1964-1992; Professor Emeritus of Agricultural Information.
STORM, Leo F.; 1969-1986; Professor Emeritus of English.
STOSZEK, Karel J.; 1975-1999; Professor Emeritus of Forest Resources.
STRANAHAH, Clyde H.; 1942-1974; Extension Professor Emeritus.
SULLIVAN, John H.; 1966-1986; Professor Emeritus of Foreign Languages and Literatures.
TELING, Matt E.; 1968-1995; Registrar Emeritus.
TERESA, George W.; 1968-1990; Professor Emeritus of Bacteriology.
THOMPSON, Charles J.; 1965-1996; Professor Emeritus of Physical Education.
TINGEY, Fred H.; 1979-1994; Professor of Engineering Science and Director Emeritus.
TOVEY, Devere; 1938-1978; Extension Professor Emeritus.
TOVEY, Weldon R.; 1962-1998; Professor of Engineering Science and Associate Dean Emeritus.
TUNG, Mason; 1962-1990; Professor Emeritus of English.
TURNER, Robert L.; 1957-1990; Professor Emeritus of Mechanical Engineering.
ULLIMAN, Joseph J.; 1974-1998; Professor Emeritus of Forest Resources.
VENT, Herbert J.; 1960-1980; Professor Emeritus of Education.
VETTRUS, Dean L.; 1961-1993; General Manager of ASUI and Student Union Emeritus.
VINCENTI, Sheldon A.; 1973-2001; Professor Emeritus of Law.
VOORHEES, Jack R.; 1969-1975; Professor of Naval Science and Department Head Emeritus.
VOXMAN, Mary H.; 1982-2003; Senior Instructor Emerita of Mathematics.
WALDHALM, Donald G.; 1960-1982; Research Professor Emeritus of Veterinary Science.
WALKER, David J.; 1977-2002; Professor Emeritus of Agricultural Economics.
WALKER, Delbert J.; 1950-1978; Professor Emeritus of Mathematics.
WALKER, Diane B.; 1966-1999; Professor Emerita of Dance.
WALLACE, Alfred T.; 1967-2002; Professor Emeritus of Civil Engineering.
WALLENHAUPT, Katherine M.; 1973-1999; Extension Professor Emerita.
WALLINS, Roger P.; 1970-2002; Professor of English and Associate Dean Emeritus.
WARD, Alton C. S.; 1965-2003; Professor Emeritus of Veterinary Medicine.
WATTENBARGER, David W.; 1969-2001; Extension Professor Emeritus.
WATT, Frederick J.; 1968-1993; Professor of Civil Engineering and Department Chair Emeritus.
WEBBERT, Charles A.; 1948-1981; Head Emeritus, Department of Special Collections and Archives in the University Library, with rank of Professor.
WHITE, Donald R.; 1968-1991; Extension Professor Emeritus of Forest Resources.
WHITE, Florence A.; 1978-1999; Professor Emerita of Education.
WISE, Alvin C.; 1946-1978; Professor Emeritus of Biochemistry.
WISE, Maurice V.; 1978-2002; Research Professor of Plant Pathology and Chair Emeritus.
WILLET, Gerald A. Jr.; 1977-1995; Professor Emeritus of Civil Engineering.
WILLIAMS, George A.; 1957-1988; Professor of Geological Engineering and Department Head Emeritus.
WILLIAMS, Larry G.; 1956-1990; Professor Emeritus of Agricultural Engineering.
WILMES, Henry; 1969-2002; Professor Emeritus of Physics.
WITHERS, Russell V.; 1961-1999; Professor Emeritus of Agriculture Economics.
WOLF, Virginia; 1964-1982; Professor Emerita of Physical Education.
WOOD, Mary Lee; 1964-1999; Extension Professor Emerita of Family and Consumer Sciences.
WOOLMS, Edward C.; 1962-1991; Professor Emeritus of Education.
WRIIGLE, Larry K.; 1965-1993; Professor Emeritus of Education.
<table>
<thead>
<tr>
<th>Index</th>
<th>283</th>
</tr>
</thead>
</table>

A

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations and Symbols, Course Numbering System</td>
<td>165</td>
</tr>
<tr>
<td>Academic</td>
<td>25</td>
</tr>
<tr>
<td>Assistance Programs</td>
<td>39</td>
</tr>
<tr>
<td>Calendar</td>
<td>54</td>
</tr>
<tr>
<td>Hearing Board</td>
<td>13</td>
</tr>
<tr>
<td>Honors</td>
<td>50</td>
</tr>
<tr>
<td>Minors Offered</td>
<td>12</td>
</tr>
<tr>
<td>Performance</td>
<td>31</td>
</tr>
<tr>
<td>Petitions Committee</td>
<td>50</td>
</tr>
<tr>
<td>Procedures</td>
<td>39</td>
</tr>
<tr>
<td>Progress</td>
<td>56</td>
</tr>
<tr>
<td>Record</td>
<td>15</td>
</tr>
<tr>
<td>Standing, Probation, Disqualification & Reinstatement</td>
<td>48</td>
</tr>
<tr>
<td>Accounting</td>
<td>165</td>
</tr>
<tr>
<td>Courses</td>
<td>50</td>
</tr>
<tr>
<td>Department</td>
<td>77</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>77</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>77</td>
</tr>
<tr>
<td>Accreditation, University</td>
<td>5</td>
</tr>
<tr>
<td>Additions</td>
<td>150</td>
</tr>
<tr>
<td>Administrative Hearing Board</td>
<td>39</td>
</tr>
<tr>
<td>Admission</td>
<td>17</td>
</tr>
<tr>
<td>International</td>
<td>5</td>
</tr>
<tr>
<td>Law</td>
<td>12</td>
</tr>
<tr>
<td>Provisional Undergraduate</td>
<td>5</td>
</tr>
<tr>
<td>Transfer</td>
<td>10</td>
</tr>
<tr>
<td>Transfer to Law Program</td>
<td>65</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>15</td>
</tr>
<tr>
<td>Adult and Organizational Learning</td>
<td>166</td>
</tr>
<tr>
<td>Courses</td>
<td>1471</td>
</tr>
<tr>
<td>Aerospace Studies</td>
<td>128</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>80</td>
</tr>
<tr>
<td>Affiliate Faculty</td>
<td>80</td>
</tr>
<tr>
<td>Aging Studies</td>
<td>257</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>80</td>
</tr>
<tr>
<td>Program</td>
<td>80</td>
</tr>
<tr>
<td>Agriculture</td>
<td>82</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>82</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>82</td>
</tr>
<tr>
<td>Program</td>
<td>82</td>
</tr>
<tr>
<td>Agricultural and Extension Education, Department of</td>
<td>80</td>
</tr>
<tr>
<td>Agricultural and Life Sciences, College of</td>
<td>51</td>
</tr>
<tr>
<td>Agricultural Economics</td>
<td>82</td>
</tr>
<tr>
<td>Agricultural Economics & Rural Sociology, Department of</td>
<td>82</td>
</tr>
<tr>
<td>Agriculture</td>
<td>81</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>257</td>
</tr>
<tr>
<td>Program</td>
<td>51</td>
</tr>
<tr>
<td>Agricultural Experiment Station</td>
<td>81</td>
</tr>
<tr>
<td>Agricultural Extension Education</td>
<td>169</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>91</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>92</td>
</tr>
<tr>
<td>Program</td>
<td>90</td>
</tr>
<tr>
<td>Alfred W. Bowers Laboratory of Anthropology</td>
<td>10</td>
</tr>
<tr>
<td>Alumni Association</td>
<td>67</td>
</tr>
<tr>
<td>American College Testing Program (ACT)</td>
<td>26</td>
</tr>
<tr>
<td>American Government/Public Law</td>
<td>15</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>149</td>
</tr>
<tr>
<td>American Indian Studies</td>
<td>170</td>
</tr>
<tr>
<td>Courses</td>
<td>83</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>83</td>
</tr>
<tr>
<td>Program</td>
<td>83</td>
</tr>
<tr>
<td>American Language & Culture Program</td>
<td>33</td>
</tr>
<tr>
<td>American Studies</td>
<td>170</td>
</tr>
<tr>
<td>Courses</td>
<td>84</td>
</tr>
<tr>
<td>Department</td>
<td>84</td>
</tr>
<tr>
<td>Animal and Veterinary Science</td>
<td>10</td>
</tr>
<tr>
<td>Courses</td>
<td>84</td>
</tr>
<tr>
<td>Department</td>
<td>84</td>
</tr>
<tr>
<td>Anthropology</td>
<td>171</td>
</tr>
<tr>
<td>Courses</td>
<td>85</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>153</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>154</td>
</tr>
<tr>
<td>Application for Degrees</td>
<td>50</td>
</tr>
<tr>
<td>AP Exams</td>
<td>44</td>
</tr>
<tr>
<td>Aquaculture Research Institute</td>
<td>7</td>
</tr>
<tr>
<td>Arabic</td>
<td>203</td>
</tr>
<tr>
<td>Arboriculture & Urban Forestry</td>
<td>114</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>118</td>
</tr>
<tr>
<td>Architecture</td>
<td>172</td>
</tr>
<tr>
<td>Courses</td>
<td>86</td>
</tr>
<tr>
<td>Department</td>
<td>86</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>87</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>87</td>
</tr>
<tr>
<td>Argonaut</td>
<td>30</td>
</tr>
<tr>
<td>Art</td>
<td>173</td>
</tr>
<tr>
<td>Courses</td>
<td>6</td>
</tr>
<tr>
<td>Galleries</td>
<td>87</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>87</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>88</td>
</tr>
<tr>
<td>Art and Design</td>
<td>87</td>
</tr>
<tr>
<td>Department</td>
<td>87</td>
</tr>
<tr>
<td>Art Education Major Requirements</td>
<td>88</td>
</tr>
<tr>
<td>Assessment, Student Program</td>
<td>38</td>
</tr>
<tr>
<td>ASUI Activity Center</td>
<td>38</td>
</tr>
<tr>
<td>ASUI Student Government</td>
<td>2950</td>
</tr>
<tr>
<td>Athletic Scholarship</td>
<td>32</td>
</tr>
<tr>
<td>Athletic Training</td>
<td>122</td>
</tr>
<tr>
<td>Athletics, Intercollegiate</td>
<td>28</td>
</tr>
<tr>
<td>Attendance Policy</td>
<td>49</td>
</tr>
<tr>
<td>Auditing Classes</td>
<td>39</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baccalaureate Degree Programs</td>
<td>12</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>135</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>82</td>
</tr>
<tr>
<td>Bioinformatics & Computational Biology</td>
<td>175</td>
</tr>
<tr>
<td>Courses</td>
<td>89</td>
</tr>
<tr>
<td>Biological & Agricultural Engineering</td>
<td>175</td>
</tr>
<tr>
<td>Department</td>
<td>90</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>91</td>
</tr>
<tr>
<td>Biological Systems Engineering</td>
<td>90</td>
</tr>
<tr>
<td>Program</td>
<td>7</td>
</tr>
<tr>
<td>Biology</td>
<td>176</td>
</tr>
<tr>
<td>Courses</td>
<td>93</td>
</tr>
<tr>
<td>Department</td>
<td>94</td>
</tr>
<tr>
<td>Boise Center</td>
<td>75</td>
</tr>
<tr>
<td>Bureau of Public Affairs Research</td>
<td>7</td>
</tr>
<tr>
<td>Business</td>
<td>178</td>
</tr>
<tr>
<td>Courses</td>
<td>94</td>
</tr>
<tr>
<td>Department</td>
<td>94</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>96</td>
</tr>
<tr>
<td>Business and Economics, College of</td>
<td>52</td>
</tr>
<tr>
<td>Business Economics</td>
<td>94</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caine Veterinary Teaching Center</td>
<td>8</td>
</tr>
<tr>
<td>Catalog Issue</td>
<td>47</td>
</tr>
<tr>
<td>Center for Advanced Microelectronics and Biomolecular Research</td>
<td>5</td>
</tr>
<tr>
<td>Applied Thermodynamic Studies</td>
<td>8</td>
</tr>
<tr>
<td>Clean Vehicle Technology</td>
<td>11</td>
</tr>
<tr>
<td>Educational Research & Public Service</td>
<td>8</td>
</tr>
<tr>
<td>ETHICS</td>
<td>8</td>
</tr>
<tr>
<td>Intelligent Systems Research</td>
<td>8</td>
</tr>
<tr>
<td>International Training and Outreach</td>
<td>8</td>
</tr>
<tr>
<td>Secure and Dependable Systems</td>
<td>8</td>
</tr>
<tr>
<td>Traffic Operations and Control</td>
<td>11</td>
</tr>
<tr>
<td>Transportation Infrastructure</td>
<td>11</td>
</tr>
<tr>
<td>Center for Research on Invasive Species</td>
<td>8</td>
</tr>
<tr>
<td>Certificates of Completion</td>
<td>14</td>
</tr>
<tr>
<td>Challenged Courses</td>
<td>70</td>
</tr>
<tr>
<td>Changes in Registration</td>
<td>40</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>41</td>
</tr>
<tr>
<td>Courses</td>
<td>180</td>
</tr>
<tr>
<td>Department</td>
<td>97</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>97</td>
</tr>
<tr>
<td>Chemistry</td>
<td>181</td>
</tr>
<tr>
<td>Courses</td>
<td>98</td>
</tr>
<tr>
<td>Department</td>
<td>98</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>98</td>
</tr>
<tr>
<td>Child, Family, and Consumer Studies</td>
<td>110</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>27</td>
</tr>
<tr>
<td>Child Care Services</td>
<td>29</td>
</tr>
<tr>
<td>Civic Education Project and Volunteer Programs</td>
<td>47</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>49</td>
</tr>
<tr>
<td>Courses</td>
<td>50</td>
</tr>
<tr>
<td>Department</td>
<td>50</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>50</td>
</tr>
<tr>
<td>Class Rating</td>
<td>50</td>
</tr>
<tr>
<td>Class Schedules, Deviations from</td>
<td>50</td>
</tr>
<tr>
<td>Class Size</td>
<td>50</td>
</tr>
<tr>
<td>Classical Studies</td>
<td>50</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>115</td>
</tr>
</tbody>
</table>
Clothing, Textiles and Design
 Major Requirements ... 111
Coaching
 Minor Requirements .. 124
Coeur d'Alene Center ... 76
College Board Advanced Placement Exams (AP) 44
College Level Examination Program (CLEP) 45
College of
 Agricultural and Life Sciences .. 51
 Business and Economics .. 52
 Education ... 53
 Engineering ... 56
 Graduate Studies ... 58
 Law .. 64
 Letters, Arts and Social Sciences ... 66
 Natural Resources ... 68
Commencement .. 50
Communication Studies
 Courses .. 184
 Major Requirements .. 150
Minor Requirements ... 150
Comparative/International Politics
 Minor Requirements .. 149
COMPASS Exams ... 45
Computer Education ... 27
Computer Engineering
 Major Requirements .. 103
 Program ... 103
Computer Science
 Courses .. 185
 Department .. 100
 Major Requirements .. 100
 Minor Requirements .. 101
 Computing Grade-Point Averages ... 19
 Concurrent Enrollment .. 18,21,34
 Concurrent Grad/Law Degrees .. 77
 Accounting Program .. 109
 Environmental Science Program .. 60
 Graduate Requirements .. 60
Confidentiality of Academic and Counseling Records 50
Conservation Social Sciences
 Courses .. 186
 Department .. 101
Continuing Education Unit ... 42
 Cooperative Programs .. 73,74-121
Core
 Core Science Courses .. 188
 Courses .. 188
 Natural and Applied Science Courses 46
 State Board of Education General-Education Core 19
 UIC Core .. 46
 Counseling & Testing Services ... 27
 Counseling and School Psychology Courses 188
 Counseling Records, Confidentiality of Course 41
 Dropping a Course ... 165
 Numbering System .. 165
 Standard Numbers .. 165
Course Descriptions
 Accounting .. 165
 Adult and Organizational Learning 165
 Aerospace Studies ... 167
 Agricultural Economics .. 167
 Agricultural Education ... 167
 Agricultural Science & Technology 169
 Agricultural Systems Management 169
 American Indian Studies ... 170
 Animal & Veterinary Science ... 170
 Anthropology .. 171
 Arabic .. 203
 Architecture .. 172
 Art ... 173
 Bioinformatics & Computational Biology 175
 Biological & Agricultural Engineering 175
 Biology .. 176
 Business ... 178
 Chemical Engineering .. 180
 Chemistry ... 181
 Civil Engineering ... 182
 Communication Studies ... 184
 Computer Science ... 185
 Conservation Social Sciences ... 186
 CORE .. 188
 Counseling & School Psychology 188
 Dance .. 188
 Economics .. 190
 Education ... 190
 Educational Administration ... 191
 Electrical and Computer Engineering 195
 Engineering-General .. 195
 Engineering Management ... 195
 English .. 195
 Entomology ... 197
 Environmental Engineering ... 198
 Environmental Science .. 198
 Family & Consumer Sciences .. 199
 Fishery Resources .. 201
 Food Science & Toxicology ... 202
 Foreign Languages & Literatures:Arabic 203
 Foreign Languages & Literatures:Chinese 203
 Foreign Languages & Literatures:Courses in English 203
 Foreign Languages & Literatures:French 203
 Foreign Languages & Literatures:German 205
 Foreign Languages & Literatures:German 205
 Forensic Science ... 205
 Forest Products .. 205
 Forest Resources .. 206
 Genetics .. 208
 Geography ... 208
 Geology .. 210
 Geophysics .. 212
 Health & Safety .. 212
 History ... 213
 Interdisciplinary Studies ... 215
 Interior Design .. 215
 International Studies .. 216
 Italian .. 204
 Journalism and Mass Media .. 216
 Justice Studies .. 217
 Landscape Architecture .. 218
 Latin American Studies ... 219
 Law ... 219
 Martin Institute .. 221
 Mathematics ... 221
 Mechanical Engineering .. 233
 Medical Science .. 225
 Military Science .. 228
 Mining Engineering-Metallurgy 229
 Music-Media Performance Studies 229
 Music General ... 230
 Music-History & Literature ... 230
 Music-Music Teaching ... 231
 Music-Theory & Composition .. 230
 Natural Resources .. 232
 Naval Science .. 233
 Neurosciences .. 233
 Nuclear Engineering .. 233
 Physical Education ... 234
 Physical Education-Professional 234
 Physics .. 236
 Plant Science ... 237
 Political Science .. 237
 Professional-Technical and Technology Education........... 238
 Psychology .. 242
 Rangeland Ecology & Management 244
 Recreation .. 246
 Religious Studies .. 247
 Sociology ... 247
 Soils ... 248
 Special Education .. 249
 Statistics ... 250
 Systems Engineering .. 250
 Teacher Education ... 251
 Veterinary Science ... 254
 Virtual Technology and Design ... 254
 Wildlife Resources .. 255
Credit
 By Exam (Challenge) .. 45
 Continuing Education Unit ... 70
 Load Limitations ... 47,223,236,250
 Limitations ... 42
 Other Credit Opportunities .. 44
 Requirements ... 45
 Requirements for Full-Time Students 49
 Unit of Credit Defined ... 40
 Vertically-related Course Credit 45
 Withdrawal Limitation ... 40
Crop Science Minor Requirements .. 148
Curricular Requirements .. 47

D
 Dance
 Courses .. 189
 Major Requirements .. 122
 Minor Requirements ... 124
 Dean of Students, Office of ... 27
 Deferred Admission .. 18,21
 Deferred Payment of Fees .. 24
 Degrees Granted .. 12
 Degree with Double Major .. 47
Departments
 Accounting ... 77
 Agricultural & Extension Education 80
 Agricultural Economics & Rural Sociology 82
 Animal & Veterinary Science .. 84
 Architecture ... 86
 Art and Design ... 87
Biological & Agricultural Engineering .. 90
Business ... 94
Chemical Engineering ... 97
Chemistry ... 98
Civil Engineering .. 99
Computer Science ... 100
Conservation Social Sciences .. 101
Electrical & Computer Engineering ... 103
English ... 105
Family & Consumer Sciences ... 110
Fish & Wildlife Resources .. 112
Food Science & Toxicology ... 113
Foreign Languages & Literatures ... 114
Forest Products ... 116
Forest Resources ... 117
Geography ... 119
Geological Sciences .. 121
Health, Physical Education, Recreation & Dance 122
History ... 125
International Affairs .. 126
Journalism and Mass Media ... 127
Landscape Architecture .. 128
Materials Science and Engineering .. 130
Mathematics .. 131
Mechanical Engineering .. 133
Microbiology, Molecular Biology & Biochemistry 134
Military Science .. 136
Music ... 138
Naval Science ... 142
Philosophy .. 143
Physics .. 144
Plant, Soil & Entomological Sciences ... 145
Political Science .. 148
Psychology and Communication Studies ... 150
Rangeland Ecology & Management .. 151
Sociology, Anthropology & Justice Studies .. 152
Statistics ... 154
Teaching, Learning & Leadership .. 155
Theatre and Film .. 162
Deviations from Established Class Schedules 189
Direct Loans .. 31
Disqualification, Academic ... 48
Doctoral Degrees .. 12,63
Drop for Non-attendance ... 49
Dual Enrollment .. 16

E

Early Childhood Development
Major Requirements .. 111
Ecology and Conservation Biology
Major Requirements .. 140
Economics
Courses ... 190
Major Requirements ... 94
Minor Requirements ... 96
Education
College of .. 53
Courses ... 190
Masters Program .. 103
Specialized Degrees ... 12,62
Teaching Major and Minor Requirements .. 156
Electrical and Computer Engineering
Courses ... 192
Department .. 103
Electronic Engineering
Major Requirements .. 104
Electron Microscopy Center .. 9
Elementary Education
Major Requirements .. 155
Employment Opportunities ... 28
Engineering, College of ... 56
Engineering-General Courses .. 195
Engineering Experiment Station .. 57
Engineering Management Courses .. 195
Engineering Outreach Program .. 71
English
Courses ... 195
Department .. 105
Major Requirements ... 105
Minor Requirements ... 106
English Language Proficiency .. 21
Enrollment Services .. 29,30
Entomology
Courses ... 197
Major Requirements ... 146
Minor Requirements ... 148
Environmental Communication
Minor Requirements .. 102
Environmental Engineering
Graduate Program .. 107
Environmental Research Institute ... 9
Environmental Science
Courses ... 198
Major Requirements ... 108
Program ... 108
Evaluation of Transfer Credits ... 18
Exchange Programs
International .. 33
National ... 27
Expenses ... 21
Extracurricular Activities ... 29
Extramural Credit Fee .. 23
F

Faculty Listing .. 257
Family and Consumer Sciences
Child Development Laboratory ... 199
Courses ... 27
Margaret Ritchie School of .. 110
Family Housing .. 25
Fees
Deferred Payment of .. 24
Full/Part-Time Registration Fees ... 22
Refund of .. 24
Special Course/Lab Fees ... 23
Fees and Expenses ... 21
Field Trips ... 49
Film
Minor Requirements .. 163
Final Examinations ... 44
Finance
Major Requirements .. 95
Financial Aid Services .. 31
Financial Planning Option .. 95
Fire Ecology & Management
Minor Requirements .. 118
Fish & Wildlife Resources
Department .. 112
Fishery Resources
Courses ... 201
Major Requirements ... 112
Minor Requirements ... 113
Food and Nutrition
Major Requirements .. 111
Food Science
Major Requirements .. 113
Minor Requirements ... 114
Food Science & Toxicology
Courses ... 202
Department .. 113
Foreign Languages & Literatures
Courses ... 203
Department .. 114
Major Requirements ... 115
Forest Products
Courses ... 205
Department .. 116
Major Requirements ... 116
Minor Requirements ... 117
Forest Resources
Courses ... 206
Department .. 117
Major Requirements ... 118
Minor Requirements ... 119
Forest, Wildlife & Range Experiment Station 25
French
Courses ... 203
Minor Requirements ... 116
Freshman
Fresh Start ... 48
Freshman Admission Requirements .. 15
G

General Education Requirements For Transfer Students 19,46
General Requirements and Academic Procedures 39
General Requirements for Baccalaureate Degrees 45
General Studies Program ... 119
Genetics Courses ... 208
Geography
Courses ... 208
Department .. 119
Major Requirements ... 120
Geological Engineering
Minor Requirements ... 100
Geological Sciences
Department .. 121
Geology
Courses ... 210
Minor Requirements ... 122
German
Courses ... 204
Minor Requirements ... 116
Glaciological and Arctic Sciences Institute ... 9
Golden Key National Honor Society .. 8
Grade Point Averages, Computing ... 42
Grade(s)
Corrections .. 43
For Students Who Withdraw .. 44
In Law Courses ... 42
Of In-Progress (IP) ... 42
Repeating ... 43
Requirements ... 47,59
H

<table>
<thead>
<tr>
<th>Department/Major/Minor</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hagerman Fish Culture Experiment Station</td>
<td>9</td>
</tr>
<tr>
<td>Health, Physical Education, Recreation & Dance, Division of</td>
<td>122</td>
</tr>
<tr>
<td>Health & Accident Insurance</td>
<td>18.21</td>
</tr>
<tr>
<td>Health & Safety Courses</td>
<td>212</td>
</tr>
<tr>
<td>Health Services</td>
<td>23</td>
</tr>
<tr>
<td>History</td>
<td>9</td>
</tr>
<tr>
<td>Department</td>
<td>125</td>
</tr>
<tr>
<td>Honors, Academic</td>
<td>47</td>
</tr>
<tr>
<td>Horticulture</td>
<td>148</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>116</td>
</tr>
<tr>
<td>Idaho Commons</td>
<td>30</td>
</tr>
<tr>
<td>Idaho Cooperative Fish and Wildlife Research Unit</td>
<td>9</td>
</tr>
<tr>
<td>Idaho Cooperative Park Studies Unit</td>
<td>9</td>
</tr>
<tr>
<td>Idaho Falls Center</td>
<td>76</td>
</tr>
<tr>
<td>Idaho Forest, Wildlife and Range Experiment Station</td>
<td>9.69</td>
</tr>
<tr>
<td>Policy Analysis Group</td>
<td>8</td>
</tr>
<tr>
<td>Idaho Geological Survey</td>
<td>9</td>
</tr>
<tr>
<td>Idaho Research Foundation</td>
<td>7</td>
</tr>
<tr>
<td>Idaho Technology Transfer Center</td>
<td>11</td>
</tr>
<tr>
<td>Idaho Urban Research and Design Center</td>
<td>86</td>
</tr>
<tr>
<td>Idaho Water Resources Research Institute</td>
<td>10</td>
</tr>
<tr>
<td>Industrial Technology Education</td>
<td>23</td>
</tr>
<tr>
<td>Information Systems Major Requirements</td>
<td>79</td>
</tr>
<tr>
<td>Information Technology Services</td>
<td>46</td>
</tr>
<tr>
<td>Inland Empire Tree Improvement Cooperative</td>
<td>10</td>
</tr>
<tr>
<td>Institute for Materials and Advanced Processes</td>
<td>10</td>
</tr>
<tr>
<td>Institute for Pacific Northwest Studies</td>
<td>10</td>
</tr>
<tr>
<td>Insurance Plans</td>
<td>18.21.33</td>
</tr>
<tr>
<td>Intercollegiate Athletics</td>
<td>28</td>
</tr>
<tr>
<td>Interdisciplinary Studies</td>
<td>215</td>
</tr>
<tr>
<td>Interdisciplinary Studies Courses</td>
<td>215</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>126</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>126</td>
</tr>
<tr>
<td>Interior Design</td>
<td>215</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>86</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>87</td>
</tr>
<tr>
<td>International Business Minor Requirements</td>
<td>96</td>
</tr>
<tr>
<td>International Business Studies</td>
<td>149</td>
</tr>
<tr>
<td>International Programs</td>
<td>21.33</td>
</tr>
<tr>
<td>International Studies</td>
<td>216</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>126</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>127</td>
</tr>
</tbody>
</table>

M

<table>
<thead>
<tr>
<th>Department/Major/Minor</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management and Human Resources Major Requirements</td>
<td>95</td>
</tr>
<tr>
<td>Manufacturing Engineering Minor Requirements</td>
<td>134</td>
</tr>
<tr>
<td>Marketing Major Requirements</td>
<td>96</td>
</tr>
<tr>
<td>Martin Institute</td>
<td>221</td>
</tr>
<tr>
<td>for Peace Studies and Conflict Resolution</td>
<td>10</td>
</tr>
<tr>
<td>Martin School of International Affairs</td>
<td>126</td>
</tr>
<tr>
<td>Master's Degree Programs</td>
<td>12</td>
</tr>
<tr>
<td>Materials Science & Engineering</td>
<td>130</td>
</tr>
<tr>
<td>Mathematics Courses</td>
<td>221</td>
</tr>
<tr>
<td>Department</td>
<td>131</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>132</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>133</td>
</tr>
<tr>
<td>Polya Center</td>
<td>29</td>
</tr>
<tr>
<td>Matriculation</td>
<td>99</td>
</tr>
<tr>
<td>Mechanical Engineering Courses</td>
<td>223</td>
</tr>
<tr>
<td>Department</td>
<td>133</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>133</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>134</td>
</tr>
<tr>
<td>Medical Education (WWAMI Program)</td>
<td>25.74</td>
</tr>
<tr>
<td>Medical Science Courses</td>
<td>225</td>
</tr>
<tr>
<td>Medical Technology</td>
<td>43</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>135</td>
</tr>
<tr>
<td>Medical Withdrawal Procedures</td>
<td>43</td>
</tr>
<tr>
<td>Metallurgical Engineering Major Requirements</td>
<td>130</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>131</td>
</tr>
<tr>
<td>Microbiology, Molecular Biology & Biochemistry Department</td>
<td>134</td>
</tr>
<tr>
<td>Microelectronics Research and Communications Institute</td>
<td>10</td>
</tr>
<tr>
<td>Military Science Courses</td>
<td>228</td>
</tr>
<tr>
<td>Department</td>
<td>136</td>
</tr>
<tr>
<td>Mining Engineering-Metallurgy Courses</td>
<td>229</td>
</tr>
<tr>
<td>Minors</td>
<td>13</td>
</tr>
<tr>
<td>Academic Minors Offered</td>
<td>77</td>
</tr>
<tr>
<td>Accounting</td>
<td>150</td>
</tr>
<tr>
<td>Addictions</td>
<td>77</td>
</tr>
<tr>
<td>Advertising</td>
<td>128</td>
</tr>
<tr>
<td>Aeronautics Studies</td>
<td>80</td>
</tr>
<tr>
<td>Aging Studies</td>
<td>80</td>
</tr>
<tr>
<td>Animal Science</td>
<td>82</td>
</tr>
<tr>
<td>Agricultural Extension Education</td>
<td>82</td>
</tr>
<tr>
<td>Agricultural Systems Management</td>
<td>92</td>
</tr>
<tr>
<td>American Government/Public Law</td>
<td>149</td>
</tr>
<tr>
<td>American Indian Studies</td>
<td>83</td>
</tr>
<tr>
<td>American Studies</td>
<td>84</td>
</tr>
<tr>
<td>Anthropology</td>
<td>85</td>
</tr>
<tr>
<td>Anthropology</td>
<td>154</td>
</tr>
<tr>
<td>Arboriculture & Urban Forestry</td>
<td>118,148</td>
</tr>
<tr>
<td>Architecture</td>
<td>87</td>
</tr>
<tr>
<td>Art</td>
<td>88</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>135</td>
</tr>
<tr>
<td>Biology</td>
<td>94</td>
</tr>
<tr>
<td>Chemistry</td>
<td>98</td>
</tr>
<tr>
<td>Classical Studies</td>
<td>115</td>
</tr>
<tr>
<td>Coaching</td>
<td>124</td>
</tr>
<tr>
<td>Communication Studies</td>
<td>150</td>
</tr>
<tr>
<td>Comparative/International Politics</td>
<td>149</td>
</tr>
<tr>
<td>Computer Science</td>
<td>101</td>
</tr>
<tr>
<td>Crop Science</td>
<td>148</td>
</tr>
<tr>
<td>Dance</td>
<td>124</td>
</tr>
<tr>
<td>Dance Performance</td>
<td>124</td>
</tr>
<tr>
<td>English</td>
<td>106</td>
</tr>
<tr>
<td>Entomology</td>
<td>148</td>
</tr>
<tr>
<td>Environmental Communication</td>
<td>102</td>
</tr>
<tr>
<td>Film</td>
<td>163</td>
</tr>
<tr>
<td>Fire Ecology & Management</td>
<td>118</td>
</tr>
<tr>
<td>Fishery Resources</td>
<td>113</td>
</tr>
<tr>
<td>Food Science</td>
<td>114</td>
</tr>
<tr>
<td>Forest Products</td>
<td>117</td>
</tr>
<tr>
<td>Forest Resources</td>
<td>119</td>
</tr>
<tr>
<td>French</td>
<td>116</td>
</tr>
<tr>
<td>Geologic Engineering</td>
<td>100</td>
</tr>
<tr>
<td>Geology</td>
<td>122</td>
</tr>
<tr>
<td>German</td>
<td>116</td>
</tr>
</tbody>
</table>
Greek .. 116
History ... 125
Horticulture .. 148
Interdisciplinary Studies 126
Interior Design ... 127
International Political Economy 149
International Studies 127
Journalism .. 128
Justice Studies .. 154
Landscape Architecture 129
Latin ... 116
Manufacturing Engineering 134
Materials Science and Engineering 131
Mathematics ... 133
Mechanical Engineering 134
Metalurgical Engineering 131
Microbiology ... 135
Military Science .. 136
Molecular Biology & Biochemistry 135
Music .. 140
Natural Resource Economics & Community Development .. 82
Natural Resources .. 142
Naval Science ... 142
Outdoor Recreation Leadership 102, 124
Parks, Protected Areas, and Wilderness Conservation Minor 102
Philosophy .. 144
Physics ... 144
Plant Protection .. 148
Political Science ... 149
Psychology .. 150
Public Administration & Policy 149
Public Relations ... 128
Radio/TV/Digital Media Production 128
Rangeland Ecology & Management 152
Recreation ... 124
Recreational Therapy 124
Religious Studies ... 152
Sociology ... 154
Soil Science .. 148
Spanish ... 116
Sport Ethics .. 124
Sport Science ... 124
Statistics .. 154
Sustainable Tourism & Leisure Enterprises 102, 125
Teaching English as a Second Language 108
Technical Theatre 103
Theatre Arts ... 103
Timber Harvesting 117
Wildlife Resources 113
Writing ... 108
Mission Statement
Molecular Biology & Biochemistry
Major Requirements 135
Minor Requirements 135
Music Courses .. 229
Lionel Hampton School of Music 136
Major Requirements 137
Minor Requirements 140
Music Education Major Requirements 139
Music Theatre Major Requirements 140
Mutual Responsibility Agreement 38

N
National Institute for Advanced Transportation Technology 11
National Student Exchange 27
Natural Resource Economics & Community Development Minor Requirements 82
Natural Resources College of
Course ... 68
Courses ... 232
Major Requirements 142
Naval Science Courses
Department .. 142
Major Requirements 142
Minor Requirements 142
Neuroscience Courses
Graduate Program 143
New Student Services 29
Non-attendance ... 49
Nuclear Engineering Courses 233
Graduate Programs 143

O
Off-Campus Employment 28
Living ... 25
Office Administration Major Requirements 79
Office of Multicultural Affairs 28, 29
Other Credit Opportunities 44
Outdoor Programs ... 30

Index

287

Parks, Protected Areas, and Wilderness Conservation Minor Requirements ...
Minor Requirements .. 102
Pass-Fail Option ... 49
Petitions Academic Petitions Committee 39, 48
Fee ... 23
Graduate Regulations 58
Reinstatement after Third Disqualification 48
Phi Beta Kappa ... 6
Phi Kappa Phi ... 6
Philosophy Department 143
Major Requirements 144
Minor Requirements 144
Physical Education Courses 234
Major Requirements 123
Physics Courses .. 236
Department .. 144
Major Requirements 149
Minor Requirements 149
Polya Mathematics Center .. 29
Potato Center of Distinction 11
Pre-Dental Studies 93, 98, 135
Pre-Medical Studies 93, 98, 135
Pre-Nursing Studies 93
Pre-Physical Therapy Studies 93
Prerequisites .. 39, 42
Probation, Academic 48
Production/Operations Management
Major Requirements 96
Professional Golf Management Option 96
Professional-Technical and Technology Education Courses .. 240
Major Requirements 78
Program in
Aging Studies .. 80
American Indian Studies 83
Bioinformatics and Computational Biology 89
Environmental Engineering 107
Environmental Science 108
Interdisciplinary Studies 126
Latin American Studies 129
Neuroscience ... 143
Virtual Technology and Design 163
Women’s Studies .. 164
Programs Offered (Baccalaureate) 12
Provisional Admission, Undergraduate 16
Provisional Enrollment 20
Psychology Courses 242
Major Requirements 150
Psychology and Communication Studies
Department .. 150
Public Administration & Policy
Minor Requirements 149
Public Administration, Interuniversity Program in 74
Public Relations Minor Requirements 128
Pyschology Minor Requirements 150
R
Range Livestock Management Major Requirements ... 85, 151
Rangeland Ecology & Management Courses .. 244
Department .. 151
Major Requirements 151
Minor Requirements 152
Recreation Courses 246
Major Requirements 123
Minor Requirements 124
Recreational Activities 39
Refund of Fees ... 24
Registration .. 39
Changes ... 40, 41
For Fewer Credits than Authorized 40